
STEPHEN WOLFRAM

THE

B
O

O
K

T
H

 E
D

IT
IO

N
T

H
 E

D
IT

IO
N

Published by Wolfram Media



LATEX filename: frontmatter.tex 4:20 p.m. July 1, 2003 iv Mathematica Version: 5.0 for Linux (June 15, 2003)

Library of Congress Cataloging--in--Publication Data

Wolfram, Stephen, 1959 –
Mathematica book / Stephen Wolfram. — 5th ed.

p. cm.
Includes index.
ISBN 1–57955–022–3 (hardbound).
1. Mathematica (Computer file) 2. Mathematics—Data processing.

I. Title.
QA76.95.W65 2003
510'.285'5369—dc21 03–53794

CIP

Comments on this book will be welcomed at:
comments@wolfram.com

In publications that refer to the Mathematica
system, please cite this book as:
Stephen Wolfram, The Mathematica Book, 5th ed.
(Wolfram Media, 2003)

First and second editions published by Addison--Wesley Publishing Company
under the title Mathematica: A System for Doing Mathematics by Computer.

Third and fourth editions co--published by Wolfram Media
and Cambridge University Press.

Published by Wolfram Media, Inc.

Copyright çc 1988, 1991, 1996, 1999, 2003 by Wolfram Research, Inc.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior written permission of the copyright holder.

Wolfram Research is the holder of the copyright to the Mathematica software system described in this book, including without limitation such aspects of
the system as its code, structure, sequence, organization, “look and feel”, programming language and compilation of command names. Use of the system
unless pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an infringement of the copyright.

The author, Wolfram Research, Inc. and Wolfram Media, Inc. make no representations, express or implied, with respect to this documentation
or the software it describes, including without limitations, any implied warranties of merchantability, interoperability or fitness for a particular
purpose, all of which are expressly disclaimed. Users should be aware that included in the terms and conditions under which Wolfram
Research is willing to license Mathematica is a provision that the author, Wolfram Research, Wolfram Media, and their distribution licensees,
distributors and dealers shall in no event be liable for any indirect, incidental or consequential damages, and that liability for direct damages
shall be limited to the amount of the purchase price paid for Mathematica.

In addition to the foregoing, users should recognize that all complex software systems and their documentation contain errors and omissions.
The author, Wolfram Research and Wolfram Media shall not be responsible under any circumstances for providing information on or
corrections to errors and omissions discovered at any time in this book or the software it describes, whether or not they are aware of the
errors or omissions. The author, Wolfram Research and Wolfram Media do not recommend the use of the software described in this book for
applications in which errors or omissions could threaten life, injury or significant loss.

Mathematica, MathLink and MathSource are registered trademarks of Wolfram Research. J/Link, MathLM, MathReader, .NET/Link, Notebooks and
webMathematica are trademarks of Wolfram Research. All other trademarks used are the property of their respective owners. Mathematica is not associated
with Mathematica Policy Research, Inc. or MathTech, Inc.

Printed in the United States of America. ç¥ Acid--free paper. 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Author’s website:
www.stephenwolfram.com

Author’s address:
email: s.wolfram@wolfram.com
mail: c/o Wolfram Research, Inc.

100 Trade Center Drive
Champaign, IL 61820, USA

Other books by Stephen Wolfram:

· Cellular Automata and Complexity: Collected Papers (1993)

· A New Kind of Science (2002)



www.wolfram.com



vii

About the Author

Stephen Wolfram is the creator of Mathematica, and a well-

known scientist. He is widely regarded as the most important

innovator in technical computing today, as well as one of the

world’s most original research scientists.

Born in London in 1959, he was educated at Eton, Oxford and

Caltech. He published his first scientific paper at the age of fifteen,

and had received his PhD in theoretical physics from Caltech by

the age of twenty. Wolfram’s early scientific work was mainly

in high--energy physics, quantum field theory and cosmology,

and included several now--classic results. Having started to use

computers in 1973, Wolfram rapidly became a leader in the

emerging field of scientific computing, and in 1979 he began

the construction of SMP—the first modern computer algebra

system—which he released commercially in 1981.

In recognition of his early work in physics and computing,

Wolfram became in 1981 the youngest recipient of a Mac-

Arthur Prize Fellowship. Late in 1981, Wolfram then set out

on an ambitious new direction in science: to develop a gen-

eral theory of complexity in nature. Wolfram’s key idea was

to use computer experiments to study the behavior of simple

computer programs known as cellular automata. And in 1982

he made the first in a series of startling discoveries about the

origins of complexity. The publication of Wolfram’s papers on

cellular automata led to a major shift in scientific thinking, and

laid the groundwork for a new field of science that Wolfram

named “complex systems research”.

Through the mid--1980s, Wolfram continued his work on

complexity, discovering a number of fundamental connections

between computation and nature, and inventing such con-

cepts as computational irreducibility. Wolfram’s work led to a

wide range of applications—and provided the main scientific

foundations for the popular movements known as complexity

theory and artificial life. Wolfram himself used his ideas to

develop a new randomness generation system and a new

approach to computational fluid dynamics—both of which are

now in widespread use.

Following his scientific work on complex systems research,

Wolfram in 1986 founded the first research center and first

journal in the field. Then, after a highly successful career in

academia—first at Caltech, then at the Institute for Advanced

Study in Princeton, and finally as Professor of Physics, Math-

ematics and Computer Science at the University of Illinois—

Wolfram launched Wolfram Research, Inc.

Wolfram began the development of Mathematica in late 1986.

The first version of Mathematica was released on June 23,

1988, and was immediately hailed as a major advance in com-

puting. In the years that followed, the popularity of Mathe-

matica grew rapidly, and Wolfram Research became established

as a world leader in the software industry, widely recognized

for excellence in both technology and business. Wolfram has

been president and CEO of Wolfram Research since its incep-

tion, and continues to be personally responsible for the overall

design of its core technology.

Following the release of Mathematica Version 2 in 1991,

Wolfram began to divide his time between Mathematica

development and scientific research. Building on his work

from the mid--1980s, and now with Mathematica as a tool,

Wolfram made a rapid succession of major new discoveries. By

the mid--1990s his discoveries led him to develop a fundamentally

new conceptual framework, which he then spent the remainder

of the 1990s applying not only to new kinds of questions, but

also to many existing foundational problems in physics, biology,

computer science, mathematics and several other fields.

After more than ten years of highly concentrated work,

Wolfram finally described his achievements in his 1200--page

book A New Kind of Science. Released on May 14, 2002, the

book was widely acclaimed and immediately became a best-

seller. Its publication has been seen as initiating a paradigm

shift of historic importance in science.

In addition to leading Wolfram Research to break new ground

with innovative technology, Wolfram is now developing a

series of research and educational initiatives in the science he

has created.



ix

About Mathematica

Mathematica is the world’s only fully integrated environment
for technical computing. First released in 1988, it has had
a profound effect on the way computers are used in many
technical and other fields.

It is often said that the release of Mathematica marked the be-
ginning of modern technical computing. Ever since the 1960s
individual packages had existed for specific numerical, alge-
braic, graphical and other tasks. But the visionary concept of
Mathematica was to create once and for all a single system
that could handle all the various aspects of technical com-
puting in a coherent and unified way. The key intellectual
advance that made this possible was the invention of a new
kind of symbolic computer language that could for the first
time manipulate the very wide range of objects involved in
technical computing using only a fairly small number of basic
primitives.

When Mathematica Version 1 was released, the New York
Times wrote that “the importance of the program cannot
be overlooked”, and Business Week later ranked Mathematica
among the ten most important new products of the year.
Mathematica was also hailed in the technical community as a
major intellectual and practical revolution.

At first, Mathematica’s impact was felt mainly in the physical
sciences, engineering and mathematics. But over the years,
Mathematica has become important in a remarkably wide
range of fields. Mathematica is used today throughout the
sciences—physical, biological, social and other—and counts
many of the world’s foremost scientists among its enthusiastic
supporters. It has played a crucial role in many important
discoveries, and has been the basis for thousands of technical
papers. In engineering, Mathematica has become a standard
tool for both development and production, and by now many
of the world’s important new products rely at one stage
or another in their design on Mathematica. In commerce,
Mathematica has played a significant role in the growth of
sophisticated financial modeling, as well as being widely used
in many kinds of general planning and analysis. Mathematica
has also emerged as an important tool in computer science
and software development: its language component is widely
used as a research, prototyping and interface environment.

The largest part of Mathematica’s user community consists of
technical professionals. But Mathematica is also heavily used
in education, and there are now many hundreds of courses—
from high school to graduate school—based on it. In addition,
with the availability of student versions, Mathematica has be-
come an important tool for both technical and non--technical
students around the world.

The diversity of Mathematica’s user base is striking. It spans
all continents, ages from below ten up, and includes for ex-
ample artists, composers, linguists and lawyers. There are also
many hobbyists from all walks of life who use Mathematica to
further their interests in science, mathematics and computing.

Ever since Mathematica was first released, its user base has
grown steadily, and by now the total number of users is
above a million. Mathematica has become a standard in a
great many organizations, and it is used today in all of the
Fortune 50 companies, all of the 15 major departments of the
U.S. government, and all of the 50 largest universities in the
world.

At a technical level, Mathematica is widely regarded as a major
feat of software engineering. It is one of the largest single
application programs ever developed, and it contains a vast
array of novel algorithms and important technical innovations.
Among its core innovations are its interconnected algorithm
knowledge base, and its concepts of symbolic programming
and of document--centered interfaces.

The development of Mathematica has been carried out at
Wolfram Research by a world--class team led by Stephen
Wolfram. The success of Mathematica has fueled the contin-
uing growth of Wolfram Research, and has allowed a large
community of independent Mathematica--related businesses to
develop. There are today well over a hundred specialized com-
mercial packages available for Mathematica, as well as more
than three hundred books devoted to the system.



x

Features New in Mathematica Version 5

Mathematica Version 5 introduces important extensions to the
Mathematica system, especially in scope and scalability of numeric
and symbolic computation. Building on the core language and
extensive algorithm knowledge base of Mathematica, Version 5
introduces a new generation of advanced algorithms for a wide
range of numeric and symbolic operations.

Numerical Computation

� Major optimization of dense numerical linear algebra.

� New optimized sparse numerical linear algebra.

� Support for optimized arbitrary--precision linear algebra.

� Generalized eigenvalues and singular value decomposition.

� LinearSolveFunction for repeated linear--system solving.

� p norms for vectors and matrices.

� Built--in MatrixRank for exact and approximate matrices.

� Support for large--scale linear programming, with interior point
methods.

� New methods and array variable support in FindRoot and
FindMinimum.

� FindFit for full nonlinear curve fitting.

� Constrained global optimization with NMinimize.

� Support for n--dimensional PDEs in NDSolve.

� Support for differential--algebraic equations in NDSolve.

� Support for vector and array--valued functions in NDSolve.

� Highly extensive collection of automatically accessible
algorithms in NDSolve.

� Finer precision and accuracy control for arbitrary--precision
numbers.

� Higher--efficiency big number arithmetic, including
processor--specific optimization.

� Enhanced algorithms for number--theoretical operations
including GCD and FactorInteger.

� Direct support for high--performance basic statistics functions.

Symbolic Computation

� Solutions to mixed systems of equations and inequalities in
Reduce.

� Complete solving of polynomial systems over real or complex
numbers.

� Solving large classes of Diophantine equations.

� ForAll and Exists quantifiers and quantifier elimination.

� Representation of discrete and continuous algebraic and
transcendental solution sets.

� FindInstance for finding instances of solutions over different
domains.

� Exact constrained minimization over real and integer domains.

� Integrated support for assumptions using Assuming and
Refine.

� RSolve for solving recurrence equations.

� Support for nonlinear, partial and q difference equations and
systems.

� Full solutions to systems of rational ordinary differential
equations.

� Support for differential--algebraic equations.

� CoefficientArrays for converting systems of equations to
tensors.

Programming and Core System

� Integrated language support for sparse arrays.

� New list programming with Sow and Reap.

� EvaluationMonitor and StepMonitor for algorithm
monitoring.

� Enhanced timing measurement, including AbsoluteTiming.

� Major performance enhancements for MathLink.

� Optimization for 64--bit operating systems and architectures.

� Support for computations in full 64--bit address spaces.



xi

Interfaces

� Support for more than 50 import and export formats.

� High--efficiency import and export of tabular data.

� PNG, SVG and DICOM graphics and imaging formats.

� Import and export of sparse matrix formats.

� MPS linear programming format.

� Cascading style sheets and XHTML for notebook exporting.

� Preview version of .NET/Link for integration with .NET.

Notebook Interface

� Enhanced Help Browser design.

� Automatic copy/paste switching for Windows.

� Enhanced support for slide show presentation.

� AuthorTools support for notebook diffs.

Standard Add--on Packages

� Statistical plots and graphics.

� Algebraic number fields.

New in Versions 4.1 and 4.2

� Enhanced pattern matching of sequence objects.

� Enhanced optimizer for built--in Mathematica compiler.

� Enhanced continued fraction computation.

� Greatly enhanced DSolve.

� Additional TraditionalForm formats.

� Efficiency increases for multivariate polynomial operations.

� Support for import and export of DXF, STL, FITS and STDS data
formats.

� Full support for CSV format import and export.

� Support for UTF character encodings.

� Extensive support for XML, including SymbolicXML subsystem
and NotebookML.

� Native support for evaluation and formatting of Nand and Nor.

� High--efficiency CellularAutomaton function.

� J/Link MathLink--based Java capabilities.

� MathMLForm and extended MathML support.

� Extended simplification of Floor, Erf, ProductLog and
related functions.

� Integration over regions defined by inequalities.

� Integration of piecewise functions.

� Standard package for visualization of regions defined by
inequalities.

� ANOVA standard add--on package.

� Enhanced Combinatorica add--on package.

� AuthorTools notebook authoring environment.



xii

The Role of This Book

The Scope of the Book

This book is intended to be a complete introduction to Mathe-

matica. It describes essentially all the capabilities of Mathematica,

and assumes no prior knowledge of the system.

In most uses of Mathematica, you will need to know only

a small part of the system. This book is organized to make

it easy for you to learn the part you need for a particular

calculation. In many cases, for example, you may be able to

set up your calculation simply by adapting some appropriate

examples from the book.

You should understand, however, that the examples in this

book are chosen primarily for their simplicity, rather than to

correspond to realistic calculations in particular application areas.

There are many other publications that discuss Mathematica

from the viewpoint of particular classes of applications. In some

cases, you may find it better to read one of these publications

first, and read this book only when you need a more general

perspective on Mathematica.

Mathematica is a system built on a fairly small set of very

powerful principles. This book describes those principles, but by

no means spells out all of their implications. In particular, while

the book describes the elements that go into Mathematica

programs, it does not give detailed examples of complete

programs. For those, you should look at other publications.

The Mathematica System Described in the Book

This book describes the standard Mathematica kernel, as it

exists on all computers that run Mathematica. Most major

supported features of the kernel in Mathematica Version 5 are

covered in this book. Many of the important features of the

front end are also discussed.

Mathematica is an open software system that can be customized

in a wide variety of ways. It is important to realize that this book

covers only the full basic Mathematica system. If your system is

customized in some way, then it may behave differently from

what is described in the book.

The most common form of customization is the addition of

various Mathematica function definitions. These may come,

for example, from loading a Mathematica package. Some-

times the definitions may actually modify the behavior of

functions described in this book. In other cases, the definitions

may simply add a collection of new functions that are not

described in the book. In certain applications, it may be primarily

these new functions that you use, rather than the standard

ones described in the book.

This book describes what to do when you interact directly

with the standard Mathematica kernel and notebook front

end. Sometimes, however, you may not be using the standard

Mathematica system directly. Instead, Mathematica may be

an embedded component of another system that you are

using. This system may for example call on Mathematica only

for certain computations, and may hide the details of those

computations from you. Most of what is in this book will

only be useful if you can give explicit input to Mathematica.

If all of your input is substantially modified by the system you

are using, then you must rely on the documentation for that

system.

Additional Mathematica Documentation

For all standard versions of Mathematica, the following is

available in printed form, and can be ordered from Wolfram

Research:

� Getting Started with Mathematica: a booklet describing instal-

lation, basic operation, and troubleshooting of Mathematica on

specific computer systems.

Extensive online documentation is included with most versions

of Mathematica. All such documentation can be accessed from

the Help Browser in the Mathematica notebook front end.

In addition, the following sources of information are available

on the web:

� www.wolfram.com: the main Wolfram Research website.

� documents.wolfram.com: full documentation for Mathematica.

� library.wolfram.com/infocenter: the Mathematica Information

Center—a central web repository for information on Mathe-

matica and its applications.



xiii

Suggestions about Learning Mathematica

Getting Started

As with any other computer system, there are a few points that you

need to get straight before you can even start using Mathematica.

For example, you absolutely must know how to type your input to

Mathematica. To find out these kinds of basic points, you should

read at least the first section of Part 1 in this book.

Once you know the basics, you can begin to get a feeling for

Mathematica by typing in some examples from this book. Always

be sure that you type in exactly what appears in the book—do

not change any capitalization, bracketing, etc.

After you have tried a few examples from the book, you should

start experimenting for yourself. Change the examples slightly,

and see what happens. You should look at each piece of output

carefully, and try to understand why it came out as it did.

After you have run through some simple examples, you should

be ready to take the next step: learning to go through what is

needed to solve a complete problem with Mathematica.

Solving a Complete Problem

You will probably find it best to start by picking a specific problem

to work on. Pick a problem that you understand well—preferably

one whose solution you could easily reproduce by hand. Then

go through each step in solving the problem, learning what you

need to know about Mathematica to do it. Always be ready to

experiment with simple cases, and understand the results you get

with these, before going back to your original problem.

In going through the steps to solve your problem, you will learn

about various specific features of Mathematica, typically from

sections of Part 1. After you have done a few problems with

Mathematica, you should get a feeling for many of the basic

features of the system.

When you have built up a reasonable knowledge of the features

of Mathematica, you should go back and learn about the overall

structure of the Mathematica system. You can do this by system-

atically reading Part 2 of this book. What you will discover is that

many of the features that seemed unrelated actually fit together

into a coherent overall structure. Knowing this structure will make

it much easier for you to understand and remember the specific

features you have already learned.

The Principles of Mathematica

You should not try to learn the overall structure of Mathematica

too early. Unless you have had broad experience with advanced

computer languages or pure mathematics, you will probably find

Part 2 difficult to understand at first. You will find the structure

and principles it describes difficult to remember, and you will

always be wondering why particular aspects of them might be

useful. However, if you first get some practical experience with

Mathematica, you will find the overall structure much easier to

grasp. You should realize that the principles on which Mathema-

tica is built are very general, and it is usually difficult to understand

such general principles before you have seen specific examples.

One of the most important aspects of Mathematica is that it

applies a fairly small number of principles as widely as possible.

This means that even though you have used a particular feature

only in a specific situation, the principle on which that feature

is based can probably be applied in many other situations. One

reason it is so important to understand the underlying principles of

Mathematica is that by doing so you can leverage your knowledge

of specific features into a more general context. As an example,

you may first learn about transformation rules in the context of

algebraic expressions.

But the basic principle of transformation rules applies to any

symbolic expression. Thus you can also use such rules to modify

the structure of, say, an expression that represents a Mathematica

graphics object.

Changing the Way You Work

Learning to use Mathematica well involves changing the way

you solve problems. When you move from pencil and paper to

Mathematica the balance of what aspects of problem solving are

difficult changes. With pencil and paper, you can often get by

with a fairly imprecise initial formulation of your problem. Then

when you actually do calculations in solving the problem, you

can usually fix up the formulation as you go along. However, the

calculations you do have to be fairly simple, and you cannot afford

to try out many different cases.

When you use Mathematica, on the other hand, the initial for-

mulation of your problem has to be quite precise. However,

once you have the formulation, you can easily do many different



xiv

calculations with it. This means that you can effectively carry out

many mathematical experiments on your problem. By looking at

the results you get, you can then refine the original formulation

of your problem.

There are typically many different ways to formulate a given prob-

lem in Mathematica. In almost all cases, however, the most direct

and simple formulations will be best. The more you can formulate

your problem in Mathematica from the beginning, the better.

Often, in fact, you will find that formulating your problem directly

in Mathematica is better than first trying to set up a traditional

mathematical formulation, say an algebraic one. The main point

is that Mathematica allows you to express not only traditional

mathematical operations, but also algorithmic and structural ones.

This greater range of possibilities gives you a better chance of

being able to find a direct way to represent your original problem.

Writing Programs

For most of the more sophisticated problems that you want to

solve with Mathematica, you will have to create Mathematica

programs. Mathematica supports several types of programming,

and you have to choose which one to use in each case. It turns

out that no single type of programming suits all cases well. As a

result, it is very important that you learn several different types

of programming.

If you already know a traditional programming language such as

BASIC, C, Fortran, Perl or Java, you will probably find it easiest

to learn procedural programming in Mathematica, using Do, For

and so on. But while almost any Mathematica program can, in

principle, be written in a procedural way, this is rarely the best

approach. In a symbolic system like Mathematica, functional and

rule--based programming typically yields programs that are more

efficient, and easier to understand.

If you find yourself using procedural programming a lot, you should

make an active effort to convert at least some of your programs

to other types. At first, you may find functional and rule--based

programs difficult to understand. But after a while, you will find

that their global structure is usually much easier to grasp than

procedural programs. And as your experience with Mathematica

grows over a period of months or years, you will probably find that

you write more and more of your programs in non--procedural

ways.

Learning the Whole System

As you proceed in using and learning Mathematica, it is important

to remember that Mathematica is a large system. Although after

a while you should know all of its basic principles, you may never

learn the details of all its features. As a result, even after you

have had a great deal of experience with Mathematica, you will

undoubtedly still find it useful to look through this book. When

you do so, you are quite likely to notice features that you never

noticed before, but that with your experience, you can now see

how to use.

How to Read This Book

If at all possible, you should read this book in conjunction with

using an actual Mathematica system. When you see examples in

the book, you should try them out on your computer.

You can get a basic feeling for what Mathematica does by looking

at “A Tour of Mathematica” on page 3. You may also find it

useful to try out examples from this Tour with your own copy of

Mathematica.

Whatever your background, you should make sure to look at

the first three or four sections in Part 1 before you start to use

Mathematica on your own. These sections describe the basics that

you need to know in order to use Mathematica at any level.

The remainder of Part 1 shows you how to do many different

kinds of computations with Mathematica. If you are trying to do

a specific calculation, you will often find it sufficient just to look

at the sections of Part 1 that discuss the features of Mathematica

you need to use. A good approach is to try and find examples in

the book which are close to what you want to do.

The emphasis in Part 1 is on using the basic functions that are

built into Mathematica to carry out various different kinds of

computations.

Part 2, on the other hand, discusses the basic structure and

principles that underlie all of Mathematica. Rather than describing

a sequence of specific features, Part 2 takes a more global ap-

proach. If you want to learn how to create your own Mathematica

functions, you should read Part 2.



xv

Part 3 is intended for those with more sophisticated mathematical

interests and knowledge. It covers the more advanced mathe-

matical features of Mathematica, as well as describing some

features already mentioned in Part 1 in greater mathematical

detail.

Each part of the book is divided into sections and subsections.

There are two special kinds of subsections, indicated by the

following headings:

� Advanced Topic: Advanced material which can be omitted on

a first reading.

� Special Topic: Material relevant only for certain users or certain

computer systems.

The main parts in this book are intended to be pedagogical, and

can meaningfully be read in a sequential fashion. The Appendix,

however, is intended solely for reference purposes. Once you

are familiar with Mathematica, you will probably find the list of

functions in the Appendix the best place to look up details you

need.

About the Examples in This Book

All the examples given in this book were generated by running

an actual copy of Mathematica Version 5. If you have a copy of

this version, you should be able to reproduce the examples on

your computer as they appear in the book.

There are, however, a few points to watch:

� Until you are familiar with Mathematica, make sure to type the

input exactly as it appears in the book. Do not change any of

the capital letters or brackets. Later, you will learn what things

you can change. When you start out, however, it is important

that you do not make any changes; otherwise you may not get

the same results as in the book.

� Never type the prompt In[n]:= that begins each input line.

Type only the text that follows this prompt.

� You will see that the lines in each dialog are numbered

in sequence. Most subsections in the book contain separate

dialogs. To make sure you get exactly what the book says, you

should start a new Mathematica session each time the book

does.

� Some “Special Topic” subsections give examples that may be

specific to particular computer systems.

� Any examples that involve random numbers will generally give

different results than in the book, since the sequence of random

numbers produced by Mathematica is different in every session.

� Some examples that use machine--precision arithmetic may

come out differently on different computer systems. This is

a result of differences in floating--point hardware. If you use

arbitrary--precision Mathematica numbers, you should not see

differences.

� Almost all of the examples show output as it would be generated

in StandardForm with a notebook interface to Mathematica.

Output with a text--based interface will look similar, but not

identical.

� Almostall of theexamples in thisbookassumethat your computer

or terminal uses a standard U.S. ASCII character set. If you cannot

find some of the characters you need on your keyboard, or if

Mathematica prints out different characters than you see in the

book, you will need to look at your computer documentation to

find the correspondence with the character set you are using.

The most common problem is that the dollar sign character

(SHIFT--4) may come out as your local currency character.

� If the version of Mathematica is more recent than the one used

to produce this book, then it is possible that some results you

get may be different.

� Most of the examples in “A Tour of Mathematica”, as well as

Parts 1 and 2, are chosen so as to be fairly quick to execute.

Assuming you have a machine with a clock speed of over about

1 GHz (and most machines produced in 2003 or later do), then

almost none of the examples should take anything more than

a small fraction of a second to execute. If they do, there is

probably something wrong. Section 1.3.12 describes how to

stop the calculation.



xvii

Outline Table of Contents

A Tour of Mathematica..................................................1

Part 1.A Practical Introduction to Mathematica
1.0 Running Mathematica .................................................26

1.1 Numerical Calculations ................................................29

1.2 Building Up Calculations .............................................38

1.3 Using the Mathematica System..................................44

1.4 Algebraic Calculations .................................................63

1.5 Symbolic Mathematics.................................................79

1.6 Numerical Mathematics .............................................102

1.7 Functions and Programs............................................110

1.8 Lists..............................................................................115

1.9 Graphics and Sound...................................................131

1.10 Input and Output in Notebooks ...............................174

1.11 Files and External Operations...................................204

1.12 Special Topic: The Internals of Mathematica ..........218

Part 2.Principles of Mathematica
2.1 Expressions .................................................................230

2.2 Functional Operations ...............................................240

2.3 Patterns.......................................................................259

2.4 Manipulating Lists......................................................283

2.5 Transformation Rules and Definitions .....................299

2.6 Evaluation of Expressions .........................................324

2.7 Modularity and the Naming of Things ....................378

2.8 Strings and Characters...............................................406

2.9 Textual Input and Output .........................................424

2.10 The Structure of Graphics and Sound......................486

2.11 Manipulating Notebooks...........................................572

2.12 Files and Streams .......................................................623

2.13 MathLink and External Program Communication...657

2.14 Global Aspects of Mathematica Sessions ................702

Part 3.Advanced Mathematics in Mathematica
3.1 Numbers......................................................................722

3.2 Mathematical Functions ............................................745

3.3 Algebraic Manipulation .............................................797

3.4 Manipulating Equations and Inequalities................819

3.5 Calculus .......................................................................853

3.6 Series, Limits and Residues .......................................883

3.7 Linear Algebra............................................................896

3.8 Numerical Operations on Data .................................924

3.9 Numerical Operations on Functions .........................951

3.10 Mathematical and Other Notation ...........................982

Appendix.Mathematica Reference Guide
A.1 Basic Objects.............................................................1014

A.2 Input Syntax .............................................................1018

A.3 Some General Notations and Conventions ...........1039

A.4 Evaluation.................................................................1045

A.5 Patterns and Transformation Rules........................1049

A.6 Files and Streams .....................................................1053

A.7 Mathematica Sessions .............................................1055

A.8 Mathematica File Organization ..............................1061

A.9 Some Notes on Internal Implementation ..............1066

A.10 Listing of Major Built-in Mathematica Objects .....1073

A.11 Listing of C Functions in the MathLink Library.....1340

A.12 Listing of Named Characters...................................1351

A.13 Incompatible Changes since Mathematica
Version 1................................................................... 1402

Index .................................................................................1407



xix

Table of Contents

, a section new since Version 4
- a section substantially modified since Version 4

A Tour of Mathematica..................................................................................................................................1
Mathematica as a Calculator Power Computing with Mathematica Accessing Algorithms in Mathematica Mathemat-

ical Knowledge in Mathematica Building Up Computations Handling Data Visualization with Mathematica Mathe-
matica Notebooks Palettes and Buttons Mathematical Notation Mathematica and Your Computing Environment

The Unifying Idea of Mathematica Mathematica as a Programming Language Writing Programs in Mathematica
Building Systems with Mathematica Mathematica as a Software Component

Part 1. A Practical Introduction to Mathematica

1.0 Running Mathematica.....................................................................................................................................26
Notebook Interfaces Text-Based Interfaces

1.1 Numerical Calculations....................................................................................................................................29
Arithmetic Exact and Approximate Results Some Mathematical Functions Arbitrary-Precision Calculations
Complex Numbers Getting Used to Mathematica Mathematical Notation in Notebooks

1.2 Building Up Calculations.................................................................................................................................38
Using Previous Results Defining Variables Making Lists of Objects Manipulating Elements of Lists The Four

Kinds of Bracketing in Mathematica Sequences of Operations

1.3 Using the Mathematica System.....................................................................................................................44
The Structure of Mathematica Differences between Computer Systems Special Topic: Using a Text-Based Interface
Doing Computations in Notebooks Notebooks as Documents Active Elements in Notebooks Special Topic:

Hyperlinks and Active Text - Getting Help in the Notebook Front End Getting Help with a Text-Based Interface
Mathematica Packages Warnings and Messages Interrupting Calculations

1.4 Algebraic Calculations.....................................................................................................................................63
Symbolic Computation Values for Symbols Transforming Algebraic Expressions Simplifying Algebraic Expres-

sions Advanced Topic: Putting Expressions into Different Forms Advanced Topic: Simplifying with Assumptions
Picking Out Pieces of Algebraic Expressions Controlling the Display of Large Expressions - The Limits of

Mathematica Using Symbols to Tag Objects

1.5 Symbolic Mathematics....................................................................................................................................79
- Basic Operations Differentiation Integration Sums and Products Equations - Relational and Logical Op-
erators - Solving Equations , Inequalities - Differential Equations Power Series Limits Integral Transforms
, Recurrence Equations - Packages for Symbolic Mathematics Advanced Topic: Generic and Non-Generic Cases

Mathematical Notation in Notebooks



xx

1.6 Numerical Mathematics................................................................................................................................102
Basic Operations Numerical Sums, Products and Integrals - Numerical Equation Solving - Numerical Differential

Equations - Numerical Optimization - Manipulating Numerical Data - Statistics

1.7 Functions and Programs...............................................................................................................................110
Defining Functions Functions as Procedures Repetitive Operations Transformation Rules for Functions

1.8 Lists.................................................................................................................................................................115
Collecting Objects Together Making Tables of Values - Vectors and Matrices - Getting Pieces of Lists Testing

and Searching List Elements - Adding, Removing and Modifying List Elements Combining Lists Advanced Topic:
Lists as Sets - Rearranging Lists Grouping Together Elements of Lists , Ordering in Lists - Advanced Topic:
Rearranging Nested Lists

1.9 Graphics and Sound......................................................................................................................................131
Basic Plotting - Options Redrawing and Combining Plots Advanced Topic: Manipulating Options - Contour

and Density Plots - Three-Dimensional Surface Plots Converting between Types of Graphics Plotting Lists of Data
Parametric Plots Some Special Plots Special Topic: Animated Graphics Sound

1.10 Input and Output in Notebooks..................................................................................................................174
Entering Greek Letters Entering Two-Dimensional Input Editing and Evaluating Two-Dimensional Expressions

- Entering Formulas Entering Tables and Matrices Subscripts, Bars and Other Modifiers Special Topic: Non-
English Characters and Keyboards Other Mathematical Notation Forms of Input and Output Mixing Text and
Formulas Displaying and Printing Mathematica Notebooks Creating Your Own Palettes Setting Up Hyperlinks

Automatic Numbering Exposition in Mathematica Notebooks

1.11 Files and External Operations......................................................................................................................204
Reading and Writing Mathematica Files Advanced Topic: Finding and Manipulating Files - Importing and Export-

ing Data - Exporting Graphics and Sounds Exporting Formulas from Notebooks Generating TEX , Exchanging
Material with the Web Generating C and Fortran Expressions Splicing Mathematica Output into External Files

Running External Programs - MathLink

1.12 Special Topic: The Internals of Mathematica.............................................................................................218
Why You Do Not Usually Need to Know about Internals Basic Internal Architecture The Algorithms of Mathematica

- The Software Engineering of Mathematica Testing and Verification

Part 2. Principles of Mathematica

2.1 Expressions.....................................................................................................................................................230
Everything Is an Expression The Meaning of Expressions Special Ways to Input Expressions Parts of Expressions
Manipulating Expressions like Lists Expressions as Trees Levels in Expressions

2.2 Functional Operations...................................................................................................................................240
Function Names as Expressions Applying Functions Repeatedly Applying Functions to Lists and Other Expres-

sions Applying Functions to Parts of Expressions Pure Functions Building Lists from Functions Selecting Parts
of Expressions with Functions - Expressions with Heads That Are Not Symbols Advanced Topic: Working with
Operators - Structural Operations Sequences

2.3 Patterns...........................................................................................................................................................259
Introduction Finding Expressions That Match a Pattern Naming Pieces of Patterns Specifying Types of Expres-

sion in Patterns - Putting Constraints on Patterns Patterns Involving Alternatives Flat and Orderless Functions



xxi

Functions with Variable Numbers of Arguments Optional and Default Arguments Setting Up Functions with
Optional Arguments Repeated Patterns Verbatim Patterns Patterns for Some Common Types of Expression An
Example: Defining Your Own Integration Function

2.4 Manipulating Lists.........................................................................................................................................283
, Constructing Lists , Manipulating Lists by Their Indices , Nested Lists , Partitioning and Padding Lists , Sparse
Arrays

2.5 Transformation Rules and Definitions........................................................................................................299
Applying Transformation Rules Manipulating Sets of Transformation Rules Making Definitions Special Forms of

Assignment Making Definitions for Indexed Objects Making Definitions for Functions The Ordering of Definitions
Immediate and Delayed Definitions Functions That Remember Values They Have Found Associating Definitions

with Different Symbols - Defining Numerical Values Modifying Built-in Functions Advanced Topic: Manipulating
Value Lists

2.6 Evaluation of Expressions............................................................................................................................324
Principles of Evaluation Reducing Expressions to Their Standard Form Attributes The Standard Evaluation Pro-

cedure Non-Standard Evaluation Evaluation in Patterns, Rules and Definitions Evaluation in Iteration Functions
Conditionals Loops and Control Structures , Collecting Expressions During Evaluation Advanced Topic: Tracing

Evaluation Advanced Topic: The Evaluation Stack Advanced Topic: Controlling Infinite Evaluation Advanced
Topic: Interrupts and Aborts Compiling Mathematica Expressions Advanced Topic: Manipulating Compiled Code

2.7 Modularity and the Naming of Things.......................................................................................................378
Modules and Local Variables Local Constants How Modules Work Advanced Topic: Variables in Pure Functions

and Rules Dummy Variables in Mathematics Blocks and Local Values Blocks Compared with Modules Contexts
Contexts and Packages Setting Up Mathematica Packages Automatic Loading of Packages Manipulating Symbols

and Contexts by Name Advanced Topic: Intercepting the Creation of New Symbols

2.8 Strings and Characters..................................................................................................................................406
Properties of Strings Operations on Strings String Patterns Characters in Strings Special Characters Advanced

Topic: Newlines and Tabs in Strings Advanced Topic: Character Codes - Advanced Topic: Raw Character Encodings

2.9 Textual Input and Output............................................................................................................................424
- Forms of Input and Output How Input and Output Work The Representation of Textual Forms The Interpre-
tation of Textual Forms Short and Shallow Output String-Oriented Output Formats Output Formats for Numbers

Tables and Matrices Styles and Fonts in Output Representing Textual Forms by Boxes Adjusting Details of
Formatting String Representation of Boxes Converting between Strings, Boxes and Expressions The Syntax of the
Mathematica Language Operators without Built-in Meanings Defining Output Formats Advanced Topic: Low-Level
Input and Output Rules Generating Unstructured Output Generating Styled Output in Notebooks Requesting
Input Messages International Messages Documentation Constructs

2.10 The Structure of Graphics and Sound........................................................................................................486
The Structure of Graphics Two-Dimensional Graphics Elements Graphics Directives and Options Coordinate

Systems for Two-Dimensional Graphics Labeling Two-Dimensional Graphics Making Plots within Plots Density
and Contour Plots Three-Dimensional Graphics Primitives Three-Dimensional Graphics Directives Coordinate
Systems for Three-Dimensional Graphics Plotting Three-Dimensional Surfaces Lighting and Surface Properties

Labeling Three-Dimensional Graphics Advanced Topic: Low-Level Graphics Rendering Formats for Text in
Graphics Graphics Primitives for Text Advanced Topic: Color Output The Representation of Sound - Exporting
Graphics and Sounds Importing Graphics and Sounds



xxii

2.11 Manipulating Notebooks..............................................................................................................................572
Cells as Mathematica Expressions Notebooks as Mathematica Expressions Manipulating Notebooks from the Kernel
Manipulating the Front End from the Kernel Advanced Topic:Executing Notebook Commands Directly in the Front

End Button Boxes and Active Elements in Notebooks Advanced Topic: The Structure of Cells Styles and the
Inheritance of Option Settings Options for Cells Text and Font Options Advanced Topic: Options for Expression
Input and Output Options for Graphics Cells Options for Notebooks Advanced Topic: Global Options for the
Front End

2.12 Files and Streams..........................................................................................................................................623
Reading and Writing Mathematica Files External Programs Advanced Topic: Streams and Low-Level Input and

Output - Naming and Finding Files Files for Packages Manipulating Files and Directories - Importing and
Exporting Files Reading Textual Data Searching Files Searching and Reading Strings

2.13 MathLink and External Program Communication.....................................................................................657
How MathLink Is Used Installing Existing MathLink-Compatible Programs Setting Up External Functions to Be

Called from Mathematica Handling Lists, Arrays and Other Expressions Special Topic: Portability of MathLink
Programs Using MathLink to Communicate between Mathematica Sessions Calling Subsidiary Mathematica Processes

Special Topic: Communication with Mathematica Front Ends Two-Way Communication with External Programs
Special Topic: Running Programs on Remote Computers Special Topic: Running External Programs under a De-

bugger Manipulating Expressions in External Programs Advanced Topic: Error and Interrupt Handling Running
Mathematica from Within an External Program

2.14 Global Aspects of Mathematica Sessions...................................................................................................702
The Main Loop Dialogs - Date and Time Functions Memory Management - Advanced Topic: Global System

Information

Part 3. Advanced Mathematics in Mathematica

3.1 Numbers.........................................................................................................................................................722
Types of Numbers Numeric Quantities Digits in Numbers - Numerical Precision - Arbitrary-Precision Numbers
Machine-Precision Numbers Advanced Topic: Interval Arithmetic Advanced Topic: Indeterminate and Infinite

Results Advanced Topic: Controlling Numerical Evaluation

3.2 Mathematical Functions................................................................................................................................745
Naming Conventions - Numerical Functions Pseudorandom Numbers - Integer and Number-Theoretical Func-

tions Combinatorial Functions Elementary Transcendental Functions Functions That Do Not Have Unique Values
Mathematical Constants Orthogonal Polynomials Special Functions Elliptic Integrals and Elliptic Functions
Mathieu and Related Functions Working with Special Functions Statistical Distributions and Related Functions

3.3 Algebraic Manipulation................................................................................................................................797
Structural Operations on Polynomials Finding the Structure of a Polynomial Structural Operations on Rational

Expressions Algebraic Operations on Polynomials Polynomials Modulo Primes Advanced Topic: Polynomials
over Algebraic Number Fields Trigonometric Expressions Expressions Involving Complex Variables Simplification
- Using Assumptions

3.4 Manipulating Equations and Inequalities...................................................................................................819
- The Representation of Equations and Solutions - Equations in One Variable Advanced Topic: Algebraic Numbers
- Simultaneous Equations - Generic and Non-Generic Solutions - Eliminating Variables - Solving Logical Combina-
tions of Equations , Inequalities , Equations and Inequalities over Domains , Advanced Topic: The Representation
of Solution Sets , Advanced Topic: Quantifiers , Minimization and Maximization



xxiii

3.5 Calculus...........................................................................................................................................................853
Differentiation Total Derivatives Derivatives of Unknown Functions Advanced Topic: The Representation of

Derivatives Defining Derivatives Indefinite Integrals Integrals That Can and Cannot Be Done Definite Integrals
Manipulating Integrals in Symbolic Form - Differential Equations Integral Transforms and Related Operations
Generalized Functions and Related Objects

3.6 Series, Limits and Residues..........................................................................................................................883
Making Power Series Expansions Advanced Topic: The Representation of Power Series Operations on Power

Series Advanced Topic: Composition and Inversion of Power Series Converting Power Series to Normal Expressions
Solving Equations Involving Power Series Summation of Series , Solving Recurrence Equations Finding Limits
Residues

3.7 Linear Algebra...............................................................................................................................................896
- Constructing Matrices - Getting and Setting Pieces of Matrices Scalars, Vectors and Matrices Operations on
Scalars, Vectors and Matrices Multiplying Vectors and Matrices Matrix Inversion - Basic Matrix Operations
- Solving Linear Systems - Eigenvalues and Eigenvectors , Advanced Matrix Operations - Advanced Topic:
Tensors , Sparse Arrays

3.8 Numerical Operations on Data....................................................................................................................924
, Basic Statistics - Curve Fitting Approximate Functions and Interpolation Fourier Transforms Convolutions
and Correlations , Cellular Automata

3.9 Numerical Operations on Functions............................................................................................................951
Numerical Mathematics in Mathematica The Uncertainties of Numerical Mathematics Numerical Integration
Numerical Evaluation of Sums and Products Numerical Solution of Polynomial Equations - Numerical Root

Finding - Numerical Solution of Differential Equations , Numerical Optimization , Advanced Topic: Controlling
the Precision of Results , Advanced Topic: Monitoring and Selecting Algorithms Advanced Topic: Functions with
Sensitive Dependence on Their Input

3.10 Mathematical and Other Notation..............................................................................................................982
- Special Characters Names of Symbols and Mathematical Objects - Letters and Letter-like Forms - Operators
- Structural Elements and Keyboard Characters

Part A. Mathematica Reference Guide

A.1 Basic Objects................................................................................................................................................1014
Expressions Symbols Contexts Atomic Objects Numbers Character Strings

A.2 Input Syntax.................................................................................................................................................1018
Entering Characters Types of Input Syntax Character Strings Symbol Names and Contexts Numbers Bracketed

Objects Operator Input Forms Two-Dimensional Input Forms Input of Boxes The Extent of Input Expressions
Special Input Front End Files

A.3 Some General Notations and Conventions..............................................................................................1039
Function Names Function Arguments Options Part Numbering Sequence Specifications Level Specifica-

tions Iterators Scoping Constructs Ordering of Expressions Mathematical Functions Mathematical Constants
Protection String Patterns



LATEX filename: frontmatter.tex 4:20 p.m. July 1, 2003 xxiv Mathematica Version: 5.0 for Linux (June 15, 2003)

xxiv

A.4 Evaluation.....................................................................................................................................................1045
The Standard Evaluation Sequence Non-Standard Argument Evaluation Overriding Non-Standard Argument

Evaluation Preventing Evaluation Global Control of Evaluation Aborts

A.5 Patterns and Transformation Rules...........................................................................................................1049
Patterns Assignments Types of Values Clearing and Removing Objects Transformation Rules

A.6 Files and Streams........................................................................................................................................1053
File Names Streams

A.7 Mathematica Sessions.................................................................................................................................1055
Command-Line Options and Environment Variables Initialization The Main Loop Messages Termination
Network License Management

A.8 Mathematica File Organization..................................................................................................................1061
Mathematica Distribution Files Loadable Files

A.9 Some Notes on Internal Implementation.................................................................................................1066
Introduction Data Structures and Memory Management Basic System Features - Numerical and Related Functions

- Algebra and Calculus Output and Interfacing

A.10 Listing of Major Built-in Mathematica Objects........................................................................................1073
Introduction Conventions in This Listing - Listing

A.11 Listing of C Functions in the MathLink Library.......................................................................................1340
Introduction Listing

A.12 Listing of Named Characters......................................................................................................................1351
Introduction - Listing

A.13 Incompatible Changes since Mathematica Version 1..............................................................................1402
Incompatible Changes between Version 1 and Version 2 Incompatible Changes between Version 2 and Version 3
Incompatible Changes between Version 3 and Version 4 Incompatible Changes between Version 4 and Version 5

Index....................................................................................................................................................................1407



A Tour of 
Mathematica

The purpose of this Tour is to show examples of a few of the

things that Mathematica can do. The Tour is in no way intended

to be complete—it is just a sampling of a few of Mathematica’s

capabilities. It also concentrates only on general features, and

does not address how these features can be applied in particular

fields. Nevertheless, by reading through the Tour you should get

at least some feeling for the basic Mathematica system.

Sometimes, you may be able to take examples from this Tour

and immediately adapt them for your own purposes. But more

often, you will have to look at some of Part 1, or at online

Mathematica documentation, before you embark on serious 

work with Mathematica. If you do try repeating examples from

the Tour, it is very important that you enter them exactly as they

appear here. Do not change capitalization, types of brackets, etc. 

On most versions of Mathematica, you will be able to find this

Tour online as part of the Mathematica help system. Even if you

do not have access to a running copy of Mathematica, you may

still be able to try out the examples in this Tour by visiting

www.wolfram.com/tour.



A Tour of 
Mathematica

A Tour of 
Mathematica



A Tour of Mathematica

Mathematica as a Calculator . . . . . . . . . . . . . . . . 4

Power Computing with Mathematica . . . . . . . . . . . 5

Accessing Algorithms in Mathematica . . . . . . . . . . . 6

Mathematical Knowledge in Mathematica . . . . . . . . 7

Building Up Computations . . . . . . . . . . . . . . . . . 8

Handling Data . . . . . . . . . . . . . . . . . . . . . . . . 9

Visualization with Mathematica . . . . . . . . . . . . . 10

Mathematica Notebooks . . . . . . . . . . . . . . . . . 12

Palettes and Buttons . . . . . . . . . . . . . . . . . . . . 13

Mathematical Notation . . . . . . . . . . . . . . . . . . 14

Mathematica and Your Computing Environment . . . 15

The Unifying Idea of Mathematica . . . . . . . . . . . . 16

Mathematica as a Programming Language . . . . . . . 17

Writing Programs in Mathematica . . . . . . . . . . . . 18

Building Systems with Mathematica . . . . . . . . . . . 19

Mathematica as a Software Component . . . . . . . . 20



4

You can use Mathematica just like a calculator: you type in
questions, and Mathematica prints back the answers.

Mathematica as a Calculator

Mathematica can handle formulas as
well as numbers.

Mathematica can also create two-
and three-dimensional graphics.

Mathematica comes with 
a collection of palettes
that let you do many
operations by clicking
buttons rather than typing
commands.

Part of the Basic 
Calculations palette.

Note: Most examples here
use only ordinary keyboard
input. Page 14 shows how to
enter fully formatted input.

In[1]:= 3 � 5

Out[1]= 8

In[2]:= 57.1^100

Out[2]= 4.60904� 10175

In[3]:= Inverse���1, 2�, �3, 4���
Out[3]= ���2, 1�, � 3

����
2
, �

1
����
2

��

In[1]:= Integrate�Sqrt�x� Sqrt�1 � x�, x�
Out[1]=

1
����
4

������x ������������1 � x �1 � 2 x	 � ArcSinh
�����x��

In[2]:= Solve�x^2 � x � a, x�
Out[2]= ��x �

1
����
2

��1 �
����������������1 � 4 a��, �x �

1
����
2

��1 �
����������������1 � 4 a���

In[1]:= Plot�Sin�x� � Sin�1.6�x�, �x, 0, 40��

10 20 30 40

-2

-1

1

2

In[1]:= Plot3D�Sin�x y�, �x, 0, 4�, �y, 0, 4��

0
1

2

3

4 0

1

2

3

4

-1
-0.5

0
0.5
1

0
1

2

3

4

This stands for “to the power of”.

Mathematica adds the In and Out labels; you do
not type them. You end each line with ˜÷Û.

Mathematica represents
matrices as lists of lists.

Ask Mathematica what 3 + 5
is; it prints back 8.

This asks Mathematica to work
out the inverse of a 2 x 2 matrix.

This asks Mathematica to
integrate a simple function.

This asks Mathematica to
solve a quadratic equation.

The result is a list of rules
for x convenient for use in
other calculations.

This stands for mathematical equality.

This creates a 2D plot of a simple function.

Here is a 3D plot.



Power Computing with Mathematica
Even though you can use it as easily as a calculator, Mathematica gives you
access to immense computational power.

5

In[1]:= m = Table[Random[], {500}, {500}];

In[2]:= ListPlot[Abs[Eigenvalues[m]]]

100 200 300 400 500

2

4

6

8

10

On most computers it takes Mathematica
only a few seconds to compute the
eigenvalues of the matrix and plot them.

3.1415926535897932384626433832795028841971693993751

In[1]:= 100!

Out[1]= 93326215443944152681699238856266700490715968264381621468592�

9638952175999932299156089414639761565182862536979208272237�

58251185210916864000000000000000000000000

In[2]:= N[Pi, 100]

Out[2]= �

05820974944592307816406286208998628034825342117068

Mathematica can handle
numbers of any size.

This works out a numerical
100-digit approximation to pi.

In[1]:= PartitionsP[10^9] // Short

Out[1]=

85690668610189731030457526857797923685688339

16045350842809668832728039026391874671468439 

 

�35131� 

Mathematica can work with formulas of
any length—solving problems that would
have taken years by hand.

Mathematica has achieved world records—for both size
and speed—in many kinds of computations.

In[1]:= Factor[x^99 + y^99]

Out[1]= �x � y	 �x2 � x y � y2	 �x6 � x3 y3 � y6	 �x10 � x9 y � x8 y2 �

x7 y3 � x6 y4 � x5 y5 � x4 y6 � x3 y7 � x2 y8 � x y9 � y10	
�x20 � x19 y � x17 y3 � x16 y4 � x14 y6 � x13 y7 � x11 y9 � x10 y10 �

x9 y11 � x7 y13 � x6 y14 � x4 y16 � x3 y17 � x y19 � y20	
�x60 � x57 y3 � x51 y9 � x48 y12 � x42 y18 � x39 y21 � x33 y27 � x30 y30 �

x27 y33 � x21 y39 � x18 y42 � x12 y48 � x9 y51 � x3 y57 � y60	
In[2]:= Simplify[%]

Out[2]= x99 � y99

This asks Mathematica to
factor a polynomial.

This creates a 500 x 500
matrix of random numbers.

The semicolon tells
Mathematica not to
print the result.

This stands for the previous result.

Mathematica calls on sophisticated
algorithms to simplify formulas.

Mathematica takes only a few seconds to work out
how many ways a billion can be partitioned into
sums—a frontier number theory calculation.

This tells Mathematica to show only a
shortened version of the result.

This indicates 35131
omitted digits.



6

Whenever you use Mathematica you are accessing the
world’s largest collection of computational algorithms.

Accessing Algorithms in Mathematica

In[1]:= FactorInteger�10^54 � 3�
Out[1]= ��21518801375655714851137, 1�,

�46470989835488840363806434126781, 1��

Mathematica can solve differential equations
both symbolically and numerically.

In[1]:= NDSolve��x’’�t� � x�t�^3 �� Sin�t�, x�0� �� x’�0� �� 0�,
x, �t, 0, 50��

Out[1]= ��x � InterpolatingFunction���0., 50.��, �����
In[2]:= ParametricPlot�Evaluate��x�t�, x’�t�� �. %�, �t, 0, 50��

-2 -1 1

-2

-1

1

2

In[1]:= FindRoot�Cos�x� �� x � Log�x�, �x, 1��
Out[1]= �x � 0.840619�

In[2]:= NIntegrate�Log�x � Sin�x��, �x, 0, 2��
Out[2]= 0.555889

In[3]:= NSolve�x^5 � 6�x^3 � 8�x � 1 �� 0, x�
Out[3]= ��x � �2.05411�, �x � �1.2915�,

�x � �0.126515�, �x � 1.55053�, �x � 1.9216��

In[4]:= NMinimize��Cos�x y� � x, x^2 � y^2 � 10�, �x, y��
Out[4]= ��3.99011, �x � �2.99809, y � 1.0057��

In each case, Mathematica automatically
chooses the best algorithm to use.

This represents a suppressed
long piece of output.

All of Mathematica’s numerical
algorithms are set up to work to
whatever accuracy or precision
you specify.

In[1]:= m � Table�2^i � x^j, �i, 3�, �j, 4��
Out[1]= ��2 � x, 2 � x2, 2 � x3, 2 � x4�,

�4 � x, 4 � x2, 4 � x3, 4 � x4�, �8 � x, 8 � x2, 8 � x3, 8 � x4��
In[2]:= MatrixForm�m�

Out[2]//MatrixForm=

�

�

��������
2 � x 2 � x2 2 � x3 2 � x4

4 � x 4 � x2 4 � x3 4 � x4

8 � x 8 � x2 8 � x3 8 � x4

�

	











In[3]:= NullSpace�m�
Out[3]= ��x � x2, �1 � x � x2, 0, 1�, �x, �1 � x, 1, 0��

Mathematica has state-of-the-art algorithms,
here for factoring integers.

Here is the list of factors and their exponents.

This generates a two-dimensional
table corresponding to a matrix.

This displays the table in matrix form.

This computes the null space of the matrix.

Here Mathematica solves a nonlinear
differential equation numerically.

The answer is an interpolating
function which implicitly
represents the whole solution.

Here is a parametric
plot of the solution.

This tells Mathematica to
substitute the solution for x.



7

Mathematica incorporates the knowledge from the world’s mathematical
handbooks—and uses its own revolutionary algorithms to go much further.

Mathematical Knowledge in Mathematica

Mathematica is now able to do vastly more
integrals than were ever before possible for
either humans or computers.

In[1]:= LegendreQ�3, x�
Out[1]=

2
����
3

�
5 x2
����������
2

�
1
����
4
x �3 � 5 x2	 Log
 1 � x

������������
1 � x

�

In[2]:= N�MathieuC�1 � �, 2��, 3�, 50�
Out[2]= 3.9251311374125198643497646168158379203627176844794 �

1.8988239115433472411052747971439115776785813553761 �

Mathematica can evaluate special
functions with any parameters to
any precision.

In[1]:= Integrate�Log�x� Exp��x^3�, �x, 0, Infinity��
Out[1]=

1
�������
81

Gamma
�
2
����
3

� �6 EulerGamma �
�����3 Π � 9 Log3��

In[2]:= Integrate�x Sin�x^2� Exp��x�, �x, 0, Infinity��
Out[2]=

1
����
8

�4 HypergeometricPFQ
�1�, � 1
����
4
,

3
����
4

�, �
1

�������
64

� �
���������2 Π ��Cos
 1

����
4

� � Sin
 1
����
4

���

Mathematica knows about all the hundreds
of special functions in pure and applied
mathematics.

In[1]:= Prime�10^9�
Out[1]= 22801763489

In[1]:= Sum�1 � �k � 1�^6, �k, 0, n��
Out[1]=

Π6
����������
945

�
1

����������
120

PolyGamma5, 2 � n�

In[1]:= Integrate�Sqrt�x��ArcTan�x�, x�
Out[1]=

1
����
6

��8 �����x � 2 �����2 ArcTan
1 �
�����2 �����x� � 2 �����2 ArcTan
1 �

�����2 �����x� �

4 x3�2 ArcTanx� �
�����2 Log
�1 �

�����2 �����x � x� �
�����2 Log
1 �

�����2 �����x � x��

In[1]:= DSolve�y’’�x� � y’�x� � x y�x� �� 0, y�x�, x�
Out[1]= ��yx� � �x�2 AiryAi
���1	1�3 � 1

����
4

� x�� C1� � �x�2 AiryBi
���1	1�3 � 1
����
4

� x�� C2���

The results often require
special functions.

This finds the billionth
prime number.

Mathematica can solve a wide range of 
ordinary and partial differential equations.

Here is a definite integral. Here is a symbolic sum.

In[1]:= Simplify�Sin�x � 2�Π n�, n 	 Integers�
Out[1]= Sinx�

You can tell Mathematica
assumptions about variables.

These both stand for 
1777777

–1.

In[1]:= FullSimplify�Product�Gamma�2�n � 5�, �n, 1, 5���
Out[1]=

12 Π2
����������������
25 �����5 In[1]:= Reduce�Exists�x, x^2 � a x � b �� 0�, �a, b�, Reals�

Out[1]= b �
a2
�������
4 In[1]:= Log�2� 
 Zeta�3� 
 Sqrt�2�

Out[1]= True

Mathematica’s algorithms
can generate a huge range
of mathematical results.



In[1]:= v � Eigenvalues���3, 1�, �2, c���
Out[1]= � 1

����
2

�3 � c �
����������������������������
17 � 6 c � c2 �, 1

����
2

�3 � c �
����������������������������
17 � 6 c � c2 ��

In[2]:= Plot�Evaluate�v�, �c, �10, 10��

-10 -5 5 10

-10

-5

5

10

8

Building Up Computations
Being able to work with formulas lets you easily
integrate all the parts of a computation.

This picture shows how the
eigenvalues vary with c.

Mathematica’s functions are carefully
designed so that output from one can
easily be used as input to others.

Mathematica can still compute the eigenvalues
even when symbolic parameters are introduced.

This expression is a compact
representation of the
eigenvalues for any value of c.

In[1]:= Table�Prime�i�, �i, 20��
Out[1]= �2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 47, 53, 59, 61, 67, 71�
In[2]:= Fit�%, �Log�x�, x, x2�, x�

Out[2]= 3.55559 x � 0.0403706 x2 � 5.22256 Logx�
In[3]:= Sum�%, �x, 1, 20��

Out[3]= 641.437

In[4]:= Sum�Prime�i�, �i, 1, 20��
Out[4]= 639

This generates a table
of the first 20 primes.

In[1]:= Eigenvalues���3, 1�, �2, 6���
Out[1]= � 1

����
2

�9 �
�������17�, 1

����
2

�9 �
�������17�� Here are the eigenvalues

of a matrix of numbers.

This takes the formula
for the eigenvalues and
immediately plots it.

Here is the exact result.

Fit produces an approximate formula.

This computes the sum of the first 20
primes using the approximate formula.

In[3]:= Solve�First�v� �� 0, c�
Out[3]= ��c �

2
����
3

��

In[4]:= Integrate�First�v�, c�
Out[4]=

1
����
2

�
�
��3 c �

c2
�������
2

� ��
3
����
2

�
c
����
2

� ����������������������������
17 � 6 c � c2 � 4 ArcSinh
 �3 � c

���������������
2 �����2 ��

�
��

In[5]:= Series�%, �c, 0, 4��
Out[5]=

�
�
����
3 �������17
����������������

4
� 2 ArcSinh
 3

�������������
2 �����2 ��

�
���� �

�
�
����
3
����
2

�
�������17
������������
2

�
�
���� c �

�
�
�� 1

����
4

�
3

����������������
4 �������17

�
�
�� c2 �

2 c3
������������������
51 �������17

�
3 c4

���������������������
578 �������17

� Oc�5

In[6]:= FindRoot�%% �� 1 � c^2, �c, 1��
Out[6]= �c � 2.14314�

Or find the integral
with respect to c.

This finds the series expansion of the result.

This searches numerically
for a root.

You can solve for the
value of c at which the
first eigenvalue is zero.



9

Handling Data
Mathematica lets you import data in any format, then
manipulate it using powerful and flexible functions.

27 19 32 17 19 29 22 22 22 27 43 7
69 69 89 87 97 105 106 101 85 79 8
11 6 6 3 3 3 3 14 9 9 9 3 19 14 17
52 45 45 36 39 41 53 55 61 80 80 6
87 69 74 78 79 93 74 61 66 73 72 6
29 29 27 22 22 29 27 34 27 22 45 7
87 73 77 86 66 66 78 102 108 93 83
6 3 6 3 3 6 14 19 14 11 29 36 43 3
27 29 32 27 27 22 19 22 39 69 53 5
66 64 73 66 69 70 66 77 64 61 65 6
27 34 34 29 19 19 22 27 22 27 56 6
78 81 56 69 79 89 73 69 83 92 77 7

In[1]:= data � Import�"image.dat"�
Out[1]= ��27, 19, 32, 17, 19, 29, 22, 22, 22, 27

69, 69, 89, 87, 97, 105, 106, 101, 85

17, 11, 6, 6, 3, 3, 3, 3, 14, 9, 9, 9,

This reads data
from a file.

Mathematica can work with data of any kind—not just numbers.

In[1]:= data � Import�"webster", "Words"�
Out[1]= �a, AAA, AAAS, Aarhus, Aaron, ABA, Ababa, aback, a

abase, abash, abate, abbas, abbe, abbey, abbot,

abdicate, abdomen, abdominal, abduct, Abe, abed

Aberdeen, Abernathy, aberrant, aberrate, abet, a

abeyant, abhorred, abhorrent, abide, Abidjan, Ab

ablaze, able, ablution, Abner, abnormal, Abo, ab

abolition, abominable, abominate, aboriginal, a

In[2]:= Select�data,�# �� StringReverse�#� && StringLength�#� � 4� &�
Out[2]= �civic, level, madam, minim,

radar, refer, rever, rotor, tenet�

This reads in all the
words in a large
English dictionary.

This selects words 
that are palindromes with
length more than 4.

In[3]:= lengths � Map�StringLength, data�;
In[4]:= ListPlot�Table�Count�lengths, i�, �i, Max�lengths����

5 10 15 20

1000

2000

3000

4000

This is a plot of the number of
words of each length.

In[2]:= ListDensityPlot�data�

In[3]:= ListDensityPlot�
MapIndexed�RotateRigh

This visualizes the data
as a density plot.

In[5]:= ListContourPlot�data,
ContourShading �� False,

Contours �� 6�

In[4]:= ListDensityPlot�ListConvolve���3, �1�, ��3, 1��, data��;
This applies an image
filter to the data.

Here is a contour
plot of the data.

ListPlot3D�data,
ColorFunction �� GrayLevel,

Mesh �� False,

ViewPoint �� �0.2, �2, 5��

In[6]:= ListPlot�Sort�Flatten�data���

2000 4000 6000 8000

50

100

150

200

In[7]:=

Here is a 3D plot
based on the data.

This is the distribution of
gray levels in the data.

Here the data is 
successively shifted 
to the right.

Mathematica automatically imports
and exports more than 50 data,
text, graphics and sound formats.

Mathematica also has full support for sparse arrays.

In[1]:= SparseArray��i_, i_� � 1, �10^6, 10^6��

This represents a
million-by-million
identity matrix.



10

Visualization with Mathematica
Mathematica makes it easy to create stunning visual images.

Mathematica includes primitives from which you 
can build up 2D and 3D graphics of any complexity.

In[1]:= ParametricPlot3D��u Cos�u� �4 � Cos�v � u��,
u Sin�u� �4 � Cos�v � u��, u Sin�v � u��,�u, 0, 4 Π�, �v, 0, 2 Π�, PlotPoints � �60, 12��

-25
0

25
50

-40

-20

0

20

40

-10
0

10

-25
0

25
50

In[2]:= Show�%, PlotRange �� ��10, 0�,
FaceGrids �� ��0, 0, �1�, �0, �1, 0�, �1, 0, 0��,
BoxRatios �� �1, 1, .5�, ViewPoint �� ��1, 3, 2�,
Ticks �� None, AxesLabel �� �Α1, Β1, Γ1��

Α1

Β1

Γ1

Α

Β1

Here is the same plot with a variety
of specific choices for options.Mathematica can also generate sound.

In[1]:= Play�Sin�10000�t�, �t, 0, 2�� This plays a “whoosh” sound
with the specified waveform.

In[1]:= g � Flatten�Table�If�BitAnd�x, y, z� � 0,

Cuboid��x, y, z��, ���, �x, 0, 15�,�y, 0, 15�, �z, 0, 15���
Out[1]= �Cuboid�0, 0, 0��, Cuboid�0, 0, 1��,

Cuboid�0, 0, 2��, Cuboid�0, 0, 3��,
This generates a list of 3D
cuboid primitives.

In[1]:= g � Flatten�Table�Point��p�q, Denominator�p�q���,�q, 100�, �p, q � 1���
Out[1]= �Point
� 1

�����
2
, 2��, Point
� 1

�����
3
, 3��, Point
� 2

�����
3
, 3��, Poin

Point
� 3
�����
4
, 4��, Point
� 1

�����
5
, 5��, Point
� 2

�����
5
, 5��, Poin

In[2]:= Show�Graphics�g, Frame �� True��

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

In[2]:= Show[Graphics3D[g]]

This shows the graphics corresponding
to the list of primitives.

Here is a list of
point primitives.

This is the corresponding 2D graphic.

This option controls the range of
coordinates shown in the plot.

This creates a 3D parametric
plot with automatic choices
for most options.



11

In[1]:= Table�Plot3D�Sin�2 x� Sin�2 y� Cos�t�,�x, 0, Pi�, �y, 0, Pi�, PlotRange �� ��1, 1�,
BoxRatios �� �1, 1, 1��, �t, 0, Pi, Pi � 6��

Mathematica lets you produce animated movies as well as static graphics.

South West North

 3:20 am

 Nov 17

38 South

Latitude

Mathematica has made possible many new kinds of
scientific, technical, and artistic images.

You can create
diagrams of any
complexity.

You can visualize structures
of any kind.

You can display data
in any format.

You can create representations of
abstract mathematical objects.



12

Mathematica Notebooks
Every Mathematica notebook is a complete interactive document which
combines text, tables, graphics, calculations and other elements.

In[1]:= Plot�Sin�Ξ� � Sin�	




Ξ �, �Ξ, 0, 100�Π��;

50 100 150 200 250 300

-2

-1

1

2

 

 

Here is some ordinary text. It can be in any , face, size, color,  etc. 

Text can contain formulas such as  � 1�������������
Α�1

�� Α.  It can also contain Hyperlinks.

 

Α2 � Β �Α � Β	 �Α � Β	 Α2 � Β3

Α3 � Β Α3 � Β2 �Α � Β	 �Α2 � Α Β � Β2	

Like other objects in Mathematica , the cells in a  notebook, and in fact the whole
notebook itself, are  all ultimately represented as  Mathematica expressions. With
the standard notebook front end, you can use the command Show  Expression  to
see the text of the Mathematica expression that corresponds to any particular cell.

Like other objects in Mathematica, the cells in  a notebook, and in fact the 
whole notebook itself, are all ultimately represented as Mathematica expressions. 
With the standard notebook front end, you can use the command Show 
Expression  to see the text of the Mathematica expression that corresponds to any 
particular cell.

Forward Backward Reverse

Notebooks are
automatically organized
in a hierarchy of cells.

Mathematica notebooks can be built up using
explicit commands as well as interactively.

Do�StylePrint�"Heading "
�
ToString�i�, "Subsection"�,�i, 3��

In[1]:= Do�StylePrint�"Heading "
�
ToString�i�, "Subsection"�,�i, 3��

�Heading 1

�Heading 2

�Heading 3

This tells Mathematica
to print three cells in
subsection style.

This joins text
strings together.

You can use hyperlinks to
jump within a notebook or
between notebooks.

You can set
up buttons to
perform any
action you
specify.

You can close groups of cells so
you see only their headings.

Mathematica provides hundreds of options that allow
you to give notebooks any look you want—and to
generate full publication-quality documents.

Each cell can be
assigned a style
from a style sheet.

In[1]:= Plot�Sin�Ξ� � Sin�	




Ξ �, �Ξ, 0, 100�Π��;

50 100 150 200 250 300

-2

-1

1

2  

In[1]:= Plot�Sin�Ξ� � Sin�	




Ξ �, �Ξ, 0, 100�Π��;

50 100 150 200 250 300

-2

-1

1

2

Here is some ordinary text. It can be in any , face, size, color,  etc. 

Text can contain formulas such as  � 1�������������
Α�1

�� Α.  It can also contain Hyperlinks.

Α2 � Β �Α � Β	 �Α � Β	 Α2 � Β3

Α3 � Β Α3 � Β2 �Α � Β	 �Α2 � Α Β � Β2	

Like other objects in Mathematica , the cells in a  notebook, and in fact the whole
notebook itself, are  all ultimately represented as  Mathematica expressions. With
the standard notebook front end, you can use the command Show  Expression  to
see the text of the Mathematica expression that corresponds to any particular cell.

Mathematica notebooks are automatically
retargeted for screen or printout—optimizing
fonts and layout for each medium.

Cell["A Subsection Heading", "Subsection",
CellDingbat->"\[EmptyDiamond]"],
FontFamily->"CBO Univers 67 CondBoldObl",
FontWeight->"Plain"]

This is how Mathematica represents a cell.

Millions of pages of technical documents
now exist as Mathematica notebooks.

Here are the three new cells.

A notebook targeted
for presentation.

A notebook targeted for
printout.

◊ A Subsection  Heading Here is the cell.

Zeta and Related Functions

LerchPhi z�, s�, a�� Lerch'�s transcendent � �z, s, a�
PolyLog n�, z�� polylogarithm function Lin �z�

RiemannSiegelTheta t �� Riemann� Siegel function � �t�
RiemannSiegelZ t �� Riemann� Siegel function Z �t�
StieltjesGamma n�� Stieltjes constants Γn

Zeta s�� Riemann zeta function Ζ �s�
Zeta s�, a�� generalized Riemann zeta function Ζ �s, a�

Zeta and related functions. 

The Riemann zeta function Zeta[s] is defined by the relation Ζ�s� � � k �1
∞ k�s 

(for s  1). Zeta functions with integer arguments arise in evaluating various sums 
and integrals. Mathematica gives exact results when possible for zeta functions with 
integer arguments.  

There is an analytic continuation of Ζ�s� for arbitrary complex s � 1. The zeta 
function for complex arguments is central to number-theoretical studies of the 
distribution of primes. Of particular importance are the values on the critical line 

Res � 1������
2

. 

In studying Ζ� 1������
2

� i t�, it is often convenient to define the two analytic Riemann-

S iege l functions RiemannSiegelZ[t] and  RiemannSiegelTheta[z] 
according  to  Z �t� � e i � �t � �Ζ � 1������

2
� i t�  and � �t� � Im log�� 1������

4
� i t���2� � t�log�Π����2 

The whole Mathematica
help system is based on
notebooks.



13

Palettes and Buttons
Palettes and buttons provide a simple but fully 
customizable point-and-click interface to Mathematica.

Mathematica comes with a collection of
ready-to-use standard palettes.

It is easy to create your own
custom palettes.

You can make custom palettes to execute any
function or manipulate any expression.

Clicking the button takes the
highlighted selection and wraps
a square root around it.

Clicking the button immediately
factors the part of the expression
you have selected.

Darken��� Lighten���
EdgeSelect���

� �

�

Clicking the e button pastes the e
character into your notebook.

�.�

Cross��, ��
Outer��, �, ��

Det���
Inverse���
Transpose���
Eigenvalues���
Eigenvectors���
LinearSolve��, ��

RowReduce���

Part of the standard 
Basic Calculations palette.

A standard palette for
European characters.

2��1 � Ε � 1 �
	






































Sin�x� � Cos�x�

1 � �a � b�2 � �p � q�^2

The complete Basic Calculations
palette is organized as a
notebook with palettes inside it.

A button waiting
to be filled.

Palettes work like extensions to your
keyboard.

Α Β Γ

∆ Ε Ζ

Expand���
Factor���
Simplify���

2��1 � � 1 � Sin�x� � Cos�x�

1 � a^2 � 2 a b � b^2 � �p � q�^2

	




� Log���

�2 Exp���

Palettes can be part of a
notebook or can stand alone.

The ■ indicates where the
current selection should be
inserted.

Clicking a button performs a
geometric operation on the
current polyhedron. 



14

Mathematical Notation
Mathematica notebooks fully support standard
mathematical notation—for both output and input.

Mathematica supports over 700 special characters
with new fonts optimized for both screen and printer.

In[1]:= Integrate�Log�1 � x� � Sqrt�x�, x�
Out[1]= 4 ArcTan
�����x� � 2 �����x ��2 � Log1 � x�	

In[2]:= TraditionalForm�%�
Out[2]//TraditionalForm=

4 tan�1��			Ξ �� 2
�			

Ξ �log�Ξ � 1� � 2�

Here is an integral entered using only
ordinary keyboard characters.

In[2]:= � Log�1 � Ξ�
��������������������������	

Ξ
��Ξ

Out[2]= 4 ArcTan
�����
Ξ � � 2 �����

Ξ ��2 � Log1 � Ξ�	

Here is the same integral entered in two-
dimensional form with special characters.

�int� Log�1 � �x�� ���� � � ��2� �x��� � �dd� �x�

You can enter this form using a palette
or directly from the keyboard.

This stands for the Â key.

� � � � � �

� � � � � �

� � � � � � �

� � ! " � � :

# $ � % & �

� ' � � ( ) *

+ 	 � � � 
 �

, ! - " # $ .

% & ' ( ) *
+ , - . / 0
� � � �

/ 0 1 �  2 3 �

� � 4 � � � � �

� � � � � 5 �

� 	 
 � � � ! "

# $ % & ' ( ) *

+ � 6 , - . / 0

1 2 3 4 5 6 7 8

9 : ; < = > ? @

A B C D E F G H

I J K L M N O P

Q R S T U V

7 8 9 W X : ; Y

� � � � � � �

	 
 � �  � �

� � � � � � �

� � � � �

� � � �  ! "

# $ % & ' ( )

* + , - . / 0

1 2 3 4 5

6 7 8 9 : ; <

= > ? @ A B C

D E F G H I J

K L M N O

P Q R S T U V

W X Y Z [ \ ]

^ _ ` a b c d

e f g h i

j k l m n o p

q r s t u v w

x y z { | } ~

� � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � �

Α Β Γ ∆ Ε f Ζ Η Θ

C Ι Κ g Λ Μ Ν Ξ Ο

Π J Ρ h Σ M Τ Υ Φ

Q Χ Ψ Ω i j k l

U V W X Y Z [ \ ]

^ _ ` a b c d e f

g h i j k l m m n

Mathematica can generate output 
in traditional textbook form.

Mathematica combines the compactness 
of mathematical notation with the precision of
a computer language.

In[1]:= �
Μ�0

� �Μ�Exp� Π Μ�������
4

�
������������������������������������������������
Μ�2��Μ2 � Κ���Μ2 � Λ� �� TraditionalForm

Out[1]//TraditionalForm=

��Λ 1F2���
�			

Κ ; 1, 1 � �
�			

Κ ; �Π�4 ��� Λ 1F2���			Κ ; 1, �
�			

Κ � 1; �Π�4 ���

Κ 1F2���				Λ ; 1, 1 �
�				

Λ ; �Π�4 ��� Κ 1F2��				Λ ; 1,
�				

Λ � 1; �Π�4 ��� 

�2 Κ ��			Κ � �

�				
Λ �� �			Κ � �

�				
Λ � Λ�

In[1]:= Table�� �Αi  Βi!!!!!!!!!!!!
" �

i

3�i
, �i, 3��

Out[1]= �� ) Α1 ' Β1
nnnnnnnnnnnn

" o
1

2
, � ) Α2 ' Β2

nnnnnnnnnnnn
" o

2

1
, � ) Α3 ' Β3

nnnnnnnnnnnn
" o

3

0�

Mathematica makes it easy to
work with abstract notation.

o. o����.	


o 	



o
.

� o�. #. o

�
.

.
o�. #.,. o

�
.�.

.

o �
.�.

.

o

�..
..� o � � .

Π $ � � %

& ' ( � )

� * � + "

, - . / 0

Script

Double-struck

Gothic

Greek

You can use any 
of the notation in this
palette for input.

Mathematica’s StandardForm
is precise and unambiguous.
TraditionalForm requires
heuristics for interpretation.

Mathematica includes full
support for MathML.

All characters have consistent full names;
some also have aliases and TEX names.

Mathematica produces top-quality
output for formulas of any size or
complexity.

Out[1]= �4
	
Ξ + (4 ArcTan[

	
Ξ] + 2 Π) + 2

	
Ξ Log[1 + Ξ]

Mathematica always lets you edit
output—and use it again as input.



15

Mathematica and Your Computing Environment
Mathematica runs compatibly across all major computer systems, and
lets you exchange data in many standard formats.

Windows

Unix/Linux

Macintosh

� Log�1 �Ξ�
����������������������������	





Ξ
��Ξ

Mathematica uses the Unicode standard to ensure
portability of international character sets.

From within one notebook you can
run several Mathematica kernels—
on local or remote computers.

You can export graphics and formulas to
other programs in EPS, GIF, PNG, SVG,
etc., and then manipulate them.

Mathematica lets you import
external graphics and sounds
into notebooks.

The standard Mathematica system
consists of two parts:

The kernel—which actually does
computations.

The front end—which handles
user interaction and notebooks.

Complete Mathematica notebooks
can be exported in formats such as
XML, HTML, TEX and RTF.

\!\(\[Integral]\(Log[1 + \[Xi]]\/\@\[Xi]\)\[DifferentialD]\[Xi]\)

This is what you get when you copy the integral
into an external text application such as email.

Notebook[{

Cell[CellGroupData[{
Cell[“A Sample Notebook”, “Title”],

Cell[CellGroupData[{

Cell[“\<\
Notebooks look the same on every computer
platform and calculations \
give the same results\
\>”, “Subsection”],

Cell[CellGroupData[{

Cell[TextData[“N[\[Pi],40]”], “Input”,
CellLabel->”In[1]:=”],

Notebooks have a
portable underlying plain
text representation.

In[1]:= all � FileNames�"1",
$HomeDirectory, Infinity�;

In[2]:= sizes � Map�FileByteCount, all�;
In[3]:= ListPlot�Sort�Log�10, 1 � sizes���

500 1000 1500 2000 2500

1

2

3

4

5

6

7

In[1]:= Install�"sampler.exe"�
Out[1]= LinkObjectsampler.exe, 2, 2�
In[2]:= Table�getdata�i�, �i, 3��

Out[2]= ��x � 2.45, y � 5.78�,
�x � 1.16, y � 2.19�,
�x � 1.3, y � 4.35��

You can easily connect to external programs.

Mathematica provides system-independent
functions for file manipulation.

Here is a plot of the
sizes of all files in a
file system.



16

The Unifying Idea of Mathematica
Mathematica is built on the powerful unifying idea that 
everything can be represented as a symbolic expression.

All operations in Mathematica are ultimately
transformations of symbolic expressions.
Mathematica has a uniquely powerful pattern
matcher for applying transformation rules.

List�a, b, c�

Plus�Power�x, 2�, Sqrt�x��
Tilde�CirclePlus�a, b�,

Subscript�c, Infinity��

And�p, Not�q��

AddTo�Part�m, 1�, a��

Graphics��Circle��1, 0�, 2�,
Circle���1, 0�, 2���

Cell�"A cell containing text",
"Text"�

A list of elements

ButtonBox�"Press here"�

Chemical��Hydrogen, 1�,�Nitrogen, 1�, �Oxygen, 3�� Circuit��Resistor�"R"�,
Capacitor�"C"���

An algebraic expression

A logic expression

Abstract mathematical notation

A command

Graphics

A button

A cell in a notebook

A chemical compound An electric circuit

Equal�x, Sin�x��
An equation

In[1]:= �a, b, c, d� �. b �� 1 � x
Out[1]= �a, 1 � x, c, d�
In[2]:= �a � b, c � d, a � c� �. x_ � y_ �� x^2 � y^2

Out[2]= �a2 � b2, c2 � d2, a2 � c2�
In[3]:= �a � b, c � d, a � c� �. a � x_ �� x^3

Out[3]= �b3, c � d, c3�

In[1]:= f�x_� :� 2�x
In[2]:= f�0� :� e

In[3]:= f�6� � f�a � b� � f�0�
Out[3]=

1
�����
3

�
2

�������������
a � b

� e

�a, b, c�

x2 �
	




x

m�1� �� a

p && � q

x �� Sin�x�
a b 2 c∞

A cell containing text

Presshere

HNO3

R
C

Here is a special 
case that overrides the
general definition.

Each of these stands for any expression.

The uniformity of symbolic expressions makes it easy to
add to Mathematica any construct you want.

All symbolic expressions are built up from 
combinations of the basic form: head[arg1,arg2,...].

In[1]:= g��x_, y_�� :� x � y

In[2]:= g��4, a��
Out[2]= 4 � a area�Circle��_, _�, r_�� :� Pi r^2

reduce�p_ && q_ �� p_� :� p

Mathematica uses patterns
to generalize the notion of
functions. This is an ordinary function 

definition to be used for any x.

This tells Mathematica to apply a
simple transformation rule.

Using patterns allows “functions” to
take arguments in any structure.



In[1]:= 1 � �a, b, c�^2
Out[1]= �1 � a2, 1 � b2, 1 � c2�
In[2]:= Table�i^j, �i, 4�, �j, i��

Out[2]= ��1�, �2, 4�, �3, 9, 27�, �4, 16, 64, 256��
In[3]:= Flatten�%�

Out[3]= �1, 2, 4, 3, 9, 27, 4, 16, 64, 256�
In[4]:= Partition�%, 2�

Out[4]= ��1, 2�, �4, 3�, �9, 27�, �4, 16�, �64, 256��

In[1]:= NestList�f, x, 4�
Out[1]= �x, fx�, ffx��, fffx���, ffffx�����
In[2]:= NestList��1 � #�^2 &, x, 3�

Out[2]= �x, �1 � x	2, �1 � �1 � x	2	2, �1 � �1 � �1 � x	2	2�2�

In[1]:= p�x_ � y_� :� p�x� � p�y�
In[2]:= p�a � b � c�

Out[2]= pa� � pb� � pc�
In[3]:= s��x__, a_, y__�, a_� :� �a, x, x, y, y�
In[4]:= s��1, 2, 3, 4, 5, 6�, 4�

Out[4]= �4, 1, 2, 3, 1, 2, 3, 5, 6, 5, 6�

17

Mathematica as a Programming Language
Mathematica is an unprecedentedly flexible and productive
programming language.

Mathematica incorporates a range of programming
paradigms—so you can write every program in its most
natural way.

In[1]:= z � a;
Do�Print�z 1� z � i�, �i, 3��
a �1 � a	
a �1 � a	 �2 � a �1 � a		
a �1 � a	 �2 � a �1 � a		 �3 � a �1 � a	 �2 � a �1 � a			

In[1]:= StringReplace�"aababbaabaabababa",�"aa" �� "AAA", "ba" �� "V"��
Out[1]= AAAVbVaVaVVV

List-based programming

Procedural programming

Functional programming

Rule-based programming

String-based programming

Mathematica includes advanced programming
methods from modern computer science—as
well as adding a host of new ideas of its own.

In[1]:= Position��1, 2, 3, 4, 5� �2, _Integer�
Out[1]= ��2�, �4��
In[2]:= MapIndexed�Power, �a, b, c, d��

Out[2]= ��a�, �b2�, �c3�, �d4��
In[3]:= FixedPointList�If�EvenQ�#�, #�2, #�&, 10^5�

Out[3]= �100000, 50000, 25000, 12500, 6250, 3125, 3125�
In[4]:= ReplaceList��a, b, c, d, e�,�x__, y__� �� ��x�, �y���

Out[4]= ���a�, �b, c, d, e��, ��a, b�, �c, d, e��,
��a, b, c�, �d, e��, ��a, b, c, d�, �e���

h �: h�x_� � h�y_� :� hplus�x, y�
h �: p�h�x_�, x_� :� hp�x�
h �: f_�h�x_�� :� fh�f, x�

Many operations are
automatically threaded
over lists.

This stands for any
sequence of expressions.

This flattens
out sublists.

Here are three definitions to be
associated with the object h.

This partitions into
sublists of length 2.

Object-oriented programming

This associates the definition
with the object h.

f � Factorial

f�n_� :� n�

f�n_� :� Gamma�n � 1�
f�n_� :� n f�n � 1� ; f�1� � 1

f�n_� :� Product�i, �i, n��
f�n_� :� Module��t � 1�,
Do�t � t1i, �i, n��; t�

f�n_� :� Module��t � 1, i�,
For�i � 1, i 
� n, i��, t 1� i�; t�

f�n_� :� Apply�Times, Range�n��
f�n_� :� Fold�Times, 1, Range�n��
f�n_� :� If�n �� 1, 1, n f�n � 1��
f � If�#1 �� 1, 1, #1 #0�#1 � 1��&
f�n_� :� Fold�#2�#1�&, 1,

Array�Function�t, #�t�&, n��
A dozen definitions of the factorial function

Mathematica gives you the
flexibility to write programs 
in many different styles.

Many of Mathematica’s most
powerful functions mix different
programming paradigms.

Mixed programming paradigms

This is a pure function.



18

Writing Programs in Mathematica
Mathematica’s high-level programming constructs let you build
sophisticated programs more quickly than ever before.

CenterList�n_Integer� :�
ReplacePart�Table�0, �n��, 1, Ceiling�n�2��
ElementaryRule�num_Integer� :�

IntegerDigits�num, 2, 8�
CAStep�rule_List, a_List� :� rule��
8 � �RotateLeft�a� � 2 �a � 2 RotateRight�a�����

CAEvolveList�rule_List, init_List, t_Integer� :�
NestList�CAStep�rule, #�&, init, t�
CAGraphics�history_List� :�
Graphics�Raster�1 � Reverse�history��,
AspectRatio �� Automatic�

LifeStep�a_List� :�
MapThread�If��#1 �� 1 && #2 �� 4� �� #2 �� 3, 1, 0�&,�a, Sum�RotateLeft�a, �i, j��, �i, �1, 1�, �j, �1, 1���, 2�
Lif St �li t �

In[6]:= Show�CAGraphics�CAEvolveList�
ElementaryRule�30�,
CenterList�101�, 50���

Mathematica has a compiler
for optimizing programs that
work with lists and numbers. 

RandomWalk�n_� :� NestList��# � ��1�^Random�Integer��&, 0, n�

Mathematica makes it easy to build
up programs from components.Here is a direct program for a step in

the Life cellular automaton.

Impedance�Resistor�r_�, Ω_� :� r

Impedance�Capacitor�c_�, Ω_� :�
1

�������������
� Ω c

Impedance�Inductor�l_�, Ω_� :� � Ω l

Impedance�SeriesElement�e_�, Ω_� :�
Apply�Plus, Map�Impedance�#, Ω�&, e��
Impedance�ParallelElement�e_�, Ω_� :�
1�Apply�Plus, 1�Map�Impedance�#, Ω�&, e��

Single-line Mathematica programs can 
perform complex operations. This one 
produces a one-dimensional random walk.

FareySequence�q_� :�
Apply�Union, Array�Range�# � 1� �#&, q��
TransferMatrix�Α_, Ξ_, p_� :���Ξ � If�1 � Α � Mod�p Α, 1� 
 1, 1, 0�, �1�, �1, 0��
TransferMatrixList�Α_, Ξ_� :�
Table�TransferMatrix�Α, Ξ, p�,�p, 0, Denominator�Α� � 1��
TransferMatrixProduct�Α_, Ξ_� :�
Fold�Expand�Dot�##��&, First�#�, Rest�#��&�
TransferMatrixList�Α, Ξ��

EnergyPolynomial�Α_, Ξ_� :� Plus44
Transpose�TransferMatrixProduct�Α, �, �1, 1��

Spectrum�Α_, Ξ_� :� �. NSolve�# � �2 �� # � �2, Ξ�&
EnergyPolynomial�Α, Ξ��

SpectrumData�Α � :� Map�Line,

In[8]:= Show�Graphics�
SpectrumData�4
FareySequence�20���

Mathematica is a uniquely
scalable language—suitable
for programs of any size.

In[6]:= Impedance�SeriesElement�Table�ParallelElement�
Table�SeriesElement��Resistor�Rn���, �n���,�n, 1, 4���, Ω� �� Simplify

Out[6]= R1 �
1

��������
12

�6 R2 � 4 R3 � 3 R4	

5�n_� :� Total�Map�Last, FactorInteger�n���
Μ�n_� :� MoebiusMu�n�
p�x_� :� � �

k�1

�Log�2,x��
Μ�k� �

n�2

�x1�k�
Μ�n� 5�n� �

������ x1�k
������������
n �

������ �; x � 0
Mathematica programs can mix
numerical, symbolic and graphics
operations. This short program solves a
sophisticated quantum model.

RandomWalk�n_, d_� :� NestList��# � ��1�^Table�Random�Integer�, �d���&, Table�0, �d��, n�

The directness of Mathematica programs makes
them easy to generalize. This one produces a
random walk in d dimensions.

Mathematica programs 
are often a direct translation
of material in textbooks.

g�k_� :� 1 � FixedPoint�N�1� �1 � #�, k�&, 1�
g�k_� :� FixedPoint�N[Sqrt�1 � #�, k�&, 1�

Mathematica programs provide
unprecedentedly clear ways to
express algorithms. Both of these
programs approximate the Golden
Ratio to k digits.

In[2]:= ListPlot�RandomWalk�200�, PlotJoined�� True�

50 100 150 200

5

10

15

20

Here is a plot of a 
200-step random walk.

In[2]:= Show�Graphics3D�
Line�RandomWalk�1000, 3����

Here is a plot of a 
3D random walk.

Mathematica programs allow a unique
combination of mathematical and
computational notation.

LifeStep�list_� :�
With��u � Split�Sort�Flatten�Outer�Plus, list, N9, 1�, 1����,
Union�Cases�u, �x_, _, _� �� x�,

Intersection�Cases�u, �x_, _, _, _� �� x�, list���
N9 � Flatten�Array�List, �3, 3�, �1�, 1� ;

Mathematica’s rich structure also makes it easy to
implement this alternative highly optimized algorithm.



19

Building Systems with Mathematica
Mathematica has everything you need to create complete
systems for technical and non-technical applications.

  3.12 Section

Approximating 
an Integral

A approx ��
i �1

n

�f �xi �� x

This  can  be  represented  visually.  Given  the  function  sin� x�������������������
x

 between

0.01 and 10, we can demonstrate the technique as follows: 

AreaApproximationPlot� Sin�x�
�������������

x
, �x, 0.01, 10��;

2 4 6 8 10
- 0.2

0.2

0.4

0.6

0.8

1
Approximate Area = 1.98518

A common use for  integration  is determining the  area  under  a  curve.  That
is, given a curve f �x x�  we want to find the area bounded by the curve, the
axis, and the vertical lines at points a and b. A natural way of estimating this
area  is  to  first  subdivide  the  x  axis  between a  and  b  into  evenly  spaced
intervals.  Place  rectangles  as  tall  as  some  part  of  the  curve  within  each
subinterval,  and  as  wide  as  the  subinterval  itself  along  the  axis,  then  add
together  the  areas  of  the  rectangles. The  result  is  an  approximation  of  the
integral of f(x) from a to b.

In[1]:= 

 Miscellaneous`WorldPlot`

In[2]:= WorldPlot�World, WorldProjection ��
N��#2 �Abs�Sin�Degree�60 #1�� � 1� �2, #1� &�,
WorldBackground �� Hue�.5��;

Combinatorica and WorldPlot are
two examples of standard add-on
packages that come with full
versions of Mathematica.

<< Optica`

DrawSystem[{
ConeOfRays[10,NumberOfRays->10],
Move[PlanoConvexLens[100,50,10],{100,0,0}],
Move[PlanoConvexCylindricalLens[

100, {50, 50},10], {130,0,0}],
Move[BeamSplitter[{50,50},{50,50},10],{180,0,45}],
Boundary[{-100,-100,-100},{250,100,200}]}];

In[1]:=

In[2]:=

Optica is a large Mathematica package
for doing optical engineering.

Mathematica has made possible a
new generation of notebook-
based interactive courseware.

5�12 4�9 3�10 2�5 1�3
20

22

24

26

28

5�12 4�9 3�10 2�5 1�3
Microsoft

  Historical Daily Data for Microsoft  (MSFT)

�High-Low-Open-Close
Trading volume shown in barchart

�Summary Statistics

Max Min Average Volatility

Close 94.5 80.187 88.486 2.833

Volume 14215. 711.1 5784.4 2879.6

This is the notebook
produced by clicking
the button.

You can create complete
applications and user
interfaces directly in
Mathematica.

In[1]:= 

 DiscreteMath`Combinatorica`

In[2]:= ShowGraph�LineGraph�LineGraph�
CirculantGraph�5, Range�1, 3�����;

3.8 IntrinsicSurface Functions

Component functions for creating  intrinsic index boundaries. 

�Two Intrinsic Surfaces  Forming a Prism

�Two Parallel Intrinsic Surfaces  

�Putting Light Sources  in Water  

�The SwitchIntrinsicMedium Genetic  Building Block

3.9 Lenses

�Spherical  Lenses

In this section, we examine intrinsic-surface components more closely. 
Intrinsic-surface components are used to create intrinsic index boundaries 
in optical systems. We use intrinsic-surface components for applications 
that require sending light through water while having the camera optics in 
the air, for example. Here are definitions for Optica's built-in intrinsic-
surface functions.

BallLens[diameter, options] refers to an entire spherical refractive 
component.

In this section, we define Optica's built-in lens functions. Due to the 
large number of lens functions, the definitions are grouped as spherical 
lenses, cylindrical lenses, the custom lens, and the window.

Clicking this button
generates a report
and puts it in a
new notebook.

Notebook documentation can
automatically be integrated
with the main Mathematica
help system.

This loads a Mathematica package
called Combinatorica.

ADSK Autodesk, Inc.

BORL Borland International

INGR Intergraph Corp.

INTU Intuit

MSFT Microsoft

NOVL Novell, Inc.

ORCL Oracle System Corp.

SY Sybase

   Generate Stock Reports

Click the desired  ticker symbol for
 a historical  summary.

�Computer Hardware

�Computer Software

�Telecommunications

You can use palettes and buttons to
build custom user interfaces.



In[1]:= traceTask � JavaNew�"com.wolfram.net.util.TraceRoute"�;
traceTask � setHost�
JavaNew�"java.net.URL", "http:��www.wolfram.com�"��;

traceTask � execute��;�"HopCount" � traceTask � getHopCount��,
"HopTimes" � traceTask� getHopTimes���

Out[1]:= �HopCount � 4, HopTimes � �0.12, 3.4, 2.1, 0.09��

MathLink provides a general way for programs
to communicate with Mathematica.

In[1]:= Needs�"DatabaseAccess`"�
dbselect � OpenDataSource�"dbselect"�

Out[1]:=

Out[2]:=

DataSourceObject�dbselect, 1, ���
In[2]:= DataSourceEvaluate�dbselect, SQLSelect�SQLTable�"publishers"��,

ShowColumnHeadings �� True� �� TableForm

pub_id pub_name address city

0736 Second Galaxy Books 100 1st St. Boston
0877 Boskone & Helmuth 201 2nd Ave. Washington
1389 NanoSoft Book Publishers 302 3rd Dr. Berkeley

20

Mathematica as a Software Component
Mathematica’s symbolic architecture and uniform linking
mechanism make it uniquely powerful as a component in
many kinds of software systems.

The Mathematica J/Link system gives you immediate access to any Java library.

Python

In[1]:= Needs�"JLink`"�
In[2]:= PrimeFinder�� :� JavaBlock�

Module��frm, txtField, pane, statusLabel, prevButton, nextButton,

primesVisited � ���,
InstallJava��;
frm � JavaNew�"com.wolfram.jlink.MathJFrame", "Prime Finder"�;
frm�getContentPane���setLayout�JavaNew�"java.awt.BorderLayout"��;
txtField � JavaNew�"javax.swing.JTextField", "1"�;
txtField�setHorizontalAlignment�JTextField`RIGHT�;
txtField�addKeyListener� JavaNew�"com.wolfram.jlink.MathKeyListener",��"keyReleased", "testIfPrime"����;
pane � JavaNew�"javax.swing.JPanel"�;
statusLabel � JavaNew�"javax.swing.JLabel", "Number is not prime."�;
prevButton � JavaNew�"javax.swing.JButton", "Previous"�;
prevButton�addActionListener�
JavaNew�"com.wolfram.jlink.MathActionListener", "findPrime��1�&"��;

nextButton � JavaNew�"javax.swing.JButton", "Next"�;
nextButton�addActionListener�

In[1]:= link = LinkCreate["8000"]

Out[1]:= LinkObject[8000@frog.wolfram.com, 4, 4]

In[1]:= Link = LinkConnect["8000"]

Out[1]:= LinkObject["8000@frog.wolfram.com", 4, 4]

In[2]:= LinkWrite[link, 15!]

In[2]:= LinkRead[link]

Out[2]:= 1307674368000

In[3]:= LinkWrite[link, N[%^6]]

In[3]:= LinkRead[link]

Out[3]:= 5.00032� 1072

In[3]:= LaunchSlaves��;
In[4]:= RemoteEvaluate� $System �

Out[4]:= �Mac OS X, Microsoft Windows,

HP�Compaq Tru64 Unix, Linux Alpha, Linux IA�64,

HP�UX PA�RISC �64 bit�, IBM AIX Power �64 bit�,
Sun Solaris �UltraSPARC�, Linux�

This Mathematica program
defines a Java Swing interface.

The data can now be
analyzed in Mathematica.

You can easily integrate external programs into Mathematica.

The Mathematica Database Access
Kit connects Mathematica to any
standard database.

MathLink allows multiple Mathematica
kernels to communicate.

gridMathematica supports
parallel computation.

Java objects and behaviors are automatically
mapped to Mathematica symbolic functions.

This does a database query.

All the methods in this Java
class are now accessible.

link.putfunction(“EvaluatePacket”,1)
link.putfunction(“Integrate”,2)
link.putfunction(“Sqrt”,1)
link.putfunction(“Log”,1)
link.putsymbol(“x”)
link.putsymbol(“x”)
link.endpacket()

C#

link.PutFunction(“EvaluatePacket”, 1);
link.PutFunction(“Integrate”, 2);
link.PutFunction(“Sqrt”, 1);
link.PutFunction(“Log”, 1);
link.PutSymbol(“x”);
link.PutSymbol(“x”);
link.EndPacket();

C/C++

MLPutFunction( link, “EvaluatePacket “, 1);
MLPutFunction( link, “Integrate”, 2);
MLPutFunction( link, “Sqrt”, 1);
MLPutFunction( link, “Log”, 1);
MLPutSymbol( link, “x”, 1);
MLPutSymbol( link, “x”);
MLEndPacket( link);

Java

link.putFunction(“EvaluatePacket”, 1);
link.putFunction(“Integrate”, 2);
link.putFunction(“Sqrt”, 1);
link.putFunction(“Log”, 1);
link.putSymbol(“x”);
link.putSymbol(“x”);
link.endPacket();

Mathematica

link.evaluate(“Integrate[Sqrt[Log[x]], x]”);

Integrate[Sqrt[Log[x]], x]

Shorter forms
work in simple
cases.

These programs send
a computation to a
Mathematica kernel.

This writes from one kernel.

This reads in another kernel.

MathLink is supported
for many languages.

Mathematica can operate
as a client, server or peer.

MathLink uses symbolic expressions to represent
arbitrary data, structure and functions.

This finds values in parallel
on many computers.

:Begin:
:Function: anneal
:Pattern: TSPTour[r:{{_, _}..}]
:Arguments: {First[Transpose[r]], Last[Transpose[r]],

Length[r], Range[Length[r]]}
:ArgumentTypes: {RealList, RealList, Integer, IntegerList}
:ReturnType: Manual
:End:

This gives a template for
calling a C program.

In[1]:= Install�"anneal"�;
In[2]:= TSPTour�Table�Random� �, �100�, �2���

Out[2]= �10, 7, 34, 30, 46, 40, 43, 38, 65, 57, 28, 23, 80,
78, 94, 6, 92, 32, 18, 26, 98, 56, 31, 97, 37, 45,
27 49 11 84 44 96 16 76 82 68 55 36 87

Running the program brings
up a Java dialog box.

This installs the C program.

Now the program is just like
any Mathematica function.

This indicates function nesting
representing Java object structure.



21

Mathematica’s symbolic architecture allows direct
integration with XML and XML-aware applications.

In[1]:= ExportString�x � 1, "XML"�
Out[1]:= 	?xml versionp'1.0'?


	qDOCTYPE Expression SYSTEM 'http:��
www.wolfram.com�XML�notebookml1.dtd'


	Expression xmlns:mathematicap'

http:��www.wolfram.com�XML�'
xmlnsp'http:��www.wolfram.com�XML�'


	Function


	Symbol
Plus	�Symbol


	Number
1	�Number


	Symbol
x	�Symbol


	�Function


	�Expression
 External XML file

SymbolicXML gives a uniform way to
represent any kind of XML as a
Mathematica expression.

webMathematica provides a complete
solution for building active websites.

<%@ page language="java" %>
<%@ taglib uri="/webMathematica-taglib" prefix="msp" %>
<!-- webMathematica source code (c) 1999-2003, 

Wolfram Research, Inc. All rights reserved. -->
<html>
<head>

<title>Plot</title>
</head>
<body bgcolor="#ffffff" >

<h1>Plot</h1>
<form action="Plot.jsp" method="post">

<msp:allocateKernel>
Enter a function: 
<input type="text" name="fun" size="24" value = 

"<msp:evaluate>MSPValue[ $$fun,
"Sin[x]^2"]</msp:evaluate>" />

<?xml version="1.0"?>
<document>
<!-- CML document - caffeine - karne - 7/8/00 -->
<cml title="caffeine" id="cml_caffeine_karne" xmlns="x-sche

<molecule title="caffeine" id="mol_caffeine_karne">
<formula>C8 H10 N4 O2</formula>
<string title="CAS">58-08-2</string>
<string title="RTECS">EV6475000</string>

<float title="molecule weight">194.19</float>
<float title="specific gravity">1.23</float>
<string title="water solubility" units="g/100 mL" convent

<list title="alternate names">
<string title="name">1,3,7-Trimethylxanthine</string>
<string title="name">Cafipel</string>
<string title="name">Guaranine</string>

</list>
<atomArray>

<atom id="caffeine_karne_a_1">
<float builtin="x3" units="A">-2.8709</float>
<float builtin="y3" units="A">-1.0499</float>

webMathematica uses JSP to define
appearance and action of websites.

It takes only a short script to set up a
complete dynamic web page.

MathLink lets you connect to other
applications and set up alternative
interfaces to Mathematica. Link for Excel provides two-way

communication between
Mathematica and Excel.

Link for LabVIEW lets you define
Mathematica virtual instruments.

In[1]:= mol � Import�"caffeine.xml"�
Out[1]:= XMLObjectDocument�

�XMLObjectDeclaration�Version � 1.0��,
XMLElementdocument, ��, �XMLElementcml,

�title � caffeine, id � cml_caffeine_karne,

�http:��www.w3.org�2000�xmlns�, xmlns� �

x�schema:cml_schema_ie_02.xml�,
�XMLElementmolecule, �title � caffeine,

id � mol_caffeine_karne�, …�����, ���
In[2]:= atoms �

Cases�mol,
XMLElement�_, �_ �� "elementType"�, �type_�� )

type , �0, ���
Out[2]:= �C, N, C, C, C, N, N, C, N, C, O,

C, O, C, H, H, H, H, H, H, H, H, H, H�
In[3]:= Map��#, Count�atoms, #�� &, Union�atoms��

Out[3]:= ��C, 8�, �H, 10�, �N, 4�, �O, 2��

This imports XML as a
SymbolicXML expression.

This extracts a list of data from
the SymbolicXML expression.

This analyzes the data.

Mathematica provides ways to
manipulate XML in symbolic form.

This generates XML for a
simple Mathematica
expression.



Part 1

This part gives a self-contained introduction to Mathematica, 

concentrating on using Mathematica as an interactive problem-

solving system.

When you have read this part, you should have sufficient knowledge

of Mathematica to tackle many kinds of practical problems.

You should realize, however, that what is discussed in this part is 

in many respects just the surface of Mathematica. Underlying all the var-

ious features and capabilities that are discussed, there are powerful and

general principles. These principles are discussed in Part 2. To get the

most out of Mathematica, you will need to understand them.

This part does not assume that you have used a computer before. In

addition, most of the material in it requires no knowledge of mathematics

beyond high-school level. The more advanced mathematical aspects of

Mathematica are discussed in Part 3 of this book.



Part 1Part 1



A Practical Introduction to
Mathematica

1.0 Running Mathematica . . . . . . . . . . . . . . . . . . . 26

1.1 Numerical Calculations . . . . . . . . . . . . . . . . . . . 29

1.2 Building Up Calculations . . . . . . . . . . . . . . . . . . 38

1.3 Using the Mathematica System . . . . . . . . . . . . . 44

1.4 Algebraic Calculations . . . . . . . . . . . . . . . . . . . 63

1.5 Symbolic Mathematics . . . . . . . . . . . . . . . . . . . 79

1.6 Numerical Mathematics . . . . . . . . . . . . . . . . . . 102

1.7 Functions and Programs . . . . . . . . . . . . . . . . . . 110

1.8 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

1.9 Graphics and Sound . . . . . . . . . . . . . . . . . . . . 131

1.10 Input and Output in Notebooks . . . . . . . . . . . . . 174

1.11 Files and External Operations . . . . . . . . . . . . . . 204

1.12 Special Topic: The Internals of Mathematica . . . . . . 218



26 1. A Practical Introduction to Mathematica � 1.0 Running Mathematica

1.0 Running Mathematica

To find out how to install and run Mathematica you should read the documentation that came with
your copy of Mathematica. The details differ from one computer system to another, and are affected
by various kinds of customization that can be done on Mathematica. Nevertheless, this section outlines
two common cases.

Note that although the details of running Mathematica differ from one computer system to another,
the structure of Mathematica calculations is the same in all cases. You enter input, then Mathematica
processes it, and returns a result.

1.0.1 Notebook Interfaces

use an icon or the Start menu graphical ways to start Mathematica

mathematica the shell command to start Mathematica

text ending with SHIFT-ENTER input for Mathematica (SHIFT-RETURN on some keyboards)

choose the Quit menu item exiting Mathematica

Running Mathematica with a notebook interface.

In a “notebook” interface, you interact with Mathematica by creating interactive documents.

If you use your computer via a purely graphical interface, you will typically double-click the Mathe-
matica icon to start Mathematica. If you use your computer via a textually based operating system, you
will typically type the command mathematica to start Mathematica.

When Mathematica starts up, it usually gives you a blank notebook. You enter Mathematica input
into the notebook, then type SHIFT-ENTER to make Mathematica process your input. (To type SHIFT-ENTER,
hold down the SHIFT key, then press ENTER.) You can use the standard editing features of your graph-
ical interface to prepare your input, which may go on for several lines. SHIFT-ENTER tells Mathematica
that you have finished your input. If your keyboard has a numeric keypad, you can use its ENTER key
instead of SHIFT-ENTER.

After you send Mathematica input from your notebook, Mathematica will label your input with
In[n]:=. It labels the corresponding output Out[n]=.



1.0.2 Text-Based Interfaces 27

You type 2 + 2, then end your input
with SHIFT-ENTER. Mathematica processes
the input, then adds the input label
In[1]:=, and gives the output.

2 � 2

In[1]:= 2 � 2

Out[1]= 4

Throughout this book, “dialogs” with Mathematica are shown in the following way:

With a notebook interface, you just
type in 2 + 2. Mathematica then adds
the label In[1]:=, and prints the
result.

In[1]:= 2 + 2

Out[1]= 4

Page xv discusses some important details about reproducing the dialogs on your computer system.
Section 1.3 gives more information about Mathematica notebooks.

You should realize that notebooks are part of the “front end” to Mathematica. The Mathematica
kernel which actually performs computations may be run either on the same computer as the front
end, or on another computer connected via some kind of network or line. In most cases, the kernel is
not even started until you actually do a calculation with Mathematica.

To exit Mathematica, you typically choose the Quit menu item in the notebook interface.

1.0.2 Text-Based Interfaces

math the operating system command to start Mathematica

text ending with ENTER input for Mathematica

CONTROL-D or Quit[ ] exiting Mathematica

Running Mathematica with a text-based interface.

With a text-based interface, you interact with your computer primarily by typing text on the keyboard.

To start Mathematica with a text-based interface, you typically type the command math at an oper-
ating system prompt. On some systems, you may also be able to start Mathematica with a text-based
interface by double-clicking on a Mathematica Kernel icon.

When Mathematica has started, it will print the prompt In[1]:=, signifying that it is ready for your
input. You can then type your input, ending with ENTER or RETURN.



28 1. A Practical Introduction to Mathematica � 1.0 Running Mathematica

Mathematica will then process the input, and generate a result. If it prints the result out, it will label
it with Out[1]=.

Throughout this book, dialogs with Mathematica are shown in the following way:

The computer prints In[1]:=. You just
type in 2 + 2. The line that starts with
Out[1]= is the result from Mathematica.

In[1]:= 2 + 2

Out[1]= 4

Page xv discusses some important details about reproducing the dialogs on your computer system.
Note that you do not explicitly type the In[n]:= prompt; only type the text that follows this prompt.

Note also that most of the actual dialogs given in the book show output in the form you get with
a notebook interface to Mathematica; output with a text-based interface looks similar, but lacks such
features as special characters and font size changes.

Section 1.3 gives more details on running Mathematica with a text-based interface. To exit Mathe-
matica, either type CONTROL-D, CONTROL-Z or Quit[ ] at an input prompt.



1.1.1 Arithmetic 29

1.1 Numerical Calculations

1.1.1 Arithmetic

You can do arithmetic with Mathematica just as you would on an electronic calculator.

This is the sum of two numbers. In[1]:= 2.3 + 5.63

Out[1]= 7.93

Here the / stands for division, and the
^ stands for power.

In[2]:= 2.4 / 8.9 ^ 2

Out[2]= 0.0302992

Spaces denote multiplication in
Mathematica. You can use a * for
multiplication if you want to.

In[3]:= 2 3 4

Out[3]= 24

You can type arithmetic expressions
with parentheses.

In[4]:= (3 + 4) ^ 2 - 2 (3 + 1)

Out[4]= 41

Spaces are not needed, though they
often make your input easier to read.

In[5]:= (3+4)^2-2(3+1)

Out[5]= 41

x^y power

-x minus

x/y divide

x y z or x*y*z multiply

x+y+z add

Arithmetic operations in Mathematica.

Arithmetic operations in Mathematica are grouped according to the standard mathematical conven-
tions. As usual, 2 ^ 3 + 4, for example, means (2 ^ 3) + 4, and not 2 ^ (3 + 4). You can always
control grouping by explicitly using parentheses.

This result is given in scientific
notation.

In[6]:= 2.4 ^ 45

Out[6]= 1.28678�1017

You can enter numbers in scientific
notation like this.

In[7]:= 2.3 10^70

Out[7]= 2.3�1070

Or like this. In[8]:= 2.3*^70

Out[8]= 2.3�1070



30 1. A Practical Introduction to Mathematica � 1.1 Numerical Calculations

1.1.2 Exact and Approximate Results

A standard electronic calculator does all your calculations to a particular accuracy, say ten decimal
digits. With Mathematica, however, you can often get exact results.

Mathematica gives an exact result for
����, even though it has 31 decimal
digits.

In[1]:= 2 ^ 100

Out[1]= 1267650600228229401496703205376

You can tell Mathematica to give you an approximate numerical result, just as a calculator would,
by ending your input with //N. The N stands for “numerical”. It must be a capital letter. Section 2.1.3
will explain what the // means.

This gives an approximate numerical
result.

In[2]:= 2 ^ 100 //N

Out[2]= 1.26765�1030

Mathematica can give results in terms of
rational numbers.

In[3]:= 1/3 + 2/7

Out[3]=
13
������������
21

//N always gives the approximate
numerical result.

In[4]:= 1/3 + 2/7 //N

Out[4]= 0.619048

expr //N give an approximate numerical value for expr

Getting numerical approximations.

When you type in an integer like 7, Mathematica assumes that it is exact. If you type in a number
like 4.5, with an explicit decimal point, Mathematica assumes that it is accurate only to a fixed number
of decimal places.

This is taken to be an exact rational
number, and reduced to its lowest
terms.

In[5]:= 452/62

Out[5]=
226
�����������������
31

Whenever you give a number with an
explicit decimal point, Mathematica
produces an approximate numerical
result.

In[6]:= 452.3/62

Out[6]= 7.29516

Here again, the presence of the decimal
point makes Mathematica give you an
approximate numerical result.

In[7]:= 452./62

Out[7]= 7.29032

When any number in an arithmetic
expression is given with an explicit
decimal point, you get an approximate
numerical result for the whole
expression.

In[8]:= 1. + 452/62

Out[8]= 8.29032



1.1.3 Some Mathematical Functions 31

1.1.3 Some Mathematical Functions

Mathematica includes a very large collection of mathematical functions. Section 3.2 gives the complete
list. Here are a few of the common ones.

Sqrt[x] square root (
 

x)

Exp[x] exponential (ex)

Log[x] natural logarithm (loge x)

Log[b, x] logarithm to base b (logb x)

Sin[x], Cos[x], Tan[x] trigonometric functions (with arguments in radians)

ArcSin[x], ArcCos[x], ArcTan[x] inverse trigonometric functions

n! factorial (product of integers �� �� � � � � n)

Abs[x] absolute value

Round[x] closest integer to x

Mod[n, m] n modulo m (remainder on division of n by m)

Random[ ] pseudorandom number between 0 and 1

Max[x, y, . . . ], Min[x, y, . . . ] maximum, minimum of x, y, � � �

FactorInteger[n] prime factors of n (see page 750)

Some common mathematical functions.

The arguments of all Mathematica functions are enclosed in square brackets.

The names of built-in Mathematica functions begin with capital letters.

Two important points about functions in Mathematica.

It is important to remember that all function arguments in Mathematica are enclosed in square brack-
ets, not parentheses. Parentheses in Mathematica are used only to indicate the grouping of terms, and
never to give function arguments.

This gives loge��	
�. Notice the capital
letter for Log, and the square brackets
for the argument.

In[1]:= Log[8.4]

Out[1]= 2.12823

Just as with arithmetic operations, Mathematica tries to give exact values for mathematical functions
when you give it exact input.



32 1. A Practical Introduction to Mathematica � 1.1 Numerical Calculations

This gives
 

�� as an exact integer. In[2]:= Sqrt[16]

Out[2]= 4

This gives an approximate numerical
result for

 

�.
In[3]:= Sqrt[2] //N

Out[3]= 1.41421

The presence of an explicit decimal
point tells Mathematica to give an
approximate numerical result.

In[4]:= Sqrt[2.]

Out[4]= 1.41421

Since you are not asking for an
approximate numerical result,
Mathematica leaves the number here in
an exact symbolic form.

In[5]:= Sqrt[2]

Out[5]=
����

2

Here is the exact integer result for
� ��� � 			 � �. Computing factorials like
this can give you very large numbers.
You should be able to calculate up to
at least 2000! in a short time.

In[6]:= 30!

Out[6]= 265252859812191058636308480000000

This gives the approximate numerical
value of the factorial.

In[7]:= 30! //N

Out[7]= 2.65253�1032

Pi Π � 	�
���

E e � �	����� (normally output as �)

Degree Π����: degrees-to-radians conversion factor (normally output
as �)

I i �
 

�� (normally output as �)

Infinity �

Some common mathematical constants.

Notice that the names of these built-in constants all begin with capital letters.

This gives the numerical value of Π�. In[8]:= Pi ^ 2 //N

Out[8]= 9.8696

This gives the exact result for sin�Π���.
Notice that the arguments to
trigonometric functions are always in
radians.

In[9]:= Sin[Pi/2]

Out[9]= 1



1.1.4 Arbitrary-Precision Calculations 33

This gives the numerical value of
sin�����. Multiplying by the constant
Degree converts the argument to
radians.

In[10]:= Sin[20 Degree] //N

Out[10]= 0.34202

Log[x] gives logarithms to base e. In[11]:= Log[E ^ 5]

Out[11]= 5

You can get logarithms in any base b
using Log[b, x]. As in standard
mathematical notation, the b is
optional.

In[12]:= Log[2, 256]

Out[12]= 8

1.1.4 Arbitrary-Precision Calculations

When you use //N to get a numerical result, Mathematica does what a standard calculator would do:
it gives you a result to a fixed number of significant figures. You can also tell Mathematica exactly how
many significant figures to keep in a particular calculation. This allows you to get numerical results
in Mathematica to any degree of precision.

expr//N or N[expr] approximate numerical value of expr

N[expr, n] numerical value of expr calculated with n-digit precision

Numerical evaluation functions.

This gives the numerical value of Π to
a fixed number of significant digits.
Typing N[Pi] is exactly equivalent to
Pi //N.

In[1]:= N[Pi]

Out[1]= 3.14159

This gives Π to 40 digits. In[2]:= N[Pi, 40]

Out[2]= 3.141592653589793238462643383279502884197

Here is
 

� to 30 digits. In[3]:= N[Sqrt[7], 30]

Out[3]= 2.64575131106459059050161575364

Doing any kind of numerical calculation can introduce small roundoff errors into your results.
When you increase the numerical precision, these errors typically become correspondingly smaller.
Making sure that you get the same answer when you increase numerical precision is often a good
way to check your results.

The quantity eΠ
 

�� turns out to be
very close to an integer. To check that
the result is not, in fact, an integer, you
have to use sufficient numerical
precision.

In[4]:= N[Exp[Pi Sqrt[163]], 40]

Out[4]= 2.625374126407687439999999999992500725972�1017



34 1. A Practical Introduction to Mathematica � 1.1 Numerical Calculations

1.1.5 Complex Numbers

You can enter complex numbers in Mathematica just by including the constant I, equal to
 

��. Make
sure that you type a capital I.

If you are using notebooks, you can also enter I as � by typing �ii� (see page 36). The form �
is normally what is used in output. Note that an ordinary i means a variable named i, not

 

��.

This gives the imaginary number
result �i.

In[1]:= Sqrt[-4]

Out[1]= 2 �

This gives the ratio of two complex
numbers.

In[2]:= (4 + 3 I) / (2 - I)

Out[2]= 1 � 2 �

Here is the numerical value of a
complex exponential.

In[3]:= Exp[2 + 9 I] //N

Out[3]= �6.73239 � 3.04517 �

x + I y the complex number x � i y

Re[z] real part

Im[z] imaginary part

Conjugate[z] complex conjugate z� or z

Abs[z] absolute value /z/

Arg[z] the argument � in /z/ei�

Complex number operations.

1.1.6 Getting Used to Mathematica

Arguments of functions are given in square brackets.

Names of built-in functions have their first letters capitalized.

Multiplication can be represented by a space.

Powers are denoted by ^.

Numbers in scientific notation are entered, for example, as 2.5*^-4 or 2.5 10^-4.

Important points to remember in Mathematica.

This section has given you a first glimpse of Mathematica. If you have used other computer systems
before, you will probably have noticed some similarities and some differences. Often you will find



1.1.7 Mathematical Notation in Notebooks 35

the differences the most difficult parts to remember. It may help you, however, to understand a little
about why Mathematica is set up the way it is, and why such differences exist.

One important feature of Mathematica that differs from other computer languages, and from con-
ventional mathematical notation, is that function arguments are enclosed in square brackets, not
parentheses. Parentheses in Mathematica are reserved specifically for indicating the grouping of terms.
There is obviously a conceptual distinction between giving arguments to a function and grouping
terms together; the fact that the same notation has often been used for both is largely a consequence
of typography and of early computer keyboards. In Mathematica, the concepts are distinguished by
different notation.

This distinction has several advantages. In parenthesis notation, it is not clear whether c�� � x�
means c[1 + x] or c*(1 + x). Using square brackets for function arguments removes this ambiguity.
It also allows multiplication to be indicated without an explicit * or other character. As a result,
Mathematica can handle expressions like 2x and a x or a (1 + x), treating them just as in standard
mathematical notation.

You will have seen in this section that built-in Mathematica functions often have quite long names.
You may wonder why, for example, the pseudorandom number function is called Random, rather than,
say, Rand. The answer, which pervades much of the design of Mathematica, is consistency. There is a
general convention in Mathematica that all function names are spelled out as full English words, unless
there is a standard mathematical abbreviation for them. The great advantage of this scheme is that it
is predictable. Once you know what a function does, you will usually be able to guess exactly what
its name is. If the names were abbreviated, you would always have to remember which shortening of
the standard English words was used.

Another feature of built-in Mathematica names is that they all start with capital letters. In later
sections, you will see how to define variables and functions of your own. The capital letter convention
makes it easy to distinguish built-in objects. If Mathematica used max instead of Max to represent the
operation of finding a maximum, then you would never be able to use max as the name of one of your
variables. In addition, when you read programs written in Mathematica, the capitalization of built-in
names makes them easier to pick out.

1.1.7 Mathematical Notation in Notebooks

If you use a text-based interface to Mathematica, then the input you give must consist only of characters
that you can type directly on your computer keyboard. But if you use a notebook interface then other
kinds of input become possible.

Usually there are palettes provided which operate like extensions of your keyboard, and which
have buttons that you can click to enter particular forms. You can typically access standard palettes
using the Palettes submenu of the File menu.



36 1. A Practical Introduction to Mathematica � 1.1 Numerical Calculations

Clicking the Π button in this palette
will enter a pi into your notebook. Π � � 	 °

� 
 � � 
� � � � �
� � � � �

Clicking the first button in this palette
will create an empty structure for
entering a power. You can use the
mouse to fill in the structure.

�� ������������ ������

You can also give input by using special keys on your keyboard. Pressing one of these keys does
not lead to an ordinary character being entered, but instead typically causes some action to occur or
some structure to be created.

�p� the symbol Π

�inf� the symbol �

�ee� the symbol � for the exponential constant (equivalent to E)

�ii� the symbol � for
 

�� (equivalent to I)

�deg� the symbol � (equivalent to Degree)

��^� or ��6� go to the superscript for a power

��/� go to the denominator for a fraction

��@� or ��2� go into a square root

���� (CONTROL-SPACE) return from a superscript, denominator or square root

A few ways to enter special notations on a standard English-language keyboard.

Here is a computation entered using
ordinary characters on a keyboard.

In[1]:= N[Pi^2/6]

Out[1]= 1.64493

Here is the same computation entered
using a palette or special keys.

In[2]:= N� Π2

�������
6
�

Out[2]= 1.64493

Here is an actual sequence of keys that
can be used to enter the input.

In[3]:= N[ �p� ��^� 2 ���� ��/� 6 ���� ]

Out[3]= 1.64493



1.1.7 Mathematical Notation in Notebooks 37

In a traditional computer language such as C, Fortran, Java or Perl, the input you give must always
consist of a string of ordinary characters that can be typed directly on a keyboard. But the Mathematica
language also allows you to give input that contains special characters, superscripts, built-up fractions,
and so on.

The language incorporates many features of traditional mathematical notation. But you should re-
alize that the goal of the language is to provide a precise and consistent way to specify computations.
And as a result, it does not follow all of the somewhat haphazard details of traditional mathematical
notation.

Nevertheless, as discussed on page 193, it is always possible to get Mathematica to produce output
that imitates every aspect of traditional mathematical notation. And as discussed on page 194, it is
also possible for Mathematica to import text that uses such notation, and to some extent to translate it
into its own more precise language.



38 1. A Practical Introduction to Mathematica � 1.2 Building Up Calculations

1.2 Building Up Calculations

1.2.1 Using Previous Results

In doing calculations, you will often need to use previous results that you have got. In Mathematica,
% always stands for your last result.

% the last result generated

%% the next-to-last result

%% . . . % (k times) the kth previous result

%n the result on output line Out[n] (to be used with care)

Ways to refer to your previous results.

Here is the first result. In[1]:= 77 ^ 2

Out[1]= 5929

This adds 1 to the last result. In[2]:= % + 1

Out[2]= 5930

This uses both the last result, and the
result before that.

In[3]:= 3 % + % ^ 2 + %%

Out[3]= 35188619

You will have noticed that all the input and output lines in Mathematica are numbered. You can
use these numbers to refer to previous results.

This adds the results on lines 2 and 3
above.

In[4]:= %2 + %3

Out[4]= 35194549

If you use a text-based interface to Mathematica, then successive input and output lines will always
appear in order, as they do in the dialogs in this book. However, if you use a notebook interface to
Mathematica, as discussed in Section 1.0.1, then successive input and output lines need not appear in
order. You can for example “scroll back” and insert your next calculation wherever you want in the
notebook. You should realize that % is always defined to be the last result that Mathematica generated.
This may or may not be the result that appears immediately above your present position in the
notebook. With a notebook interface, the only way to tell when a particular result was generated is to
look at the Out[n] label that it has. Because you can insert and delete anywhere in a notebook, the
textual ordering of results in a notebook need have no relation to the order in which the results were
generated.



1.2.2 Defining Variables 39

1.2.2 Defining Variables

When you do long calculations, it is often convenient to give names to your intermediate results. Just
as in standard mathematics, or in other computer languages, you can do this by introducing named
variables.

This sets the value of the variable x to
be 5.

In[1]:= x = 5

Out[1]= 5

Whenever x appears, Mathematica now
replaces it with the value 5.

In[2]:= x ^ 2

Out[2]= 25

This assigns a new value to x. In[3]:= x = 7 + 4

Out[3]= 11

pi is set to be the numerical value of Π
to 40-digit accuracy.

In[4]:= pi = N[Pi, 40]

Out[4]= 3.141592653589793238462643383279502884197

Here is the value you defined for pi. In[5]:= pi

Out[5]= 3.141592653589793238462643383279502884197

This gives the numerical value of Π�, to
the same accuracy as pi.

In[6]:= pi ^ 2

Out[6]= 9.86960440108935861883449099987615113531

x = value assign a value to the variable x

x = y = value assign a value to both x and y

x =. or Clear[x] remove any value assigned to x

Assigning values to variables.

It is very important to realize that values you assign to variables are permanent. Once you have
assigned a value to a particular variable, the value will be kept until you explicitly remove it. The
value will, of course, disappear if you start a whole new Mathematica session.

Forgetting about definitions you made earlier is the single most common cause of mistakes when
using Mathematica. If you set x = 5, Mathematica assumes that you always want x to have the value
5, until or unless you explicitly tell it otherwise. To avoid mistakes, you should remove values you
have defined as soon as you have finished using them.

Remove values you assign to variables as soon as you finish using them.

A useful principle in using Mathematica.



40 1. A Practical Introduction to Mathematica � 1.2 Building Up Calculations

The variables you define can have almost any names. There is no limit on the length of their
names. One constraint, however, is that variable names can never start with numbers. For example,
x2 could be a variable, but 2x means 2*x.

Mathematica uses both upper- and lower-case letters. There is a convention that built-in Mathematica
objects always have names starting with upper-case (capital) letters. To avoid confusion, you should
always choose names for your own variables that start with lower-case letters.

aaaaa a variable name containing only lower-case letters

Aaaaa a built-in object whose name begins with a capital letter

Naming conventions.

You can type formulas involving variables in Mathematica almost exactly as you would in mathe-
matics. There are a few important points to watch, however.

x y means x times y.

xy with no space is the variable with name xy.

5x means 5 times x.

x^2y means (x^2) y, not x^(2y).

Some points to watch when using variables in Mathematica.

1.2.3 Making Lists of Objects

In doing calculations, it is often convenient to collect together several objects, and treat them as a
single entity. Lists give you a way to make collections of objects in Mathematica. As you will see later,
lists are very important and general structures in Mathematica.

A list such as {3, 5, 1} is a collection of three objects. But in many ways, you can treat the whole
list as a single object. You can, for example, do arithmetic on the whole list at once, or assign the
whole list to be the value of a variable.

Here is a list of three numbers. In[1]:= {3, 5, 1}

Out[1]= �3, 5, 1�
This squares each number in the list,
and adds 1 to it.

In[2]:= {3, 5, 1}^2 + 1

Out[2]= �10, 26, 2�



1.2.4 Manipulating Elements of Lists 41

This takes differences between
corresponding elements in the two lists.
The lists must be the same length.

In[3]:= {6, 7, 8} - {3.5, 4, 2.5}

Out[3]= �2.5, 3, 5.5�
The value of % is the whole list. In[4]:= %

Out[4]= �2.5, 3, 5.5�
You can apply any of the mathematical
functions in Section 1.1.3 to whole lists.

In[5]:= Exp[ % ] // N

Out[5]= �12.1825, 20.0855, 244.692�
Just as you can set variables to be numbers, so also you can set them to be lists.

This assigns v to be a list. In[6]:= v = {2, 4, 3.1}

Out[6]= �2, 4, 3.1�
Wherever v appears, it is replaced by
the list.

In[7]:= v / (v - 1)

Out[7]= 	2,
4
�������
3

, 1.47619


1.2.4 Manipulating Elements of Lists

Many of the most powerful list manipulation operations in Mathematica treat whole lists as single
objects. Sometimes, however, you need to pick out or set individual elements in a list.

You can refer to an element of a Mathematica list by giving its “index”. The elements are numbered
in order, starting at 1.

{a, b, c} a list

Part[list, i] or list[[i]] the ith element of list (the first element is list[[1]])

Part[list, {i, j, . . . }] or list[[{i, j, . . . }]]
a list of the ith, jth, . . . elements of list

Operations on list elements.

This extracts the second element of the
list.

In[1]:= {5, 8, 6, 9}[[2]]

Out[1]= 8

This extracts a list of elements. In[2]:= {5, 8, 6, 9}[[ {3, 1, 3, 2, 4} ]]

Out[2]= �6, 5, 6, 8, 9�
This assigns the value of v to be a list. In[3]:= v = {2, 4, 7}

Out[3]= �2, 4, 7�



42 1. A Practical Introduction to Mathematica � 1.2 Building Up Calculations

You can extract elements of v. In[4]:= v[[ 2 ]]

Out[4]= 4

By assigning a variable to be a list, you can use Mathematica lists much like “arrays” in other
computer languages. Thus, for example, you can reset an element of a list by assigning a value to
v[[i]].

Part[v, i] or v[[i]] extract the ith element of a list

Part[v, i] = value or v[[i]] = value reset the ith element of a list

Array-like operations on lists.

Here is a list. In[5]:= v = {4, -1, 8, 7}

Out[5]= �4, �1, 8, 7�
This resets the third element of the list. In[6]:= v[[3]] = 0

Out[6]= 0

Now the list assigned to v has been
modified.

In[7]:= v

Out[7]= �4, �1, 0, 7�

1.2.5 The Four Kinds of Bracketing in Mathematica

Over the course of the last few sections, we have introduced each of the four kinds of bracketing
used in Mathematica. Each kind of bracketing has a very different meaning. It is important that you
remember all of them.

(term) parentheses for grouping

f[x] square brackets for functions

{a, b, c} curly braces for lists

v[[i]] double brackets for indexing (Part[v, i])

The four kinds of bracketing in Mathematica.

When the expressions you type in are complicated, it is often a good idea to put extra space
inside each set of brackets. This makes it somewhat easier for you to see matching pairs of brackets.
v[[ {a, b} ]] is, for example, easier to recognize than v[[{a, b}]].



1.2.6 Sequences of Operations 43

1.2.6 Sequences of Operations

In doing a calculation with Mathematica, you usually go through a sequence of steps. If you want to,
you can do each step on a separate line. Often, however, you will find it convenient to put several
steps on the same line. You can do this simply by separating the pieces of input you want to give
with semicolons.

expr�; expr�; expr do several operations, and give the result of the last one

expr�; expr�; do the operations, but print no output

Ways to do sequences of operations in Mathematica.

This does three operations on the same
line. The result is the result from the
last operation.

In[1]:= x = 4; y = 6; z = y + 6

Out[1]= 12

If you end your input with a semicolon, it is as if you are giving a sequence of operations, with
an “empty” one at the end. This has the effect of making Mathematica perform the operations you
specify, but display no output.

expr ; do an operation, but display no output

Inhibiting output.

Putting a semicolon at the end of the
line tells Mathematica to show no
output.

In[2]:= x = 67 - 5 ;

You can still use % to get the output
that would have been shown.

In[3]:= %

Out[3]= 62



44 1. A Practical Introduction to Mathematica � 1.3 Using the Mathematica System

1.3 Using the Mathematica System

1.3.1 The Structure of Mathematica

Mathematica kernel the part that actually performs computations

Mathematica front end the part that handles interaction with the user

The basic parts of the Mathematica system.

Mathematica is a modular software system in which the kernel which actually performs computations
is separate from the front end which handles interaction with the user.

The most common type of front end for Mathematica is based on interactive documents known
as notebooks. Notebooks mix Mathematica input and output with text, graphics, palettes and other
material. You can use notebooks either for doing ongoing computations, or as means of presenting or
publishing your results.

Notebook interface interactive documents

Text-based interface text from the keyboard

MathLink interface communication with other programs

Common kinds of interfaces to Mathematica.

The notebook front end includes many menus and graphical tools for creating and reading notebook
documents and for sending and receiving material from the Mathematica kernel.



1.3.1 The Structure of Mathematica 45

A notebook mixing text, graphics and
Mathematica input and output. � Examples of Integrals

Here is an example of a very simple algebraic integral:

In[1]:= � 1
��������������
x3 � 1

��x

Out[1]= �
ArcTan� 1�2 x��������������������

3
�

����������������������������������������������������������
3

�
Log�1 � x�
��������������������������������������������

3
�

Log1 � x � x2�
�������������������������������������������������������

6

And here is a plot of the resulting function:

In[2]:= Plot�%, �x, 1, 2��

1.2 1.4 1.6 1.8 2

-3.5

-3

-2.5

-2

-1.5

-1

Out[2]= ��Graphics��

In some cases, you may not need to use the notebook front end, and you may want instead to
interact more directly with the Mathematica kernel. You can do this by using a text-based interface, in
which text you type on the keyboard goes straight to the kernel.

A dialog with Mathematica using a
text-based interface.

In[1]:= 2^100

Out[1]= 1267650600228229401496703205376

In[2]:= Integrate[1/(x^3 - 1), x]

1 + 2 x
ArcTan[-------] 2

Sqrt[3] Log[-1 + x] Log[1 + x + x ]
Out[2]= -(---------------) + ----------- - ---------------

Sqrt[3] 3 6

An important aspect of Mathematica is that it can interact not only with human users but also with
other programs. This is achieved primarily through MathLink, which is a standardized protocol for
two-way communication between external programs and the Mathematica kernel.



46 1. A Practical Introduction to Mathematica � 1.3 Using the Mathematica System

A fragment of C code that
communicates via MathLink with the
Mathematica kernel.

MLPutFunction(stdlink, "EvaluatePacket", 1);

MLPutFunction(stdlink, "Gamma", 2);
MLPutReal(stdlink, 2);
MLPutInteger(stdlink, n);

MLEndPacket(stdlink);
MLCheckFunction(stdlink, "ReturnPacket", &n);

MLGetReal(stdlink, &result);

Among the many MathLink-compatible programs that are now available, some are set up to serve as
complete front ends to Mathematica. Often such front ends provide their own special user interfaces,
and treat the Mathematica kernel purely as an embedded computational engine. If you are using
Mathematica in this way, then only some parts of the discussion in the remainder of this section will
probably be relevant.

1.3.2 Differences between Computer Systems

There are many detailed differences between different kinds of computer systems. But one of the
important features of Mathematica is that it allows you to work and create material without being
concerned about such differences.

In order to fit in as well as possible with particular computer systems, the user interface for
Mathematica on different systems is inevitably at least slightly different. But the crucial point is that
beyond superficial differences, Mathematica is set up to work in exactly the same way on every kind
of computer system.

The language used by the Mathematica kernel

The structure of Mathematica notebooks

The MathLink communication protocol

Elements of Mathematica that are exactly the same on all computer systems.

The commands that you give to the Mathematica kernel, for example, are absolutely identical on
every computer system. This means that when you write a program using these commands, you can
immediately take the program and run it on any computer that supports Mathematica.



1.3.2 Differences between Computer Systems 47

The structure of Mathematica notebooks is also the same on all computer systems. And as a result,
if you create a notebook on one computer system, you can immediately take it and use it on any other
system.

The visual appearance of windows, fonts, etc.

Mechanisms for importing and exporting material from notebooks

Keyboard shortcuts for menu commands

Elements that can differ from one computer system to another.

Although the underlying structure of Mathematica notebooks is always the same, there are often
superficial differences in the way notebooks look on different computer systems, and in some of the
mechanisms provided for interacting with them.

The goal in each case is to make notebooks work in a way that is as familiar as possible to people
who are used to a particular type of computer system.

And in addition, by adapting the details of notebooks to each specific computer system, it becomes
easier to exchange material between notebooks and other programs running on that computer system.

The same Mathematica notebook on
three different computer systems. The
underlying structure is exactly the
same, but some details of the
presentation are different.

One consequence of the modular nature of the Mathematica system is that its parts can be run on
different computers. Thus, for example, it is not uncommon to run the front end for Mathematica on
one computer, while running the kernel on a quite separate computer.

Communications between the kernel and the front end are handled by MathLink, using whatever
networking mechanisms are available.



48 1. A Practical Introduction to Mathematica � 1.3 Using the Mathematica System

1.3.3 Special Topic: Using a Text-Based Interface

With a text-based interface, you interact with Mathematica just by typing successive lines of input, and
getting back successive lines of output on your screen.

At each stage, Mathematica prints a prompt of the form In[n]:= to tell you that it is ready to receive
input. When you have entered your input, Mathematica processes it, and then displays the result with
a label of the form Out[n]=.

If your input is short, then you can give it on a single line, ending the line by pressing ENTER

or RETURN. If your input is longer, you can give it on several lines. Mathematica will automatically
continue reading successive lines until it has received a complete expression. Thus, for example, if
you type an opening parenthesis on one line, Mathematica will go on reading successive lines of input
until it sees the corresponding closing parenthesis. Note that if you enter a completely blank line,
Mathematica will throw away the lines you have typed so far, and issue a new input prompt.

%n or Out[n] the value of the nth output

InString[n] the text of the nth input

In[n] the nth input, for re-evaluation

Retrieving and re-evaluating previous input and output.

With a text-based interface, each line of Mathematica input and output appears sequentially. Of-
ten your computer system will allow you to scroll backwards to review previous work, and to
cut-and-paste previous lines of input.

But whatever kind of computer system you have, you can always use Mathematica to retrieve or
re-evaluate previous input and output. In general, re-evaluating a particular piece of input or output
may give you a different result than when you evaluated it in the first place. The reason is that in
between you may have reset the values of variables that are used in that piece of input or output. If
you ask for Out[n], then Mathematica will give you the final form of your nth output. On the other
hand, if you ask for In[n], then Mathematica will take the nth input you gave, and re-evaluate it using
whatever current assignments you have given for variables.



1.3.4 Doing Computations in Notebooks 49

1.3.4 Doing Computations in Notebooks

A typical Mathematica notebook
containing text, graphics and
Mathematica expressions. The brackets
on the right indicate the extent of each
cell.

Here is a factorial:

In[1]:= 100�

Out[1]= 933262154439441526816992388562667004907159682643816214685929638952�
17599993229915608941463976156518286253697920827223758251185210916�
864000000000000000000000000

In[2]:= N�%�
Out[2]= 9.33262�10157

This is a plot of the related  � function:

In[3]:= Plot�Gamma�x�, �x, �5, 5��

-4 -2 2 4

-10

-5

5

10

Out[3]= ��Graphics��

Mathematica notebooks are structured interactive documents that are organized into a sequence of
cells. Each cell contains material of a definite type—usually text, graphics, sounds or Mathematica
expressions. When a notebook is displayed on the screen, the extent of each cell is indicated by a
bracket on the right.

The notebook front end for Mathematica provides many ways to enter and edit the material in a
notebook. Some of these ways will be standard to whatever computer system or graphical interface
you are using. Others are specific to Mathematica.

SHIFT-ENTER or SHIFT-RETURN send a cell of input to the Mathematica kernel

Doing a computation in a Mathematica notebook.

Once you have prepared the material in a cell, you can send it as input to the Mathematica kernel
simply by pressing SHIFT-ENTER or SHIFT-RETURN. The kernel will send back whatever output is gen-
erated, and the front end will create new cells in your notebook to display this output. Note that if
you have a numeric keypad on your keyboard, then you can use its ENTER key as an alternative to
SHIFT-ENTER.



50 1. A Practical Introduction to Mathematica � 1.3 Using the Mathematica System

Here is a cell ready to be sent as input
to the Mathematica kernel. 3^100

The output from the computation is
inserted in a new cell. In[1]:= 3^100

Out[1]= 515377520732011331036461129765621272702107522001

Most kinds of output that you get in Mathematica notebooks can readily be edited, just like input.
Usually Mathematica will make a copy of the output when you first start editing it, so you can keep
track of the original output and its edited form.

Once you have done the editing you want, you can typically just press SHIFT-ENTER to send what
you have created as input to the Mathematica kernel.

Here is a typical computation in a
Mathematica notebook. In[1]:= Integrate�Sqrt�x � 1��Sqrt�x � 1�, x�

Out[1]=
�������������1 � x

���������
1 � x � 2 ArcSinh� �������������1 � x

����������������������������������������
2

�

Mathematica will automatically make a
copy if you start editing the output. In[1]:= Integrate�Sqrt�x � 1��Sqrt�x � 1�, x�

Out[1]=
�������������1 � x

���������
1 � x � 2 ArcSinh� �������������1 � x

����������������������������������������
2

�

	










�1 � x
	










1 � x � D�2 ArcSinh� 	










�1 � x
����������������������	




2
�, x� �� Simplify

After you have edited the output, you
can send it back as further input to the
Mathematica kernel.

In[1]:= Integrate�Sqrt�x � 1��Sqrt�x � 1�, x�
Out[1]=

�������������1 � x
���������

1 � x � 2 ArcSinh� �������������1 � x
����������������������������������������

2
�

In[2]:=
	










�1 � x

	









1 � x � D�2 ArcSinh� 	










�1 � x

����������������������	



2

�, x� �� Simplify

Out[2]=
x2

�������������������������������������������������������������������������������1 � x
���������

1 � x

When you do computations in a Mathematica notebook, each line of input is typically labeled with
In[n]:=, while each line of output is labeled with the corresponding Out[n]=.

There is no reason, however, that successive lines of input and output should necessarily appear
one after the other in your notebook. Often, for example, you will want to go back to an earlier part
of your notebook, and re-evaluate some input you gave before.

It is important to realize that wherever a particular expression appears in your notebook, it is
the line number given in In[n]:= or Out[n]= which determines when the expression was processed
by the Mathematica kernel. Thus, for example, the fact that one expression may appear earlier than



1.3.5 Notebooks as Documents 51

another in your notebook does not mean that it will have been evaluated first by the kernel. This will
only be the case if it has a lower line number.

Each line of input and output is given
a label when it is evaluated by the
kernel. It is these labels, not the
position of the expression in the
notebook, that indicate the ordering of
evaluation by the kernel.

Results:

In[2]:= s^2 � 2

Out[2]= 146

In[4]:= s^2 � 2

Out[4]= 10002

Settings for s:

In[1]:= s � 12

Out[1]= 12

In[3]:= s � 100

Out[3]= 100

If you make a mistake and try to enter input that the Mathematica kernel does not understand, then
the front end will produce a beep. In general, you will get a beep whenever something goes wrong in
the front end. You can find out the origin of the beep using the Why the Beep? item in the Help menu.

Animate graphics double-click the first cell in the sequence of frames

Resize a graphic click the graphic and move the handles that appear

Find coordinates in a graphic move around in the graphic holding down the COMMAND or
CONTROL key (or equivalent)

Play a sound double-click the cell that contains it

Operations on graphics and sounds.

1.3.5 Notebooks as Documents

Mathematica notebooks allow you to create documents that can be viewed interactively on screen or
printed on paper.

Particularly in larger notebooks, it is common to have chapters, sections and so on, each represented
by groups of cells. The extent of these groups is indicated by a bracket on the right.



52 1. A Practical Introduction to Mathematica � 1.3 Using the Mathematica System

The grouping of cells in a notebook is
indicated by nested brackets on the
right.

� Section heading

� Subsection heading

Text within a subsection.

More text.

� Another subsection

Text within the second subsection.

A group of cells can be either open or closed. When it is open, you can see all the cells in it explicitly.
But when it is closed, you see only the first or heading cell in the group.

Large notebooks are often distributed with many closed groups of cells, so that when you first look
at the notebook, you see just an outline of its contents. You can then open parts you are interested in
by double-clicking the appropriate brackets.

Double-clicking the bracket that spans
a group of cells closes the group,
leaving only the first cell visible. � Section heading

� Subsection heading

� Another subsection

When a group is closed, the bracket for
it has an arrow at the bottom.
Double-clicking this arrow opens the
group again.

� Section heading

� Subsection heading

Text within a subsection.

More text.

� Another subsection

Each cell within a notebook is assigned a particular style which indicates its role within the note-
book. Thus, for example, material intended as input to be executed by the Mathematica kernel is
typically in Input style, while text that is intended purely to be read is typically in Text style.

The Mathematica front end provides menus and keyboard shortcuts for creating cells with different
styles, and for changing styles of existing cells.



1.3.5 Notebooks as Documents 53

This shows cells in various styles. The
styles define not only the format of the
cell contents, but also their placement
and spacing.

� This cell is in Section style.

� This cell is in Subsection style.

� This cell is in Subsubsection style.

This cell is in Text style.

This cell is in SmallText style.

This cell is in Input style.

By putting a cell in a particular style, you specify a whole collection of properties for the cell,
including for example how large and in what font text should be given.

The Mathematica front end allows you to modify such properties, either for complete cells, or for
specific material within cells.

Even within a cell of a particular style,
the Mathematica front end allows a
wide range of properties to be
modified separately.

Within a text cell, there can be large fonts, bold fonts, and  funny fonts. 

A cell can have properties such as a frame or background.

It is worth realizing that in doing different kinds of things with Mathematica notebooks, you are
using different parts of the Mathematica system. Operations such as opening and closing groups of
cells, doing animations and playing sounds use only a small part of the Mathematica front end, and
these operations are supported by a widely available program known as MathReader.

To be able to create and edit notebooks, you need more of the Mathematica front end. And finally,
to be able to actually do computations within a Mathematica notebook, you need a full Mathematica
system, with both the front end and the kernel.

MathReader reading Mathematica notebooks

Mathematica front end creating and editing Mathematica notebooks

Mathematica kernel doing computations in notebooks

Programs required for different kinds of operations with notebooks.



54 1. A Practical Introduction to Mathematica � 1.3 Using the Mathematica System

1.3.6 Active Elements in Notebooks

One of the most powerful features of Mathematica notebooks is that their actions can be programmed.
Thus, for example, you can set up a button in a Mathematica notebook which causes various operations
to be performed whenever you click it.

Here is a notebook that contains a
button. Click the button to get the current date: Date�

Clicking the button in this case causes
the current date to be displayed. Click the button to get the current date: Date�

�1995, 9, 5, 10, 40, 53�

Later in this book, we will discuss how you can set up buttons and other similar objects in Mathe-
matica notebooks. But here suffice it to say that whenever a cell is indicated as active, typically by
the presence of a stylized “A” in its cell bracket, clicking on active elements within the cell will cause
actions that have been programmed for these elements to be performed.

It is common to set up palettes which consist of arrays of buttons. Sometimes such palettes appear
as cells within a notebook. But more often, a special kind of separate notebook window is used,
which can conveniently be placed on the side of your computer screen and used in conjunction with
any other notebook.

Palettes consisting of arrays of buttons
are often placed in separate notebooks. Π � � 	 °

� 
 � � 
� � � � �

� � � � �

In the simplest cases, the buttons in palettes serve essentially like additional keys on your keyboard.
Thus, when you press a button, the character or object shown in that button is inserted into your
notebook just as if you had typed it.

Here is a palette of Greek letters with
buttons that act like additional keys on
your keyboard.

Α Β Γ ∆ Ε

Ζ Η Θ Κ Λ

Μ Ν Ξ Π Ρ

Σ Τ Φ + Χ

Ψ Ω / 0 1

2 3 4 5 6



1.3.6 Active Elements in Notebooks 55

Often, however, a button may contain a placeholder indicated by �. This signifies that when you
press the button, whatever is currently selected in your notebook will be inserted at the position of
the placeholder.

The buttons here contain placeholders
indicated by �.

����� �2

�1�4 �4

Here is a notebook with an expression
selected. 1 � 1 � �1 � �1 � x2�2�2�2

Pressing the top left button in the
palette wraps the selected expression
with a square root.

1 �
�
�
�������1 �������������������������������1 � �1 � x2�2�2 �

�
�������

2

Sometimes buttons that contain placeholders will be programmed simply to insert a certain expres-
sion in your notebook. But more often, they will be programmed to evaluate the result, sending it as
input to the Mathematica kernel.

These buttons are set up to perform
algebraic operations. Simplify�� FullSimplify��

Expand�� Factor��
Apart�� Together��

Here is a notebook with an expression
selected. 2 � 2 Cos�2 x�

����������������������������������
4

�
1
�������
32

�12 � 16 Cos�2 x� � 4 Cos�4 x��

Pressing the top left button in the
palette causes the selected expression
to be simplified.

2 � 2 Cos�2 x�
����������������������������������

4
� Sin�x�4

There are some situations in which it is convenient to have several placeholders in a single button.
Your current selection is typically inserted at the position of the primary placeholder, indicated by
�. Additional placeholders may however be indicated by �, and you can move to the positions of
successive placeholders using TAB.

Here is a palette containing buttons
with several placeholders. � ��7� 8� �

�����7� 8�,� �



56 1. A Practical Introduction to Mathematica � 1.3 Using the Mathematica System

Here is an expression in a notebook.
Sin�x�
������������������

1 � x

Pressing the top left button in the
palette inserts the expression in place
of the �.

� Sin�x�
������������������

1 � x
��	

You can move to the other
placeholders using TAB, and then edit
them to insert whatever you want.

� Sin�x�
������������������

1 � x
��x

1.3.7 Special Topic: Hyperlinks and Active Text

The Mathematica front end provides a variety of ways to search for particular words or text in Mathe-
matica notebooks. But particularly when large documents or collections of documents are involved, it
is often convenient to insert hyperlinks which immediately take you to a specific point in a notebook,
just as is often done on websites.

Hyperlinks are usually indicated by
words or phrases that are underlined,
and are often in a different color.
Clicking on a hyperlink immediately
takes you to wherever the hyperlink
points.

Here is some text.  The text can contain a link, which points elsewhere.

Hyperlinks in notebooks work very much like the buttons discussed in the previous section. And
once again, all aspects of hyperlinks are programmable.

Indeed, it is possible to set up active text in notebooks that performs almost any kind of action.



1.3.8 Getting Help in the Notebook Front End 57

- 1.3.8 Getting Help in the Notebook Front End

In most versions of the Mathematica notebook front end, the Help menu gives you access to the Help
Browser, which serves as an entry point into a large amount of online documentation for Mathematica.

Getting Started a quick start to using Mathematica

Built-in Functions information on all built-in functions

The Mathematica Book the complete book online

Master Index index of all online documentation material

Typical types of help available with the notebook front end.

An example of looking up basic
information about a function in the
Help Browser.

If you type the name of a function into a notebook, most versions of the front end allow you im-
mediately to find information about the function by pressing an appropriate key (F1 under Windows).

When you first start Mathematica, you will typically be presented with a basic tutorial. You can visit
the tutorial again with the Tutorial menu item in the Help menu.



58 1. A Practical Introduction to Mathematica � 1.3 Using the Mathematica System

1.3.9 Getting Help with a Text-Based Interface

?Name show information on Name

??Name show extra information on Name

?Aaaa* show information on all objects whose names begin with
Aaaa

Ways to get information directly from the Mathematica kernel.

This gives information on the built-in
function Log.

In[1]:= ?Log

Log[z] gives the natural logarithm of z (logarithm to base
e). Log[b, z] gives the logarithm to base b.

You can ask for information about any object, whether it is built into Mathematica, has been read in
from a Mathematica package, or has been introduced by you.

When you use ? to get information, you must make sure that the question mark appears as the first
character in your input line. You need to do this so that Mathematica can tell when you are requesting
information rather than giving ordinary input for evaluation.

You can get extra information by using
??. Attributes will be discussed in
Section 2.6.3.

In[2]:= ??Log

Log[z] gives the natural logarithm of z (logarithm to base
e). Log[b, z] gives the logarithm to base b.

Attributes[Log] = {Listable, NumericFunction, Protected}

This gives information on all
Mathematica objects whose names begin
with Lo. When there is more than one
object, Mathematica just lists their
names.

In[3]:= ?Lo*

Locked LogGamma LogIntegral Loopback
Log LogicalExpand LongForm LowerCaseQ

?Aaaa will give you information on the particular object whose name you specify. Using the
“metacharacter” *, however, you can get information on collections of objects with similar names. The
rule is that * is a “wild card” that can stand for any sequence of ordinary characters. So, for example,
?Lo* gets information on all objects whose names consist of the letters Lo, followed by any sequence
of characters.

You can put * anywhere in the string you ask ? about. For example, ?*Expand would give you
all objects whose names end with Expand. Similarly, ?x*0 would give you objects whose names start
with x, end with 0, and have any sequence of characters in between. (You may notice that the way
you use * to specify names in Mathematica is similar to the way you use * in Unix and other operating
systems to specify file names.)

You can ask for information on most of
the special input forms that
Mathematica uses. This asks for
information about the := operator.

In[4]:= ?:=

lhs := rhs assigns rhs to be the delayed value of lhs. rhs
is maintained in an unevaluated form. When lhs appears,
it is replaced by rhs, evaluated afresh each time.



1.3.10 Mathematica Packages 59

1.3.10 Mathematica Packages

One of the most important features of Mathematica is that it is an extensible system. There is a
certain amount of mathematical and other functionality that is built into Mathematica. But by using
the Mathematica language, it is always possible to add more functionality.

For many kinds of calculations, what is built into the standard version of Mathematica will be quite
sufficient. However, if you work in a particular specialized area, you may find that you often need to
use certain functions that are not built into Mathematica.

In such cases, you may well be able to find a Mathematica package that contains the functions you
need. Mathematica packages are files written in the Mathematica language. They consist of collections
of Mathematica definitions which “teach” Mathematica about particular application areas.

<<package read in a Mathematica package

Reading in Mathematica packages.

If you want to use functions from a particular package, you must first read the package into Mathe-
matica. The details of how to do this are discussed in Section 1.11. There are various conventions that
govern the names you should use to refer to packages.

This command reads in a particular
Mathematica package.

In[1]:= << DiscreteMath`CombinatorialFunctions`

The Subfactorial function is defined
in the package.

In[2]:= Subfactorial[10]

Out[2]= 1334961

There are a number of subtleties associated with such issues as conflicts between names of functions
in different packages. These are discussed in Section 2.7.9. One point to note, however, is that you
must not refer to a function that you will read from a package before actually reading in the package.
If you do this by mistake, you will have to execute the command Remove["name"] to get rid of the
function before you read in the package which defines it. If you do not call Remove, Mathematica will
use “your” version of the function, rather than the one from the package.

Remove["name"] remove a function that has been introduced in error

Making sure that Mathematica uses correct definitions from packages.

The fact that Mathematica can be extended using packages means that the boundary of exactly what
is “part of Mathematica” is quite blurred. As far as usage is concerned, there is actually no difference
between functions defined in packages and functions that are fundamentally built into Mathematica.



60 1. A Practical Introduction to Mathematica � 1.3 Using the Mathematica System

In fact, a fair number of the functions described in this book are actually implemented as Mathe-
matica packages. However, on most Mathematica systems, the necessary packages have been preloaded,
so that the functions they define are always present.

To blur the boundary of what is part of Mathematica even further, Section 2.7.11 describes how
you can tell Mathematica automatically to load a particular package if you ever try to use a certain
function. If you never use that function, then it will not be present. But as soon as you try to use it,
its definition will be read in from a Mathematica package.

As a practical matter, the functions that should be considered “part of Mathematica” are probably
those that are present in all Mathematica systems. It is these functions that are primarily discussed in
this book.

Nevertheless, most versions of Mathematica come with a standard set of Mathematica packages,
which contain definitions for many more functions. Some of these functions are mentioned in this
book. But to get them, you must usually read in the necessary packages explicitly.

You can use the Help Browser to get
information on standard Mathematica
add-on packages.

It is possible to set your Mathematica system up so that particular packages are pre-loaded, or are
automatically loaded when needed. If you do this, then there may be many functions that appear as
standard in your version of Mathematica, but which are not documented in this book.

One point that should be mentioned is the relationship between packages and notebooks. Both are
stored as files on your computer system, and both can be read into Mathematica. However, a notebook



1.3.11 Warnings and Messages 61

is intended to be displayed, typically with a notebook interface, while a package is intended only
to be used as Mathematica input. Many notebooks in fact contain sections that can be considered as
packages, and which contain sequences of definitions intended for input to Mathematica. There are
also capabilities that allow packages set up to correspond to notebooks to be maintained automatically.

1.3.11 Warnings and Messages

Mathematica usually goes about its work silently, giving output only when it has finished doing the
calculations you asked for.

However, if it looks as if Mathematica is doing something you definitely did not intend, Mathematica
will usually print a message to warn you.

The square root function should have
only one argument. Mathematica prints
a message to warn you that you have
given two arguments here.

In[1]:= Sqrt[4, 5]

Sqrt::argx:
Sqrt called with 2 arguments; 1 argument is expected.

Out[1]= Sqrt4, 5�
Each message has a name. You can
switch off messages using Off.

In[2]:= Off[Sqrt::argx]

The message Sqrt::argx has now
been switched off, and will no longer
appear.

In[3]:= Sqrt[4, 5]

Out[3]= Sqrt4, 5�
This switches Sqrt::argx back on
again.

In[4]:= On[Sqrt::argx]

Off[Function::tag] switch off (suppress) a message

On[Function::tag] switch on a message

Functions for controlling message output.



62 1. A Practical Introduction to Mathematica � 1.3 Using the Mathematica System

1.3.12 Interrupting Calculations

There will probably be times when you want to stop Mathematica in the middle of a calculation.
Perhaps you realize that you asked Mathematica to do the wrong thing. Or perhaps the calculation is
just taking a long time, and you want to find out what is going on.

The way that you interrupt a Mathematica calculation depends on what kind of interface you are
using.

ALT-COMMA or COMMAND-COMMA notebook interfaces

CONTROL-C text-based interfaces

Typical keys to interrupt calculations in Mathematica.

On some computer systems, it may take Mathematica some time to respond to your interrupt. When
Mathematica does respond, it will typically give you a menu of possible things to do.

continue continue the calculation

show show what Mathematica is doing

inspect inspect the current state of your calculation

abort abort this particular calculation

exit exit Mathematica completely

Some typical options available when you interrupt a calculation in Mathematica.



1.4.1 Symbolic Computation 63

1.4 Algebraic Calculations

1.4.1 Symbolic Computation

One of the important features of Mathematica is that it can do symbolic, as well as numerical calculations.
This means that it can handle algebraic formulas as well as numbers.

Here is a typical numerical
computation.

In[1]:= 3 + 62 - 1

Out[1]= 64

This is a symbolic computation. In[2]:= 3x - x + 2

Out[2]= 2 � 2 x

Numerical computation 3 + 62 - 1  64

Symbolic computation 3x - x + 2  2 + 2 x

Numerical and symbolic computations.

You can type any algebraic expression
into Mathematica.

In[3]:= -1 + 2x + x^3

Out[3]= �1 � 2 x � x3

Mathematica automatically carries out
basic algebraic simplifications. Here it
combines x� and �
x� to get �x�.

In[4]:= x^2 + x - 4 x^2

Out[4]= x � 3 x2

You can type in any algebraic expression, using the operators listed on page 29. You can use spaces
to denote multiplication. Be careful not to forget the space in x y. If you type in xy with no space,
Mathematica will interpret this as a single symbol, with the name xy, not as a product of the two
symbols x and y.

Mathematica rearranges and combines
terms using the standard rules of
algebra.

In[5]:= x y + 2 x^2 y + y^2 x^2 - 2 y x

Out[5]= �x y � 2 x2 y � x2 y2

Here is another algebraic expression. In[6]:= (x + 2y + 1)(x - 2)^2

Out[6]= ��2 � x�2 �1 � x � 2 y�
The function Expand multiplies out
products and powers.

In[7]:= Expand[%]

Out[7]= 4 � 3 x2 � x3 � 8 y � 8 x y � 2 x2 y

Factor does essentially the inverse of
Expand.

In[8]:= Factor[%]

Out[8]= ��2 � x�2 �1 � x � 2 y�



64 1. A Practical Introduction to Mathematica � 1.4 Algebraic Calculations

When you type in more complicated expressions, it is important that you put parentheses in the
right places. Thus, for example, you have to give the expression x
y in the form x^(4y). If you leave
out the parentheses, you get x
y instead. It never hurts to put in too many parentheses, but to find
out exactly when you need to use parentheses, look at Section A.2.

Here is a more complicated formula,
requiring several parentheses.

In[9]:= Sqrt[2]/9801 (4n)! (1103 + 26390 n) / (n!^4 396^(4n))

Out[9]=
2

1����2 �8 n 99�2�4 n �1103 � 26390 n� �4 n�9
���������������������������������������������������������������������������������������������������������������������������������������������������������n9�4

When you type in an expression, Mathematica automatically applies its large repertoire of rules for
transforming expressions. These rules include the standard rules of algebra, such as x�x � �, together
with much more sophisticated rules involving higher mathematical functions.

Mathematica uses standard rules of
algebra to replace �

 

� � x�
 by �� � x��.
In[10]:= Sqrt[1 + x]^4

Out[10]= �1 � x�2

Mathematica knows no rules for this
expression, so it leaves the expression
in the original form you gave.

In[11]:= Log[1 + Cos[x]]

Out[11]= Log1 � Cosx��
The notion of transformation rules is a very general one. In fact, you can think of the whole of

Mathematica as simply a system for applying a collection of transformation rules to many different
kinds of expressions.

The general principle that Mathematica follows is simple to state. It takes any expression you input,
and gets results by applying a succession of transformation rules, stopping when it knows no more
transformation rules that can be applied.

Take any expression, and apply transformation rules until the result no longer changes.

The fundamental principle of Mathematica.

1.4.2 Values for Symbols

When Mathematica transforms an expression such as x + x into 2x, it is treating the variable x in a
purely symbolic or formal fashion. In such cases, x is a symbol which can stand for any expression.

Often, however, you need to replace a symbol like x with a definite “value”. Sometimes this value
will be a number; often it will be another expression.

To take an expression such as 1 + 2x and replace the symbol x that appears in it with a definite
value, you can create a Mathematica transformation rule, and then apply this rule to the expression.
To replace x with the value 3, you would create the transformation rule x -> 3. You must type -> as
a pair of characters, with no space in between. You can think of x -> 3 as being a rule in which “x
goes to 3”.



1.4.2 Values for Symbols 65

To apply a transformation rule to a particular Mathematica expression, you type expr /. rule. The
“replacement operator” /. is typed as a pair of characters, with no space in between.

This uses the transformation rule x->3
in the expression 1 + 2x.

In[1]:= 1 + 2x /. x -> 3

Out[1]= 7

You can replace x with any expression.
Here every occurrence of x is replaced
by 2 - y.

In[2]:= 1 + x + x^2 /. x -> 2 - y

Out[2]= 3 � �2 � y�2 � y

Here is a transformation rule.
Mathematica treats it like any other
symbolic expression.

In[3]:= x -> 3 + y

Out[3]= x � 3 � y

This applies the transformation rule on
the previous line to the expression
x^2 - 9.

In[4]:= x^2 - 9 /. %

Out[4]= �9 � �3 � y�2

expr /. x -> value replace x by value in the expression expr

expr /. {x -> xval, y -> yval} perform several replacements

Replacing symbols by values in expressions.

You can apply rules together by
putting the rules in a list.

In[5]:= (x + y) (x - y)^2 /. {x -> 3, y -> 1 - a}

Out[5]= �4 � a� �2 � a�2

The replacement operator /. allows you to apply transformation rules to a particular expression.
Sometimes, however, you will want to define transformation rules that should always be applied. For
example, you might want to replace x with 3 whenever x occurs.

As discussed in Section 1.2.2, you can do this by assigning the value 3 to x using x = 3. Once you
have made the assignment x = 3, x will always be replaced by 3, whenever it appears.

This assigns the value 3 to x. In[6]:= x = 3

Out[6]= 3

Now x will automatically be replaced
by 3 wherever it appears.

In[7]:= x^2 - 1

Out[7]= 8

This assigns the expression 1 + a to be
the value of x.

In[8]:= x = 1 + a

Out[8]= 1 � a

Now x is replaced by 1 + a. In[9]:= x^2 - 1

Out[9]= �1 � �1 � a�2

You can define the value of a symbol to be any expression, not just a number. You should realize
that once you have given such a definition, the definition will continue to be used whenever the



66 1. A Practical Introduction to Mathematica � 1.4 Algebraic Calculations

symbol appears, until you explicitly change or remove the definition. For most people, forgetting to
remove values you have assigned to symbols is the single most common source of mistakes in using
Mathematica.

x = value define a value for x which will always be used

x =. remove any value defined for x

Assigning values to symbols.

The symbol x still has the value you
assigned to it above.

In[10]:= x + 5 - 2x

Out[10]= 6 � a � 2 �1 � a�
This removes the value you assigned
to x.

In[11]:= x =.

Now x has no value defined, so it can
be used as a purely symbolic variable.

In[12]:= x + 5 - 2x

Out[12]= 5 � x

A symbol such as x can serve many different purposes in Mathematica, and in fact, much of the
flexibility of Mathematica comes from being able to mix these purposes at will. However, you need to
keep some of the different uses of x straight in order to avoid making mistakes. The most important
distinction is between the use of x as a name for another expression, and as a symbolic variable that
stands only for itself.

Traditional programming languages that do not support symbolic computation allow variables to
be used only as names for objects, typically numbers, that have been assigned as values for them. In
Mathematica, however, x can also be treated as a purely formal variable, to which various transfor-
mation rules can be applied. Of course, if you explicitly give a definition, such as x = 3, then x will
always be replaced by 3, and can no longer serve as a formal variable.

You should understand that explicit definitions such as x = 3 have a global effect. On the other
hand, a replacement such as expr /. x->3 affects only the specific expression expr. It is usually much
easier to keep things straight if you avoid using explicit definitions except when absolutely necessary.

You can always mix replacements with assignments. With assignments, you can give names to
expressions in which you want to do replacements, or to rules that you want to use to do the
replacements.

This assigns a value to the symbol t. In[13]:= t = 1 + x^2

Out[13]= 1 � x2

This finds the value of t, and then
replaces x by 2 in it.

In[14]:= t /. x -> 2

Out[14]= 5



1.4.3 Transforming Algebraic Expressions 67

This finds the value of t for a different
value of x.

In[15]:= t /. x -> 5a

Out[15]= 1 � 25 a2

This finds the value of t when x is
replaced by Pi, and then evaluates the
result numerically.

In[16]:= t /. x -> Pi //N

Out[16]= 10.8696

1.4.3 Transforming Algebraic Expressions

There are often many different ways to write the same algebraic expression. As one example, the
expression �� � x�� can be written as � � �x � x�. Mathematica provides a large collection of functions
for converting between different forms of algebraic expressions.

Expand[expr] multiply out products and powers, writing the result as a
sum of terms

Factor[expr] write expr as a product of minimal factors

Two common functions for transforming algebraic expressions.

Expand gives the “expanded form”,
with products and powers multiplied
out.

In[1]:= Expand[ (1 + x)^2 ]

Out[1]= 1 � 2 x � x2

Factor recovers the original form. In[2]:= Factor[ % ]

Out[2]= �1 � x�2

It is easy to generate complicated
expressions with Expand.

In[3]:= Expand[ (1 + x + 3 y)^4 ]

Out[3]= 1 � 4 x � 6 x2 � 4 x3 � x4 � 12 y � 36 x y � 36 x2 y � 12 x3 y �
54 y2 � 108 x y2 � 54 x2 y2 � 108 y3 � 108 x y3 � 81 y4

Factor often gives you simpler
expressions.

In[4]:= Factor[ % ]

Out[4]= �1 � x � 3 y�4

There are some cases, though, where
Factor can give you more complicated
expressions.

In[5]:= Factor[ x^10 - 1 ]

Out[5]= ��1 � x� �1 � x� �1 � x � x2 � x3 � x4� �1 � x � x2 � x3 � x4�
In this case, Expand gives the
“simpler” form.

In[6]:= Expand[ % ]

Out[6]= �1 � x10



68 1. A Practical Introduction to Mathematica � 1.4 Algebraic Calculations

1.4.4 Simplifying Algebraic Expressions

There are many situations where you want to write a particular algebraic expression in the simplest
possible form. Although it is difficult to know exactly what one means in all cases by the “simplest
form”, a worthwhile practical procedure is to look at many different forms of an expression, and pick
out the one that involves the smallest number of parts.

Simplify[expr] try to find the simplest form of expr by applying various
standard algebraic transformations

FullSimplify[expr] try to find the simplest form by applying a wide range of
transformations

Simplifying algebraic expressions.

Simplify writes x� � �x � � in factored
form.

In[1]:= Simplify[x^2 + 2x + 1]

Out[1]= �1 � x�2

Simplify leaves x�� � � in expanded
form, since for this expression, the
factored form is larger.

In[2]:= Simplify[x^10 - 1]

Out[2]= �1 � x10

You can often use Simplify to “clean up” complicated expressions that you get as the results of
computations.

Here is the integral of ���x
 � ��.
Integrals are discussed in more detail
in Section 1.5.3.

In[3]:= Integrate[1/(x^4-1), x]

Out[3]=
1
�������
4
��2 ArcTanx� � Log�1 � x� � Log1 � x��

Differentiating the result from
Integrate should give back your
original expression. In this case, as is
common, you get a more complicated
version of the expression.

In[4]:= D[%, x]

Out[4]=
1
�������
4
� 1
��������������������������
�1 � x

�
1

���������������������
1 � x

�
2

�������������������������
1 � x2

�

Simplify succeeds in getting back the
original, more simple, form of the
expression.

In[5]:= Simplify[%]

Out[5]=
1

������������������������������
�1 � x4

Simplify is set up to try various standard algebraic transformations on the expressions you give.
Sometimes, however, it can take more sophisticated transformations to make progress in finding the
simplest form of an expression.

FullSimplify tries a much wider range of transformations, involving not only algebraic functions,
but also many other kinds of functions.

Simplify does nothing to this
expression.

In[6]:= Simplify[Gamma[x] Gamma[1 - x]]

Out[6]= Gamma1 � x� Gammax�



1.4.5 Advanced Topic: Putting Expressions into Different Forms 69

FullSimplify, however, transforms it
to a simpler form.

In[7]:= FullSimplify[Gamma[x] Gamma[1 - x]]

Out[7]= Π CscΠ x�
For fairly small expressions, FullSimplify will often succeed in making some remarkable simpli-

fications. But for larger expressions, it can become unmanageably slow.

The reason for this is that to do its job, FullSimplify effectively has to try combining every part of
an expression with every other, and for large expressions the number of cases that it has to consider
can be astronomically large.

Simplify also has a difficult task to do, but it is set up to avoid some of the most time-consuming
transformations that are tried by FullSimplify. For simple algebraic calculations, therefore, you may
often find it convenient to apply Simplify quite routinely to your results.

In more complicated calculations, however, even Simplify, let alone FullSimplify, may end up
needing to try a very large number of different forms, and therefore taking a long time. In such cases,
you typically need to do more controlled simplification, and use your knowledge of the form you
want to get to guide the process.

1.4.5 Advanced Topic: Putting Expressions into Different Forms

Complicated algebraic expressions can usually be written in many different ways. Mathematica pro-
vides a variety of functions for converting expressions from one form to another.

In many applications, the most common of these functions are Expand, Factor and Simplify.
However, particularly when you have rational expressions that contain quotients, you may need to
use other functions.

Expand[expr] multiply out products and powers

ExpandAll[expr] apply Expand everywhere

Factor[expr] reduce to a product of factors

Together[expr] put all terms over a common denominator

Apart[expr] separate into terms with simple denominators

Cancel[expr] cancel common factors between numerators and
denominators

Simplify[expr] try a sequence of algebraic transformations and give the
smallest form of expr found

Functions for transforming algebraic expressions.



70 1. A Practical Introduction to Mathematica � 1.4 Algebraic Calculations

Here is a rational expression that can
be written in many different forms.

In[1]:= e = (x - 1)^2 (2 + x) / ((1 + x) (x - 3)^2)

Out[1]=
��1 � x�2 �2 � x�
�����������������������������������������������������������������������3 � x�2 �1 � x�

Expand expands out the numerator, but
leaves the denominator in factored
form.

In[2]:= Expand[e]

Out[2]=
2

�����������������������������������������������������������������������3 � x�2 �1 � x� �
3 x

�����������������������������������������������������������������������3 � x�2 �1 � x� �
x3

�����������������������������������������������������������������������3 � x�2 �1 � x�
ExpandAll expands out everything,
including the denominator.

In[3]:= ExpandAll[e]

Out[3]=
2

���������������������������������������������������������������������
9 � 3 x � 5 x2 � x3

�
3 x

���������������������������������������������������������������������
9 � 3 x � 5 x2 � x3

�
x3

���������������������������������������������������������������������
9 � 3 x � 5 x2 � x3

Together collects all the terms together
over a common denominator.

In[4]:= Together[%]

Out[4]=
2 � 3 x � x3

�����������������������������������������������������������������������3 � x�2 �1 � x�
Apart breaks the expression apart into
terms with simple denominators.

In[5]:= Apart[%]

Out[5]= 1 �
5

������������������������������������������3 � x�2
�

19
������������������������������������������
4 ��3 � x� �

1
������������������������������������
4 �1 � x�

Factor factors everything, in this case
reproducing the original form.

In[6]:= Factor[%]

Out[6]=
��1 � x�2 �2 � x�
�����������������������������������������������������������������������3 � x�2 �1 � x�

According to Simplify, this is the
simplest way to write the original
expression.

In[7]:= Simplify[e]

Out[7]=
��1 � x�2 �2 � x�
�����������������������������������������������������������������������3 � x�2 �1 � x�

Getting expressions into the form you want is something of an art. In most cases, it is best simply
to experiment, trying different transformations until you get what you want. Often you will be able
to use palettes in the front end to do this.

When you have an expression with a single variable, you can choose to write it as a sum of terms, a
product, and so on. If you have an expression with several variables, there is an even wider selection
of possible forms. You can, for example, choose to group terms in the expression so that one or
another of the variables is “dominant”.

Collect[expr, x] group together powers of x

FactorTerms[expr, x] pull out factors that do not depend on x

Rearranging expressions in several variables.



1.4.5 Advanced Topic: Putting Expressions into Different Forms 71

Here is an algebraic expression in two
variables.

In[8]:= v = Expand[(3 + 2 x)^2 (x + 2 y)^2]

Out[8]= 9 x2 � 12 x3 � 4 x4 � 36 x y �
48 x2 y � 16 x3 y � 36 y2 � 48 x y2 � 16 x2 y2

This groups together terms in v that
involve the same power of x.

In[9]:= Collect[v, x]

Out[9]= 4 x4 � 36 y2 � x3 �12 � 16 y� �
x2 �9 � 48 y � 16 y2� � x �36 y � 48 y2�

This groups together powers of y. In[10]:= Collect[v, y]

Out[10]= 9 x2 � 12 x3 � 4 x4 ��36 x � 48 x2 � 16 x3� y � �36 � 48 x � 16 x2� y2

This factors out the piece that does not
depend on y.

In[11]:= FactorTerms[v, y]

Out[11]= �9 � 12 x � 4 x2� �x2 � 4 x y � 4 y2�
As we have seen, even when you restrict yourself to polynomials and rational expressions, there

are many different ways to write any particular expression. If you consider more complicated expres-
sions, involving, for example, higher mathematical functions, the variety of possible forms becomes
still greater. As a result, it is totally infeasible to have a specific function built into Mathematica to
produce each possible form. Rather, Mathematica allows you to construct arbitrary sets of transforma-
tion rules for converting between different forms. Many Mathematica packages include such rules; the
details of how to construct them for yourself are given in Section 2.5.

There are nevertheless a few additional built-in Mathematica functions for transforming expressions.

TrigExpand[expr] expand out trigonometric expressions into a sum of terms

TrigFactor[expr] factor trigonometric expressions into products of terms

TrigReduce[expr] reduce trigonometric expressions using multiple angles

TrigToExp[expr] convert trigonometric functions to exponentials

ExpToTrig[expr] convert exponentials to trigonometric functions

FunctionExpand[expr] expand out special and other functions

ComplexExpand[expr] perform expansions assuming that all variables are real

PowerExpand[expr] transform �xy�p into xpyp, etc.

Some other functions for transforming expressions.

This expands out the trigonometric
expression, writing it so that all
functions have argument x.

In[12]:= TrigExpand[Tan[x] Cos[2x]]

Out[12]=
3
�������
2

Cosx� Sinx� � Tanx�
�������������������������������

2
�

1
�������
2

Sinx�2
Tanx�



72 1. A Practical Introduction to Mathematica � 1.4 Algebraic Calculations

This uses trigonometric identities to
generate a factored form of the
expression.

In[13]:= TrigFactor[%]

Out[13]= �Cosx� � Sinx�� �Cosx� � Sinx�� Tanx�
This reduces the expression by using
multiple angles.

In[14]:= TrigReduce[%]

Out[14]= �
1
�������
2

Secx� �Sinx� � Sin3 x��
This expands the sine assuming that x
and y are both real.

In[15]:= ComplexExpand[ Sin[x + I y] ]

Out[15]= Coshy� Sinx� � � Cosx� Sinhy�
This does the expansion allowing x
and y to be complex.

In[16]:= ComplexExpand[ Sin[x + I y], {x, y} ]

Out[16]= �CoshImx� � Rey�� SinImy� � Rex�� �
� CosImy� � Rex�� SinhImx� � Rey��

The transformations on expressions done by functions like Expand and Factor are always correct,
whatever values the symbolic variables in the expressions may have. Sometimes, however, it is useful
to perform transformations that are only correct for some possible values of symbolic variables. One
such transformation is performed by PowerExpand.

Mathematica does not automatically
expand out non-integer powers of
products.

In[17]:= Sqrt[x y]

Out[17]=
�������

x y

PowerExpand does the expansion. In[18]:= PowerExpand[%]

Out[18]=
����

x
����

y

1.4.6 Advanced Topic: Simplifying with Assumptions

Simplify[expr, assum] simplify expr with assumptions

Simplifying with assumptions.

Mathematica does not automatically
simplify this, since it is only true for
some values of x.

In[1]:= Simplify[Sqrt[x^2]]

Out[1]=
������

x2

 

x� is equal to x for x ! �, but not
otherwise.

In[2]:= {Sqrt[4^2], Sqrt[(-4)^2]}

Out[2]= �4, 4�
This tells Simplify to make the
assumption x > 0, so that simplification
can proceed.

In[3]:= Simplify[Sqrt[x^2], x > 0]

Out[3]= x

No automatic simplification can be
done on this expression.

In[4]:= 2 a + 2 Sqrt[a - Sqrt[-b]] Sqrt[a + Sqrt[-b]]

Out[4]= 2 a � 2
����������������

a ��������b
����������������

a ��������b



1.4.7 Picking Out Pieces of Algebraic Expressions 73

If a and b are assumed to be positive,
the expression can however be
simplified.

In[5]:= Simplify[%, a > 0 && b > 0]

Out[5]= 2 �a ������������
a2 � b �

Here is a simple example involving
trigonometric functions.

In[6]:= Simplify[ArcSin[Sin[x]], -Pi/2 < x < Pi/2]

Out[6]= x

Element[x, dom] state that x is an element of the domain dom

Element[{x�, x�, . . . }, dom] state that all the xi are elements of the domain dom

Reals real numbers

Integers integers

Primes prime numbers

Some domains used in assumptions.

This simplifies
 

x� assuming that x is
a real number.

In[7]:= Simplify[Sqrt[x^2], Element[x, Reals]]

Out[7]= Absx�
This simplifies the sine assuming that
n is an integer.

In[8]:= Simplify[Sin[x + 2 n Pi], Element[n, Integers]]

Out[8]= Sinx�
With the assumptions given, Fermat’s
Little Theorem can be used.

In[9]:= Simplify[Mod[a^p, p], Element[a, Integers]
&& Element[p, Primes]]

Out[9]= Moda, p�
This uses the fact that sin�x�, but not
arcsin�x�, is real when x is real.

In[10]:= Simplify[Re[{Sin[x], ArcSin[x]}], Element[x, Reals]]

Out[10]= �Sinx�, ReArcSinx���

1.4.7 Picking Out Pieces of Algebraic Expressions

Coefficient[expr, form] coefficient of form in expr

Exponent[expr, form] maximum power of form in expr

Part[expr, n] or expr[[n]] nth term of expr

Functions to pick out pieces of polynomials.

Here is an algebraic expression. In[1]:= e = Expand[(1 + 3x + 4y^2)^2]

Out[1]= 1 � 6 x � 9 x2 � 8 y2 � 24 x y2 � 16 y4



74 1. A Practical Introduction to Mathematica � 1.4 Algebraic Calculations

This gives the coefficient of x in e. In[2]:= Coefficient[e, x]

Out[2]= 6 � 24 y2

Exponent[expr, y] gives the highest
power of y that appears in expr.

In[3]:= Exponent[e, y]

Out[3]= 4

This gives the fourth term in e. In[4]:= Part[e, 4]

Out[4]= 8 y2

You may notice that the function Part[expr, n] used to pick out the nth term in a sum is the same as
the function described in Section 1.2.4 for picking out elements in lists. This is no coincidence. In fact,
as discussed in Section 2.1.5, every Mathematica expression can be manipulated structurally much like
a list. However, as discussed in Section 2.1.5, you must be careful, because Mathematica often shows
algebraic expressions in a form that is different from the way it treats them internally.

Coefficient works even with
polynomials that are not explicitly
expanded out.

In[5]:= Coefficient[(1 + 3x + 4y^2)^2, x]

Out[5]= 6 � 24 y2

Numerator[expr] numerator of expr

Denominator[expr] denominator of expr

Functions to pick out pieces of rational expressions.

Here is a rational expression. In[6]:= r = (1 + x)/(2 (2 - y))

Out[6]=
1 � x

������������������������������������
2 �2 � y�

Denominator picks out the
denominator.

In[7]:= Denominator[%]

Out[7]= 2 �2 � y�
Denominator gives 1 for expressions
that are not quotients.

In[8]:= Denominator[1/x + 2/y]

Out[8]= 1

1.4.8 Controlling the Display of Large Expressions

When you do symbolic calculations, it is quite easy to end up with extremely complicated expressions.
Often, you will not even want to see the complete result of a computation.

If you end your input with a semicolon, Mathematica will do the computation you asked for, but
will not display the result. You can nevertheless use % or Out[n] to refer to the result.



1.4.9 The Limits of Mathematica 75

Even though you may not want to see the whole result from a computation, you often do need to
see its basic form. You can use Short to display the outline of an expression, omitting some of the
terms.

Ending your input with ; stops
Mathematica from displaying the
complicated result of the computation.

In[1]:= Expand[(x + 5 y + 10)^8] ;

You can still refer to the result as %.
//Short displays a one-line outline of
the result. The <<n>> stands for n
terms that have been left out.

In[2]:= % //Short

Out[2]//Short= 100000000 � 80000000 x �:42;� 390625 y8

This shows a three-line version of the
expression. More parts are now visible.

In[3]:= Short[%, 3]

Out[3]//Short= 100000000 � 80000000 x � 28000000 x2 �
5600000 x3 � 700000 x4 �:35;� 8750000 x y6 �
437500 x2 y6 � 6250000 y7 � 625000 x y7 � 390625 y8

This gives the total number of terms in
the sum.

In[4]:= Length[%]

Out[4]= 45

command ; execute command, but do not print the result

expr // Short show a one-line outline form of expr

Short[expr, n] show an n-line outline of expr

Some ways to shorten your output.

- 1.4.9 The Limits of Mathematica

In just one Mathematica command, you can easily specify a calculation that is far too complicated for
any computer to do. For example, you could ask for Expand[(1+x)^(10^100)]. The result of this
calculation would have ����� � � terms—more than the total number of particles in the universe.

You should have no trouble working out Expand[(1+x)^100] on any computer that can run Mathe-
matica. But as you increase the exponent of (1+x), the results you get will eventually become too big
for your computer’s memory to hold. Exactly at what point this happens depends not only on the
total amount of memory your computer has, but often also on such details as what other jobs happen
to be running on your computer when you try to do your calculation.

If your computer does run out of memory in the middle of a calculation, most versions of Mathe-
matica have no choice but to stop immediately. As a result, it is important to plan your calculations
so that they never need more memory than your computer has.

Even if the result of an algebraic calculation is quite simple, the intermediate expressions that you
generate in the course of the calculation can be very complicated. This means that even if the final



76 1. A Practical Introduction to Mathematica � 1.4 Algebraic Calculations

result is small, the intermediate parts of a calculation can be too big for your computer to handle. If
this happens, you can usually break your calculation into pieces, and succeed in doing each piece on
its own. You should know that the internal scheme which Mathematica uses for memory management
is such that once part of a calculation is finished, the memory used to store intermediate expressions
that arose is immediately made available for new expressions.

Memory space is the most common limiting factor in Mathematica calculations. Time can also,
however, be a limiting factor. You will usually be prepared to wait a second, or even a minute, for
the result of a calculation. But you will less often be prepared to wait an hour or a day, and you will
almost never be able to wait a year.

The internal code of Mathematica uses highly efficient and optimized algorithms. But there are some
tasks for which the best known algorithms always eventually take a large amount of time. A typical
issue is that the time required by the algorithm may increase almost exponentially with the size of the
input. A classic case is integer factorization—where the best known algorithms require times that grow
almost exponentially with the number of digits. In practice, you will find that FactorInteger[k]
will give a result almost immediately when k has fewer than about 40 digits. But if k has 60 digits,
FactorInteger[k] can start taking an unmanageably long time.

In some cases, there is progressive improvement in the algorithms that are known, so that succes-
sive versions of Mathematica can perform particular computations progressively faster. But ideas from
the theory of computation strongly suggest that many computations will always in effect require an
irreducible amount of computational work—so that no fast algorithm for them will ever be found.

Whether or not the only algorithms involve exponentially increasing amounts of time, there will
always come a point where a computation is too large or time-consuming to do on your particular
computer system. As you work with Mathematica, you should develop some feeling for the limits on
the kinds of calculations you can do in your particular application area.



1.4.9 The Limits of Mathematica 77

Doing arithmetic with numbers containing a few hundred million digits.

Generating a million digits of numbers like Π and e.

Expanding out a polynomial that gives a million terms.

Factoring a polynomial in four variables with a hundred thousand terms.

Reducing a system of quadratic inequalities to a few thousand independent components.

Finding integer roots of a sparse polynomial with degree a million.

Applying a recursive rule a million times.

Calculating all the primes up to ten million.

Finding the numerical inverse of a ���� � ���� dense matrix.

Solving a million-variable sparse linear system with a hundred thousand non-zero
coefficients.

Finding the determinant of a ��� � ��� integer matrix.

Finding the determinant of a �� � �� symbolic matrix.

Finding numerical roots of a polynomial of degree 200.

Solving a sparse linear programming problem with a few hundred thousand variables.

Finding the Fourier transform of a list with a hundred million elements.

Rendering a million graphics primitives.

Sorting a list of ten million elements.

Searching a string that is ten million characters long.

Importing a few tens of megabytes of numerical data.

Formatting a few hundred pages of TraditionalForm output.

Some operations that typically take a few seconds on a 2003 vintage PC.



78 1. A Practical Introduction to Mathematica � 1.4 Algebraic Calculations

1.4.10 Using Symbols to Tag Objects

There are many ways to use symbols in Mathematica. So far, we have concentrated on using symbols
to store values and to represent mathematical variables. This section describes another way to use
symbols in Mathematica.

The idea is to use symbols as “tags” for different types of objects.

Working with physical units gives one simple example. When you specify the length of an object,
you want to give not only a number, but also the units in which the length is measured. In standard
notation, you might write a length as 12 meters.

You can imitate this notation almost directly in Mathematica. You can for example simply use a
symbol meters to indicate the units of our measurement.

The symbol meters here acts as a tag,
which indicates the units used.

In[1]:= 12 meters

Out[1]= 12 meters

You can add lengths like this. In[2]:= % + 5.3 meters

Out[2]= 17.3 meters

This gives a speed. In[3]:= % / (25 seconds)

Out[3]=
0.692 meters
��������������������������������������������������������

seconds

This converts to a speed in feet per
second.

In[4]:= % /. meters -> 3.28084 feet

Out[4]=
2.27034 feet
��������������������������������������������������������

seconds

There is in fact a standard Mathematica package that allows you to work with units. The package
defines many symbols that represent standard types of units.

Load the Mathematica package for
handling units.

In[5]:= <<Miscellaneous`Units`

The package uses standardized names
for units.

In[6]:= 12 Meter/Second

Out[6]=
12 Meter
�������������������������������������
Second

The function Convert[expr, units]
converts to the specified units.

In[7]:= Convert[ %, Mile/Hour ]

Out[7]=
37500 Mile
�����������������������������������������������
1397 Hour

Usually you have to give prefixes for
units as separate words.

In[8]:= Convert[ 3 Kilo Meter / Hour, Inch / Minute ]

Out[8]=
250000 Inch
����������������������������������������������������
127 Minute



1.5.2 Differentiation 79

1.5 Symbolic Mathematics

- 1.5.1 Basic Operations

Mathematica’s ability to deal with symbolic expressions, as well as numbers, allows you to use it for
many kinds of mathematics.

Calculus is one example. With Mathematica, you can differentiate an expression symbolically, and
get a formula for the result.

This finds the derivative of xn. In[1]:= D[ x^n, x ]

Out[1]= n x�1�n

Here is a slightly more complicated
example.

In[2]:= D[x^2 Log[x + a], x]

Out[2]=
x2

���������������������
a � x

� 2 x Loga � x�

D[f, x] the (partial) derivative "f"x

Integrate[f, x] the indefinite integral � f dx

Sum[f, {i, imin, imax}] the sum �imax
i�imin f

Solve[lhs==rhs, x] solution to an equation for x

Series[f, {x, x�, order}] a power series expansion of f about the point x � x�

Limit[f, x->x�] the limit limx#x� f

, Minimize[f, x] minimization of f with respect to x

Some symbolic mathematical operations.

Getting formulas as the results of computations is usually desirable when it is possible. There
are however many circumstances where it is mathematically impossible to get an explicit formula
as the result of a computation. This happens, for example, when you try to solve an equation for
which there is no “closed form” solution. In such cases, you must resort to numerical methods and
approximations. These are discussed in Section 1.6.

1.5.2 Differentiation

Here is the derivative of xn with
respect to x.

In[1]:= D[ x^n, x ]

Out[1]= n x�1�n



80 1. A Practical Introduction to Mathematica � 1.5 Symbolic Mathematics

Mathematica knows the derivatives of
all the standard mathematical
functions.

In[2]:= D[ ArcTan[x], x ]

Out[2]=
1

�������������������������
1 � x2

This differentiates three times with
respect to x.

In[3]:= D[ x^n, {x, 3} ]

Out[3]= ��2 � n� ��1 � n� n x�3�n

The function D[x^n, x] really gives a partial derivative, in which n is assumed not to depend on x.
Mathematica has another function, called Dt, which finds total derivatives, in which all variables are
assumed to be related. In mathematical notation, D[f, x] is like "f"x , while Dt[f, x] is like df

dx . You can
think of Dt as standing for “derivative total”.

Dt gives a total derivative, which
assumes that n can depend on x.
Dt[n, x] stands for dn

dx .

In[4]:= Dt[ x^n, x ]

Out[4]= xn � n
�������
x
� Dtn, x� Logx��

This gives the total differential d�xn�.
Dt[x] is the differential dx.

In[5]:= Dt[ x^n ]

Out[5]= xn � n Dtx�
���������������������������������

x
� Dtn� Logx��

D[f, x] partial derivative ""x f

D[f, x�, x�, . . . ] multiple derivative ""x�
"
"x�
			 f

D[f, {x, n}] repeated derivative "
nf
"xn

Dt[f] total differential df

Dt[f, x] total derivative d
dx f

Some differentiation functions.

As well as treating variables like x symbolically, you can also treat functions in Mathematica sym-
bolically. Thus, for example, you can find formulas for derivatives of f[x], without specifying any
explicit form for the function f.

Mathematica does not know how to
differentiate f, so it gives you back a
symbolic result in terms of f'.

In[6]:= D[ f[x], x ]

Out[6]= f<x�
Mathematica uses the chain rule to
simplify derivatives.

In[7]:= D[ 2 x f[x^2], x ]

Out[7]= 2 fx2� � 4 x2 f<x2�



1.5.3 Integration 81

1.5.3 Integration

Here is the integral � xn dx in
Mathematica.

In[1]:= Integrate[x^n, x]

Out[1]=
x1�n

���������������������
1 � n

Here is a slightly more complicated
example.

In[2]:= Integrate[1/(x^4 - a^4), x]

Out[2]= �
2 ArcTan x������a � � Loga � x� � Loga � x�
�����������������������������������������������������������������������������������������������������������������������������������������������������������

4 a3

Mathematica knows how to do almost any integral that can be done in terms of standard mathematical
functions. But you should realize that even though an integrand may contain only fairly simple
functions, its integral may involve much more complicated functions—or may not be expressible at
all in terms of standard mathematical functions.

Here is a fairly straightforward
integral.

In[3]:= Integrate[Log[1 - x^2], x ]

Out[3]= �2 x � Log�1 � x� � Log1 � x� � x Log1 � x2�
This integral can be done only in terms
of a dilogarithm function.

In[4]:= Integrate[Log[1 - x^2]/x, x]

Out[4]= �
1
�������
2

PolyLog2, x2�
This integral involves Erf. In[5]:= Integrate[Exp[1 - x^2], x]

Out[5]=
1
�������
2
�����Π Erfx�

And this one involves a Fresnel
function.

In[6]:= Integrate[Sin[x^2], x]

Out[6]= ������Π�������
2

FresnelS�������2
�������
Π

x�
Even this integral requires a
hypergeometric function.

In[7]:= Integrate[(1 - x^2)^n, x]

Out[7]= x Hypergeometric2F1� 1
�������
2

, �n,
3
�������
2

, x2�
This integral simply cannot be done in
terms of standard mathematical
functions. As a result, Mathematica just
leaves it undone.

In[8]:= Integrate[ x^x, x ]

Out[8]= � xx �7x



82 1. A Practical Introduction to Mathematica � 1.5 Symbolic Mathematics

Integrate[f, x] the indefinite integral � f dx

Integrate[f, x, y] the multiple integral � dx dy f

Integrate[f, {x, xmin, xmax}] the definite integral � xmax

xmin
f dx

Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}]
the multiple integral � xmax

xmin
dx � ymax

ymin
dy f

Integration.

Here is the definite integral

� b
a

sin��x� dx.

In[9]:= Integrate[Sin[x]^2, {x, a, b} ]

Out[9]=
1
�������
2
��a � b � Cosa� Sina� � Cosb� Sinb��

Here is another definite integral. In[10]:= Integrate[Exp[-x^2], {x, 0, Infinity}]

Out[10]=
����Π
������������������

2

Mathematica cannot give you a formula
for this definite integral.

In[11]:= Integrate[ x^x, {x, 0, 1} ]

Out[11]= �
0

1

xx �7x

You can still get a numerical result,
though.

In[12]:= N[ % ]

Out[12]= 0.783431

This evaluates the multiple integral

� �� dx � x
�

dy �x� � y��. The range of the
outermost integration variable appears
first.

In[13]:= Integrate[ x^2 + y^2, {x, 0, 1}, {y, 0, x} ]

Out[13]=
1
�������
3

1.5.4 Sums and Products

This constructs the sum ��i�� xi

i . In[1]:= Sum[x^i/i, {i, 1, 7}]

Out[1]= x �
x2

������������
2

�
x3

������������
3

�
x4

������������
4

�
x5

������������
5

�
x6

������������
6

�
x7

������������
7

You can leave out the lower limit if it
is equal to 1.

In[2]:= Sum[x^i/i, {i, 7}]

Out[2]= x �
x2

������������
2

�
x3

������������
3

�
x4

������������
4

�
x5

������������
5

�
x6

������������
6

�
x7

������������
7

This makes i increase in steps of �, so
that only odd-numbered values are
included.

In[3]:= Sum[x^i/i, {i, 1, 5, 2}]

Out[3]= x �
x3

������������
3

�
x5

������������
5



1.5.4 Sums and Products 83

Products work just like sums. In[4]:= Product[x + i, {i, 1, 4}]

Out[4]= �1 � x� �2 � x� �3 � x� �4 � x�

Sum[f, {i, imin, imax}] the sum �imax
i�imin f

Sum[f, {i, imin, imax, di}] the sum with i increasing in steps of di

Sum[f, {i, imin, imax}, {j, jmin, jmax}] the nested sum �imax
i�imin �jmax

j�jmin f

Product[f, {i, imin, imax}] the product �imax
i�imin f

Sums and products.

This sum is computed symbolically as
a function of n.

In[5]:= Sum[i^2, {i, 1, n}]

Out[5]=
1
�������
6

n �1 � n� �1 � 2 n�
Mathematica can also give an exact
result for this infinite sum.

In[6]:= Sum[1/i^4, {i, 1, Infinity}]

Out[6]=
Π4

������������
90

As with integrals, simple sums can
lead to complicated results.

In[7]:= Sum[x^(i (i + 1)), {i, 1, Infinity}]

Out[7]=
�2 x1�4 � EllipticTheta2, 0, x�
�������������������������������������������������������������������������������������������������������������������������������������������

2 x1�4

This sum cannot be evaluated exactly
using standard mathematical functions.

In[8]:= Sum[1/(i! + (2i)!), {i, 1, Infinity}]

Out[8]= �
i=1

	
1

������������������������������������������������
i9 � �2 i�9

You can nevertheless find a numerical
approximation to the result.

In[9]:= N[%]

Out[9]= 0.373197

Mathematica also has a notation for multiple sums and products.
Sum[f, {i, imin, imax}, {j, jmin, jmax}] represents a sum over i and j, which would be written in
standard mathematical notation as �imax

i�imin �jmax
j�jmin f . Notice that in Mathematica notation, as in standard

mathematical notation, the range of the outermost variable is given first.

This is the multiple sum �i���i
j�� xiyj.

Notice that the outermost sum over i
is given first, just as in the
mathematical notation.

In[10]:= Sum[x^i y^j, {i, 1, 3}, {j, 1, i}]

Out[10]= x y � x2 y � x3 y � x2 y2 � x3 y2 � x3 y3

The way the ranges of variables are specified in Sum and Product is an example of the rather general
iterator notation that Mathematica uses. You will see this notation again when we discuss generating
tables and lists using Table (Section 1.8.2), and when we describe Do loops (Section 1.7.3).



84 1. A Practical Introduction to Mathematica � 1.5 Symbolic Mathematics

{imax} iterate imax times, without incrementing any variables

{i, imax} i goes from 1 to imax in steps of 1

{i, imin, imax} i goes from imin to imax in steps of 1

{i, imin, imax, di} i goes from imin to imax in steps of di

{i, imin, imax}, {j, jmin, jmax}, . . . i goes from imin to imax, and for each such value, j
goes from jmin to jmax, etc.

Mathematica iterator notation.

1.5.5 Equations

Section 1.2.2 discussed assignments such as x = y which set x equal to y. This section discusses equations,
which test equality. The equation x == y tests whether x is equal to y.

This tests whether 2 + 2 and 4 are
equal. The result is the symbol True.

In[1]:= 2 + 2 == 4

Out[1]= True

It is very important that you do not confuse x = y with x == y. While x = y is an imperative state-
ment that actually causes an assignment to be done, x == y merely tests whether x and y are equal,
and causes no explicit action. If you have used the C programming language, you will recognize that
the notation for assignment and testing in Mathematica is the same as in C.

x = y assigns x to have value y

x == y tests whether x and y are equal

Assignments and tests.

This assigns x to have value 4. In[2]:= x = 4

Out[2]= 4

If you ask for x, you now get 4. In[3]:= x

Out[3]= 4

This tests whether x is equal to 4. In
this case, it is.

In[4]:= x == 4

Out[4]= True

x is equal to 4, not 6. In[5]:= x == 6

Out[5]= False

This removes the value assigned to x. In[6]:= x =.



1.5.5 Equations 85

The tests we have used so far involve only numbers, and always give a definite answer, either True
or False. You can also do tests on symbolic expressions.

Mathematica cannot get a definite result
for this test unless you give x a
specific numerical value.

In[7]:= x == 5

Out[7]= x � 5

If you replace x by the specific
numerical value 4, the test gives False.

In[8]:= % /. x -> 4

Out[8]= False

Even when you do tests on symbolic expressions, there are some cases where you can get definite
results. An important one is when you test the equality of two expressions that are identical. What-
ever the numerical values of the variables in these expressions may be, Mathematica knows that the
expressions must always be equal.

The two expressions are identical, so
the result is True, whatever the value
of x may be.

In[9]:= 2 x + x^2 == 2 x + x^2

Out[9]= True

Mathematica does not try to tell
whether these expressions are equal. In
this case, using Expand would make
them have the same form.

In[10]:= 2 x + x^2 == x (2 + x)

Out[10]= 2 x � x2 � x �2 � x�

Expressions like x == 4 represent equations in Mathematica. There are many functions in Mathematica
for manipulating and solving equations.

This is an equation in Mathematica.
Subsection 1.5.7 will discuss how to
solve it for x.

In[11]:= x^2 + 2 x - 7 == 0

Out[11]= �7 � 2 x � x2 � 0

You can assign a name to the equation. In[12]:= eqn = %

Out[12]= �7 � 2 x � x2 � 0

If you ask for eqn, you now get the
equation.

In[13]:= eqn

Out[13]= �7 � 2 x � x2 � 0



86 1. A Practical Introduction to Mathematica � 1.5 Symbolic Mathematics

- 1.5.6 Relational and Logical Operators

x == y equal (also input as x � y)

x != y unequal (also input as x � y)

x > y greater than

x >= y greater than or equal to (also input as x � y)

x < y less than

x <= y less than or equal to (also input as x � y)

x == y == z all equal

x != y != z all unequal (distinct)

x > y > z, etc. strictly decreasing, etc.

Relational operators.

This tests whether 10 is less than 7.
The result is False.

In[1]:= 10 < 7

Out[1]= False

Not all of these numbers are unequal,
so this gives False.

In[2]:= 3 != 2 != 3

Out[2]= False

You can mix < and <=. In[3]:= 3 < 5 <= 6

Out[3]= True

Since both of the quantities involved
are numeric, Mathematica can determine
that this is true.

In[4]:= Pi^E < E^Pi

Out[4]= True

Mathematica does not know whether
this is true or false.

In[5]:= x > y

Out[5]= x > y



1.5.7 Solving Equations 87

!p not (also input as �p)

p && q && . . . and (also input as p � q � . . . )

p || q || . . . or (also input as p � q � . . . )

Xor[p, q, . . . ] exclusive or (also input as p � q � . . . )

, Nand[p, q, . . . ] and Nor[p, q, . . . ] nand and nor (also input as � and �)

If[p, then, else] give then if p is True, and else if p is False

LogicalExpand[expr] expand out logical expressions

Logical operations.

Both tests give True, so the result is
True.

In[6]:= 7 > 4 && 2 != 3

Out[6]= True

You should remember that the logical operations ==, && and || are all double characters in Mathematica.
If you have used a programming language such as C, you will be familiar with this notation.

Mathematica does not know whether
this is true or false.

In[7]:= p && q

Out[7]= p && q

Mathematica leaves this expression
unchanged.

In[8]:= (p || q) && !(r || s)

Out[8]= �p �� q� && 9 �r �� s�
You can use LogicalExpand to expand
out the terms.

In[9]:= LogicalExpand[ % ]

Out[9]= p && 9 r && 9 s �� q && 9 r && 9 s

- 1.5.7 Solving Equations

An expression like x^2 + 2 x - 7 == 0 represents an equation in Mathematica. You will often need to
solve equations like this, to find out for what values of x they are true.

This gives the two solutions to the
quadratic equation x� � �x � � � �. The
solutions are given as replacements
for x.

In[1]:= Solve[x^2 + 2x - 7 == 0, x]

Out[1]=   x � �1 � 2
����

2 !,  x � �1 � 2
����

2 !!

Here are the numerical values of the
solutions.

In[2]:= N[ % ]

Out[2]= ��x � �3.82843�, �x � 1.82843��



88 1. A Practical Introduction to Mathematica � 1.5 Symbolic Mathematics

You can get a list of the actual
solutions for x by applying the rules
generated by Solve to x using the
replacement operator.

In[3]:= x /. %

Out[3]= ��3.82843, 1.82843�

You can equally well apply the rules to
any other expression involving x.

In[4]:= x^2 + 3 x /. %%

Out[4]= �3.17157, 8.82843�

Solve[lhs == rhs, x] solve an equation, giving a list of rules for x

x /. solution use the list of rules to get values for x

expr /. solution use the list of rules to get values for an expression

Finding and using solutions to equations.

Solve always tries to give you explicit formulas for the solutions to equations. However, it is a basic
mathematical result that, for sufficiently complicated equations, explicit algebraic formulas cannot be
given. If you have an algebraic equation in one variable, and the highest power of the variable is at
most four, then Mathematica can always give you formulas for the solutions. However, if the highest
power is five or more, it may be mathematically impossible to give explicit algebraic formulas for all
the solutions.

Mathematica can always solve algebraic
equations in one variable when the
highest power is less than five.

In[5]:= Solve[x^4 - 5 x^2 - 3 == 0, x]

Out[5]= 		x � ����������������������5
�������
2
�
������

37
�����������������������

2

, 	x ����������������������5

�������
2
�
������

37
�����������������������

2

,

	x � ������������������������������1
�������
2
��5 �������

37 � 
, 	x � �����������������������������1
�������
2
��5 �������

37 � 


It can solve some equations that
involve higher powers.

In[6]:= Solve[x^6 == 1, x]

Out[6]=  �x � �1�, �x � 1�,  x � ���1�1�3!,

 x � ��1�1�3!,  x � ���1�2�3!,  x � ��1�2�3!!
There are some equations, however, for
which it is mathematically impossible
to find explicit formulas for the
solutions. Mathematica uses Root
objects to represent the solutions in this
case.

In[7]:= Solve[2 - 4 x + x^5 == 0, x]

Out[7]=   x � Root�2 � 4 #1 � #15 &, 1�!,

 x � Root�2 � 4 #1 � #15 &, 2�!,

 x � Root�2 � 4 #1 � #15 &, 3�!,

 x � Root�2 � 4 #1 � #15 &, 4�!,

 x � Root�2 � 4 #1 � #15 &, 5�!!
Even though you cannot get explicit
formulas, you can still find the
solutions numerically.

In[8]:= N[ % ]

Out[8]= ��x � �1.51851�, �x � 0.508499�,�x � 1.2436�, �x � �0.116792 � 1.43845 ��,�x � �0.116792 � 1.43845 ���



1.5.7 Solving Equations 89

In addition to being able to solve purely algebraic equations, Mathematica can also solve some
equations involving other functions.

After printing a warning, Mathematica
returns one solution to this equation.

In[9]:= Solve[ Sin[x] == a, x ]

Solve::ifun:
Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete
solution information.

Out[9]= ��x � ArcSina���
It is important to realize that an equation such as sin�x� � a actually has an infinite number of

possible solutions, in this case differing by multiples of �Π. However, Solve by default returns just
one solution, but prints a message telling you that other solutions may exist. You can use Reduce to
get more information.

There is no explicit “closed form”
solution for a transcendental equation
like this.

In[10]:= Solve[ Cos[x] == x, x ]

Solve::tdep:
The equations appear to involve the variables to be
solved for in an essentially non-algebraic way.

Out[10]= SolveCosx� � x, x�
You can find an approximate numerical
solution using FindRoot, and giving a
starting value for x.

In[11]:= FindRoot[ Cos[x] == x, {x, 0} ]

Out[11]= �x � 0.739085�
Solve can also handle equations involving symbolic functions. In such cases, it again prints a

warning, then gives results in terms of formal inverse functions.

Mathematica returns a result in terms of
the formal inverse function of f.

In[12]:= Solve[ f[x^2] == a, x ]

InverseFunction::ifun:
Inverse functions are being used. Values may be lost
for multivalued inverses.

Out[12]= 		x � �����������������f��1�a� 
, 	x �����������������f��1�a� 



Solve[{lhs�==rhs�, lhs�==rhs�, . . . }, {x, y, . . . }]
solve a set of simultaneous equations for x, y, . . .

Solving sets of simultaneous equations.

You can also use Mathematica to solve sets of simultaneous equations. You simply give the list of
equations, and specify the list of variables to solve for.

Here is a list of two simultaneous
equations, to be solved for the
variables x and y.

In[13]:= Solve[{a x + y == 0, 2 x + (1-a) y == 1}, {x, y}]

Out[13]= 		x � �
1

�������������������������������������������
�2 � a � a2

, y � �
a

��������������������������������������
2 � a � a2







90 1. A Practical Introduction to Mathematica � 1.5 Symbolic Mathematics

Here are some more complicated
simultaneous equations. The two
solutions are given as two lists of
replacements for x and y.

In[14]:= Solve[{x^2 + y^2 == 1, x + 3 y == 0}, {x, y}]

Out[14]= 		x � �
3

�����������������������������
10

, y �
1

�����������������������������
10


, 	x �
3

�����������������������������
10

, y � �
1

�����������������������������
10




This uses the solutions to evaluate the
expression x + y.

In[15]:= x + y /. %

Out[15]= 	�������2
�������
5

, ������2
�������
5



Mathematica can solve any set of simultaneous linear equations. It can also solve a large class of
simultaneous polynomial equations. Even when it does not manage to solve the equations explicitly,
Mathematica will still usually reduce them to a much simpler form.

When you are working with sets of equations in several variables, it is often convenient to reorganize
the equations by eliminating some variables between them.

This eliminates y between the two
equations, giving a single equation
for x.

In[16]:= Eliminate[{a x + y == 0, 2 x + (1-a) y == 1}, y]

Out[16]= �2 � a � a2� x � 1

If you have several equations, there is no guarantee that there exists any consistent solution for a
particular variable.

There is no consistent solution to these
equations, so Mathematica returns {},
indicating that the set of solutions is
empty.

In[17]:= Solve[{x==1, x==2}, x]

Out[17]= ��

There is also no consistent solution to
these equations for almost all values
of a.

In[18]:= Solve[{x==1, x==a}, x]

Out[18]= ��
The general question of whether a set of equations has any consistent solution is quite a subtle

one. For example, for most values of a, the equations {x==1, x==a} are inconsistent, so there is no
possible solution for x. However, if a is equal to 1, then the equations do have a solution. Solve is set
up to give you generic solutions to equations. It discards any solutions that exist only when special
constraints between parameters are satisfied.

If you use Reduce instead of Solve, Mathematica will however keep all the possible solutions to a
set of equations, including those that require special conditions on parameters.

This shows that the equations have a
solution only when a==1. The notation
a==1 && x==1 represents the
requirement that both a==1 and x==1
should be True.

In[19]:= Reduce[{x==a, x==1}, x]

Out[19]= a � 1 && x � 1



1.5.7 Solving Equations 91

This gives the complete set of possible
solutions to the equation. The answer
is stated in terms of a combination of
simpler equations. && indicates
equations that must simultaneously be
true; || indicates alternatives.

In[20]:= Reduce[a x - b == 0, x]

Out[20]= b � 0 && a � 0 �� a � 0 && x �
b
�������
a

This gives a more complicated
combination of equations.

In[21]:= Reduce[a x^2 - b == 0, x]

Out[21]= b � 0 && a � 0 �� a � 0 &&
"
#$$$x � �

����
b

����������������������
a

�� x �
����

b
����������������������

a

%
&'''

This gives a symbolic representation of
all solutions.

In[22]:= Reduce[Sin[x] == a, x]

Out[22]= C1� � Integers && �x � Π � ArcSina� � 2 Π C1� ��
x � ArcSina� � 2 Π C1��

Solve[lhs==rhs, x] solve an equation for x

Solve[{lhs�==rhs�, lhs�==rhs�, . . . }, {x, y, . . . }]
solve a set of simultaneous equations for x, y, . . .

Eliminate[{lhs�==rhs�, lhs�==rhs�, . . . }, {x, . . . }]
eliminate x, . . . in a set of simultaneous equations

Reduce[{lhs�==rhs�, lhs�==rhs�, . . . }, {x, y, . . . }]
give a set of simplified equations, including all possible
solutions

Functions for solving and manipulating equations.

Reduce also has powerful capabilities for handling equations specifically over real numbers or
integers. Section 3.4.9 discusses this in more detail.

This reduces the equation assuming x
and y are complex.

In[23]:= Reduce[x^2 + y^2 == 1, y]

Out[23]= y � ������������
1 � x2 �� y ������������

1 � x2

This includes the conditions for x and
y to be real.

In[24]:= Reduce[x^2 + y^2 == 1, y, Reals]

Out[24]= �1 � x � 1 && �y � ������������
1 � x2 �� y ������������

1 � x2 �
This gives only the integer solutions. In[25]:= Reduce[x^2 + y^2 == 1, y, Integers]

Out[25]= x � �1 && y � 0 �� x � 0 && y � �1 ��
x � 0 && y � 1 �� x � 1 && y � 0



92 1. A Practical Introduction to Mathematica � 1.5 Symbolic Mathematics

, 1.5.8 Inequalities

Reduce[ineqs, {x, y, . . . }] reduce a collection of inequalities

, FindInstance[ineqs, {x, y, . . . }] find an instance that satisfies the ineqs

Handling inequalities.

This finds a reduced form for the
inequalities.

In[1]:= Reduce[x + y < 1 && y > x > 0, {x, y}]

Out[1]= 0 ? x ?
1
�������
2

&& x ? y ? 1 � x

These inequalities can never be
satisfied.

In[2]:= Reduce[x + y < 1 && y > x > 1, {x, y}]

Out[2]= False

It is easy to end up with rather
complicated results.

In[3]:= Reduce[x + y < 1 && y^2 > x > 0, {x, y}]

Out[3]= 0 ? x ?
1
�������
2
�3 �����

5 � && �y ? �����
x ������

x ? y ? 1 � x� ��
1
�������
2
�3 �����

5 � � x ?
1
�������
2
�3 �����

5 � && y ? �����
x ��

x �
1
�������
2
�3 �����

5 � && y ? 1 � x

Equations can often be solved to give definite values of variables. But inequalities typically just define
regions that can only be specified by other inequalities. You can use FindInstance to find definite
values of variables that satisfy a particular set of inequalities.

This finds a point in the region
specified by the inequalities.

In[4]:= FindInstance[x + y < 1 && y^2 > x > 0, {x, y}]

Out[4]= 		x �
7
�������
2

, y � �3



, Minimize[{expr, ineq}, {x, y, . . . }] minimize expr while satisfying ineqs

, Maximize[{expr, ineq}, {x, y, . . . }] maximize expr while satisfying ineqs

Constrained minimization and maximization.

This gives the maximum, together with
where it occurs.

In[5]:= Maximize[{x^2 + y, x^2 + y^2 <= 1}, {x, y}]

Out[5]= 	 5
�������
4

, 	x � �
����

3
������������������

2
, y �

1
�������
2






1.5.9 Differential Equations 93

- 1.5.9 Differential Equations

DSolve[eqns, y[x], x] solve a differential equation for y[x], taking x as the
independent variable

DSolve[eqns, y, x] give a solution for y in pure function form

Solving an ordinary differential equation.

Here is the solution to the differential
equation y$�x� � ay�x� � �. C[1] is a
coefficient which must be determined
from boundary conditions.

In[1]:= DSolve[ y'[x] == a y[x] + 1, y[x], x ]

Out[1]= 		yx� � �
1
�������
a
� �a x C1�



If you include an appropriate initial
condition, there are no undetermined
coefficients in the solution.

In[2]:= DSolve[ {y'[x] == a y[x] + 1, y[0] == 0}, y[x], x ]

Out[2]= 		yx� � �1 � �a x

�����������������������������������
a




Whereas algebraic equations such as x� � x � � are equations for variables, differential equations such
as y$$�x� � y$�x� � y�x� are equations for functions. In Mathematica, you must always give differential
equations explicitly in terms of functions such as y[x], and you must specify the variables such as x
on which the functions depend. As a result, you must write an equation such as y$$�x� � y$�x� � y�x�
in the form y''[x] + y'[x] == y[x]. You cannot write it as y'' + y' == y.

Mathematica can solve both linear and nonlinear ordinary differential equations, as well as lists of
simultaneous equations. If you do not specify enough initial or boundary conditions, Mathematica will
give solutions that involve an appropriate number of undetermined coefficients. Each time you use
DSolve, it names the undetermined coefficients C[1], C[2], etc.

Here is a pair of simultaneous
differential equations, with no initial or
boundary conditions. The solution you
get involves two undetermined
coefficients.

In[3]:= DSolve[ {x'[t] == y[t], y'[t] == x[t]},
{x[t], y[t]}, t ]

Out[3]= 		xt� � 1
�������
2
��t �1 � �2 t� C1� � 1

�������
2
��t ��1 � �2 t� C2�,

yt� � 1
�������
2
��t ��1 � �2 t� C1� � 1

�������
2
��t �1 � �2 t� C2�



When you ask DSolve to get you a solution for y[x], the rules it returns specify how to replace
y[x] in any expression. However, these rules do not specify how to replace objects such as y'[x]. If
you want to manipulate solutions that you get from DSolve, you will often find it better to ask for
solutions for y, rather than for y[x].

This gives the solution for y as a “pure
function”.

In[4]:= DSolve[ y'[x] == x + y[x], y, x ]

Out[4]= ��y � Function�x�, �1 � x � �x C1����
You can now use the replacement
operator to apply this solution to
expressions involving y.

In[5]:= y''[x] + y[x] /. %

Out[5]= ��1 � x � 2 �x C1��



94 1. A Practical Introduction to Mathematica � 1.5 Symbolic Mathematics

Section 2.2.5 explains how the “pure function” indicated by & that appears in the result from DSolve
works.

Note that DSolve can handle combinations of algebraic and differential equations. It can also handle
partial differential equations, in which there is more than one independent variable.

1.5.10 Power Series

The mathematical operations we have discussed so far are exact. Given precise input, their results are
exact formulas.

In many situations, however, you do not need an exact result. It may be quite sufficient, for
example, to find an approximate formula that is valid, say, when the quantity x is small.

This gives a power series
approximation to �� � x�n for x close to
�, up to terms of order x.

In[1]:= Series[(1 + x)^n, {x, 0, 3}]

Out[1]= 1 � n x �
1
�������
2
��1 � n� n x2 �

1
�������
6
��2 � n� ��1 � n� n x3 � Ox�4

Mathematica knows the power series
expansions for many mathematical
functions.

In[2]:= Series[Exp[-a t] (1 + Sin[2 t]), {t, 0, 4}]

Out[2]= 1 � �2 � a� t � "#$$�2 a �
a2

������������
2
%&'' t2 �

"#$$�
4
�������
3
� a2 �

a3

������������
6
%&'' t3 � "#$$

4 a
��������������
3

�
a3

������������
3

�
a4

������������
24

%&'' t4 � Ot�5

If you give it a function that it does
not know, Series writes out the power
series in terms of derivatives.

In[3]:= Series[1 + f[t], {t, 0, 3}]

Out[3]= 1 � f0� � f<0� t �
1
�������
2

f<<0� t2 �
1
�������
6

f�3�0� t3 � Ot�4

Power series are approximate formulas that play much the same role with respect to algebraic
expressions as approximate numbers play with respect to numerical expressions. Mathematica allows
you to perform operations on power series, in all cases maintaining the appropriate order or “degree
of precision” for the resulting power series.

Here is a simple power series, accurate
to order x�.

In[4]:= Series[Exp[x], {x, 0, 5}]

Out[4]= 1 � x �
x2

������������
2

�
x3

������������
6

�
x4

������������
24

�
x5

�����������������
120

� Ox�6

When you do operations on a power
series, the result is computed only to
the appropriate order in x.

In[5]:= %^2 (1 + %)

Out[5]= 2 � 5 x �
13 x2

�����������������������
2

�
35 x3

�����������������������
6

�
97 x4

�����������������������
24

�
55 x5

�����������������������
24

� Ox�6

This turns the power series back into
an ordinary expression.

In[6]:= Normal[%]

Out[6]= 2 � 5 x �
13 x2

�����������������������
2

�
35 x3

�����������������������
6

�
97 x4

�����������������������
24

�
55 x5

�����������������������
24



1.5.11 Limits 95

Now the square is computed exactly. In[7]:= %^2

Out[7]= "#$$2 � 5 x �
13 x2

�����������������������
2

�
35 x3

�����������������������
6

�
97 x4

�����������������������
24

�
55 x5

�����������������������
24

%&''
2

Applying Expand gives a result with
eleven terms.

In[8]:= Expand[%]

Out[8]= 4 � 20 x � 51 x2 �
265 x3

����������������������������
3

�
467 x4

����������������������������
4

�
1505 x5

��������������������������������
12

�

7883 x6

��������������������������������
72

�
1385 x7

��������������������������������
18

�
24809 x8

�������������������������������������
576

�
5335 x9

��������������������������������
288

�
3025 x10

������������������������������������
576

Series[expr, {x, x�, n}] find the power series expansion of expr about the point
x = x� to at most nth order

Normal[series] truncate a power series to give an ordinary expression

Power series operations.

1.5.11 Limits

Here is the expression sin�x��x. In[1]:= t = Sin[x]/x

Out[1]=
Sinx�
�������������������������������

x

If you replace x by 0, the expression
becomes 0/0, and you get an
indeterminate result.

In[2]:= t /. x->0

1
Power::infy: Infinite expression - encountered.

0

Infinity::indet:
Indeterminate expression 0 ComplexInfinity encountered.

Out[2]= Indeterminate

If you find the numerical value of
sin�x��x for x close to �, however, you
get a result that is close to �.

In[3]:= t /. x->0.01

Out[3]= 0.999983

This finds the limit of sin�x��x as x
approaches �. The result is indeed �.

In[4]:= Limit[t, x->0]

Out[4]= 1

Limit[expr, x->x�] the limit of expr as x approaches x�

Limits.



96 1. A Practical Introduction to Mathematica � 1.5 Symbolic Mathematics

1.5.12 Integral Transforms

LaplaceTransform[expr, t, s] find the Laplace transform of expr

InverseLaplaceTransform[expr, s, t]
find the inverse Laplace transform of expr

Laplace transforms.

This computes a Laplace transform. In[1]:= LaplaceTransform[t^3 Exp[a t], t, s]

Out[1]=
6

�����������������������������������a � s�4

Here is the inverse transform. In[2]:= InverseLaplaceTransform[%, s, t]

Out[2]= �a t t3

FourierTransform[expr, t, w] find the symbolic Fourier transform of expr

InverseFourierTransform[expr, w, t]
find the inverse Fourier transform of expr

Fourier transforms.

This computes a Fourier transform. In[3]:= FourierTransform[t^4 Exp[-t^2], t, w]

Out[3]=
3������4 ��

w2
���������4 � 3������4 ��

w2
���������4 w2 � 1���������16 ��

w2
���������4 w4

�������������������������������������������������������������������������������������������������������������������������������������
2

Here is the inverse transform. In[4]:= InverseFourierTransform[%, w, t]

Out[4]= ��t2

t4

Note that in the scientific and technical literature many different conventions are used for defining
Fourier transforms. Page 936 describes the setup in Mathematica.

, 1.5.13 Recurrence Equations

, RSolve[eqns, a[n], n] solve the recurrence equations eqns for a[n]

Solving recurrence equations.

This solves a simple recurrence
equation.

In[1]:= RSolve[{a[n] == 3 a[n-1]+1, a[1]==1}, a[n], n]

Out[1]= 		an� � 1
�������
2
��1 � 3n�





1.5.14 Packages for Symbolic Mathematics 97

- 1.5.14 Packages for Symbolic Mathematics

There are many Mathematica packages which implement symbolic mathematical operations. This sec-
tion gives a few examples drawn from the standard set of packages distributed with Mathematica. As
discussed in Section 1.3.10, some copies of Mathematica may be set up so that the functions described
here are automatically loaded into Mathematica if they are ever needed.

Vector Analysis

<<Calculus`VectorAnalysis` load the vector analysis package

SetCoordinates[system[names]] specify the coordinate system to be used (Cartesian,
Cylindrical, Spherical, etc.), giving the names of the
coordinates in that system

Grad[f] evaluate the gradient %f of f in the coordinate system
chosen

Div[f] evaluate the divergence % & f of the list f

Curl[f] evaluate the curl % � f of the list f

Laplacian[f] evaluate the Laplacian %�f of f

Vector analysis.

This loads the vector analysis package.
In some versions of Mathematica, you
may not need to load the package
explicitly.

In[1]:= <<Calculus`VectorAnalysis`

This specifies that a spherical
coordinate system with coordinate
names r, theta and phi should be
used.

In[2]:= SetCoordinates[Spherical[r, theta, phi]]

Out[2]= Sphericalr, theta, phi�

This evaluates the gradient of r� sin�Θ�
in the spherical coordinate system.

In[3]:= Grad[r^2 Sin[theta]]

Out[3]= �2 r Sintheta�, r Costheta�, 0�



98 1. A Practical Introduction to Mathematica � 1.5 Symbolic Mathematics

, Variational Methods

<<Calculus`VariationalMethods` load the variational methods package

VariationalD[f, y[x], x] find the variational derivative of f

Variational methods.

This loads the variational methods
package.

In[1]:= <<Calculus`VariationalMethods`

This finds the functional derivative of
y�x�

!

y$�x�.
In[2]:= VariationalD[y[x] Sqrt[y'[x]], y[x], x]

Out[2]=
2 y<x�2 � yx� y<<x�
��������������������������������������������������������������������������������������������

4 y<x�3�2

, Quaternions

<<Algebra`Quaternions` load the quaternions package

Quaternion[a, b, c, d] the quaternion a � bi � cj � dk

Quaternions.

This loads the quaternions package. In[1]:= <<Algebra`Quaternions`

This finds the principal square root of
a quaternion.

In[2]:= Sqrt[Quaternion[1, 1, 1, 0]]

Out[2]= Quaternion�31�4 Cos� ArcTan�����
2 �

��������������������������������������������������������
2

�,

31�4 Sin� ArcTan�����
2 ������������������������������������������2 �

�������������������������������������������������������������������������������������������
2

,
31�4 Sin� ArcTan�����

2 ������������������������������������������2 �
�������������������������������������������������������������������������������������������

2
, 0�

1.5.15 Advanced Topic: Generic and Non-Generic Cases

This gives a result for the integral of xn

that is valid for almost all values of n.
In[1]:= Integrate[x^n, x]

Out[1]=
x1�n

���������������������
1 � n

For the special case of x��, however,
the correct result is different.

In[2]:= Integrate[x^-1, x]

Out[2]= Logx�



1.5.15 Advanced Topic: Generic and Non-Generic Cases 99

The overall goal of symbolic computation is typically to get formulas that are valid for many possible
values of the variables that appear in them. It is however often not practical to try to get formulas
that are valid for absolutely every possible value of each variable.

Mathematica always replaces ��x by �. In[3]:= 0 / x

Out[3]= 0

If x is equal to 0, however, then the
true result is not 0.

In[4]:= 0 / 0

1
Power::infy: Infinite expression - encountered.

0

Infinity::indet:
Indeterminate expression 0 ComplexInfinity encountered.

Out[4]= Indeterminate

This construct treats both cases, but
would be quite unwieldy to use.

In[5]:= If[x != 0, 0, Indeterminate]

Out[5]= Ifx � 0, 0, Indeterminate�
If Mathematica did not automatically replace ��x by 0, then few symbolic computations would get

very far. But you should realize that the practical necessity of making such replacements can cause
misleading results to be obtained when exceptional values of parameters are used.

The basic operations of Mathematica are nevertheless carefully set up so that whenever possible the
results obtained will be valid for almost all values of each variable.
 

x� is not automatically replaced by x. In[6]:= Sqrt[x^2]

Out[6]=
������

x2

If it were, then the result here would
be ��, which is incorrect.

In[7]:= % /. x -> -2

Out[7]= 2

This makes the assumption that x is a
positive real variable, and does the
replacement.

In[8]:= Simplify[Sqrt[x^2], x > 0]

Out[8]= x



100 1. A Practical Introduction to Mathematica � 1.5 Symbolic Mathematics

1.5.16 Mathematical Notation in Notebooks

If you use the notebook front end for Mathematica, then you can enter some of the operations discussed
in this section in special ways.

�
i=imin

imax

f Sum[f, {i, imin, imax}] sum

(
i=imin

imax

f Product[f, {i, imin, imax}] product

� f 7x Integrate[f, x] indefinite integral

�
xmin

xmax

f 7x Integrate[f, {x, xmin, xmax}] definite integral

8x f D[f, x] partial derivative

8x,y f D[f, x, y] multivariate partial derivative

Special and ordinary ways to enter mathematical operations in notebooks.

This shows part of the standard palette
for entering mathematical operations.
When you press a button in the
palette, the form shown in the button
is inserted into your notebook, with
the black square replaced by whatever
you had selected in the notebook.

�� ������������ ������

� ��7� 8� �

�����7� 8�,� �

)�=�
� � *�=�

� �

� ���� � �+�,



1.5.16 Mathematical Notation in Notebooks 101

�sum� summation sign �
�prod� product sign �
�int� integral sign �
�dd� special differential ( for use in integrals

�pd� partial derivative "

��@� or ��-� move to the subscript position or lower limit of an integral

��^� or ��6� move to the superscript position or upper limit of an integral

��+� or ��=� move to the underscript position or lower limit of a sum or product

��&� or ��7� move to the overscript position or upper limit of a sum or product

��%� or ��5� switch between upper and lower positions

���� (CONTROL-SPACE) return from upper or lower positions

Ways to enter special notations on a standard English-language keyboard.

You can enter an integral like this. Be
sure to use the special differential 7
entered as �dd�, not just an
ordinary d.

In[1]:= � xn �x

Out[1]=
x1�n

���������������������
1 � n

Here is the actual key sequence you
type to get the input.

In[2]:= �int�x��^�n���� �dd�x

Out[2]=
x1�n

���������������������
1 � n



102 1. A Practical Introduction to Mathematica � 1.6 Numerical Mathematics

1.6 Numerical Mathematics

1.6.1 Basic Operations

Exact symbolic results are usually very desirable when they can be found. In many calculations,
however, it is not possible to get symbolic results. In such cases, you must resort to numerical
methods.

N[expr] numerical value of an expression (see Section 1.1)

NIntegrate[f, {x, xmin, xmax}] numerical approximation to � xmax

xmin
f dx

NSum[f, {i, imin, Infinity}] numerical approximation to ��imin f

FindRoot[lhs==rhs, {x, x�}] search for a numerical solution to an equation, starting
with x = x�

NSolve[lhs==rhs, x] numerical approximations to all solutions of an equation

FindMinimum[f, {x, x�}] search for a minimum of f, starting with x = x�

, NMinimize[f, x] attempt to find the global minimum of f

Basic numerical operations.

Mathematica maintains this expression
in an exact, symbolic, form.

In[1]:= (3 + Sqrt[2])^3

Out[1]= �3 �����
2 �3

You can even use standard symbolic
operations on it.

In[2]:= Expand[ % ]

Out[2]= 45 � 29
����

2

N[expr] gives you a numerical
approximation.

In[3]:= N[ % ]

Out[3]= 86.0122

Functions such as Integrate always try to get exact results for computations. When they cannot
get exact results, they typically return unevaluated. You can then find numerical approximations by
explicitly applying N. Functions such as NIntegrate do the calculations numerically from the start,
without first trying to get an exact result.



1.6.2 Numerical Sums, Products and Integrals 103

There is no exact formula for this
integral, so Mathematica returns it
unevaluated.

In[4]:= Integrate[Sin[Sin[x]], {x, 1, 2}]

Out[4]= �
1

2

SinSinx���7x

You can use N to get an approximate
numerical result.

In[5]:= N[ % ]

Out[5]= 0.81645

NIntegrate does the integral
numerically from the start.

In[6]:= NIntegrate[Sin[Sin[x]], {x, 1, 2}]

Out[6]= 0.81645

1.6.2 Numerical Sums, Products and Integrals

NSum[f, {i, imin, Infinity}] numerical approximation to ��imin f

NProduct[f, {i, imin, Infinity}] numerical approximation to ��imin f

NIntegrate[f, {x, xmin, xmax}] numerical approximation to � xmax

xmin
f dx

NIntegrate[f, {x, xmin, xmax}, {y, ymin, ymax}] the multiple integral � xmax

xmin
dx � ymax

ymin
dy f

Numerical sums, products and integrals.

Here is a numerical approximation to
��i�� �i .

In[1]:= NSum[1/i^3, {i, 1, Infinity}]

Out[1]= 1.20206

NIntegrate can handle singularities at
the end points of the integration
region.

In[2]:= NIntegrate[1/Sqrt[x (1-x)], {x, 0, 1}]

Out[2]= 3.14159 � 1.65678�10�48 �

You can do numerical integrals over
infinite regions.

In[3]:= NIntegrate[Exp[-x^2], {x, -Infinity, Infinity}]

Out[3]= 1.77245

Here is a double integral over a
triangular domain. Note the order in
which the variables are given.

In[4]:= NIntegrate[ Sin[x y], {x, 0, 1}, {y, 0, x} ]

Out[4]= 0.119906



104 1. A Practical Introduction to Mathematica � 1.6 Numerical Mathematics

- 1.6.3 Numerical Equation Solving

NSolve[lhs==rhs, x] solve a polynomial equation numerically

NSolve[{lhs�==rhs�, lhs�==rhs�, . . . }, {x, y, . . . }]
solve a system of polynomial equations numerically

FindRoot[lhs==rhs, {x, x�}] search for a numerical solution to an equation, starting at
x = x�

- FindRoot[{lhs�==rhs�, lhs�==rhs�, . . . }, {{x, x�}, {y, y�}, . . . }]
search for numerical solutions to simultaneous equations

Numerical root finding.

NSolve gives you numerical
approximations to all the roots of a
polynomial equation.

In[1]:= NSolve[ x^5 + x + 1 == 0, x ]

Out[1]= ��x � �0.754878�, �x � �0.5 � 0.866025 ��,�x � �0.5 � 0.866025 ��, �x � 0.877439 � 0.744862 ��,�x � 0.877439 � 0.744862 ���
You can also use NSolve to solve sets
of simultaneous equations numerically.

In[2]:= NSolve[{x + y == 2, x - 3 y + z == 3, x - y + z == 0},
{x, y, z}]

Out[2]= ��x � 3.5, y � �1.5, z � �5.��
If your equations involve only linear functions or polynomials, then you can use NSolve to get nu-
merical approximations to all the solutions. However, when your equations involve more complicated
functions, there is in general no systematic procedure for finding all solutions, even numerically. In
such cases, you can use FindRoot to search for solutions. You have to give FindRoot a place to start
its search.

This searches for a numerical solution,
starting at x � �.

In[3]:= FindRoot[ 3 Cos[x] == Log[x], {x, 1} ]

Out[3]= �x � 1.44726�
The equation has several solutions. If
you start at a different x, FindRoot
may return a different solution.

In[4]:= FindRoot[ 3 Cos[x] == Log[x], {x, 10} ]

Out[4]= �x � 13.1064�
You can search for solutions to sets of
equations. Here the solution involves
complex numbers.

In[5]:= FindRoot[{x==Log[y], y==Log[x]}, {{x, I}, {y, 2}}]

Out[5]= �x � 0.318132 � 1.33724 �, y � 0.318132 � 1.33724 ��



1.6.4 Numerical Differential Equations 105

- 1.6.4 Numerical Differential Equations

NDSolve[eqns, y, {x, xmin, xmax}]
solve numerically for the function y, with the independent
variable x in the range xmin to xmax

NDSolve[eqns, {y�, y�, . . . }, {x, xmin, xmax}]
solve a system of equations for the yi

Numerical solution of differential equations.

This generates a numerical solution to
the equation y$�x� � y�x� with � ) x ) �.
The result is given in terms of an
InterpolatingFunction .

In[1]:= NDSolve[{y'[x] == y[x], y[0] == 1}, y, {x, 0, 2}]

Out[1]= ��y � InterpolatingFunction��0., 2.��, ?>���

Here is the value of y��	��. In[2]:= y[1.5] /. %

Out[2]= �4.48169�
With an algebraic equation such as x� � x � � � �, each solution for x is simply a single number. For
a differential equation, however, the solution is a function, rather than a single number. For example,
in the equation y$�x� � y�x�, you want to get an approximation to the function y�x� as the independent
variable x varies over some range.

Mathematica represents numerical approximations to functions as InterpolatingFunction objects.
These objects are functions which, when applied to a particular x, return the approximate value of
y�x� at that point. The InterpolatingFunction effectively stores a table of values for y�xi�, then
interpolates this table to find an approximation to y�x� at the particular x you request.

y[x] /. solution use the list of rules for the function y to get values for y[x]

InterpolatingFunction[data][x]
evaluate an interpolated function at the point x

Plot[Evaluate[y[x] /. solution], {x, xmin, xmax}]
plot the solution to a differential equation

Using results from NDSolve.

This solves a system of two coupled
differential equations.

In[3]:= NDSolve[ {y'[x] == z[x], z'[x] == -y[x], y[0] == 0,
z[0] == 1}, {y, z}, {x, 0, Pi} ]

Out[3]= ��y � InterpolatingFunction��0., 3.14159��, ?>�,
z � InterpolatingFunction��0., 3.14159��, ?>���

Here is the value of z[2] found from
the solution.

In[4]:= z[2] /. %

Out[4]= ��0.416147�



106 1. A Practical Introduction to Mathematica � 1.6 Numerical Mathematics

Here is a plot of the solution for z[x]
found on line 3. Plot is discussed in
Section 1.9.1.

In[5]:= Plot[Evaluate[z[x] /. %3], {x, 0, Pi}]

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1

NDSolve[eqn, u, {x, xmin, xmax}, {t, tmin, tmax}, . . . ]
solve a partial differential equation

Numerical solution of partial differential equations.

- 1.6.5 Numerical Optimization

, NMinimize[f, {x, y, . . . }] minimize f

, NMaximize[f, {x, y, . . . }] maximize f

, NMinimize[{f, ineqs}, {x, y, . . . }] minimize f subject to the constraints ineqs

, NMaximize[{f, ineqs}, {x, y, . . . }] maximize f subject to the constraints ineqs

Finding global minima and maxima.

This gives the maximum value, and
where it occurs.

In[1]:= NMaximize[x/(1 + Exp[x]), x]

Out[1]= �0.278465, �x � 1.27846��
This minimizes the function within the
unit circle.

In[2]:= NMinimize[{Cos[x] - Exp[x y], x^2 + y^2 < 1}, {x, y}]

Out[2]= ��0.919441, �x � 0.795976, y � 0.605328��
NMinimize and NMaximize can find the absolute minima and maxima of many functions. But in some
cases it is not realistic to do this. You can search for local minima and maxima using FindMinimum
and FindMaximum.



1.6.6 Manipulating Numerical Data 107

FindMinimum[f, {x, x�}] search for a local minimum of f, starting at x = x�

FindMinimum[f, {{x, x�}, {y, y�}, . . . }]
search for a local minimum in several variables

, FindMaximum[f, {x, x�}] search for a local maximum

Searching for local minima and maxima.

This searches for a local minimum of
x cos�x�, starting at x � �.

In[3]:= FindMinimum[x Cos[x], {x, 2}]

Out[3]= ��3.28837, �x � 3.42562��
With a different starting point, you
may reach a different local minimum.

In[4]:= FindMinimum[x Cos[x], {x, 10}]

Out[4]= ��9.47729, �x � 9.52933��
This finds a local minimum of sin�xy�. In[5]:= FindMinimum[Sin[x y], {{x, 2}, {y, 2}}]

Out[5]= ��1., �x � 2.1708, y � 2.1708��

- 1.6.6 Manipulating Numerical Data

When you have numerical data, it is often convenient to find a simple formula that approximates it.
For example, you can try to “fit” a line or curve through the points in your data.

Fit[{y�, y�, . . . }, {f�, f�, . . . }, x]
fit the values yn to a linear combination of functions fi

Fit[{{x�, y�}, {x�, y�}, . . . }, {f�, f�, . . . }, x]
fit the points �xn� yn� to a linear combination of the fi

Fitting curves to linear combinations of functions.

This generates a table of the numerical
values of the exponential function.
Table will be discussed in
Section 1.8.2.

In[1]:= data = Table[ Exp[x/5.] , {x, 7}]

Out[1]= �1.2214, 1.49182, 1.82212,
2.22554, 2.71828, 3.32012, 4.0552�

This finds a least-squares fit to data of
the form c� � c�x � cx�. The elements
of data are assumed to correspond to
values �, �, 			 of x.

In[2]:= Fit[data, {1, x, x^2}, x]

Out[2]= 1.09428 � 0.0986337 x � 0.0459482 x2

This finds a fit of the form
c� � c�x � cx � c
x�.

In[3]:= Fit[data, {1, x, x^3, x^5}, x]

Out[3]= 0.96806 � 0.246829 x � 0.00428281 x3 � 6.57948�10�6 x5



108 1. A Practical Introduction to Mathematica � 1.6 Numerical Mathematics

This gives a table of x, y pairs. In[4]:= data = Table[ {x, Exp[Sin[x]]} , {x, 0., 1., 0.2}]

Out[4]= ��0., 1.�, �0.2, 1.21978�, �0.4, 1.47612�,�0.6, 1.75882�, �0.8, 2.04901�, �1., 2.31978��
This finds a fit to the new data, of the
form c� � c� sin�x� � c sin��x�.

In[5]:= Fit[%, {1, Sin[x], Sin[2x]}, x]

Out[5]= 0.989559 � 2.04199 Sinx� � 0.418176 Sin2 x�

, FindFit[data, form, {p�, p�, . . . }, x] find a fit to form with parameters pi

Fitting data to general forms.

This finds the best parameters for a
linear fit.

In[6]:= FindFit[data, a + b x + c x^2, {a, b, c}, x]

Out[6]= �a � 0.991251, b � 1.16421, c � 0.174256�
This does a nonlinear fit. In[7]:= FindFit[data, a + b^(c + d x), {a, b, c, d}, x]

Out[7]= �a � �3.65199, b � 1.65713,
c � 3.03947, d � 0.501815�

One common way of picking out “signals” in numerical data is to find the Fourier transform, or
frequency spectrum, of the data.

Fourier[data] numerical Fourier transform

InverseFourier[data] inverse Fourier transform

Fourier transforms.

Here is a simple square pulse. In[8]:= data = {1, 1, 1, 1, -1, -1, -1, -1}

Out[8]= �1, 1, 1, 1, �1, �1, �1, �1�
This takes the Fourier transform of the
pulse.

In[9]:= Fourier[data]

Out[9]= �0. � 0. �, 0.707107 � 1.70711 �,
0. � 0. �, 0.707107 � 0.292893 �, 0. � 0. �,
0.707107 � 0.292893 �, 0. � 0. �, 0.707107 � 1.70711 ��

Note that the Fourier function in Mathematica is defined with the sign convention typically used
in the physical sciences—opposite to the one often used in electrical engineering. Section 3.8.4 gives
more details.



1.6.7 Statistics 109

- 1.6.7 Statistics

, Mean[data] mean (average value)

, Median[data] median (central value)

, Variance[data] variance

, StandardDeviation[data] standard deviation

, Quantile[data, q] qth quantile

, Total[data] total of values

Basic descriptive statistics.

Here is some “data”. In[1]:= data = {4.3, 7.2, 8.4, 5.8, 9.2, 3.9}

Out[1]= �4.3, 7.2, 8.4, 5.8, 9.2, 3.9�
This gives the mean of your data. In[2]:= Mean[data]

Out[2]= 6.46667

Here is the variance. In[3]:= Variance[data]

Out[3]= 4.69467

The standard set of packages distributed with Mathematica includes several for doing more sophisti-
cated statistical analyses of data.

Statistics`DescriptiveStatistics` descriptive statistics functions

Statistics`MultivariateDescriptiveStatistics`
multivariate descriptive statistics functions

Statistics`ContinuousDistributions` properties of continuous statistical distributions

Statistics`DiscreteDistributions` properties of discrete statistical distributions

Statistics`HypothesisTests` hypothesis tests based on the normal distribution

Statistics`ConfidenceIntervals` confidence intervals derived from the normal
distribution

Statistics`MultinormalDistribution` properties of distributions based on the
multivariate normal distribution

Statistics`LinearRegression` linear regression analysis

Statistics`NonlinearFit` nonlinear fitting of data

Statistics`DataSmoothing` smoothing of data

Statistics`DataManipulation` utilities for data manipulation

Some standard statistical analysis packages.



110 1. A Practical Introduction to Mathematica � 1.7 Functions and Programs

1.7 Functions and Programs

1.7.1 Defining Functions

In this part of the book, we have seen many examples of functions that are built into Mathematica.
In this section, we discuss how you can add your own simple functions to Mathematica. Part 2 will
describe in much greater detail the mechanisms for adding functions to Mathematica.

As a first example, consider adding a function called f which squares its argument. The Mathematica
command to define this function is f[x_] := x^2. The _ (referred to as “blank”) on the left-hand side
is very important; what it means will be discussed below. For now, just remember to put a _ on the
left-hand side, but not on the right-hand side, of your definition.

This defines the function f. Notice the
_ on the left-hand side.

In[1]:= f[x_] := x^2

f squares its argument. In[2]:= f[a+1]

Out[2]= �1 � a�2

The argument can be a number. In[3]:= f[4]

Out[3]= 16

Or it can be a more complicated
expression.

In[4]:= f[3x + x^2]

Out[4]= �3 x � x2�2

You can use f in a calculation. In[5]:= Expand[f[(x+1+y)]]

Out[5]= 1 � 2 x � x2 � 2 y � 2 x y � y2

This shows the definition you made
for f.

In[6]:= ?f

Global`f

f[x_] := x^2

f[x_] := x^2 define the function f

?f show the definition of f

Clear[f] clear all definitions for f

Defining a function in Mathematica.

The names like f that you use for functions in Mathematica are just symbols. Because of this, you
should make sure to avoid using names that begin with capital letters, to prevent confusion with



1.7.2 Functions as Procedures 111

built-in Mathematica functions. You should also make sure that you have not used the names for
anything else earlier in your session.

Mathematica functions can have any
number of arguments.

In[7]:= hump[x_, xmax_] := (x - xmax)^2 / xmax

You can use the hump function just as
you would any of the built-in
functions.

In[8]:= 2 + hump[x, 3.5]

Out[8]= 2 � 0.285714 ��3.5 � x�2

This gives a new definition for hump,
which overwrites the previous one.

In[9]:= hump[x_, xmax_] := (x - xmax)^4

The new definition is displayed. In[10]:= ?hump

Global`hump

hump[x_, xmax_] := (x - xmax)^4

This clears all definitions for hump. In[11]:= Clear[hump]

When you have finished with a particular function, it is always a good idea to clear definitions you
have made for it. If you do not do this, then you will run into trouble if you try to use the same
function for a different purpose later in your Mathematica session. You can clear all definitions you
have made for a function or symbol f by using Clear[f].

1.7.2 Functions as Procedures

In many kinds of calculations, you may find yourself typing the same input to Mathematica over and
over again. You can save yourself a lot of typing by defining a function that contains your input
commands.

This constructs a product of three
terms, and expands out the result.

In[1]:= Expand[ Product[x + i, {i, 3}] ]

Out[1]= 6 � 11 x � 6 x2 � x3

This does the same thing, but with
four terms.

In[2]:= Expand[ Product[x + i, {i, 4}] ]

Out[2]= 24 � 50 x � 35 x2 � 10 x3 � x4

This defines a function exprod which
constructs a product of n terms, then
expands it out.

In[3]:= exprod[n_] := Expand[ Product[ x + i, {i, 1, n} ] ]

Every time you use the function, it will
execute the Product and Expand
operations.

In[4]:= exprod[5]

Out[4]= 120 � 274 x � 225 x2 � 85 x3 � 15 x4 � x5

The functions you define in Mathematica are essentially procedures that execute the commands you
give. You can have several steps in your procedures, separated by semicolons.



112 1. A Practical Introduction to Mathematica � 1.7 Functions and Programs

The result you get from the whole
function is simply the last expression in
the procedure. Notice that you have to
put parentheses around the procedure
when you define it like this.

In[5]:= cex[n_, i_] := ( t = exprod[n]; Coefficient[t, x^i] )

This “runs” the procedure. In[6]:= cex[5, 3]

Out[6]= 85

expr�; expr�; . . . a sequence of expressions to evaluate

Module[{a, b, . . . }, proc] a procedure with local variables a, b, . . .

Constructing procedures.

When you write procedures in Mathematica, it is usually a good idea to make variables you use
inside the procedures local, so that they do not interfere with things outside the procedures. You can
do this by setting up your procedures as modules, in which you give a list of variables to be treated
as local.

The function cex defined above is not
a module, so the value of t “escapes”,
and exists even after the function
returns.

In[7]:= t

Out[7]= 120 � 274 x � 225 x2 � 85 x3 � 15 x4 � x5

This function is defined as a module
with local variable u.

In[8]:= ncex[n_, i_] :=
Module[{u}, u = exprod[n]; Coefficient[u, x^i]]

The function gives the same result as
before.

In[9]:= ncex[5, 3]

Out[9]= 85

Now, however, the value of u does not
escape from the function.

In[10]:= u

Out[10]= u

1.7.3 Repetitive Operations

In using Mathematica, you sometimes need to repeat an operation many times. There are many ways
to do this. Often the most natural is in fact to set up a structure such as a list with many elements,
and then apply your operation to each of the elements.

Another approach is to use the Mathematica function Do, which works much like the iteration
constructs in languages such as C and Fortran. Do uses the standard Mathematica iterator notation
introduced for Sum and Product in Section 1.5.4.



1.7.4 Transformation Rules for Functions 113

Do[expr, {i, imax}] evaluate expr with i running from 1 to imax

Do[expr, {i, imin, imax, di}] evaluate expr with i running from imin to imax in steps of di

Print[expr] print expr

Table[expr, {i, imax}] make a list of the values of expr with i running from 1 to
imax

Implementing repetitive operations.

This prints out the values of the first
five factorials.

In[1]:= Do[ Print[i!], {i, 5} ]

1
2
6
24
120

It is often more useful to have a list of
results, which you can then manipulate
further.

In[2]:= Table[ i!, {i, 5} ]

Out[2]= �1, 2, 6, 24, 120�
If you do not give an iteration variable,
Mathematica simply repeats the
operation you have specified, without
changing anything.

In[3]:= r = 1; Do[ r = 1/(1 + r), {100} ]; r

Out[3]=
573147844013817084101
������������������������������������������������������������������������������������������������������
927372692193078999176

1.7.4 Transformation Rules for Functions

Section 1.4.2 discussed how you can use transformation rules of the form x -> value to replace symbols
by values. The notion of transformation rules in Mathematica is, however, quite general. You can set
up transformation rules not only for symbols, but for any Mathematica expression.

Applying the transformation rule
x -> 3 replaces x by 3.

In[1]:= 1 + f[x] + f[y] /. x -> 3

Out[1]= 1 � f3� � fy�
You can also use a transformation rule
for f[x]. This rule does not affect
f[y].

In[2]:= 1 + f[x] + f[y] /. f[x] -> p

Out[2]= 1 � p � fy�
f[t_] is a pattern that stands for f
with any argument.

In[3]:= 1 + f[x] + f[y] /. f[t_] -> t^2

Out[3]= 1 � x2 � y2

Probably the most powerful aspect of transformation rules in Mathematica is that they can involve
not only literal expressions, but also patterns. A pattern is an expression such as f[t_] which contains
a blank (underscore). The blank can stand for any expression. Thus, a transformation rule for f[t_]
specifies how the function f with any argument should be transformed. Notice that, in contrast, a
transformation rule for f[x] without a blank, specifies only how the literal expression f[x] should be
transformed, and does not, for example, say anything about the transformation of f[y].



114 1. A Practical Introduction to Mathematica � 1.7 Functions and Programs

When you give a function definition such as f[t_] := t^2, all you are doing is telling Mathematica
to automatically apply the transformation rule f[t_] -> t^2 whenever possible.

You can set up transformation rules for
expressions of any form.

In[4]:= f[a b] + f[c d] /. f[x_ y_] -> f[x] + f[y]

Out[4]= fa� � fb� � fc� � fd�
This uses a transformation rule for
x^p_.

In[5]:= 1 + x^2 + x^4 /. x^p_ -> f[p]

Out[5]= 1 � f2� � f4�
Sections 2.3 and 2.5 will explain in detail how to set up patterns and transformation rules for any

kind of expression. Suffice it to say here that in Mathematica all expressions have a definite symbolic
structure; transformation rules allow you to transform parts of that structure.



1.8.2 Making Tables of Values 115

1.8 Lists

1.8.1 Collecting Objects Together

We first encountered lists in Section 1.2.3 as a way of collecting numbers together. In this section,
we shall see many different ways to use lists. You will find that lists are some of the most flexible
and powerful objects in Mathematica. You will see that lists in Mathematica represent generalizations
of several standard concepts in mathematics and computer science.

At a basic level, what a Mathematica list essentially does is to provide a way for you to collect
together several expressions of any kind.

Here is a list of numbers. In[1]:= {2, 3, 4}

Out[1]= �2, 3, 4�
This gives a list of symbolic
expressions.

In[2]:= x^% - 1

Out[2]= ��1 � x2, �1 � x3, �1 � x4�
You can differentiate these expressions. In[3]:= D[%, x]

Out[3]= �2 x, 3 x2, 4 x3�
And then you can find values when x
is replaced with 3.

In[4]:= % /. x -> 3

Out[4]= �6, 27, 108�
The mathematical functions that are built into Mathematica are mostly set up to be “listable” so that

they act separately on each element of a list. This is, however, not true of all functions in Mathematica.
Unless you set it up specially, a new function f that you introduce will treat lists just as single objects.
Sections 2.2.4 and 2.2.10 will describe how you can use Map and Thread to apply a function like this
separately to each element in a list.

1.8.2 Making Tables of Values

You can use lists as tables of values. You can generate the tables, for example, by evaluating an
expression for a sequence of different parameter values.

This gives a table of the values of i�,
with i running from 1 to 6.

In[1]:= Table[i^2, {i, 6}]

Out[1]= �1, 4, 9, 16, 25, 36�
Here is a table of sin�n��� for n from �
to 
.

In[2]:= Table[Sin[n/5], {n, 0, 4}]

Out[2]= 	0, Sin� 1
�������
5
�, Sin� 2

�������
5
�, Sin� 3

�������
5
�, Sin� 4

�������
5
�




116 1. A Practical Introduction to Mathematica � 1.8 Lists

This gives the numerical values. In[3]:= N[%]

Out[3]= �0., 0.198669, 0.389418, 0.564642, 0.717356�
You can also make tables of formulas. In[4]:= Table[x^i + 2i, {i, 5}]

Out[4]= �2 � x, 4 � x2, 6 � x3, 8 � x4, 10 � x5�
Table uses exactly the same iterator
notation as the functions Sum and
Product, which were discussed in
Section 1.5.4.

In[5]:= Product[x^i + 2i, {i, 5}]

Out[5]= �2 � x� �4 � x2� �6 � x3� �8 � x4� �10 � x5�

This makes a table with values of x
running from 0 to 1 in steps of 0.25.

In[6]:= Table[Sqrt[x], {x, 0, 1, 0.25}]

Out[6]= �0, 0.5, 0.707107, 0.866025, 1.�
You can perform other operations on
the lists you get from Table.

In[7]:= %^2 + 3

Out[7]= �3, 3.25, 3.5, 3.75, 4.�
TableForm displays lists in a “tabular”
format. Notice that both words in the
name TableForm begin with capital
letters.

In[8]:= % // TableForm

Out[8]//TableForm=

3

3.25

3.5

3.75

4.

All the examples so far have been of tables obtained by varying a single parameter. You can also
make tables that involve several parameters. These multidimensional tables are specified using the
standard Mathematica iterator notation, discussed in Section 1.5.4.

This makes a table of x i � y j with i
running from � to  and j running
from � to �.

In[9]:= Table[x^i + y^j, {i, 3}, {j, 2}]

Out[9]= ��x � y, x � y2�, �x2 � y, x2 � y2�, �x3 � y, x3 � y2��
The table in this example is a list of lists. The elements of the outer list correspond to successive

values of i. The elements of each inner list correspond to successive values of j, with i fixed.

Sometimes you may want to generate a table by evaluating a particular expression many times,
without incrementing any variables.

This creates a list containing four
copies of the symbol x.

In[10]:= Table[x, {4}]

Out[10]= �x, x, x, x�
This gives a list of four pseudorandom
numbers. Table re-evaluates
Random[ ] for each element in the list,
so that you get a different
pseudorandom number.

In[11]:= Table[Random[ ], {4}]

Out[11]= �0.0560708, 0.6303, 0.359894, 0.871377�



1.8.2 Making Tables of Values 117

Table[f, {imax}] give a list of imax values of f

Table[f, {i, imax}] give a list of the values of f as i runs from 1 to imax

Table[f, {i, imin, imax}] give a list of values with i running from imin to imax

Table[f, {i, imin, imax, di}] use steps of di

Table[f, {i, imin, imax}, {j, jmin, jmax}, . . . ]
generate a multidimensional table

TableForm[list] display a list in tabular form

Functions for generating tables.

You can use the operations discussed in Section 1.2.4 to extract elements of the table.

This creates a � � � table, and gives it
the name m.

In[12]:= m = Table[i - j, {i, 2}, {j, 2}]

Out[12]= ��0, �1�, �1, 0��
This extracts the first sublist from the
list of lists that makes up the table.

In[13]:= m[[1]]

Out[13]= �0, �1�
This extracts the second element of that
sublist.

In[14]:= %[[2]]

Out[14]= �1

This does the two operations together. In[15]:= m[[1,2]]

Out[15]= �1

This displays m in a “tabular” form. In[16]:= TableForm[m]

Out[16]//TableForm=
0 �1

1 0

t[[i]] or Part[t, i] give the ith sublist in t (also input as t+i,)

t[[{i�, i�, . . . }]] or Part[t, {i�, i�, . . . }]
give a list of the i�th, i�th, . . . parts of t

t[[i, j, . . . ]] or Part[t, i, j, . . . ]
give the part of t corresponding to t[[i]][[j]] . . .

Ways to extract parts of tables.



118 1. A Practical Introduction to Mathematica � 1.8 Lists

As we mentioned in Section 1.2.4, you can think of lists in Mathematica as being analogous to
“arrays”. Lists of lists are then like two-dimensional arrays. When you lay them out in a tabular
form, the two indices of each element are like its x and y coordinates.

You can use Table to generate arrays with any number of dimensions.

This generates a three-dimensional
� � � � � array. It is a list of lists of
lists.

In[17]:= Table[i j^2 k^3, {i, 2}, {j, 2}, {k, 2}]

Out[17]= ���1, 8�, �4, 32��, ��2, 16�, �8, 64���

- 1.8.3 Vectors and Matrices

Vectors and matrices in Mathematica are simply represented by lists and by lists of lists, respectively.

{a, b, c} vector �a� b� c�

{{a, b}, {c, d}} matrix � a b
c d

�
The representation of vectors and matrices by lists.

This is a � � � matrix. In[1]:= m = {{a, b}, {c, d}}

Out[1]= ��a, b�, �c, d��
Here is the first row. In[2]:= m[[1]]

Out[2]= �a, b�
Here is the element m��. In[3]:= m[[1,2]]

Out[3]= b

This is a two-component vector. In[4]:= v = {x, y}

Out[4]= �x, y�
The objects p and q are treated as
scalars.

In[5]:= p v + q

Out[5]= �q � p x, q � p y�
Vectors are added component by
component.

In[6]:= v + {xp, yp} + {xpp, ypp}

Out[6]= �x � xp � xpp, y � yp � ypp�
This takes the dot (“scalar”) product of
two vectors.

In[7]:= {x, y} . {xp, yp}

Out[7]= x xp � y yp

You can also multiply a matrix by a
vector.

In[8]:= m . v

Out[8]= �a x � b y, c x � d y�



1.8.3 Vectors and Matrices 119

Or a matrix by a matrix. In[9]:= m . m

Out[9]= ��a2 � b c, a b � b d�, �a c � c d, b c � d2��
Or a vector by a matrix. In[10]:= v . m

Out[10]= �a x � c y, b x � d y�
This combination makes a scalar. In[11]:= v . m . v

Out[11]= x �a x � c y� � y �b x � d y�
Because of the way Mathematica uses lists to represent vectors and matrices, you never have to

distinguish between “row” and “column” vectors.

Table[f, {i, n}] build a length-n vector by evaluating f with i = 1, 2, . . . , n

Array[a, n] build a length-n vector of the form {a[1], a[2], . . . }

Range[n] create the list {1, 2, 3, . . . , n}

Range[n�, n�] create the list {n�, n�+1, . . . , n�}

Range[n�, n�, dn] create the list {n�, n�+dn, . . . , n�}

list[[i]] or Part[list, i] give the ith element in the vector list

Length[list] give the number of elements in list

ColumnForm[list] display the elements of list in a column

c v multiply by a scalar

a . b vector dot product

Cross[a, b] vector cross product (also input as a � b)

, Norm[v] norm of a vector

Functions for vectors.



120 1. A Practical Introduction to Mathematica � 1.8 Lists

Table[f, {i, m}, {j, n}] build an m � n matrix by evaluating f with i ranging
from 1 to m and j ranging from 1 to n

Array[a, {m, n}] build an m � n matrix with i� jth element a[i, j]

IdentityMatrix[n] generate an n � n identity matrix

DiagonalMatrix[list] generate a square matrix with the elements in list on
the diagonal

list[[i]] or Part[list, i] give the ith row in the matrix list

list[[All, j]] or Part[list, All, j] give the jth column in the matrix list

list[[i, j]] or Part[list, i, j] give the i� jth element in the matrix list

Dimensions[list] give the dimensions of a matrix represented by list

MatrixForm[list] display list in matrix form

Functions for matrices.

This builds a  �  matrix s with
elements sij � i � j.

In[12]:= s = Table[i+j, {i, 3}, {j, 3}]

Out[12]= ��2, 3, 4�, �3, 4, 5�, �4, 5, 6��
This displays s in standard
two-dimensional matrix format.

In[13]:= MatrixForm[s]

Out[13]//MatrixForm=
"
#
$$$$$$$

2 3 4

3 4 5

4 5 6

%
&
'''''''

This gives a vector with symbolic
elements. You can use this in deriving
general formulas that are valid with
any choice of vector components.

In[14]:= Array[a, 4]

Out[14]= �a1�, a2�, a3�, a4��

This gives a  � � matrix with symbolic
elements. Section 2.2.6 will discuss
how you can produce other kinds of
elements with Array.

In[15]:= Array[p, {3, 2}]

Out[15]= ��p1, 1�, p1, 2��,�p2, 1�, p2, 2��, �p3, 1�, p3, 2���
Here are the dimensions of the matrix
on the previous line.

In[16]:= Dimensions[%]

Out[16]= �3, 2�
This generates a  �  diagonal matrix. In[17]:= DiagonalMatrix[{a, b, c}]

Out[17]= ��a, 0, 0�, �0, b, 0�, �0, 0, c��



1.8.3 Vectors and Matrices 121

c m multiply by a scalar

a . b matrix product

Inverse[m] matrix inverse

MatrixPower[m, n] nth power of a matrix

Det[m] determinant

Tr[m] trace

Transpose[m] transpose

Eigenvalues[m] eigenvalues

Eigenvectors[m] eigenvectors

Some mathematical operations on matrices.

Here is the � � � matrix of symbolic
variables that was defined above.

In[18]:= m

Out[18]= ��a, b�, �c, d��
This gives its determinant. In[19]:= Det[m]

Out[19]= �b c � a d

Here is the transpose of m. In[20]:= Transpose[m]

Out[20]= ��a, c�, �b, d��
This gives the inverse of m in symbolic
form.

In[21]:= Inverse[m]

Out[21]= 		 d
���������������������������������������
�b c � a d

, �
b

���������������������������������������
�b c � a d


, 	� c
���������������������������������������
�b c � a d

,
a

���������������������������������������
�b c � a d




Here is a  �  rational matrix. In[22]:= h = Table[1/(i+j-1), {i, 3}, {j, 3}]

Out[22]= 		1,
1
�������
2

,
1
�������
3

, 	 1

�������
2

,
1
�������
3

,
1
�������
4

, 	 1

�������
3

,
1
�������
4

,
1
�������
5




This gives its inverse. In[23]:= Inverse[h]

Out[23]= ��9, �36, 30�, ��36, 192, �180�, �30, �180, 180��
Taking the dot product of the inverse
with the original matrix gives the
identity matrix.

In[24]:= % . h

Out[24]= ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��
Here is a  �  matrix. In[25]:= r = Table[i+j+1, {i, 3}, {j, 3}]

Out[25]= ��3, 4, 5�, �4, 5, 6�, �5, 6, 7��



122 1. A Practical Introduction to Mathematica � 1.8 Lists

Eigenvalues gives the eigenvalues of
the matrix.

In[26]:= Eigenvalues[r]

Out[26]= 	 1
�������
2
�15 ���������

249 �,
1
�������
2
�15 ���������

249 �, 0

This gives a numerical approximation
to the matrix.

In[27]:= rn = N[r]

Out[27]= ��3., 4., 5.�, �4., 5., 6.�, �5., 6., 7.��
Here are numerical approximations to
the eigenvalues.

In[28]:= Eigenvalues[rn]

Out[28]=  15.3899, �0.389867, �2.43881�10�16!
Section 3.7 discusses many other matrix operations that are built into Mathematica.

- 1.8.4 Getting Pieces of Lists

First[list] the first element in list

Last[list] the last element

Part[list, n] or list[[n]] the nth element

Part[list, -n] or list[[-n]] the nth element from the end

Part[list, {n�, n�, . . . }] or list[[{n�, n�, . . . }]]
the list of elements at positions n�, n�, . . .

Picking out elements of lists.

We will use this list for the examples. In[1]:= t = {a,b,c,d,e,f,g}

Out[1]= �a, b, c, d, e, f, g�
Here is the last element of t. In[2]:= Last[t]

Out[2]= g

This gives the third element. In[3]:= t[[3]]

Out[3]= c

This gives a list of the first and fourth
elements.

In[4]:= t[[ {1, 4} ]]

Out[4]= �a, d�



1.8.4 Getting Pieces of Lists 123

Take[list, n] the first n elements in list

Take[list, -n] the last n elements

Take[list, {m, n}] elements m through n (inclusive)

Rest[list] list with its first element dropped

Drop[list, n] list with its first n elements dropped

, Most[list] list with its last element dropped

Drop[list, -n] list with its last n elements dropped

Drop[list, {m, n}] list with elements m through n dropped

Picking out sequences in lists.

This gives the first three elements of
the list t defined above.

In[5]:= Take[t, 3]

Out[5]= �a, b, c�
This gives the last three elements. In[6]:= Take[t, -3]

Out[6]= �e, f, g�
This gives elements 2 through 5
inclusive.

In[7]:= Take[t, {2, 5}]

Out[7]= �b, c, d, e�
This gives elements 3 through 7 in
steps of 2.

In[8]:= Take[t, {3, 7, 2}]

Out[8]= �c, e, g�
This gives t with the first element
dropped.

In[9]:= Rest[t]

Out[9]= �b, c, d, e, f, g�
This gives t with its first three
elements dropped.

In[10]:= Drop[t, 3]

Out[10]= �d, e, f, g�
This gives t with only its third element
dropped.

In[11]:= Drop[t, {3, 3}]

Out[11]= �a, b, d, e, f, g�
Section 2.1.5 will show how all the functions in this section can be generalized to work not only on
lists, but on any Mathematica expressions.

The functions in this section allow you to pick out pieces that occur at particular positions in lists.
Section 2.3.2 will show how you can use functions like Select and Cases to pick out elements of lists
based not on their positions, but instead on their properties.



124 1. A Practical Introduction to Mathematica � 1.8 Lists

1.8.5 Testing and Searching List Elements

Position[list, form] the positions at which form occurs in list

Count[list, form] the number of times form appears as an element of list

MemberQ[list, form] test whether form is an element of list

FreeQ[list, form] test whether form occurs nowhere in list

Testing and searching for elements of lists.

The previous section discussed how to extract pieces of lists based on their positions or indices.
Mathematica also has functions that search and test for elements of lists, based on the values of those
elements.

This gives a list of the positions at
which a appears in the list.

In[1]:= Position[{a, b, c, a, b}, a]

Out[1]= ��1�, �4��
Count counts the number of
occurrences of a.

In[2]:= Count[{a, b, c, a, b}, a]

Out[2]= 2

This shows that a is an element of
{a, b, c}.

In[3]:= MemberQ[{a, b, c}, a]

Out[3]= True

On the other hand, d is not. In[4]:= MemberQ[{a, b, c}, d]

Out[4]= False

This assigns m to be the  �  identity
matrix.

In[5]:= m = IdentityMatrix[3]

Out[5]= ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��
This shows that 0 does occur somewhere
in m.

In[6]:= FreeQ[m, 0]

Out[6]= False

This gives a list of the positions at
which 0 occurs in m.

In[7]:= Position[m, 0]

Out[7]= ��1, 2�, �1, 3�, �2, 1�, �2, 3�, �3, 1�, �3, 2��
As discussed in Section 2.3.2, the functions Count and Position, as well as MemberQ and FreeQ,

can be used not only to search for particular list elements, but also to search for classes of elements
which match specific “patterns”.



1.8.6 Adding, Removing and Modifying List Elements 125

- 1.8.6 Adding, Removing and Modifying List Elements

Prepend[list, element] add element at the beginning of list

Append[list, element] add element at the end of list

Insert[list, element, i] insert element at position i in list

Insert[list, element, -i] insert at position i counting from the end of list

Delete[list, i] delete the element at position i in list

ReplacePart[list, new, i] replace the element at position i in list with new

ReplacePart[list, new, {i, j}] replace list[[i, j]] with new

Functions for manipulating elements in explicit lists.

This gives a list with x prepended. In[1]:= Prepend[{a, b, c}, x]

Out[1]= �x, a, b, c�
This inserts x so that it becomes
element number 2.

In[2]:= Insert[{a, b, c}, x, 2]

Out[2]= �a, x, b, c�
This replaces the third element in the
list with x.

In[3]:= ReplacePart[{a, b, c, d}, x, 3]

Out[3]= �a, b, x, d�
This replaces the �� � element in a � � �
matrix.

In[4]:= ReplacePart[{{a, b}, {c, d}}, x, {1, 2}]

Out[4]= ��a, x�, �c, d��
Functions like ReplacePart take explicit lists and give you new lists. Sometimes, however, you may
want to modify a list “in place”, without explicitly generating a new list.

v = {e�, e�, . . . } assign a variable to be a list

v[[i]] = new assign a new value to the ith element

Resetting list elements.

This defines v to be a list. In[5]:= v = {a, b, c, d}

Out[5]= �a, b, c, d�
This sets the third element to be x. In[6]:= v[[3]] = x

Out[6]= x



126 1. A Practical Introduction to Mathematica � 1.8 Lists

Now v has been changed. In[7]:= v

Out[7]= �a, b, x, d�

m[[i, j]] = new replace the �i� j�th element of a matrix

m[[i]] = new replace the ith row

m[[All, i]] = new replace the ith column

Resetting pieces of matrices.

This defines m to be a matrix. In[8]:= m = {{a, b}, {c, d}}

Out[8]= ��a, b�, �c, d��
This sets the first column of the matrix. In[9]:= m[[All, 1]] = {x, y}; m

Out[9]= ��x, b�, �y, d��
This sets every element in the first
column to be 0.

In[10]:= m[[All, 1]] = 0; m

Out[10]= ��0, b�, �0, d��

1.8.7 Combining Lists

Join[list�, list�, . . . ] concatenate lists together

Union[list�, list�, . . . ] combine lists, removing repeated elements and sorting the
result

Functions for combining lists.

Join concatenates any number of lists
together.

In[1]:= Join[{a, b, c}, {x, y}, {t, u}]

Out[1]= �a, b, c, x, y, t, u�
Union combines lists, keeping only
distinct elements.

In[2]:= Union[{a, b, c}, {c, a, d}, {a, d}]

Out[2]= �a, b, c, d�

1.8.8 Advanced Topic: Lists as Sets

Mathematica usually keeps the elements of a list in exactly the order you originally entered them. If
you want to treat a Mathematica list like a mathematical set, however, you may want to ignore the
order of elements in the list.



1.8.9 Rearranging Lists 127

Union[list�, list�, . . . ] give a list of the distinct elements in the listi

Intersection[list�, list�, . . . ] give a list of the elements that are common to all the listi

Complement[universal, list�, . . . ] give a list of the elements that are in universal, but not in
any of the listi

Set theoretical functions.

Union gives the elements that occur in
any of the lists.

In[1]:= Union[{c, a, b}, {d, a, c}, {a, e}]

Out[1]= �a, b, c, d, e�
Intersection gives only elements that
occur in all the lists.

In[2]:= Intersection[{a, c, b}, {b, a, d, a}]

Out[2]= �a, b�
Complement gives elements that occur
in the first list, but not in any of the
others.

In[3]:= Complement[{a, b, c, d}, {a, d}]

Out[3]= �b, c�

- 1.8.9 Rearranging Lists

Sort[list] sort the elements of list into a standard order

Union[list] sort elements, removing any duplicates

Reverse[list] reverse the order of elements in list

RotateLeft[list, n] rotate the elements of list n places to the left

RotateRight[list, n] rotate n places to the right

Functions for rearranging lists.

This sorts the elements of a list into a
standard order. In simple cases like
this, the order is alphabetical or
numerical.

In[1]:= Sort[{b, a, c, a, b}]

Out[1]= �a, a, b, b, c�

This sorts the elements, removing any
duplicates.

In[2]:= Union[{b, a, c, a, b}]

Out[2]= �a, b, c�
This rotates (“shifts”) the elements in
the list two places to the left.

In[3]:= RotateLeft[{a, b, c, d, e}, 2]

Out[3]= �c, d, e, a, b�



128 1. A Practical Introduction to Mathematica � 1.8 Lists

You can rotate to the right by giving a
negative displacement, or by using
RotateRight.

In[4]:= RotateLeft[{a, b, c, d, e}, -2]

Out[4]= �d, e, a, b, c�

PadLeft[list, len, x] pad list on the left with x to make it length len

PadRight[list, len, x] pad list on the right

Padding lists.

This pads a list with x’s to make it
length 10.

In[5]:= PadLeft[{a, b, c}, 10, x]

Out[5]= �x, x, x, x, x, x, x, a, b, c�

1.8.10 Grouping Together Elements of Lists

Partition[list, n] partition list into n-element pieces

Partition[list, n, d] use offset d for successive pieces

Split[list] split list into pieces consisting of runs of identical elements

Functions for grouping together elements of lists.

Here is a list. In[1]:= t = {a, b, c, d, e, f, g}

Out[1]= �a, b, c, d, e, f, g�
This groups the elements of the list in
pairs, throwing away the single
element left at the end.

In[2]:= Partition[t, 2]

Out[2]= ��a, b�, �c, d�, �e, f��
This groups elements in triples. There
is no overlap between the triples.

In[3]:= Partition[t, 3]

Out[3]= ��a, b, c�, �d, e, f��
This makes triples of elements, with
each successive triple offset by just one
element.

In[4]:= Partition[t, 3, 1]

Out[4]= ��a, b, c�, �b, c, d�, �c, d, e�, �d, e, f�, �e, f, g��
This splits up the list into runs of
identical elements.

In[5]:= Split[{a, a, b, b, b, a, a, a, b}]

Out[5]= ��a, a�, �b, b, b�, �a, a, a�, �b��



1.8.12 Advanced Topic: Rearranging Nested Lists 129

, 1.8.11 Ordering in Lists

Sort[list] sort the elements of list into order

Min[list] the smallest element in list

, Ordering[list, n] the positions of the n smallest elements in list

Max[list] the largest element in list

, Ordering[list, -n] the positions of the n largest elements in list

, Ordering[list] the ordering of all elements in list

Permutations[list] all possible orderings of list

Ordering in lists.

Here is a list. In[1]:= t = {17, 21, 14, 9, 18}

Out[1]= �17, 21, 14, 9, 18�
This gives the smallest element in the
list.

In[2]:= Min[t]

Out[2]= 9

This gives in order the positions of the
3 smallest elements.

In[3]:= Ordering[t, 3]

Out[3]= �4, 3, 1�
Here are the actual elements. In[4]:= t[[%]]

Out[4]= �9, 14, 17�

- 1.8.12 Advanced Topic: Rearranging Nested Lists

You will encounter nested lists if you use matrices or generate multidimensional arrays and tables.
Mathematica provides many functions for handling such lists.

Flatten[list] flatten out all levels in list

Flatten[list, n] flatten out the top n levels in list

Partition[list, {n�, n�, . . . }] partition into blocks of size n� � n� � � � �

Transpose[list] interchange the top two levels of lists

RotateLeft[list, {n�, n�, . . . }] rotate successive levels by ni places

PadLeft[list, {n�, n�, . . . }] pad successive levels to be length ni

A few functions for rearranging nested lists.



130 1. A Practical Introduction to Mathematica � 1.8 Lists

This “flattens out” sublists. You can
think of it as effectively just removing
all inner braces.

In[1]:= Flatten[{{a}, {b, {c}}, {d}}]

Out[1]= �a, b, c, d�
This flattens out only one level of
sublists.

In[2]:= Flatten[{{a}, {b, {c}}, {d}}, 1]

Out[2]= �a, b, �c�, d�
There are many other operations you can perform on nested lists. We will discuss more of them in

Section 2.4.



1.9.1 Basic Plotting 131

1.9 Graphics and Sound

1.9.1 Basic Plotting

Plot[f, {x, xmin, xmax}] plot f as a function of x from xmin to xmax

Plot[{f�, f�, . . . }, {x, xmin, xmax}] plot several functions together

Basic plotting functions.

This plots a graph of sin�x� as a
function of x from 0 to �Π.

In[1]:= Plot[Sin[x], {x, 0, 2Pi}]

1 2 3 4 5 6

-1

-0.5

0.5

1

You can plot functions that have
singularities. Mathematica will try to
choose appropriate scales.

In[2]:= Plot[Tan[x], {x, -3, 3}]

-3 -2 -1 1 2 3

-40

-20

20

40



132 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

You can give a list of functions to plot. In[3]:= Plot[{Sin[x], Sin[2x], Sin[3x]}, {x, 0, 2Pi}]

1 2 3 4 5 6

-1

-0.5

0.5

1

To get smooth curves, Mathematica has to evaluate functions you plot at a large number of points. As
a result, it is important that you set things up so that each function evaluation is as quick as possible.

When you ask Mathematica to plot an object, say f, as a function of x, there are two possible
approaches it can take. One approach is first to try and evaluate f, presumably getting a symbolic
expression in terms of x, and then subsequently evaluate this expression numerically for the specific
values of x needed in the plot. The second approach is first to work out what values of x are needed,
and only subsequently to evaluate f with those values of x.

If you type Plot[f, {x, xmin, xmax}] it is the second of these approaches that is used. This has
the advantage that Mathematica only tries to evaluate f for specific numerical values of x; it does not
matter whether sensible values are defined for f when x is symbolic.

There are, however, some cases in which it is much better to have Mathematica evaluate f before
it starts to make the plot. A typical case is when f is actually a command that generates a table
of functions. You want to have Mathematica first produce the table, and then evaluate the func-
tions, rather than trying to produce the table afresh for each value of x. You can do this by typing
Plot[Evaluate[f], {x, xmin, xmax}].

This makes a plot of the Bessel
functions Jn�x� with n running from �
to 
. The Evaluate tells Mathematica
first to make the table of functions, and
only then to evaluate them for
particular values of x.

In[4]:= Plot[Evaluate[Table[BesselJ[n, x], {n, 4}]],
{x, 0, 10}]

2 4 6 8 10

-0.2

0.2

0.4

0.6

This finds the numerical solution to a
differential equation, as discussed in
Section 1.6.4.

In[5]:= NDSolve[{y'[x] == Sin[y[x]], y[0] == 1}, y, {x, 0, 4}]

Out[5]= ��y � InterpolatingFunction��0., 4.��, ?>���



1.9.2 Options 133

Here is a plot of the solution. The
Evaluate tells Mathematica to first set
up an InterpolatingFunction object,
then evaluate this at a sequence of x
values.

In[6]:= Plot[Evaluate[ y[x] /. % ], {x, 0, 4}]

1 2 3 4

1.5

2

2.5

3

Plot[f, {x, xmin, xmax}] first choose specific numerical values for x, then evaluate f
for each value of x

Plot[Evaluate[f], {x, xmin, xmax}]
first evaluate f, then choose specific numerical values of x

Plot[Evaluate[Table[f, . . . ]], {x, xmin, xmax}]
generate a list of functions, and then plot them

Plot[Evaluate[y[x] /. solution], {x, xmin, xmax}]
plot a numerical solution to a differential equation obtained
from NDSolve

Methods for setting up objects to plot.

- 1.9.2 Options

When Mathematica plots a graph for you, it has to make many choices. It has to work out what the
scales should be, where the function should be sampled, how the axes should be drawn, and so on.
Most of the time, Mathematica will probably make pretty good choices. However, if you want to get
the very best possible pictures for your particular purposes, you may have to help Mathematica in
making some of its choices.

There is a general mechanism for specifying “options” in Mathematica functions. Each option has
a definite name. As the last arguments to a function like Plot, you can include a sequence of rules
of the form name->value, to specify the values for various options. Any option for which you do not
give an explicit rule is taken to have its “default” value.

Plot[f, {x, xmin, xmax}, option->value]
make a plot, specifying a particular value for an option

Choosing an option for a plot.



134 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

A function like Plot has many options that you can set. Usually you will need to use at most a few
of them at a time. If you want to optimize a particular plot, you will probably do best to experiment,
trying a sequence of different settings for various options.

Each time you produce a plot, you can specify options for it. Section 1.9.3 will also discuss how
you can change some of the options, even after you have produced the plot.

option name default value

AspectRatio 1/GoldenRatio the height-to-width ratio for the plot; Automatic
sets it from the absolute x and y coordinates

Axes Automatic whether to include axes

AxesLabel None labels to be put on the axes; ylabel specifies a
label for the y axis, {xlabel, ylabel} for both axes

AxesOrigin Automatic the point at which axes cross

TextStyle $TextStyle the default style to use for text in the plot

FormatType StandardForm the default format type to use for text in the
plot

DisplayFunction $DisplayFunction how to display graphics; Identity causes no
display

Frame False whether to draw a frame around the plot

FrameLabel None labels to be put around the frame; give a list in
clockwise order starting with the lower x axis

FrameTicks Automatic what tick marks to draw if there is a frame;
None gives no tick marks

GridLines None what grid lines to include; Automatic includes
a grid line for every major tick mark

PlotLabel None an expression to be printed as a label for the
plot

PlotRange Automatic the range of coordinates to include in the plot;
All includes all points

Ticks Automatic what tick marks to draw if there are axes; None
gives no tick marks

Some of the options for Plot. These can also be used in Show.



1.9.2 Options 135

Here is a plot with all options having
their default values.

In[7]:= Plot[Sin[x^2], {x, 0, 3}]

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1

This draws axes on a frame around the
plot.

In[8]:= Plot[Sin[x^2], {x, 0, 3}, Frame->True]

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

This specifies labels for the x and y
axes. The expressions you give as
labels are printed just as they would
be if they appeared as Mathematica
output. You can give any piece of text
by putting it inside a pair of double
quotes.

In[9]:= Plot[Sin[x^2], {x, 0, 3},
AxesLabel -> {"x value", "Sin[x^2]"} ]

0.5 1 1.5 2 2.5 3
x value

-1

-0.5

0.5

1

Sin[x^2]



136 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

You can give several options at the
same time, in any order.

In[10]:= Plot[Sin[x^2], {x, 0, 3}, Frame -> True,
GridLines -> Automatic]

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

Setting the AspectRatio option
changes the whole shape of your plot.
AspectRatio gives the ratio of width
to height. Its default value is the
inverse of the Golden
Ratio—supposedly the most pleasing
shape for a rectangle.

In[11]:= Plot[Sin[x^2], {x, 0, 3}, AspectRatio -> 1]

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1

Automatic use internal algorithms

None do not include this

All include everything

True do this

False do not do this

Some common settings for various options.

When Mathematica makes a plot, it tries to set the x and y scales to include only the “interesting”
parts of the plot. If your function increases very rapidly, or has singularities, the parts where it gets
too large will be cut off. By specifying the option PlotRange, you can control exactly what ranges of
x and y coordinates are included in your plot.



1.9.2 Options 137

Automatic show at least a large fraction of the points, including the
“interesting” region (the default setting)

All show all points

{ymin, ymax} show a specific range of y values

{xrange, yrange} show the specified ranges of x and y values

Settings for the option PlotRange.

The setting for the option PlotRange
gives explicit y limits for the graph.
With the y limits specified here, the
bottom of the curve is cut off.

In[12]:= Plot[Sin[x^2], {x, 0, 3}, PlotRange -> {0, 1.2}]

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

Mathematica always tries to plot functions as smooth curves. As a result, in places where your
function wiggles a lot, Mathematica will use more points. In general, Mathematica tries to adapt its
sampling of your function to the form of the function. There is, however, a limit, which you can set,
to how finely Mathematica will ever sample a function.

The function sin� �x � wiggles infinitely
often when x � �. Mathematica tries to
sample more points in the region
where the function wiggles a lot, but it
can never sample the infinite number
that you would need to reproduce the
function exactly. As a result, there are
slight glitches in the plot.

In[13]:= Plot[Sin[1/x], {x, -1, 1}]

-1 -0.5 0.5 1

-1

-0.5

0.5

1



138 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

option name default value

PlotStyle Automatic a list of lists of graphics primitives to use for each curve (see
Section 2.10.3)

PlotPoints 25 the minimum number of points at which to sample the
function

MaxBend 10. the maximum kink angle between successive segments of a
curve

- PlotDivision 30. the maximum factor by which to subdivide in sampling the
function

Compiled True whether to compile the function being plotted

More options for Plot. These cannot be used in Show.

It is important to realize that since Mathematica can only sample your function at a limited number
of points, it can always miss features of the function. By increasing PlotPoints, you can make Mathe-
matica sample your function at a larger number of points. Of course, the larger you set PlotPoints
to be, the longer it will take Mathematica to plot any function, even a smooth one.

Since Plot needs to evaluate your function many times, it is important to make each evalua-
tion as quick as possible. As a result, Mathematica usually compiles your function into a low-level
pseudocode that can be executed very efficiently. One potential problem with this, however, is that
the pseudocode allows only machine-precision numerical operations. If the function you are plotting
requires higher-precision operations, you may have to switch off compilation in Plot. You can do this
by setting the option Compiled -> False. Note that Mathematica can only compile “inline code”; it
cannot for example compile functions that you have defined. As a result, you should, when possible,
use Evaluate as described on page 132 to evaluate any such definitions and get a form that the
Mathematica compiler can handle.



1.9.3 Redrawing and Combining Plots 139

1.9.3 Redrawing and Combining Plots

Mathematica saves information about every plot you produce, so that you can later redraw it. When
you redraw plots, you can change some of the options you use.

Show[plot] redraw a plot

Show[plot, option->value] redraw with options changed

Show[plot�, plot�, . . . ] combine several plots

Show[GraphicsArray[{{plot�, plot�, . . . }, . . . }]]
draw an array of plots

InputForm[plot] show the information that is saved about a plot

Functions for manipulating plots.

Here is a simple plot. -Graphics- is
usually printed on the output line to
stand for the information that
Mathematica saves about the plot.

In[1]:= Plot[ChebyshevT[7, x], {x, -1, 1}]

-1 -0.5 0.5 1

-1

-0.5

0.5

1

This redraws the plot from the
previous line.

In[2]:= Show[%]

-1 -0.5 0.5 1

-1

-0.5

0.5

1



140 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

When you redraw the plot, you can
change some of the options. This
changes the choice of y scale.

In[3]:= Show[%, PlotRange -> {-1, 2}]

-1 -0.5 0.5 1

-1

-0.5

0.5

1

1.5

2

This takes the plot from the previous
line, and changes another option in it.

In[4]:= Show[%, PlotLabel -> "A Chebyshev Polynomial"]

-1 -0.5 0.5 1

-1

-0.5

0.5

1

1.5

2
A Chebyshev Polynomial

By using Show with a sequence of different options, you can look at the same plot in many different
ways. You may want to do this, for example, if you are trying to find the best possible setting of
options.

You can also use Show to combine plots. It does not matter whether the plots have the same scales:
Mathematica will always choose new scales to include the points you want.

This sets gj0 to be a plot of J��x� from
x � � to ��.

In[5]:= gj0 = Plot[BesselJ[0, x], {x, 0, 10}]

2 4 6 8 10

-0.4

-0.2

0.2

0.4

0.6

0.8

1



1.9.3 Redrawing and Combining Plots 141

Here is a plot of Y��x� from x � �
to ��.

In[6]:= gy1 = Plot[BesselY[1, x], {x, 1, 10}]

2 4 6 8 10

-0.8

-0.6

-0.4

-0.2

0.2

0.4

This shows the previous two plots
combined into one. Notice that the
scale is adjusted appropriately.

In[7]:= gjy = Show[gj0, gy1]

2 4 6 8 10

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

Using Show[plot�, plot�, . . . ] you can combine several plots into one. GraphicsArray allows you
to draw several plots in an array.

Show[GraphicsArray[{plot�, plot�, . . . }]]
draw several plots side by side

Show[GraphicsArray[{{plot�}, {plot�}, . . . }]]
draw a column of plots

Show[GraphicsArray[{{plot��, plot��, . . . }, . . . }]]
draw a rectangular array of plots

Show[GraphicsArray[plots, GraphicsSpacing -> {h, v}]]
put the specified horizontal and vertical spacing between the
plots

Drawing arrays of plots.



142 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

This shows the plots given above in an
array.

In[8]:= Show[GraphicsArray[{{gj0, gjy}, {gy1, gjy}}]]

2 4 6 8 10

-0.8

-0.6

-0.4

-0.2

0.2

0.4

2 4 6 8 10

-0.75
-0.5

-0.25

0.25
0.5

0.75
1

2 4 6 8 10

-0.4
-0.2

0.2
0.4
0.6
0.8

1

2 4 6 8 10

-0.75
-0.5

-0.25

0.25
0.5

0.75
1

If you redisplay an array of plots using
Show, any options you specify will be
used for the whole array, rather than
for individual plots.

In[9]:= Show[%, Frame->True, FrameTicks->None]

2 4 6 8 10

-0.8

-0.6

-0.4

-0.2

0.2

0.4

2 4 6 8 10

-0.75
-0.5

-0.25

0.25
0.5

0.75
1

2 4 6 8 10

-0.4
-0.2

0.2
0.4
0.6
0.8

1

2 4 6 8 10

-0.75
-0.5

-0.25

0.25
0.5

0.75
1



1.9.3 Redrawing and Combining Plots 143

Here is a way to change options for all
the plots in the array.

In[10]:= Show[ % /. (Ticks -> Automatic) -> (Ticks -> None) ]

GraphicsArray by default puts a narrow border around each of the plots in the array it gives. You
can change the size of this border by setting the option GraphicsSpacing -> {h, v}. The parameters
h and v give the horizontal and vertical spacings to be used, as fractions of the width and height of
the plots.

This increases the horizontal spacing,
but decreases the vertical spacing
between the plots in the array.

In[11]:= Show[%, GraphicsSpacing -> {0.3, 0}]

When you make a plot, Mathematica saves the list of points it used, together with some other
information. Using what is saved, you can redraw plots in many different ways with Show. However,
you should realize that no matter what options you specify, Show still has the same basic set of points
to work with. So, for example, if you set the options so that Mathematica displays a small portion of
your original plot magnified, you will probably be able to see the individual sample points that Plot
used. Options like PlotPoints can only be set in the original Plot command itself. (Mathematica
always plots the actual points it has; it avoids using smoothed or splined curves, which can give
misleading results in mathematical graphics.)



144 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

Here is a simple plot. In[12]:= Plot[Cos[x], {x, -Pi, Pi}]

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

This shows a small region of the plot
in a magnified form. At this
resolution, you can see the individual
line segments that were produced by
the original Plot command.

In[13]:= Show[%, PlotRange -> {{0, .3}, {.92, 1}}]

0.05 0.1 0.15 0.2 0.25

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.9.4 Advanced Topic: Manipulating Options

There are a number of functions built into Mathematica which, like Plot, have various options you
can set. Mathematica provides some general mechanisms for handling such options.

If you do not give a specific setting for an option to a function like Plot, then Mathematica
will automatically use a default value for the option. The function Options[function, option] al-
lows you to find out the default value for a particular option. You can reset the default using
SetOptions[function, option->value]. Note that if you do this, the default value you have given will
stay until you explicitly change it.

Options[function] give a list of the current default settings for all options

Options[function, option] give the default setting for a particular option

SetOptions[function, option->value, . . . ]
reset defaults

Manipulating default settings for options.



1.9.4 Advanced Topic: Manipulating Options 145

Here is the default setting for the
PlotRange option of Plot.

In[1]:= Options[Plot, PlotRange]

Out[1]= �PlotRange � Automatic�
This resets the default for the
PlotRange option. The semicolon
stops Mathematica from printing out the
rather long list of options for Plot.

In[2]:= SetOptions[Plot, PlotRange->All] ;

Until you explicitly reset it, the default
for the PlotRange option will now be
All.

In[3]:= Options[Plot, PlotRange]

Out[3]= �PlotRange � All�
The graphics objects that you get from Plot or Show store information on the options they use.

You can get this information by applying the Options function to these graphics objects.

Options[plot] show all the options used for a particular plot

Options[plot, option] show the setting for a specific option

AbsoluteOptions[plot, option] show the absolute form used for a specific option, even if
the setting for the option is Automatic or All

Getting information on options used in plots.

Here is a plot, with default settings for
all options.

In[4]:= g = Plot[SinIntegral[x], {x, 0, 20}]

5 10 15 20

0.25

0.5

0.75

1

1.25

1.5

1.75

The setting used for the PlotRange
option was All.

In[5]:= Options[g, PlotRange]

Out[5]= �PlotRange � All�
AbsoluteOptions gives the absolute
automatically chosen values used for
PlotRange.

In[6]:= AbsoluteOptions[g, PlotRange]

Out[6]= �PlotRange ����0.499999, 20.5�, ��0.0462976, 1.89824���



146 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

- 1.9.5 Contour and Density Plots

ContourPlot[f, {x, xmin, xmax}, {y, ymin, ymax}]
make a contour plot of f as a function of x and y

DensityPlot[f, {x, xmin, xmax}, {y, ymin, ymax}]
make a density plot of f

Contour and density plots.

This gives a contour plot of the
function sin�x� sin�y�.

In[1]:= ContourPlot[Sin[x] Sin[y], {x, -2, 2}, {y, -2, 2}]

-2 -1 0 1 2
-2

-1

0

1

2

A contour plot gives you essentially a “topographic map” of a function. The contours join points on
the surface that have the same height. The default is to have contours corresponding to a sequence
of equally spaced z values. Contour plots produced by Mathematica are by default shaded, in such a
way that regions with higher z values are lighter.



1.9.5 Contour and Density Plots 147

option name default value

ColorFunction Automatic what colors to use for shading; Hue uses a sequence of
hues

Contours 10 the total number of contours, or the list of z values for
contours

PlotRange Automatic the range of values to be included; you can specify
{zmin, zmax}, All or Automatic

ContourShading True whether to use shading

- PlotPoints 25 number of evaluation points in each direction

Compiled True whether to compile the function being plotted

Some options for ContourPlot. The first set can also be used in Show.

Particularly if you use a display or
printer that does not handle gray levels
well, you may find it better to switch
off shading in contour plots.

In[2]:= Show[%, ContourShading -> False]

-2 -1 0 1 2
-2

-1

0

1

2

You should realize that if you do not evaluate your function on a fine enough grid, there may be
inaccuracies in your contour plot. One point to notice is that whereas a curve generated by Plot may
be inaccurate if your function varies too quickly in a particular region, the shape of contours can be
inaccurate if your function varies too slowly. A rapidly varying function gives a regular pattern of
contours, but a function that is almost flat can give irregular contours. You can typically overcome
such problems by increasing the value of PlotPoints.



148 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

Density plots show the values of your
function at a regular array of points.
Lighter regions are higher.

In[3]:= DensityPlot[Sin[x] Sin[y], {x, -2, 2}, {y, -2, 2}]

-2 -1 0 1 2
-2

-1

0

1

2

You can get rid of the mesh like this.
But unless you have a very large
number of regions, plots usually look
better when you include the mesh.

In[4]:= Show[%, Mesh -> False]

-2 -1 0 1 2
-2

-1

0

1

2

option name default value

ColorFunction Automatic what colors to use for shading; Hue uses a sequence of hues

Mesh True whether to draw a mesh

- PlotPoints 25 number of evaluation points in each direction

Compiled True whether to compile the function being plotted

Some options for DensityPlot. The first set can also be used in Show.



1.9.6 Three-Dimensional Surface Plots 149

- 1.9.6 Three-Dimensional Surface Plots

Plot3D[f, {x, xmin, xmax}, {y, ymin, ymax}]
make a three-dimensional plot of f as a function of the
variables x and y

Basic 3D plotting function.

This makes a three-dimensional plot of
the function sin�xy�.

In[1]:= Plot3D[Sin[x y], {x, 0, 3}, {y, 0, 3}]

0

1

2

3 0

1

2

3

-1

-0.5

0

0.5

1

0

1

2

There are many options for three-dimensional plots in Mathematica. Some will be discussed in this
section; others will be described in Section 2.10.

The first set of options for three-dimensional plots is largely analogous to those provided in the
two-dimensional case.



150 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

option name default value

Axes True whether to include axes

AxesLabel None labels to be put on the axes: zlabel specifies a
label for the z axis, {xlabel, ylabel, zlabel} for
all axes

Boxed True whether to draw a three-dimensional box
around the surface

ColorFunction Automatic what colors to use for shading; Hue uses a
sequence of hues

TextStyle $TextStyle the default style to use for text in the plot

FormatType StandardForm the default format type to use for text in the
plot

DisplayFunction $DisplayFunction how to display graphics; Identity causes no
display

FaceGrids None how to draw grids on faces of the bounding
box; All draws a grid on every face

HiddenSurface True whether to draw the surface as solid

Lighting True whether to color the surface using simulated
lighting

Mesh True whether an xy mesh should be drawn on the
surface

PlotRange Automatic the range of coordinates to include in the plot:
you can specify All, {zmin, zmax} or
{{xmin,xmax},{ymin,ymax},{zmin,zmax}}

Shading True whether the surface should be shaded or left
white

ViewPoint {1.3, -2.4, 2} the point in space from which to look at the
surface

- PlotPoints 25 the number of points in each direction at which
to sample the function; {nx, ny} specifies
different numbers in the x and y directions

Compiled True whether to compile the function being plotted

Some options for Plot3D. The first set can also be used in Show.



1.9.6 Three-Dimensional Surface Plots 151

This redraws the plot on the previous
line, with options changed. With this
setting for PlotRange, only the part of
the surface in the range ��	� * z * �	�
is shown.

In[2]:= Show[%, PlotRange -> {-0.5, 0.5}]

0

1

2

3 0

1

2

3

-0.4
-0.2

0

0.2

0.4

0

1

2

When you make the original plot, you
can choose to sample more points. You
will need to do this to get good
pictures of functions that wiggle a lot.

In[3]:= Plot3D[10 Sin[x + Sin[y]], {x, -10, 10}, {y, -10, 10},
PlotPoints -> 50]

-10

-5

0

5

10 -10

-5

0

5

10

-10

-5

0

5

10

10

-5

0

5



152 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

Here is the same plot, with labels for
the axes, and grids added to each face.

In[4]:= Show[%, AxesLabel -> {"Time", "Depth", "Value"},
FaceGrids -> All]

-10

-5

0

5

10

Time

-10

-5

0

5

10

Depth

-10

-5

0

5

10

Value

10

-5

0

5Time

Probably the single most important issue in plotting a three-dimensional surface is specifying where
you want to look at the surface from. The ViewPoint option for Plot3D and Show allows you to spec-
ify the point {x, y, z} in space from which you view a surface. The details of how the coordinates
for this point are defined will be discussed in Section 2.10.10. In many versions of Mathematica, there
are ways to choose three-dimensional view points interactively, then get the coordinates to give as
settings for the ViewPoint option.

Here is a surface, viewed from the
default view point {1.3, -2.4, 2}.
This view point is chosen to be
“generic”, so that visually confusing
coincidental alignments between
different parts of your object are
unlikely.

In[5]:= Plot3D[Sin[x y], {x, 0, 3}, {y, 0, 3}]

0

1

2

3 0

1

2

3

-1

-0.5

0

0.5

1

0

1

2



1.9.6 Three-Dimensional Surface Plots 153

This redraws the picture, with the view
point directly in front. Notice the
perspective effect that makes the back
of the box look much smaller than the
front.

In[6]:= Show[%, ViewPoint -> {0, -2, 0}]

0 1 2 3

0

1
2

3

-1

-0.5

0

0.5

1

{1.3, -2.4, 2} default view point

{0, -2, 0} directly in front

{0, -2, 2} in front and up

{0, -2, -2} in front and down

{-2, -2, 0} left-hand corner

{2, -2, 0} right-hand corner

{0, 0, 2} directly above

Typical choices for the ViewPoint option.

The human visual system is not particularly good at understanding complicated mathematical
surfaces. As a result, you need to generate pictures that contain as many clues as possible about the
form of the surface.

View points slightly above the surface usually work best. It is generally a good idea to keep the
view point close enough to the surface that there is some perspective effect. Having a box explicitly
drawn around the surface is helpful in recognizing the orientation of the surface.



154 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

Here is a plot with the default settings
for surface rendering options.

In[7]:= g = Plot3D[Exp[-(x^2+y^2)], {x, -2, 2}, {y, -2, 2}]

-2

-1

0

1

2 -2

-1

0

1

2

0

0.25

0.5

0.75

1

-2

-1

0

1

This shows the surface without the
mesh drawn. It is usually much harder
to see the form of the surface if the
mesh is not there.

In[8]:= Show[g, Mesh -> False]

-2

-1

0

1

2 -2

-1

0

1

2

0

0.25

0.5

0.75

1

-2

-1

0

1



1.9.6 Three-Dimensional Surface Plots 155

This shows the surface with no
shading. Some display devices may
not be able to show shading.

In[9]:= Show[g, Shading -> False]

-2

-1

0

1

2 -2

-1

0

1

2

0

0.25

0.5

0.75

1

-2

-1

0

1

The inclusion of shading and a mesh are usually great assets in understanding the form of a surface.
On some vector graphics output devices, however, you may not be able to get shading. You should
also realize that when shading is included, it may take a long time to render the surface on your
output device.

To add an extra element of realism to three-dimensional graphics, Mathematica by default colors
three-dimensional surfaces using a simulated lighting model. In the default case, Mathematica assumes
that there are three light sources shining on the object from the upper right of the picture. Section
2.10.12 describes how you can set up other light sources, and how you can specify the reflection
properties of an object.

While in most cases, particularly with color output devices, simulated lighting is an asset, it can
sometimes be confusing. If you set the option Lighting -> False, then Mathematica will not use
simulated lighting, but will instead shade all surfaces with gray levels determined by their height.

Plot3D usually colors surfaces using a
simulated lighting model.

In[10]:= Plot3D[Sin[x y], {x, 0, 3}, {y, 0, 3}]

0

1

2

3 0

1

2

3

-1

-0.5

0

0.5

1

0

1

2



156 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

Lighting -> False switches off the
simulated lighting, and instead shades
surfaces with gray levels determined
by height.

In[11]:= Show[%, Lighting -> False]

0

1

2

3 0

1

2

3

-1

-0.5

0

0.5

1

0

1

2

With Lighting -> False, Mathematica shades surfaces according to height. You can also tell Mathe-
matica explicitly how to shade each element of a surface. This allows you effectively to use shading
to display an extra coordinate at each point on your surface.

Plot3D[{f, GrayLevel[s]}, {x, xmin, xmax}, {y, ymin, ymax}]
plot a surface corresponding to f, shaded in gray according
to the function s

Plot3D[{f, Hue[s]}, {x, xmin, xmax}, {y, ymin, ymax}]
shade by varying color hue rather than gray level

Specifying shading functions for surfaces.

This shows a surface whose height is
determined by the function Sin[x y],
but whose shading is determined by
GrayLevel[x/3].

In[12]:= Plot3D[{Sin[x y], GrayLevel[x/3]},
{x, 0, 3}, {y, 0, 3}]

0

1

2

3 0

1

2

3

-1

-0.5

0

0.5

1

0

1

2



1.9.7 Converting between Types of Graphics 157

1.9.7 Converting between Types of Graphics

Contour, density and surface plots are three different ways to display essentially the same information
about a function. In all cases, you need the values of a function at a grid of points.

The Mathematica functions ContourPlot, DensityPlot and Plot3D all produce Mathematica graph-
ics objects that include a list of the values of your function on a grid. As a result, having used any
one of these functions, Mathematica can easily take its output and use it to produce another type of
graphics.

Here is a surface plot. In[1]:= Plot3D[BesselJ[nu, 3x], {nu, 0, 3}, {x, 0, 3}]

0

1

2

3 0

1

2

3

0

0.5

1

0

1

2

This converts the object produced by
Plot3D into a contour plot.

In[2]:= Show[ ContourGraphics[ % ] ]

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3



158 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

Show[ContourGraphics[g]] convert to a contour plot

Show[DensityGraphics[g]] convert to a density plot

Show[SurfaceGraphics[g]] convert to a surface plot

Show[Graphics[g]] convert to a two-dimensional image

Conversions between types of graphics.

You can use GraphicsArray to show
different types of graphics together.

In[3]:= Show[ GraphicsArray[ {%, %%} ] ]

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0

1

2

3 0

1

2

3

0

0.5

1

0

1

2

1.9.8 Plotting Lists of Data

So far, we have discussed how you can use Mathematica to make plots of functions. You give Mathe-
matica a function, and it builds up a curve or surface by evaluating the function at many different
points.

This section describes how you can make plots from lists of data, instead of functions. (Section
1.11.3 discusses how to read data from external files and programs.) The Mathematica commands for
plotting lists of data are direct analogs of the ones discussed above for plotting functions.



1.9.8 Plotting Lists of Data 159

ListPlot[{y�, y�, . . . }] plot y�, y�, 			 at x values �, �, 			

ListPlot[{{x�, y�}, {x�, y�}, . . . }]
plot points �x�� y��, 			

ListPlot[list, PlotJoined -> True]
join the points with lines

ListPlot3D[{{z��, z��, . . . }, {z��, z��, . . . }, . . . }]
make a three-dimensional plot of the array of heights zyx

ListContourPlot[array] make a contour plot from an array of heights

ListDensityPlot[array] make a density plot

Functions for plotting lists of data.

Here is a list of values. In[1]:= t = Table[i^2, {i, 10}]

Out[1]= �1, 4, 9, 16, 25, 36, 49, 64, 81, 100�
This plots the values. In[2]:= ListPlot[t]

4 6 8 10

20

40

60

80

100

This joins the points with lines. In[3]:= ListPlot[t, PlotJoined -> True]

4 6 8 10

20

40

60

80

100



160 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

This gives a list of x, y pairs. In[4]:= Table[{i^2, 4 i^2 + i^3}, {i, 10}]

Out[4]= ��1, 5�, �4, 24�, �9, 63�, �16, 128�,�25, 225�, �36, 360�, �49, 539�,�64, 768�, �81, 1053�, �100, 1400��
This plots the points. In[5]:= ListPlot[%]

20 40 60 80 100

200

400

600

800

1000

1200

1400

This gives a rectangular array of
values. The array is quite large, so we
end the input with a semicolon to stop
the result from being printed out.

In[6]:= t3 = Table[Mod[x, y], {y, 20}, {x, 30}] ;

This makes a three-dimensional plot of
the array of values.

In[7]:= ListPlot3D[t3]

10

20

30

5

10

15

20

0

5

10

15

10

20



1.9.9 Parametric Plots 161

You can redraw the plot using Show, as
usual.

In[8]:= Show[%, ViewPoint -> {1.5, -0.5, 0}]

10

20

30 5
10

15 20

0

5

10

15

This gives a density plot of the array
of values.

In[9]:= ListDensityPlot[t3]

0 5 10 15 20 25 30
0

5

10

15

20

1.9.9 Parametric Plots

Section 1.9.1 described how to plot curves in Mathematica in which you give the y coordinate of each
point as a function of the x coordinate. You can also use Mathematica to make parametric plots. In a
parametric plot, you give both the x and y coordinates of each point as a function of a third parameter,
say t.



162 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

ParametricPlot[{fx, fy}, {t, tmin, tmax}]
make a parametric plot

ParametricPlot[{{fx, fy}, {gx, gy}, . . . }, {t, tmin, tmax}]
plot several parametric curves together

ParametricPlot[{fx, fy}, {t, tmin, tmax}, AspectRatio -> Automatic]
attempt to preserve the shapes of curves

Functions for generating parametric plots.

Here is the curve made by taking the x
coordinate of each point to be Sin[t]
and the y coordinate to be Sin[2t].

In[1]:= ParametricPlot[{Sin[t], Sin[2t]}, {t, 0, 2Pi}]

-1 -0.5 0.5 1

-1

-0.5

0.5

1

The “shape” of the curve produced
depends on the ratio of height to
width for the whole plot.

In[2]:= ParametricPlot[{Sin[t], Cos[t]}, {t, 0, 2Pi}]

-1 -0.5 0.5 1

-1

-0.5

0.5

1



1.9.9 Parametric Plots 163

Setting the option AspectRatio to
Automatic makes Mathematica preserve
the “true shape” of the curve, as
defined by the actual coordinate values
it involves.

In[3]:= Show[%, AspectRatio -> Automatic]

-1 -0.5 0.5 1

-1

-0.5

0.5

1

ParametricPlot3D[{fx, fy, fz}, {t, tmin, tmax}]
make a parametric plot of a three-dimensional curve

ParametricPlot3D[{fx, fy, fz}, {t, tmin, tmax}, {u, umin, umax}]
make a parametric plot of a three-dimensional surface

ParametricPlot3D[{fx, fy, fz, s}, . . . ]
shade the parts of the parametric plot according to the
function s

ParametricPlot3D[{{fx, fy, fz}, {gx, gy, gz}, . . . }, . . . ]
plot several objects together

Three-dimensional parametric plots.

ParametricPlot3D[{fx, fy, fz}, {t, tmin, tmax}] is the direct analog in three dimensions of
ParametricPlot[{fx, fy}, {t, tmin, tmax}] in two dimensions. In both cases, Mathematica effectively
generates a sequence of points by varying the parameter t, then forms a curve by joining these
points. With ParametricPlot, the curve is in two dimensions; with ParametricPlot3D, it is in three
dimensions.



164 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

This makes a parametric plot of a
helical curve. Varying t produces
circular motion in the x, y plane, and
linear motion in the z direction.

In[4]:= ParametricPlot3D[{Sin[t], Cos[t], t/3}, {t, 0, 15}]

-1 -0.5 0 0.5 1

-1
-0.5

0
0.5

1

0

2

4

.5
0
0.5

1

ParametricPlot3D[{fx, fy, fz}, {t, tmin, tmax}, {u, umin, umax}] creates a surface, rather than
a curve. The surface is formed from a collection of quadrilaterals. The corners of the quadrilaterals
have coordinates corresponding to the values of the fi when t and u take on values in a regular grid.

Here the x and y coordinates for the
quadrilaterals are given simply by t
and u. The result is a surface plot of
the kind that can be produced by
Plot3D.

In[5]:= ParametricPlot3D[{t, u, Sin[t u]},
{t, 0, 3}, {u, 0, 3}]

0

1

2

3

0

1

2

3

-1

-0.5

0

0.5

1

0

1

2

0

1

2



1.9.9 Parametric Plots 165

This shows the same surface as before,
but with the y coordinates distorted by
a quadratic transformation.

In[6]:= ParametricPlot3D[{t, u^2, Sin[t u]},
{t, 0, 3}, {u, 0, 3}]

0
1

2
3

0

2

4

6

8

-1
-0.5

0

0.5

1

0
1

2

0

2

4

6

8

This produces a helicoid surface by
taking the helical curve shown above,
and at each section of the curve
drawing a quadrilateral.

In[7]:= ParametricPlot3D[{u Sin[t], u Cos[t], t/3},
{t, 0, 15}, {u, -1, 1}]

-1 -0.5 0 0.5 1

-1
-0.5

0
0.5

1

0

2

4

.5
0
0.5

1

In general, it is possible to construct many complicated surfaces using ParametricPlot3D. In each
case, you can think of the surfaces as being formed by “distorting” or “rolling up” the t, u coordinate
grid in a certain way.



166 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

This produces a cylinder. Varying the
t parameter yields a circle in the x, y
plane, while varying u moves the
circles in the z direction.

In[8]:= ParametricPlot3D[{Sin[t], Cos[t], u},
{t, 0, 2Pi}, {u, 0, 4}]

-1 -0.5 0
0.5

1

-1
-0.5

0
0.5

1

0

1

2

3

4
-1

-0.5
0

0.5

This produces a torus. Varying u
yields a circle, while varying t rotates
the circle around the z axis to form the
torus.

In[9]:= ParametricPlot3D[
{Cos[t] (3 + Cos[u]), Sin[t] (3 + Cos[u]), Sin[u]},

{t, 0, 2Pi}, {u, 0, 2Pi}]

-4

-2

0

2

4
-4

-2

0

2

4

-1
-0.5

0
0.5

1

-4

-2

0

2



1.9.10 Some Special Plots 167

This produces a sphere. In[10]:= ParametricPlot3D[
{Cos[t] Cos[u], Sin[t] Cos[u], Sin[u]},

{t, 0, 2Pi}, {u, -Pi/2, Pi/2}]

-1
-0.5

0
0.5

1

-1

-0.5

0
0.5

1

-1

-0.5

0

0.5

1

-1
-0.5

0
0.5

-1

-0.5

0
0.5

You should realize that when you draw surfaces with ParametricPlot3D, the exact choice of
parametrization is often crucial. You should be careful, for example, to avoid parametrizations in
which all or part of your surface is covered more than once. Such multiple coverings often lead
to discontinuities in the mesh drawn on the surface, and may make ParametricPlot3D take much
longer to render the surface.

1.9.10 Some Special Plots

As discussed in Section 2.10, Mathematica includes a full graphics programming language. In this
language, you can set up many different kinds of plots. A few of the common ones are included in
standard Mathematica packages.



168 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

<<Graphics` load a package to set up additional graphics functions

LogPlot[f, {x, xmin, xmax}] generate a log-linear plot

LogLogPlot[f, {x, xmin, xmax}]
generate a log-log plot

LogListPlot[list] generate a log-linear plot from a list of data

LogLogListPlot[list] generate a log-log plot from a list of data

PolarPlot[r, {t, tmin, tmax}] generate a polar plot of the radius r as a function of angle t

ErrorListPlot[{{x�, y�, dy�}, . . . }]
generate a plot of data with error bars

TextListPlot[{{x�, y�, "s�"}, . . . }]
plot a list of data with each point given by the text string si

BarChart[list] plot a list of data as a bar chart

PieChart[list] plot a list of data as a pie chart

PlotVectorField[{fx, fy}, {x, xmin, xmax}, {y, ymin, ymax}]
plot the vector field corresponding to the vector function f

ListPlotVectorField[list] plot the vector field corresponding to the two-dimensional
array of vectors in list

SphericalPlot3D[r, {theta, min, max}, {phi, min, max}]
generate a three-dimensional spherical plot

Some special plotting functions defined in standard Mathematica packages.

This loads a standard Mathematica
package to set up additional graphics
functions.

In[1]:= <<Graphics`

This generates a log-linear plot. In[2]:= LogPlot[ Exp[-x] + 4 Exp[-2x], {x, 0, 6} ]

0 1 2 3 4 5 6

0.01

0.1

1



1.9.10 Some Special Plots 169

Here is a list of the first 10 primes. In[3]:= p = Table[Prime[n], {n, 10}]

Out[3]= �2, 3, 5, 7, 11, 13, 17, 19, 23, 29�
This plots the primes using the integers
1, 2, 3, . . . as plotting symbols.

In[4]:= TextListPlot[p]

4 6 8 10

10

15

20

25

1
2

3
4

5
6

7
8

9

10

Here is a bar chart of the primes. In[5]:= BarChart[p]

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

This gives a pie chart. In[6]:= PieChart[p]

1
2
3

4

56

7

8

9
10



170 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

1.9.11 Special Topic: Animated Graphics

On many computer systems, Mathematica can produce not only static images, but also animated
graphics or “movies”.

The basic idea in all cases is to generate a sequence of “frames” which can be displayed in rapid
succession. You can use the standard Mathematica graphics functions described above to produce each
frame. The mechanism for displaying the frames as a movie depends on the Mathematica interface you
are using. With a notebook-based interface, you typically put the frames in a sequence of cells, then
select the cells and choose a command to animate them. With text-based interfaces, there is often an
external program provided for displaying animated graphics. The program can typically be accessed
from inside Mathematica using the function Animate.

<<Graphics`Animation` load the animation package (if necessary)

Animate[plot, {t, tmin, tmax}] execute the graphics command plot for a sequence of values
of t, and animate the resulting sequence of frames

ShowAnimation[{g�, g�, . . . }] produce an animation from a sequence of graphics objects

Typical ways to produce animated graphics.

When you produce a sequence of frames for a movie, it is important that different frames be
consistent. Thus, for example, you should typically give an explicit setting for the PlotRange option,
rather than using the default Automatic setting, in order to ensure that the scales used in different
frames are the same. If you have three-dimensional graphics with different view points, you should
similarly set SphericalRegion -> True in order to ensure that the scaling of different plots is the
same.

This generates a list of graphics objects.
Setting DisplayFunction -> Identity
stops Plot3D from rendering the
graphics it produces. Explicitly setting
PlotRange ensures that the scale is the
same in each piece of graphics.

In[1]:= Table[ Plot3D[ BesselJ[0, Sqrt[x^2 + y^2] + t],
{x, -10, 10}, {y, -10, 10}, Axes -> False,
PlotRange -> {-0.5, 1.0},
DisplayFunction -> Identity ],

{t, 0, 8} ] // Short

Out[1]//Short= �A�SurfaceGraphics�A, :7;, A�SurfaceGraphics�A�



1.9.12 Sound 171

On an appropriate computer system,
ShowAnimation[%] would animate the
graphics. This partitions the graphics
into three rows, and shows the
resulting array of images.

In[2]:= Show[ GraphicsArray[ Partition[%, 3] ] ]

1.9.12 Sound

On most computer systems, Mathematica can produce not only graphics but also sound. Mathematica
treats graphics and sound in a closely analogous way.

For example, just as you can use Plot[f, {x, xmin, xmax}] to plot a function, so also you can
use Play[f, {t, 0, tmax}] to “play” a function. Play takes the function to define the waveform for
a sound: the values of the function give the amplitude of the sound as a function of time.

Play[f, {t, 0, tmax}] play a sound with amplitude f as a function of time t in
seconds

Playing a function.

On a suitable computer system, this
plays a pure tone with a frequency of
440 hertz for one second.

In[1]:= Play[Sin[2Pi 440 t], {t, 0, 1}]

Out[1]= -Sound-

Sounds produced by Play can have any waveform. They do not, for example, have to consist of
a collection of harmonic pieces. In general, the amplitude function you give to Play specifies the
instantaneous signal associated with the sound. This signal is typically converted to a voltage, and
ultimately to a displacement. Note that amplitude is sometimes defined to be the peak signal associated
with a sound; in Mathematica, it is always the instantaneous signal as a function of time.

This plays a more complex sound. In[2]:= Play[ Sin[700 t + 25 t Sin[350 t]], {t, 0, 4} ]

Out[2]= -Sound-



172 1. A Practical Introduction to Mathematica � 1.9 Graphics and Sound

Play is set up so that the time variable that appears in it is always measured in absolute seconds.
When a sound is actually played, its amplitude is sampled a certain number of times every second.
You can specify the sample rate by setting the option SampleRate.

Play[f, {t, 0, tmax}, SampleRate -> r]
play a sound, sampling it r times a second

Specifying the sample rate for a sound.

In general, the higher the sample rate, the better high-frequency components in the sound will be
rendered. A sample rate of r typically allows frequencies up to r�� hertz. The human auditory system
can typically perceive sounds in the frequency range 20 to 22000 hertz (depending somewhat on age
and sex). The fundamental frequencies for the 88 notes on a piano range from 27.5 to 4096 hertz.

The standard sample rate used for compact disc players is 44100. The effective sample rate in a
typical telephone system is around 8000. On most computer systems, the default sample rate used by
Mathematica is around 8000.

You can use Play[{f�, f�}, . . . ] to produce stereo sound. In general, Mathematica supports any
number of sound channels.

ListPlay[{a�, a�, . . . }, SampleRate -> r]
play a sound with a sequence of amplitude levels

Playing sampled sounds.

The function ListPlay allows you simply to give a list of values which are taken to be sound
amplitudes sampled at a certain rate.

When sounds are actually rendered by Mathematica, only a certain range of amplitudes is allowed.
The option PlayRange in Play and ListPlay specifies how the amplitudes you give should be scaled
to fit in the allowed range. The settings for this option are analogous to those for the PlotRange
graphics option discussed on page 137.

PlayRange -> Automatic (default) use an internal procedure to scale amplitudes

PlayRange -> All scale so that all amplitudes fit in the allowed range

PlayRange -> {amin, amax} make amplitudes between amin and amax fit in the
allowed range, and clip others

Specifying the scaling of sound amplitudes.



1.9.12 Sound 173

While it is often convenient to use the default setting PlayRange -> Automatic, you should realize
that Play may run significantly faster if you give an explicit PlayRange specification, so it does not
have to derive one.

Show[sound] replay a sound object

Replaying a sound object.

Both Play and ListPlay return Sound objects which contain procedures for synthesizing sounds.
You can replay a particular Sound object using the function Show that is also used for redisplaying
graphics.

The internal structure of Sound objects is discussed in Section 2.10.18.



174 1. A Practical Introduction to Mathematica � 1.10 Input and Output in Notebooks

1.10 Input and Output in Notebooks

1.10.1 Entering Greek Letters

click on Α use a button in a palette

\[Alpha] use a full name

�a� or �alpha� use a standard alias (shown below as , a ,)

�\alpha� use a TEX alias

�&agr� use an SGML alias

Ways to enter Greek letters in a notebook.

Here is a palette for entering common
Greek letters. Α Β Γ ∆ Ε Ζ Η

Θ Κ Λ Μ Ν Ξ Π

Ρ Σ Τ Φ Χ Ψ Ω

B C / 0 D E F

1 2 3 4 G 5 6

You can use Greek letters just like the
ordinary letters that you type on your
keyboard.

In[1]:= Expand[(Α + Β)^3]

Out[1]= Α3 � 3 Α2 Β � 3 Α Β2 � Β3

There are several ways to enter Greek
letters. This input uses full names.

In[2]:= Expand[(\[Alpha] + \[Beta])^3]

Out[2]= Α3 � 3 Α2 Β � 3 Α Β2 � Β3



1.10.1 Entering Greek Letters 175

full name aliases

Α �[Alpha] ,a , , ,alpha ,

Β �[Beta] ,b , , ,beta ,

Γ �[Gamma] ,g , , ,gamma ,

∆ �[Delta] ,d , , ,delta ,

Ε �[Epsilon] ,e , , ,epsilon ,

Ζ �[Zeta] ,z , , ,zeta ,

Η �[Eta] ,h , , ,et , , ,eta ,

Θ �[Theta] ,q , , ,th , , ,theta ,

Κ �[Kappa] ,k , , ,kappa ,

Λ �[Lambda] ,l , , ,lambda ,

Μ �[Mu] ,m , , ,mu ,

Ν �[Nu] ,n , , ,nu ,

Ξ �[Xi] ,x , , ,xi ,

Π �[Pi] ,p , , ,pi ,

Ρ �[Rho] ,r , , ,rho ,

Σ �[Sigma] ,s , , ,sigma ,

Τ �[Tau] ,t , , ,tau ,

Φ �[Phi] ,f , , ,ph , , ,phi ,

� �[CurlyPhi] ,j , , ,cph , , ,cphi ,

Χ �[Chi] ,c , , ,ch , , ,chi ,

Ψ �[Psi] ,y , , ,ps , , ,psi ,

Ω �[Omega] ,o , , ,w , , ,omega ,

full name aliases

� �[CapitalGamma] ,G , , ,Gamma ,

? �[CapitalDelta] ,D , , ,Delta ,

@ �[CapitalTheta] ,Q , , ,Th , , ,Theta ,

A �[CapitalLambda] ,L , , ,Lambda ,

B �[CapitalPi] ,P , , ,Pi ,

C �[CapitalSigma] ,S , , ,Sigma ,

D �[CapitalUpsilon] ,U , , ,Upsilon ,

E �[CapitalPhi] ,F , , ,Ph , , ,Phi ,

F �[CapitalChi] ,C , , ,Ch , , ,Chi ,

G �[CapitalPsi] ,Y , , ,Ps , , ,Psi ,

H �[CapitalOmega] ,O , , ,W , , ,Omega ,

Commonly used Greek letters. In aliases , stands for the key �. TEX aliases are not listed explicitly.

Note that in Mathematica the letter Π stands for Pi. None of the other Greek letters have special
meanings.

Π stands for Pi. In[3]:= N[Π]

Out[3]= 3.14159

You can use Greek letters either on
their own or with other letters.

In[4]:= Expand[(RΑΒ + �)^4]

Out[4]= RΑΒ4 � 4 RΑΒ3 3 � 6 RΑΒ2 32 � 4 RΑΒ 33 � 34

The symbol ΠΑ is not related to the
symbol Π.

In[5]:= Factor[ΠΑ^4 - 1]

Out[5]= ��1 � ΠΑ� �1 � ΠΑ� �1 � ΠΑ2�



176 1. A Practical Introduction to Mathematica � 1.10 Input and Output in Notebooks

1.10.2 Entering Two-Dimensional Input

When Mathematica reads the text x^y, it
interprets it as x raised to the power y.

In[1]:= x^y

Out[1]= xy

In a notebook, you can also give the
two-dimensional input xy directly.
Mathematica again interprets this as a
power.

In[2]:= xy

Out[2]= xy

One way to enter a two-dimensional form such as xy into a Mathematica notebook is to copy this
form from a palette by clicking the appropriate button in the palette.

Here is a palette for entering some
common two-dimensional notations. 	 	 		

����	
	





	






	

�	  �		��	 �	�	
	 

There are also several ways to enter two-dimensional forms directly from the keyboard.

x ��^� y ���� use control keys that exist on most keyboards

x ��6� y ���� use control keys that should exist on all keyboards

\!\(x\^y\) followed by Make 2D use only ordinary printable characters

Ways to enter a superscript directly from the keyboard. ���� stands for CONTROL-SPACE.

You type ��^� by holding down the CONTROL key, then hitting the ^ key. As soon as you do this,
your cursor will jump to a superscript position. You can then type anything you want and it will
appear in that position.

When you have finished, press ���� to move back down from the superscript position. ����
stands for CONTROL-SPACE; you type it by holding down the CONTROL key, then pressing the space bar.

This sequence of keystrokes enters xy . In[3]:= x ��^� y

Out[3]= xy

Here the whole expression y+z is in
the superscript.

In[4]:= x ��^� y + z

Out[4]= xy�z

Pressing ���� (CONTROL-SPACE) takes
you down from the superscript.

In[5]:= x ��^� y ���� + z

Out[5]= xy � z

You can remember the fact that ��^� gives you a superscript by thinking of ��^� as just a
more immediate form of ^. When you type x^y, Mathematica will leave this one-dimensional form



1.10.2 Entering Two-Dimensional Input 177

unchanged until you explicitly process it. But if you type x ��^� y then Mathematica will immediately
give you a superscript.

On a standard English-language keyboard, the character ^ appears as the shifted version of 6.
Mathematica therefore accepts ��6� as an alternative to ��^� . Note that if you are using something
other than a standard English-language keyboard, Mathematica will almost always accept ��6� but
may not accept ��^� .

This is an alternative input form that
avoids the use of control characters.

In[6]:= \!\( x \^ y \)

Out[6]= xy

With this input form, Mathematica
automatically understands that the + z
does not go in the superscript.

In[7]:= \!\( x \^ y + z \)

Out[7]= xy � z

Using control characters minimizes the number of keystrokes that you need to type in order to
enter a superscript. But particularly if you want to save your input in a file, or send it to another
program, it is often more convenient to use a form that does not involve control characters. You can
do this using \! sequences.

If you copy a \! sequence into Mathematica, it will automatically jump into two-dimensional form.
But if you enter the sequence directly from the keyboard, you explicitly need to choose the Make 2D
menu item in order to get the two-dimensional form.

When entered from the keyboard
\( . . . \) sequences are shown in literal
form.

\� \� x \ ^ y � z \�

Choosing the Make 2D item in the Edit
menu converts these sequences into
two-dimensional forms.

xy � z

x ��@� y ���� use control keys that exist on most keyboards

x ��-� y ���� use control keys that should exist on all keyboards

\!\(x\_y\) followed by Make 2D use only ordinary printable characters

Ways to enter a subscript directly from the keyboard.

Subscripts in Mathematica work very much like superscripts. However, whereas Mathematica auto-
matically interprets xy as x raised to the power y, it has no similar interpretation for xy. Instead, it
just treats xy as a purely symbolic object.

This enters y as a subscript. In[8]:= x ��@� y

Out[8]= xy



178 1. A Practical Introduction to Mathematica � 1.10 Input and Output in Notebooks

Here is another way to enter y as a
subscript.

In[9]:= \!\( x \_ y \)

Out[9]= xy

x ��/� y ���� use control keys

\!\(x\/y\) followed by Make 2D use only ordinary printable characters

Ways to enter a built-up fraction directly from the keyboard.

This enters the built-up fraction x
y . In[10]:= x ��/� y

Out[10]=
x
�������
y

Here the whole y + z goes into the
denominator.

In[11]:= x ��/� y + z

Out[11]=
x

���������������������
y � z

But pressing CONTROL-SPACE takes you
out of the denominator, so the + z
does not appear in the denominator.

In[12]:= x ��/� y ���� + z

Out[12]=
x
�������
y
� z

Mathematica automatically interprets a
built-up fraction as a division.

In[13]:=
8888
�������������
2222

Out[13]= 4

Here is another way to enter a built-up
fraction.

In[14]:= \!\( 8888 \/ 2222 \)

Out[14]= 4

��@� x ���� use control keys that exist on most keyboards

��2� x ���� use control keys that should exist on all keyboards

\!\(\@x\) followed by Make 2D use only ordinary printable characters

Ways to enter a square root directly from the keyboard.

This enters a square root. In[15]:= ��@� x + y

Out[15]=
���������

x � y

CONTROL-SPACE takes you out of the
square root.

In[16]:= ��@� x ���� + y

Out[16]=
����

x � y

Here is a form without control
characters.

In[17]:= \!\( \@ x + y \)

Out[17]=
����

x � y



1.10.2 Entering Two-Dimensional Input 179

And here is the usual one-dimensional
Mathematica input that gives the same
output expression.

In[18]:= Sqrt[x] + y

Out[18]=
����

x � y

��^� or ��6� go to the superscript position

��@� or ��-� go to the subscript position

��@� or ��2� go into a square root

��%� or ��5� go from subscript to superscript or vice versa, or to the
exponent position in a root

��/� go to the denominator for a fraction

���� return from a special position (CONTROL-SPACE)

Special input forms based on control characters. The second forms given should work on any keyboard.

This puts both a subscript and a
superscript on x.

In[19]:= x ��^� y ��%� z

Out[19]= xz
y

Here is another way to enter the same
expression.

In[20]:= x ��@� z ��%� y

Out[20]= xz
y

\!\( . . . \) all two-dimensional input and grouping within it

x \^ y superscript xy within \!\( . . . \)

x \_ y subscript xy within \!\( . . . \)

x \^ y \% z subscript and superscript xy
z within \!\( . . . \)

\@ x square root
 

x within \!\( . . . \)

x \/ y built-up fraction x
y within \!\( . . . \)

Special input forms that generate two-dimensional input with the Make 2D menu item.

You must preface the outermost \(
with \!.

In[21]:= \!\(a \/ b + \@ c \) + d

Out[21]=
a
�������
b
�����

c � d



180 1. A Practical Introduction to Mathematica � 1.10 Input and Output in Notebooks

You can use \( and \) to indicate the
grouping of elements in an expression
without introducing explicit
parentheses.

In[22]:= \!\(a \/ \( b + \@ c \) \) + d

Out[22]=
a

�������������������������������
b �����

c
� d

In addition to subscripts and superscripts, Mathematica also supports the notion of underscripts
and overscripts—elements that go directly underneath or above. Among other things, you can use
underscripts and overscripts to enter the limits of sums and products.

x ��+� y ���� or x ��=� y ���� create an underscript x
y

\!\(x\+y\) followed by Make 2D create an underscript x
y

x ��&� y ���� or x ��7� y ���� create an overscript x
y

\!\(x\&y\) followed by Make 2D create an overscript x
y

Creating underscripts and overscripts.

1.10.3 Editing and Evaluating Two-Dimensional Expressions

When you see a two-dimensional expression on the screen, you can edit it much as you would edit
text. You can for example place your cursor somewhere and start typing. Or you can select a part of
the expression, then remove it using the DELETE key, or insert a new version by typing it in.

In addition to ordinary text editing features, there are some keys that you can use to move around
in two-dimensional expressions.

��.� select the next larger subexpression

���� move to the right of the current structure

# move to the next character

I move to the previous character

Ways to move around in two-dimensional expressions.



1.10.3 Editing and Evaluating Two-Dimensional Expressions 181

This shows the sequence of
subexpressions selected by repeatedly
typing ��.� .

�
ArcTan� 1�2 x���������������������

3
�

���������������������������������������������������������������
3

�
Log�1 � x�
�������������������������������������������������

3
�

Log1 � x � x2�
�������������������������������������������������������������

6
�

Log�1 � x � x2 � x3�
������������������������������������������������������������������������������������

9

�
ArcTan� 1�2 x���������������������

3
�

���������������������������������������������������������������
3

�
Log�1 � x�
�������������������������������������������������

3
�

Log1 � x � x2�
�������������������������������������������������������������

6
�

Log�1 � x � x2 � x3�
������������������������������������������������������������������������������������

9

�
ArcTan� 1�2 x���������������������

3
�

���������������������������������������������������������������
3

�
Log�1 � x�
�������������������������������������������������

3
�

Log1 � x � x2�
�������������������������������������������������������������

6
�

Log�1 � x � x2 � x3�
������������������������������������������������������������������������������������

9

�
ArcTan� 1�2 x���������������������

3
�

���������������������������������������������������������������
3

�
Log�1 � x�
�������������������������������������������������

3
�

Log1 � x � x2�
�������������������������������������������������������������

6
�

Log�1 � x � x2 � x3�
������������������������������������������������������������������������������������

9

�
ArcTan� 1�2 x���������������������

3
�

���������������������������������������������������������������
3

�
Log�1 � x�
�������������������������������������������������

3
�

Log1 � x � x2�
�������������������������������������������������������������

6
�

Log�1 � x � x2 � x3�
������������������������������������������������������������������������������������

9

�
ArcTan� 1�2 x���������������������

3
�

���������������������������������������������������������������
3

�
Log�1 � x�
�������������������������������������������������

3
�

Log1 � x � x2�
�������������������������������������������������������������

6
�

Log�1 � x � x2 � x3�
������������������������������������������������������������������������������������

9

SHIFT-ENTER evaluate the whole current cell

SHIFT-CONTROL-ENTER or COMMAND-RETURN evaluate only the selected subexpression

Ways to evaluate two-dimensional expressions.

In most computations, you will want to go from one step to the next by taking the whole expression
that you have generated, and then evaluating it. But if for example you are trying to manipulate a
single formula to put it into a particular form, you may instead find it more convenient to perform a
sequence of operations separately on different parts of the expression.

You do this by selecting each part you want to operate on, then inserting the operation you want
to perform, then using SHIFT-CONTROL-ENTER or COMMAND-RETURN.

Here is an expression with one part
selected. �Factor�x4 � 1�, Factor�x5 � 1�, Factor�x6 � 1�, Factor�x7 � 1��

Pressing SHIFT-CONTROL-ENTER evaluates
the selected part. �Factor�x4 � 1�, ��1 � x� �1 � x � x2 � x3 � x4�, Factor�x6 � 1�, Factor�x7 � 1��



182 1. A Practical Introduction to Mathematica � 1.10 Input and Output in Notebooks

- 1.10.4 Entering Formulas

character short form long form symbol

Π , p , \[Pi] Pi

� , inf , \[Infinity] Infinity

� , deg , \[Degree] Degree

Special forms for some common symbols. , stands for the key �.

This is equivalent to Sin[60 Degree]. In[1]:= Sin[60�]

Out[1]=
����

3
������������������

2

Here is the long form of the input. In[2]:= Sin[60 \[Degree]]

Out[2]=
����

3
������������������

2

You can enter the same input like this. In[3]:= Sin[60 Hdeg H]

Out[3]=
����

3
������������������

2

Here the angle is in radians. In[4]:= Sin� Π�����
3
�

Out[4]=
����

3
������������������

2

special characters short form long form ordinary characters

x � y x H <= H y x \[LessEqual] y x <= y

x � y x H >= H y x \[GreaterEqual] y x >= y

x � y x H != H y x \[NotEqual] y x != y

x � y x H el H y x \[Element] y Element[x, y]

x � y x H -> H y x \[Rule] y x -> y

Special forms for a few operators. Pages 1024–1029 give a complete list.



1.10.4 Entering Formulas 183

Here the replacement rule is entered
using two ordinary characters, as ->.

In[5]:= x/(x+1) /. x -> 3 + y

Out[5]=
3 � y
���������������������
4 � y

This means exactly the same. In[6]:= x/(x+1) /. x \[Rule] 3 + y

Out[6]=
3 � y
���������������������
4 � y

As does this. In[7]:= x/(x+1) /. x � 3 + y

Out[7]=
3 � y
���������������������
4 � y

Or this. In[8]:= x/(x+1) /. x ,-> , 3 + y

Out[8]=
3 � y
���������������������
4 � y

The special arrow form # is by default
also used for output.

In[9]:= Solve[x^2 == 1, x]

Out[9]= ��x � �1�, �x � 1��

special characters short form long form ordinary characters

x 
 y x H div H y x \[Divide] y x / y

x � y x H * H y x \[Times] y x * y

x � y x H cross H y x \[Cross] y Cross[x, y]

x � y x H == H y x \[Equal] y x == y

, x � y x H l= H y x \[LongEqual] y x == y

x � y x H && H y x \[And] y x && y

x � y x H || H y x \[Or] y x || y

� x H ! H x \[Not] x !x

x � y x H => H y x \[Implies] y Implies[x, y]

x � y x H un H y x \[Union] y Union[x, y]

x � y x H inter H y x \[Intersection] y Intersection[x, y]

xy x H , H y x \[InvisibleComma] y x,y

fx f H @ H x f \[InvisibleApplication] x f @x or f[x]

Some operators with special forms used for input but not output.



184 1. A Practical Introduction to Mathematica � 1.10 Input and Output in Notebooks

Mathematica understands J, but does
not use it by default for output.

In[10]:= x � y

Out[10]=
x
�������
y

The forms of input discussed so far in this section use special characters, but otherwise just consist of
ordinary one-dimensional lines of text. Mathematica notebooks, however, also make it possible to use
two-dimensional forms of input.

two-dimensional one-dimensional

xy x ^ y power

x
�������
y

x / y division

����x Sqrt[x] square root

����xn x ^ (1/n) nth root

�
i=imin

imax

f Sum[f, {i, imin, imax}] sum

(
i=imin

imax

f Product[f, {i, imin, imax}] product

� f 7x Integrate[f, x] indefinite integral

�
xmin

xmax

f 7x Integrate[f, {x, xmin, xmax}] definite integral

8x f D[f, x] partial derivative

8x,y f D[f, x, y] multivariate partial derivative

expr+i,j,…, Part[expr, i, j, . . . ] part extraction

Some two-dimensional forms that can be used in Mathematica notebooks.

You can enter two-dimensional forms using any of the mechanisms discussed on pages 176–
180. Note that upper and lower limits for sums and products must be entered as overscripts and
underscripts—not superscripts and subscripts.

This enters an indefinite integral. Note
the use of , dd , to enter the
“differential d”.

In[11]:= ,int , f[x] ,dd , x

Out[11]= � fx��7x



1.10.4 Entering Formulas 185

Here is an indefinite integral that can
be explicitly evaluated.

In[12]:= � Exp��x2���x

Out[12]=
1
�������
2
����Π Erfx�

Here is the usual Mathematica input for
this integral.

In[13]:= Integrate[Exp[-x^2], x]

Out[13]=
1
�������
2
����Π Erfx�

This enters exactly the same integral. In[14]:= \!\( \[Integral] Exp[-x\^2] \[DifferentialD]x \)

Out[14]=
1
�������
2
����Π Erfx�

short form long form

, sum , \[Sum] summation sign �
, prod , \[Product] product sign �
, int , \[Integral] integral sign �
, dd , \[DifferentialD] special ( for use in integrals

, pd , \[PartialD] partial derivative operator "

, [[ ,, , ]] , \[LeftDoubleBracket], \[RightDoubleBracket]
part brackets

Some special characters used in entering formulas. Section 3.10 gives a complete list.

You should realize that even though a summation sign can look almost identical to a capital sigma
it is treated in a very different way by Mathematica. The point is that a sigma is just a letter; but a
summation sign is an operator which tells Mathematica to perform a Sum operation.

Capital sigma is just a letter. In[15]:= a + \[CapitalSigma]^2

Out[15]= a � I2

A summation sign, on the other hand,
is an operator.

In[16]:= �sum� ��+� n=0 ��%� m ���� 1/f[n]

Out[16]= �
n=0

m
1

����������������������
fn�

Here is another way to enter the same
input.

In[17]:= \!\( \[Sum] \+ \( n = 0 \) \% m 1 \/ f[n] \)

Out[17]= �
n=0

m
1

����������������������
fn�



186 1. A Practical Introduction to Mathematica � 1.10 Input and Output in Notebooks

Much as Mathematica distinguishes between a summation sign and a capital sigma, it also distin-
guishes between an ordinary d and the special “differential d” 7 that is used in the standard notation
for integrals. It is crucial that you use this differential 7—entered as �dd�—when you type in an
integral. If you try to use an ordinary d, Mathematica will just interpret this as a symbol called d—it
will not understand that you are entering the second part of an integration operator.

This computes the derivative of xn. In[18]:= �x xn

Out[18]= n x�1�n

Here is the same derivative specified in
ordinary one-dimensional form.

In[19]:= D[x^n, x]

Out[19]= n x�1�n

This computes the third derivative. In[20]:= �x,x,x xn

Out[20]= ��2 � n� ��1 � n� n x�3�n

Here is the equivalent one-dimensional
input form.

In[21]:= D[x^n, x, x, x]

Out[21]= ��2 � n� ��1 � n� n x�3�n

1.10.5 Entering Tables and Matrices

The Mathematica front end typically provides a Create Table/Matrix/Palette menu item which allows you
to create a blank array with any specified number of rows and columns. Once you have such an
array, you can then edit it to fill in whatever elements you want.

Mathematica treats an array like this as
a matrix represented by a list of lists.

In[1]:=
a b c

1 2 3

Out[1]= ��a, b, c�, �1, 2, 3��
Putting parentheses around the array
makes it look more like a matrix, but
does not affect its interpretation.

In[2]:=  a b c

1 2 3
�

Out[2]= ��a, b, c�, �1, 2, 3��
Using MatrixForm tells Mathematica to
display the result of the Transpose as
a matrix.

In[3]:= MatrixForm�Transpose� a b c

1 2 3
���

Out[3]//MatrixForm=
"
#
$$$$$$$

a 1

b 2

c 3

%
&
'''''''



1.10.6 Subscripts, Bars and Other Modifiers 187

��,� add a column

��J� (CONTROL-ENTER) add a row

TAB go to the next � or � element

���� (CONTROL-SPACE) move out of the table or matrix

Entering tables and matrices.

Note that you can use ��,� and ��J� to start building up an array, and particularly for small
arrays this is often more convenient than using the Create Table/Matrix/Palette menu item.

Page 449 will describe how to adjust many aspects of the appearance of arrays you create in
Mathematica. The Create Table/Matrix/Palette menu item typically allows you to make basic adjustments,
such as drawing lines between rows or columns.

1.10.6 Subscripts, Bars and Other Modifiers

Here is a typical palette of modifiers.
�� �� ��� �

�

�
�

��� ��� �
�

�

�K �
�

�� ��

�L �
�

�� ��

Mathematica allows you to use any
expression as a subscript.

In[1]:= Expand��1 � x1�n�4�
Out[1]= 1 � 4 x1�n � 6 x1�n

2 � 4 x1�n
3 � x1�n

4

Unless you specifically tell it otherwise,
Mathematica will interpret a superscript
as a power.

In[2]:= Factor�xn
4 � 1�

Out[2]= ��1 � xn� �1 � xn� �1 � xn
2�



188 1. A Practical Introduction to Mathematica � 1.10 Input and Output in Notebooks

��@� or ��-� go to the position for a subscript

��+� or ��=� go to the position underneath

��^� or ��6� go to the position for a superscript

��&� or ��7� go to the position on top

���� return from a special position (CONTROL-SPACE)

Special input forms based on control characters. The second forms given should work on any keyboard.

This enters a subscript using control
keys.

In[3]:= Expand[(1 + x��@�1+n����)^4]

Out[3]= 1 � 4 x1�n � 6 x1�n
2 � 4 x1�n

3 � x1�n
4

Just as ��^� and ��@� go to superscript and subscript positions, so also ��&� and ��=� can be
used to go to positions directly above and below. With the layout of a standard English-language
keyboard ��&� is directly to the right of ��^� while ��=� is directly to the right of ��@� .

key sequence displayed form expression form

x��&�_ x̄ OverBar[x]

x��&� , vec , �x OverVector[x]

x��&�M x̃ OverTilde[x]

x��&�^ x̂ OverHat[x]

x��&�. ẋ OverDot[x]

x��=�_
¯
x UnderBar[x]

Ways to enter some common modifiers using control keys.

Here is x̄. In[4]:= x ��&�_ ����

Out[4]= xN

You can use x̄ as a variable. In[5]:= Solve[a^2 == %, a]

Out[5]=   a � �����xN !,  a �����xN !!



1.10.7 Special Topic: Non-English Characters and Keyboards 189

key sequence displayed form expression form

x \_ y xy Subscript[x, y]

x \+ y x
y

Underscript[x, y]

x \^ y xy Superscript[x, y] (interpreted as
Power[x, y])

x \& y
y
x Overscript[x, y]

x \&_ x̄ OverBar[x]

x \&\[RightVector]
�x OverVector[x]

x \&M x̃ OverTilde[x]

x \&^ x̂ OverHat[x]

x \&. ẋ OverDot[x]

x \+_
¯
x UnderBar[x]

Ways to enter modifiers without control keys. All these forms can be used only inside \!\( . . . \).

1.10.7 Special Topic: Non-English Characters and Keyboards

If you enter text in languages other than English, you will typically need to use various additional
accented and other characters. If your computer system is set up in an appropriate way, then you will
often be able to enter such characters directly using standard keys on your keyboard. But however
your system is set up, Mathematica always provides a uniform way to handle such characters.



190 1. A Practical Introduction to Mathematica � 1.10 Input and Output in Notebooks

full name alias

à �[AGrave] ,a` ,

å �[ARing] ,ao ,

ä �[ADoubleDot] ,a" ,

ç �[CCedilla] ,c, ,

č �[CHacek] ,cv ,

é �[EAcute] ,e' ,

è �[EGrave] ,e` ,

ı́ �[IAcute] ,i' ,

ñ �[NTilde] ,nM ,

ò �[OGrave] ,o` ,

full name alias

ø �[OSlash] ,o/ ,

ö �[ODoubleDot] ,o" ,

ù �[UGrave] ,u` ,

ü �[UDoubleDot] ,u" ,

ß �[SZ] ,sz , , ,ss ,

Å �[CapitalARing] ,Ao ,

Ä �[CapitalADoubleDot] ,A" ,

Ö �[CapitalODoubleDot] ,O" ,

Ü �[CapitalUDoubleDot] ,U" ,

Some common European characters.

Here is a function whose name
involves an accented character.

In[1]:= Lam\[EAcute][x, y]

Out[1]= Laméx, y�
This is another way to enter the same
input.

In[2]:= Lam,e' ,[x, y]

Out[2]= Laméx, y�
You should realize that there is no uniform standard for computer keyboards around the world,

and as a result it is inevitable that some details of what has been said in this chapter may not apply
to your keyboard.

In particular, the identification for example of ��6� with ��^� is valid only for keyboards on
which ^ appears as SHIFT-6. On other keyboards, Mathematica uses ��6� to go to a superscript
position, but not necessarily ��^� .

Regardless of how your keyboard is set up you can always use palettes or menu items to set up
superscripts and other kinds of notation. And assuming you have some way to enter characters such
as \, you can always give input using full names such as \[Infinity] and textual forms such as
\(x\/y\).

1.10.8 Other Mathematical Notation

Mathematica supports an extremely wide range of mathematical notation, although often it does not
assign a pre-defined meaning to it. Thus, for example, you can enter an expression such as x O y, but
Mathematica will not initially make any assumption about what you mean by O.

Mathematica knows that O is an
operator, but it does not initially assign
any specific meaning to it.

In[1]:= {17 � 5, 8 � 3}

Out[1]= �17O5, 8O3�



1.10.8 Other Mathematical Notation 191

This gives Mathematica a definition for
what the O operator does.

In[2]:= x_ � y_ := Mod[x + y, 2]

Now Mathematica can evaluate O
operations.

In[3]:= {17 � 5, 8 � 3}

Out[3]= �0, 1�

full name alias

K �[CirclePlus] ,c+ ,

L �[CircleTimes] ,c* ,

M �[PlusMinus] ,+- ,

� �[Wedge] ,^ ,

� �[Vee] ,v ,

� �[TildeEqual] ,M= ,

N �[TildeTilde] ,MM ,

O �[Tilde] ,M ,

P �[Proportional] ,prop ,

Q �[Congruent] ,=== ,

� �[GreaterTilde] ,>M ,

� �[GreaterGreater]

� �[Succeeds]

� �[RightTriangle]

full name alias

 �[LongRightArrow] ,--> ,

R �[LeftRightArrow] ,<-> ,

S �[UpArrow]

� �[Equilibrium] ,equi ,

	 �[RightTee]

T �[Superset] ,sup ,

� �[SquareIntersection]

U �[Element] ,elem ,

V �[NotElement] ,!elem ,


 �[SmallCircle] ,sc ,

W �[Therefore]

	 �[VerticalSeparator] ,| ,


 �[VerticalBar] ,�| ,

� �[Backslash] ,\ ,

A few of the operators whose input is supported by Mathematica.

Mathematica assigns built-in meanings
to � and �, but not to � or �.

In[4]:= {3 � 4, 3 � 4, 3 � 4, 3 � 4}

Out[4]= �False, False, 3 � 4, 3 � 4�
There are some forms which look like characters on a standard keyboard, but which are interpreted

in a different way by Mathematica. Thus, for example, \[Backslash] or , \ , displays as \ but is not
interpreted in the same way as a \ typed directly on the keyboard.

The - and � characters used here are
different from the \ and ^ you would
type directly on a keyboard.

In[5]:= {a H\ H b, a H^ H b}

Out[5]= �a-b, a.b�
Most operators work like O and go in between their operands. But some operators can go in other

places. Thus, for example, , < , and , > , or \[LeftAngleBracket] and \[RightAngleBracket] are
effectively operators which go around their operand.

The elements of the angle bracket
operator go around their operand.

In[6]:= \[LeftAngleBracket] 1 + x \[RightAngleBracket]

Out[6]= /1 � x0



192 1. A Practical Introduction to Mathematica � 1.10 Input and Output in Notebooks

full name alias

� �[ScriptL] ,scl ,

� �[ScriptCapitalE] ,scE ,

X �[GothicCapitalR] ,goR ,

� �[DoubleStruckCapitalZ] ,dsZ ,

Y �[Aleph] ,al ,

Z �[EmptySet] ,es ,

� �[Micro] ,mi ,

full name alias

� �[Angstrom] ,Ang ,

 �[HBar] ,hb ,

� �[Sterling]

[ �[Angle]

� �[Bullet] ,bu ,

� �[Dagger] ,dg ,

� �[Natural]

Some additional letters and letter-like forms.

You can use letters and letter-like
forms anywhere in symbol names.

In[7]:= {��, \[Angle]ABC}

Out[7]= �PQ, RABC�
Q is assumed to be a symbol, and so is
just multiplied by a and b.

In[8]:= a � b

Out[8]= a b Q

1.10.9 Forms of Input and Output

Mathematica notebooks allow you to give input and get output in a variety of different forms. Typically
the front end provides menu commands for converting cells from one form to another.

InputForm a form that can be typed directly using characters on a
standard keyboard

OutputForm a form for output only that uses just characters on a
standard keyboard

StandardForm a form for input and output that makes use of special
characters and positioning

TraditionalForm a form primarily for output that imitates all aspects of
traditional mathematical notation

Forms of input and output.

The input here works in both
InputForm and StandardForm.

In[1]:= x^2 + y^2/z

Out[1]= x2 �
y2

������������
z



1.10.9 Forms of Input and Output 193

Here is a version of the input
appropriate for StandardForm.

In[2]:= x2 �
y2

�������
z

Out[2]= x2 �
y2

������������
z

InputForm is the most general form of input for Mathematica: it works whether you are using a
notebook interface or a text-based interface.

With a notebook interface, output is by
default produced in StandardForm.

In[3]:= Sqrt[x] + 1/(2 + Sqrt[y])

Out[3]=
����

x �
1

�������������������������������
2 �����

y

With a text-based interface, OutputForm
is used instead.

In[4]:= Sqrt[x] + 1/(2 + Sqrt[y]) // OutputForm

Out[4]//OutputForm=
1

Sqrt[x] + ---------------------
2 + Sqrt[y]

With a notebook interface, the default form for both input and output is StandardForm.

The basic idea of StandardForm is to provide a precise but elegant representation of Mathematica
expressions, making use of special characters, two-dimensional positioning, and so on.

Both input and output are given here
in StandardForm.

In[5]:= � 1
����������������������x3 � 1� ��x

Out[5]=
ArcTan� �1�2 x������������������������

3
�

�������������������������������������������������������������������
3

�
1
�������
3

Log1 � x� � 1
�������
6

Log1 � x � x2�

An important feature of StandardForm
is that any output you get in this form
you can also directly use as input.

In[6]:=
ArcTan� �1�2�x�������������	




3
�

���������������������������������������	



3

�
Log�1 � x�
���������������������������

3
�

Log�1 � x � x2�
�������������������������������������

6

Out[6]=
ArcTan� �1�2 x������������������������

3
�

�������������������������������������������������������������������
3

�
1
�������
3

Log1 � x� � 1
�������
6

Log1 � x � x2�
The precise nature of StandardForm prevents it from following all of the somewhat haphazard con-

ventions of traditional mathematical notation. Mathematica however also supports TraditionalForm,
which uses a large collection of rules to give a rather complete rendition of traditional mathematical
notation.

TraditionalForm uses lower-case
names for functions, and puts their
arguments in parentheses rather than
square brackets.

In[7]:= � 1
����������������������x3 � 1� ��x �� TraditionalForm

Out[7]//TraditionalForm=
tan�1 � 2 x�1\\\\\\\\\\\\\\\\�

3
�

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\�
3

�
1
\\\\\\\
3

log�x � 1� � 1
\\\\\\\
6

log�x2 � x � 1�

Here are a few transformations made
by TraditionalForm .

In[8]:= {Abs[x], ArcTan[x], BesselJ[0, x], Binomial[i, j]} //
TraditionalForm

Out[8]//TraditionalForm= ��x�, tan�1 �x�, J0 �x�, �
���

i

j
�
����



194 1. A Practical Introduction to Mathematica � 1.10 Input and Output in Notebooks

TraditionalForm is often useful for generating output that can be inserted directly into documents
which use traditional mathematical notation. But you should understand that TraditionalForm is
intended primarily for output: it does not have the kind of precision that is needed to provide reliable
input to Mathematica.

Thus, for example, in TraditionalForm, Ci(x) is the representation for both Ci[x] and
CosIntegral[x], so if this form appears on its own as input, Mathematica will have no idea which of
the two interpretations is the correct one.

In StandardForm, these three
expressions are all displayed in a
unique and unambiguous way.

In[9]:= { Ci[1+x], CosIntegral[1+x], Ci(1+x) } // StandardForm

Out[9]//StandardForm= �Ci1 � x�, CosIntegral1 � x�, Ci �1 � x��
In TraditionalForm, however, the first
two are impossible to distinguish, and
the third differs only in the presence of
an extra space.

In[10]:= { Ci[1+x], CosIntegral[1+x], Ci(1+x) } // TraditionalForm

Out[10]//TraditionalForm= �Ci�x � 1�, Ci�x � 1�, Ci �x � 1��

The ambiguities of TraditionalForm make it in general unsuitable for specifying input to the
Mathematica kernel. But at least for sufficiently simple cases, Mathematica does include various heuris-
tic rules for trying to interpret TraditionalForm expressions as Mathematica input.

Cells intended for input to the kernel
are assumed by default to contain
StandardForm expressions.

In[1]:= c�����
	




x �
1
�����
x
���� � ���x�

Out[1]= c � 1
�������
x
�����

x � � x /

Here the front end was specifically told
that input would be given in
TraditionalForm. The cell bracket has
a jagged line to indicate the difficulties
involved.

In[1]:= c
�
����
������

x �
1
�������
x

�
����� �	x


Out[1]= c� 1
�������
x
�����

x � � Gammax�

The input is a copy or simple edit of previous output.

The input has been converted from StandardForm, perhaps with simple edits.

The input contains explicit hidden information giving its interpretation.

The input contains only the simplest and most familiar notations.

Some situations in which TraditionalForm input can be expected to work.

Whenever Mathematica generates an expression in TraditionalForm, it automatically inserts various
hidden tags so that the expression can later be interpreted unambiguously if it is given as input. And



1.10.9 Forms of Input and Output 195

even if you edit the expression, the tags will often be left sufficiently undisturbed that unambiguous
interpretation will still be possible.

This generates output in
TraditionalForm .

In[11]:= Exp[I Pi x] // TraditionalForm

Out[11]//TraditionalForm= �� Π x

Mathematica was told to expect
TraditionalForm input here. The
input was copied from the previous
output line, and thus contains hidden
tags that ensure the correct
interpretation.

In[12]:= ���Π�x �� StandardForm

Out[12]//StandardForm= �� Π x

Simple editing often does not disturb
the hidden tags.

In[13]:= �2���Π�x �� StandardForm

Out[13]//StandardForm= �2 � Π x

If you enter a TraditionalForm expression from scratch, or import it from outside Mathematica,
then Mathematica will still do its best to guess what the expression means. When there are ambiguities,
what it typically does is to assume that you are using notation in whatever way is more common in
elementary mathematical applications.

In TraditionalForm input, this is
interpreted as a derivative.

In[14]:=
	 y�	x

�������������������������

	 x
�� StandardForm

Out[14]//StandardForm= y<x�
This is interpreted as an arc tangent. In[15]:= tan
1 	x
 �� StandardForm

Out[15]//StandardForm= ArcTanx�
This is interpreted as the square of a
tangent.

In[16]:= tan2 	x
 �� StandardForm

Out[16]//StandardForm= Tanx�2

There is no particularly standard
traditional interpretation for this;
Mathematica assumes that it is
1/Tan[x]^2.

In[17]:= tan
2 	x
 �� StandardForm

Out[17]//StandardForm= Cotx�2

You should realize that TraditionalForm does not provide any kind of precise or complete way of
specifying Mathematica expressions. Nevertheless, for some elementary purposes it may be sufficient,
particularly if you use a few additional tricks.



196 1. A Practical Introduction to Mathematica � 1.10 Input and Output in Notebooks

Use x(y) for functions; x (y) for multiplication

Use , ee , for the exponential constant E

Use , ii , or , jj , for the imaginary unit I

Use , dd , for differential operators in integrals and derivatives

A few tricks for TraditionalForm input.

With a space f (1 + x) is interpreted
as multiplication. Without a space,
g(1 + x) is interpreted as a function.

In[18]:= f 	1 � x
� g�	1 � x
 �� StandardForm

Out[18]//StandardForm= f �1 � x� � g1 � x�
The ordinary e is interpreted as a
symbol e. The special “exponential e”,
entered as , ee ,, is interpreted as the
exponential constant.

In[19]:= �e3.7 , �3.7  �� StandardForm

Out[19]//StandardForm= �e3.7, 40.4473�

1.10.10 Mixing Text and Formulas

The simplest way to mix text and formulas in a Mathematica notebook is to put each kind of material
in a separate cell. Sometimes, however, you may want to embed a formula within a cell of text, or
vice versa.

��(� or ��9� begin entering a formula within text, or text within a
formula

��)� or ��0� end entering a formula within text, or text within a formula

Entering a formula within text, or vice versa.

Here is a notebook with formulas
embedded in a text cell. This is a text cell, but it can contain formulas such as � 1\\\\\\\\\\\\\\x3�1 ]( x  or � log�x2�x�1�\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\6 �

tan�1 � 2]x�1\\\\\\\\\\\\\\\\\\�
3

�
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\�

3
� log�x�1�\\\\\\\\\\\\\\\\\\\\\3 . The formulas

flow with the text.

Mathematica notebooks often contain both formulas that are intended for actual evaluation by
Mathematica, and ones that are intended just to be read in a more passive way.

When you insert a formula in text, you can use the Convert to StandardForm and Convert to
TraditionalForm menu items within the formula to convert it to StandardForm or TraditionalForm .
StandardForm is normally appropriate whenever the formula is thought of as a Mathematica program
fragment.



1.10.11 Displaying and Printing Mathematica Notebooks 197

In general, however, you can use exactly the same mechanisms for entering formulas, whether or
not they will ultimately be given as Mathematica input.

You should realize, however, that to make the detailed typography of typical formulas look as good
as possible, Mathematica automatically does things such as inserting spaces around certain operators.
But these kinds of adjustments can potentially be inappropriate if you use notation in very different
ways from the ones Mathematica is expecting.

In such cases, you may have to make detailed typographical adjustments by hand, using the
mechanisms discussed on page 449.

1.10.11 Displaying and Printing Mathematica Notebooks

Depending on the purpose for which you are using a Mathematica notebook, you may want to change
its overall appearance. The front end allows you to specify independently the styles to be used for
display on the screen and for printing. Typically you can do this by choosing appropriate items in the
Format menu.

ScreenStyleEnvironment styles to be used for screen display

PrintingStyleEnvironment styles to be used for printed output

Working standard style definitions for screen display

Presentation style definitions for presentations

Condensed style definitions for high display density

Printout style definitions for printed output

Front end settings that define the global appearance of a notebook.

Here is a typical notebook as it appears
in working form on the screen. �A Symbolic Sum

Here is the input:

�
n�1

m
1

�������������������������
n��n � 4�2

Here is the output:

�615 � 1435 m � 1090 m2 � 332 m3 � 35 m4 � 72 Π2 � 150 m Π2 � 105 m2 Π2 � 30 m3 Π2 � 3 m4 Π2��
�72 �1 � m� �2 � m� �3 � m� �4 � m�� � PolyGamma1, 5 � m�

������������������������������������������������������������������������������������
4



198 1. A Practical Introduction to Mathematica � 1.10 Input and Output in Notebooks

Here is the same notebook with
condensed styles. � A Symbolic Sum

Here is the input:

�
n�1

m
1

�������������������������
n��n � 4�2

Here is the output:

615 � 1435 m � 1090 m2 � 332 m3 � 35 m4 � 72 Π2 � 150 m Π2 � 105 m2 Π2 � 30 m3 Π2 � 3 m4 Π2

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
72 �1 � m� �2 � m� �3 � m� �4 � m� �

PolyGamma1, 5 � m�
�������������������������������������������������������������������������������

4

Here is a preview of how the notebook
would appear when printed out. � A Symbolic Sum

Here is the input:

�
n�1

m
1

�������������������������
n��n � 4�2

Here is the output:

615 � 1435 m � 1090 m2 � 332 m3 � 35 m4 � 72 Π2 � 150 m Π2 � 105 m2 Π2 � 30 m3 Π2 � 3 m4 Π2

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
72 �1 � m� �2 � m� �3 � m� �4 � m� �

PolyGamma1, 5 � m�
�������������������������������������������������������������������������������

4

1.10.12 Creating Your Own Palettes

The Mathematica notebook front end comes with a collection of standard palettes. But it also allows
you to create your own palettes.

Set up a blank palette using Create Table/Matrix/Palette under the Input menu

Fill in the contents

Make the palette active using Generate Palette from Selection under the File menu

The basic steps in creating a palette.

Create Table/Matrix/Palette will create a
blank palette. 	 	 	 	 	

	 	 	 	 	

You can then insert whatever you want
into each button. Α 1 � Β 2 � Γ2 	 	

	 	 	 	 	



1.10.12 Creating Your Own Palettes 199

The menu item Generate Palette from
Selection makes a separate active palette. Α 1 � Β 2 � Γ2 	 	

	 	 	 	 	

Clicking on a button in the palette now
inserts its contents into your notebook. x � y �

1
���������������
2 � Γ2

Create Table/Matrix/Palette set up a blank palette

Generate Palette from Selection make a separate active palette

Generate Notebook from Palette convert a palette back into an editable notebook

Edit Button edit the script associated with a palette or button

Menu items for setting up palettes.

When you are creating a palette, you can use the same mechanisms to add columns and rows as
you can when you are creating any other kind of table, matrix or grid. Thus ��,� will add a new
column of buttons, and ��J� (CONTROL-ENTER) will add a new row.

button contents action

X replace current selection by X

text containing X�Y replace current selection S by XSY

Contents of buttons.

In the simplest case, when you press a button in a palette what will happen is that the contents of
the button will be inserted into your notebook, replacing whatever your current selection was.

Sometimes however you may not simply want to overwrite your current selection, but rather you
may want to modify the selection in some way. As an example, you might want to wrap a function
like Expand around your current selection.

You can do this by setting up a button with contents Expand[�]. The � can be entered as , spl ,
or \[SelectionPlaceholder] . In general, � serves as a placeholder for your current selection. When
you press a button that contains �, the � is first replaced by your current selection, and only then is
the result inserted into your notebook.

Here is a cell in which the current
selection is part of an expression. 1 � �1 � x�4 � �2 � y�3



200 1. A Practical Introduction to Mathematica � 1.10 Input and Output in Notebooks

Pressing a button containing
Expand[�] wraps Expand around the
current selection.

1 � �1 � x�4 � Expand��2 � y�3�

Mathematica allows you to associate any action you want with a button. You can set up some
common actions by using the Edit Button menu, having selected either a single button or a whole
palette.

Paste paste the contents of the button (default)

Evaluate paste then evaluate in place what has been pasted

EvaluateCell paste then evaluate the whole cell

CopyEvaluate copy the current selection into a new cell, then paste and
evaluate in place

CopyEvaluateCell copy the current selection into a new cell, then paste and
evaluate the whole cell

Typical actions for buttons.

With the default Paste setting for a button action, pressing the button modifies the contents of a
cell but does no evaluation. By choosing other button actions, however, you can tell Mathematica to
perform an evaluation every time you press the button.

With the button action Evaluate the result of this evaluation is made to overwrite your current
selection. This is useful if you want to set up a button which modifies parts of an expression in place,
say by applying Expand[�] to them.

The button action Evaluate performs evaluation only on whatever was pasted into your current
cell. The button action EvaluateCell, on the other hand, performs evaluation on the whole cell,
generating a new cell to show the result.

Here is an expression with a part
selected. 1 � �1 � x�4 � �2 � y�3

This shows the result of pressing a
button containing Expand[�] with an
EvaluateCell button action.

1 � �1 � x�4 � Expand��2 � y�3�
9 � �1 � x�4 � 12�y � 6�y2 � y3

Sometimes it is useful to be able to extract the current selection from a cell, and then operate on it
in a new cell. You can do this using the button actions CopyEvaluate and CopyEvaluateCell.



1.10.13 Setting Up Hyperlinks 201

Here is an expression with a part
selected. 1 � �1 � x�4 � �2 � y�3

A button with a CopyEvaluateCell
button action copies the current
selection into a new cell, then pastes
the contents of the button, and then
performs an evaluation, putting the
result into a new cell.

1 � �1 � x�4 � �2 � y�3

In[1]:= Expand��2 � y�3�
Out[1]= 8 � 12 y � 6 y2 � y3

Create Table/Matrix/Palette set up a blank palette

Create Button set up a single button not in a palette

Generate Palette from Selection make a separate window

Cell Active activate buttons within a cell in a notebook

Ways to create active elements in the front end.

Mathematica allows you to set up a wide range of active elements in the notebook front end. In the
most common case, you have a palette which consists of an array of buttons in a separate window.
But you can also have arrays of buttons, or even single buttons, within the cells of an ordinary
notebook.

In addition, you can make a button execute any action you want—performing computations in
the Mathematica kernel, or changing the configuration of notebooks in the front end. Section 2.11.6
discusses how to do this.

1.10.13 Setting Up Hyperlinks

Create Hyperlink make the selected object a hyperlink

Menu item for setting up hyperlinks.

A hyperlink is a special kind of button which jumps to another part of a notebook when it is pressed.
Typically hyperlinks are indicated in Mathematica by blue or underlined text.

To set up a hyperlink, just select the text or other object that you want to be a hyperlink. Then
choose the menu item Create Hyperlink and fill in the specification of where you want the destination
of the hyperlink to be.



202 1. A Practical Introduction to Mathematica � 1.10 Input and Output in Notebooks

1.10.14 Automatic Numbering

Choose a cell style such as NumberedEquation

Use the Create Automatic Numbering Object menu, with a counter name such as Section

Two ways to set up automatic numbering in a Mathematica notebook.

The input for each cell here is exactly
the same, but the cells contain an
element that displays as a
progressively larger number as one
goes through the notebook.

� 1.  A Section

� 2.  A Section

� 3.  A Section

These cells are in NumberedEquation
style. (1)� x

������������������
x � 1

�7x

(2)� Sinx�
���������������������������

x � 1
�7x

(3)� Logx� � Expx�
������������������������������������������������������������

x � 1
�7x

1.10.15 Exposition in Mathematica Notebooks

Mathematica notebooks provide the basic technology that you need to be able to create a very wide
range of sophisticated interactive documents. But to get the best out of this technology you need to
develop an appropriate style of exposition.

Many people at first tend to use Mathematica notebooks either as simple worksheets containing a
sequence of input and output lines, or as on-screen versions of traditional books and other printed
material. But the most effective and productive uses of Mathematica notebooks tend to lie at neither one
of these extremes, and instead typically involve a fine-grained mixing of Mathematica input and output
with explanatory text. In most cases the single most important factor in obtaining such fine-grained
mixing is uniform use of the Mathematica language.

One might think that there would tend to be three kinds of material in a Mathematica notebook:
plain text, mathematical formulas, and computer code. But one of the key ideas of Mathematica is to
provide a single language that offers the best of both traditional mathematical formulas and computer
code.

In StandardForm , Mathematica expressions have the same kind of compactness and elegance as
traditional mathematical formulas. But unlike such formulas, Mathematica expressions are set up in a
completely consistent and uniform way. As a result, if you use Mathematica expressions, then regard-



1.10.15 Exposition in Mathematica Notebooks 203

less of your subject matter, you never have to go back and reexplain your basic notation: it is always
just the notation of the Mathematica language. In addition, if you set up your explanations in terms of
Mathematica expressions, then a reader of your notebook can immediately take what you have given,
and actually execute it as Mathematica input.

If one has spent many years working with traditional mathematical notation, then it takes a little
time to get used to seeing mathematical facts presented as StandardForm Mathematica expressions.
Indeed, at first one often has a tendency to try to use TraditionalForm whenever possible, perhaps
with hidden tags to indicate its interpretation. But quite soon one tends to evolve to a mixture of
StandardForm and TraditionalForm . And in the end it becomes clear that StandardForm alone is
for most purposes the most effective form of presentation.

In traditional mathematical exposition, there are many tricks for replacing chunks of text by frag-
ments of formulas. In StandardForm many of these same tricks can be used. But the fact that
Mathematica expressions can represent not only mathematical objects but also procedures and algo-
rithms increases greatly the extent to which chunks of text can be replaced by shorter and more precise
material.



204 1. A Practical Introduction to Mathematica � 1.11 Files and External Operations

1.11 Files and External Operations

1.11.1 Reading and Writing Mathematica Files

You can use files on your computer system to store definitions and results from Mathematica. The
most general approach is to store everything as plain text that is appropriate for input to Mathematica.
With this approach, a version of Mathematica running on one computer system produces files that can
be read by a version running on any computer system. In addition, such files can be manipulated by
other standard programs, such as text editors.

<< name read in a Mathematica input file

expr >> name output expr to a file as plain text

expr >>> name append expr to a file

!!name display the contents of a plain text file

Reading and writing files.

This expands �x � y�, and outputs the
result to a file called tmp.

In[1]:= Expand[ (x + y)^3 ] >> tmp

Here are the contents of tmp. They can
be used directly as input for
Mathematica.

In[2]:= !!tmp

x^3 + 3*x^2*y + 3*x*y^2 + y^3

This reads in tmp, evaluating the
Mathematica input it contains.

In[3]:= <<tmp

Out[3]= x3 � 3 x2 y � 3 x y2 � y3

If you are familiar with Unix or MS-DOS operating systems, you will recognize the Mathematica
redirection operators >>, >>> and << as being analogous to the shell operators >, >> and <.

The redirection operators >> and >>> are convenient for storing results you get from Mathematica.
The function Save["name", f, g, . . . ] allows you to save definitions for variables and functions.

Save["name", f, g, . . . ] save definitions for variables or functions in a file

Saving definitions in plain text files.

Here is a definition for a function f. In[4]:= f[x_] := x^2 + c

This gives c the value 17. In[5]:= c = 17

Out[5]= 17



1.11.1 Reading and Writing Mathematica Files 205

This saves the definition of f in the file
ftmp.

In[6]:= Save["ftmp", f]

Mathematica automatically saves both
the actual definition of f, and the
definition of c on which it depends.

In[7]:= !!ftmp

f[x_] := x^2 + c

c = 17

This clears the definitions of f and c. In[8]:= Clear[f, c]

You can reinstate the definitions you
saved simply by reading in the file
ftmp.

In[9]:= <<ftmp

Out[9]= 17

file.m Mathematica expression file in plain text format

file.nb Mathematica notebook file

file.mx Mathematica definitions in DumpSave format

Typical names of Mathematica files.

If you use a notebook interface to Mathematica, then the Mathematica front end allows you to save
complete notebooks, including not only Mathematica input and output, but also text, graphics and
other material.

It is conventional to give Mathematica notebook files names that end in .nb, and most versions of
Mathematica enforce this convention.

When you open a notebook in the Mathematica front end, Mathematica will immediately display
the contents of the notebook, but it will not normally send any of these contents to the kernel for
evaluation until you explicitly request this to be done.

Within a Mathematica notebook, however, you can use the Cell menu in the front end to identify
certain cells as initialization cells, and if you do this, then the contents of these cells will automatically
be evaluated whenever you open the notebook.

The I in the cell bracket indicates that
the second cell is an initialization cell
that will be evaluated whenever the
notebook is opened.

� Implementation

f�x_� :� Log�x� � Log�1 � x�

It is sometimes convenient to maintain Mathematica material both in a notebook which contains
explanatory text, and in a package which contains only raw Mathematica definitions. You can do this
by putting the Mathematica definitions into initialization cells in the notebook. Every time you save
the notebook, the front end will then allow you to save an associated .m file which contains only the
raw Mathematica definitions.



206 1. A Practical Introduction to Mathematica � 1.11 Files and External Operations

1.11.2 Advanced Topic: Finding and Manipulating Files

Although the details of how files are named and organized differ from one computer system to
another, Mathematica provides some fairly general mechanisms for finding and handling files.

Mathematica assumes that files on your computer system are organized in a collection of directories.
At any point, you have a current working directory. You can always refer to files in this directory just
by giving their names.

Directory[ ] give your current working directory

SetDirectory["dir"] set your current working directory

FileNames[ ] list the files in your current working directory

FileNames["form"] list the files whose names match a certain form

<<name read in a file with the specified name

<<context` read in a file corresponding to the specified context

CopyFile["file�", "file�"] copy file� to file�

DeleteFile["file"] delete a file

Functions for finding and manipulating files.

This is the current working directory.
The form it has differs from one
computer system to another.

In[1]:= Directory[ ]

Out[1]= /users/sw

This resets the current working
directory.

In[2]:= SetDirectory["Examples"]

Out[2]= /users/sw/Examples

This gives a list of all files in your
current working directory whose names
match the form Test*.m.

In[3]:= FileNames["Test*.m"]

Out[3]= {Test1.m, Test2.m, TestFinal.m}

Although you usually want to create files only in your current working directory, you often need
to read in files from other directories. As a result, when you ask Mathematica to read in a file with a
particular name, Mathematica automatically searches a list of directories (specified by the value of the
search path variable $Path) to try and find a file with that name.

One issue in handling files in Mathematica is that the form of file and directory names varies between
computer systems. This means for example that names of files which contain standard Mathematica
packages may be quite different on different systems. Through a sequence of conventions, it is how-
ever possible to read in a standard Mathematica package with the same command on all systems. The
way this works is that each package defines a so-called Mathematica context, of the form name`name`.
On each system, all files are named in correspondence with the contexts they define. Then when you



1.11.3 Importing and Exporting Data 207

use the command <<name`name` Mathematica automatically translates the context name into the file
name appropriate for your particular computer system.

FindList["file", "text"] give a list of all lines in a file that contain the
specified text

FindList[FileNames[ ], "text"] search in all files in your current directory

Searching for text in files.

This searches for all lines in the file
BookIndex containing diagrams.

In[4]:= FindList["BookIndex", "diagrams"]

Out[4]= �Ferrers diagrams: DiscreteMath`Combinatorica ,̀
Hasse diagrams: DiscreteMath`Combinatorica �̀

- 1.11.3 Importing and Exporting Data

Import["file", "Table"] import a table of data from a file

Export["file", list, "Table"] export list to a file as a table of data

Importing and exporting tabular data.

This exports an array of numbers to
the file out.dat.

In[1]:= Export["out.dat", {{5.7, 4.3}, {-1.2, 7.8}}]

Out[1]= out.dat

Here are the contents of the file
out.dat.

In[2]:= !!out.dat

5.7 4.3

-1.2 7.8

This imports the contents of out.dat
as a table of data.

In[3]:= Import["out.dat", "Table"]

Out[3]= ��5.7, 4.3�, ��1.2, 7.8��
Import["file", "Table"] will handle many kinds of tabular data, automatically deducing the details
of the format whenever possible. Export["file", list, "Table"] writes out data separated by spaces,
with numbers given in C or Fortran-like form, as in 2.3E5 and so on.

Import["name.ext"] import data assuming a format deduced from the file name

Export["name.ext", expr] export data in a format deduced from the file name

Importing and exporting general data.



208 1. A Practical Introduction to Mathematica � 1.11 Files and External Operations

- table formats "CSV", "TSV"

- matrix formats "MAT", "HDF", "MTX"

, specialized data formats "FITS", "SDTS"

Some common formats for tabular data.

Import and Export can handle not only tabular data, but also data corresponding to graphics,
sounds, expressions and even whole documents. Import and Export can often deduce the appropri-
ate format for data simply by looking at the extension of the file name for the file in which the data is
being stored. Sections 2.10.19 and 2.12.7 discuss in more detail how Import and Export work. Note
that you can also use Import and Export to manipulate raw files of binary data.

This imports a graphic in JPEG format. In[4]:= Import["turtle.jpg"]

Out[4]= A�Graphics�A

This displays the graphic. In[5]:= Show[%]

$ImportFormats import formats supported on your system

$ExportFormats export formats supported on your system

Finding the complete list of supported import and export formats.

- 1.11.4 Exporting Graphics and Sounds

Mathematica allows you to export graphics and sounds in a wide variety of formats. If you use the
notebook front end for Mathematica, then you can typically just copy and paste graphics and sounds
directly into other programs using the standard mechanism available on your computer system.



1.11.5 Exporting Formulas from Notebooks 209

Export["name.ext", graphics] export graphics to a file in a format deduced from
the file name

Export["file", graphics, "format"] export graphics in the specified format

Export["!command", graphics, "format"] export graphics to an external command

Exporting Mathematica graphics and sounds.

- graphics formats "EPS", "TIFF", "GIF", "JPEG", "PNG", "PDF", "SVG", etc.

sound formats "SND", "WAV", "AIFF", "AU", etc.

Some common formats for graphics and sounds. Page 568 gives a complete list.

This generates a plot. In[1]:= Plot[Sin[x] + Sin[Sqrt[2] x], {x, 0, 10}]

2 4 6 8 10

-1

-0.5

0.5

1

1.5

2

This exports the plot to a file in
Encapsulated PostScript format.

In[2]:= Export["sinplot.eps", %]

Display::pserr:
PostScript language error:
Warning: substituting font Courier for WriCMTT9

Out[2]= sinplot.eps

1.11.5 Exporting Formulas from Notebooks

Here is a cell containing a formula.

�
ArcTan� 1�2 x���������������������

3
�

���������������������������������������������������������������
3

�
Log�1 � x�
�������������������������������������������������

3
�

Log1 � x � x2�
�������������������������������������������������������������

6

This is what you get if you copy the
formula and paste it into an external
text-based program.

\!\(-\(ArcTan[\(1 + 2 x\)\/\@3]\/\@3\) + Log[-1 + x]\/3
- Log[1 + x + x\^2]\/6\)



210 1. A Practical Introduction to Mathematica � 1.11 Files and External Operations

Pasting the text back into a notebook
immediately reproduces the original
formula.

�
ArcTan� 1�2 x���������������������

3
�

���������������������������������������������������������������
3

�
Log�1 � x�
�������������������������������������������������

3
�

Log1 � x � x2�
�������������������������������������������������������������

6

Mathematica allows you to export formulas both textually and visually. You can use Export to tell
Mathematica to write a visual representation of a formula into a file.

Export["file.eps", ToBoxes[expr]]
save the visual form of expr to a file in EPS format

Export["file", ToBoxes[expr], "format"]
save the visual form of expr in the specified format

Exporting expressions in visual form.

1.11.6 Generating TEX

Mathematica notebooks provide a sophisticated environment for creating technical documents. But
particularly if you want to merge your work with existing material in TEX, you may find it convenient
to use TeXForm to convert expressions in Mathematica into a form suitable for input to TEX.

TeXForm[expr] print expr in TEX input form

Mathematica output for TEX.

Here is an expression, printed in
standard Mathematica form.

In[1]:= (x + y)^2 / Sqrt[x y]

Out[1]=
�x � y�2

�����������������������������������������
x y

Here is the expression in TEX input
form.

In[2]:= TeXForm[%]

Out[2]//TeXForm= \frac{{\left( x + y \right) }^2}{{\sqrt{x\,y}}}

TeXSave["file.tex"] save your complete current notebook in TEX input form

TeXSave["file.tex", "source.nb"] save a TEX version of the notebook source.nb

Converting complete notebooks to TEX.



1.11.7 Exchanging Material with the Web 211

In addition to being able to convert individual expressions to TEX, Mathematica also provides capa-
bilities for translating complete notebooks. These capabilities can usually be accessed from the Save As
Special menu in the notebook front end, where various options can be set.

, 1.11.7 Exchanging Material with the Web

HTMLSave["file.html"] save your complete current notebook in HTML form

HTMLSave["file.html", "source.nb"] save an HTML version of the notebook source.nb

Converting notebooks to HTML.

HTMLSave has many options that allow you to specify how notebooks should be converted for web
browsers with different capabilities. You can find details in the Additional Information section of the
online Reference Guide entry for HTMLSave.

, MathMLForm[expr] print expr in MathML form

, MathMLForm[StandardForm[expr]] use StandardForm rather than traditional
mathematical notation

, ToExpression["string", MathMLForm] interpret a string of MathML as Mathematica input

Converting to and from MathML.

Here is an expression printed in
MathML form.

In[1]:= MathMLForm[x^2/z]

Out[1]//MathMLForm= <math>
<mfrac>

<msup>
<mi>x</mi>
<mn>2</mn>

</msup>
<mi>z</mi>

</mfrac>
</math>

If you paste MathML into a Mathematica notebook, Mathematica will automatically try to convert
it to Mathematica input. You can copy an expression from a notebook as MathML using the Copy As
menu in the notebook front end.



212 1. A Practical Introduction to Mathematica � 1.11 Files and External Operations

, Export["file.xml", expr] export in XML format

, Import["file.xml"] import from XML

, ImportString["string", "XML"] import data from a string of XML

XML importing and exporting.

Somewhat like Mathematica expressions, XML is a general format for representing data. Mathematica
automatically converts certain types of expressions to and from specific types of XML. MathML is one
example. Other examples include NotebookML for notebook expressions, and SVG for graphics.

If you ask Mathematica to import a generic piece of XML, it will produce a SymbolicXML ex-
pression. Each XML element of the form <elem attr='val'>data</elem> is translated to a Mathematica
SymbolicXML expression of the form XMLElement["elem", {"attr"->"val"}, {data}]. Once you have
imported a piece of XML as SymbolicXML, you can use Mathematica’s powerful symbolic program-
ming capabilities to manipulate the expression you get. You can then use Export to export the result
in XML form.

This generates a SymbolicXML
expression, with an XMLElement
representing the a element in the XML
string.

In[2]:= ImportString["<a aa='va'>s</a>", "XML"]

Out[2]= XMLObjectDocument���,
XMLElementa, �aa � va�, �s��, ���

There are now two nested levels in the
SymbolicXML.

In[3]:= ImportString[
"<a><b bb='1'>ss</b><b bb='2'>ss</b></a>", "XML"]

Out[3]= XMLObjectDocument���,
XMLElementa, ��, �XMLElementb, �bb � 1�, �ss��,

XMLElementb, �bb � 2�, �ss����, ���
This does a simple transformation on
the SymbolicXML.

In[4]:= %/."ss" -> XMLElement["c",{},{"xx"}]

Out[4]= XMLObjectDocument���,
XMLElementa, ��, �XMLElementb, �bb � 1�,�XMLElementc, ��, �xx����, XMLElementb,�bb � 2�, �XMLElementc, ��, �xx������, ���

This shows the result as an XML
string.

In[5]:= ExportString[%, "XML"]

Out[5]= ?a>
?b bb='1'>
?c>xx?�c>
?�b>
?b bb='2'>
?c>xx?�c>
?�b>
?�a>



1.11.8 Generating C and Fortran Expressions 213

1.11.8 Generating C and Fortran Expressions

If you have special-purpose programs written in C or Fortran, you may want to take formulas you
have generated in Mathematica and insert them into the source code of your programs. Mathematica
allows you to convert mathematical expressions into C and Fortran expressions.

CForm[expr] write out expr so it can be used in a C program

FortranForm[expr] write out expr for Fortran

Mathematica output for programming languages.

Here is an expression, written out in
standard Mathematica form.

In[1]:= Expand[(1 + x + y)^2]

Out[1]= 1 � 2 x � x2 � 2 y � 2 x y � y2

Here is the expression in Fortran form. In[2]:= FortranForm[%]

Out[2]//FortranForm= 1 + 2*x + x**2 + 2*y + 2*x*y + y**2

Here is the same expression in C form.
Macros for objects like Power are
defined in the C header file mdefs.h
that comes with most versions of
Mathematica.

In[3]:= CForm[%]

Out[3]//CForm= 1 + 2*x + Power(x,2) + 2*y + 2*x*y + Power(y,2)

You should realize that there are many differences between Mathematica and C or Fortran. As a
result, expressions you translate may not work exactly the same as they do in Mathematica. In addition,
there are so many differences in programming constructs that no attempt is made to translate these
automatically.

Compile[x, expr] compile an expression into efficient internal code

A way to compile Mathematica expressions.

One of the common motivations for converting Mathematica expressions into C or Fortran is to try
to make them faster to evaluate numerically. But the single most important reason that C and Fortran
can potentially be more efficient than Mathematica is that in these languages one always specifies up
front what type each variable one uses will be—integer, real number, array, and so on.

The Mathematica function Compile makes such assumptions within Mathematica, and generates
highly efficient internal code. Usually this code runs not much if at all slower than custom C or
Fortran.



214 1. A Practical Introduction to Mathematica � 1.11 Files and External Operations

1.11.9 Splicing Mathematica Output into External Files

If you want to make use of Mathematica output in an external file such as a program or document,
you will often find it useful to “splice” the output automatically into the file.

Splice["file.mx"] splice Mathematica output into an external file named file.mx,
putting the results in the file file.x

Splice["infile", "outfile"] splice Mathematica output into infile, sending the output to
outfile

Splicing Mathematica output into files.

The basic idea is to set up the definitions you need in a particular Mathematica session, then run
Splice to use the definitions you have made to produce the appropriate output to insert into the
external files.

#include "mdefs.h"

double f(x)
double x;
{
double y;

y = <* Integrate[Sin[x]^5, x] *> ;

return(2*y - 1) ;
}

A simple C program containing a Mathematica formula.

#include "mdefs.h"

double f(x)
double x;
{
double y;

y = -5*Cos(x)/8 + 5*Cos(3*x)/48 - Cos(5*x)/80 ;

return(2*y - 1) ;
}

The C program after processing with Splice.



1.11.10 Running External Programs 215

1.11.10 Running External Programs

Although Mathematica does many things well, there are some things that are inevitably better done by
external programs. You can use Mathematica to control the external programs, or to analyze output
they generate.

On almost all computer systems, it is possible to run external programs directly from within Mathe-
matica. Mathematica communicates with the external programs through interprocess communication
mechanisms such as pipes.

In the simplest cases, the only communication you need is to send and receive plain text. You can
prepare input in Mathematica, then give it as the standard input for the external program. Or you can
take the standard output of the external program, and use it as input to Mathematica.

In general, Mathematica allows you to treat streams of data exchanged with external programs just
like files. In place of a file name, you give the external command to run, prefaced by an exclamation
point.

<<file read in a file

<<"!command" run an external command, and read in the output it
produces

expr >> "!command" feed the textual form of expr to an external command

ReadList["!command", Number] run an external command, and read in a list of the
numbers it produces

Some ways to communicate with external programs.

This feeds the expression x^2 + y^2 as
input to the external command lpr,
which, on a typical Berkeley Unix
system, sends output to a printer.

In[1]:= x^2 + y^2 >> "!lpr"

With a text-based interface, putting ! at
the beginning of a line causes the
remainder of the line to be executed as
an external command. squares is an
external program which prints numbers
and their squares.

In[2]:= !squares 4

1 1
2 4
3 9
4 16

This runs the external command
squares 4, then reads numbers from
the output it produces.

In[3]:= ReadList["!squares 4", Number, RecordLists->True]

Out[3]= ��1, 1�, �2, 4�, �3, 9�, �4, 16��



216 1. A Practical Introduction to Mathematica � 1.11 Files and External Operations

- 1.11.11 MathLink

The previous section discussed how to exchange plain text with external programs. In many cases,
however, you will find it convenient to communicate with external programs at a higher level, and to
exchange more structured data with them.

On almost all computer systems, Mathematica supports the MathLink communication standard, which
allows higher-level communication between Mathematica and external programs. In order to use Math-
Link, an external program has to include some special source code, which is usually distributed with
Mathematica.

MathLink allows external programs both to call Mathematica, and to be called by Mathematica. Sec-
tion 2.13 discusses some of the details of MathLink. By using MathLink, you can, for example, treat
Mathematica essentially like a subroutine embedded inside an external program. Or you can create a
front end that implements your own user interface, and communicates with the Mathematica kernel
via MathLink.

You can also use MathLink to let Mathematica call individual functions inside an external program.
As described in Section 2.13, you can set up a MathLink template file to specify how particular functions
in Mathematica should call functions inside your external program. From the MathLink template file,
you can generate source code to include in your program. Then when you start your program, the ap-
propriate Mathematica definitions are automatically made, and when you call a particular Mathematica
function, code in your external program is executed.

Install["command"] start an external program and install Mathematica definitions
to call functions it contains

Uninstall[link] terminate an external program and uninstall definitions for
functions in it

Calling functions in external programs.

This starts the external program simul,
and installs Mathematica definitions to
call various functions in it.

In[1]:= Install["simul"]

Out[1]= LinkObject[simul, 5, 4]

Here is a usage message for a function
that was installed in Mathematica to call
a function in the external program.

In[2]:= ?srun

srun[{a, r, gamma}, x] performs a simulation with the
specified parameters.

When you call this function, it executes
code in the external program.

In[3]:= srun[{3, 0, 7}, 5]

Out[3]= 6.78124

This terminates the simul program. In[4]:= Uninstall["simul"]

Out[4]= simul



1.11.11 MathLink 217

You can use MathLink to communicate with many types of programs, including with Mathematica
itself. There are versions of the MathLink library for a variety of common programming languages.
The J/Link system provides a standard way to integrate Mathematica with Java, based on MathLink.
With J/Link you can take any Java class, and immediately make its methods accessible as functions in
Mathematica.



218 1. A Practical Introduction to Mathematica � 1.12 Special Topic: The Internals of Mathematica

1.12 Special Topic: The Internals of Mathematica

1.12.1 Why You Do Not Usually Need to Know about Internals

Most of this book is concerned with explaining what Mathematica does, not how it does it. But the
purpose of this chapter is to say at least a little about how Mathematica does what it does. Appendix
A.9 gives some more details.

You should realize at the outset that while knowing about the internals of Mathematica may be of
intellectual interest, it is usually much less important in practice than one might at first suppose.

Indeed, one of the main points of Mathematica is that it provides an environment where you
can perform mathematical and other operations without having to think in detail about how these
operations are actually carried out inside your computer.

Thus, for example, if you want to factor the polynomial x�� � �, you can do this just by giving
Mathematica the command Factor[x^15 - 1]; you do not have to know the fairly complicated details
of how such a factorization is actually carried out by the internal code of Mathematica.

Indeed, in almost all practical uses of Mathematica, issues about how Mathematica works inside turn
out to be largely irrelevant. For most purposes it suffices to view Mathematica simply as an abstract
system which performs certain specified mathematical and other operations.

You might think that knowing how Mathematica works inside would be necessary in determining
what answers it will give. But this is only very rarely the case. For the vast majority of the com-
putations that Mathematica does are completely specified by the definitions of mathematical or other
operations.

Thus, for example, 3^40 will always be 12157665459056928801, regardless of how Mathematica
internally computes this result.

There are some situations, however, where several different answers are all equally consistent with
the formal mathematical definitions. Thus, for example, in computing symbolic integrals, there are
often several different expressions which all yield the same derivative. Which of these expressions is
actually generated by Integrate can then depend on how Integrate works inside.

Here is the answer generated by
Integrate.

In[1]:= Integrate[1/x + 1/x^2, x]

Out[1]= �
1
�������
x
� Logx�

This is an equivalent expression that
might have been generated if
Integrate worked differently inside.

In[2]:= Together[%]

Out[2]=
�1 � x Logx�
��������������������������������������������������������

x



1.12.1 Why You Do Not Usually Need to Know about Internals 219

In numerical computations, a similar phenomenon occurs. Thus, for example, FindRoot gives you
a root of a function. But if there are several roots, which root is actually returned depends on the
details of how FindRoot works inside.

This finds a particular root of
cos�x� � sin�x�.

In[3]:= FindRoot[Cos[x] + Sin[x], {x, 10.5}]

Out[3]= �x � 14.9226�
With a different starting point, a
different root is found. Which root is
found with each starting point depends
in detail on the internal algorithm
used.

In[4]:= FindRoot[Cos[x] + Sin[x], {x, 10.8}]

Out[4]= �x � 11.781�

The dependence on the details of internal algorithms can be more significant if you push approxi-
mate numerical computations to the limits of their validity.

Thus, for example, if you give NIntegrate a pathological integrand, whether it yields a meaningful
answer or not can depend on the details of the internal algorithm that it uses.

NIntegrate knows that this result is
unreliable, and can depend on the
details of the internal algorithm, so it
prints warning messages.

In[5]:= NIntegrate[Sin[1/x], {x, 0, 1}]

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect
one of the following: singularity, value of the
integration being 0, oscillatory integrand, or
insufficient WorkingPrecision. If your integrand is
oscillatory try using the option Method->Oscillatory
in NIntegrate.

NIntegrate::ncvb:
NIntegrate failed to converge to prescribed accuracy

after 7 recursive bisections in x near x = 0.0035126
8.

Out[5]= 0.504894

Traditional numerical computation systems have tended to follow the idea that all computations
should yield results that at least nominally have the same precision. A consequence of this idea is
that it is not sufficient just to look at a result to know whether it is accurate; you typically also have
to analyze the internal algorithm by which the result was found. This fact has tended to make people
believe that it is always important to know internal algorithms for numerical computations.

But with the approach that Mathematica takes, this is rarely the case. For Mathematica can usually
use its arbitrary-precision numerical computation capabilities to give results where every digit that is
generated follows the exact mathematical specification of the operation being performed.

Even though this is an approximate
numerical computation, every digit is
determined by the mathematical
definition for Π.

In[6]:= N[Pi, 30]

Out[6]= 3.14159265358979323846264338328

Once again, every digit here is
determined by the mathematical
definition for sin�x�.

In[7]:= N[Sin[10^50], 20]

Out[7]= �0.78967249342931008271



220 1. A Practical Introduction to Mathematica � 1.12 Special Topic: The Internals of Mathematica

If you use machine-precision numbers,
Mathematica cannot give a reliable
result, and the answer depends on the
details of the internal algorithm used.

In[8]:= Sin[10.^50]

Out[8]= 0.705222

It is a general characteristic that whenever the results you get can be affected by the details of
internal algorithms, you should not depend on these results. For if nothing else, different versions
of Mathematica may exhibit differences in these results, either because the algorithms operate slightly
differently on different computer systems, or because fundamentally different algorithms are used in
versions released at different times.

This is the result for sin������ on one
type of computer.

In[1]:= Sin[10.^50]

Out[1]= 0.705222

Here is the same calculation on another
type of computer.

In[1]:= Sin[10.^50]

Out[1]= -0.0528229

And here is the result obtained in
Mathematica Version 1.

In[1]:= Sin[10.^50]

Out[1]= 0.0937538

Particularly in more advanced applications of Mathematica, it may sometimes seem worthwhile to
try to analyze internal algorithms in order to predict which way of doing a given computation will
be the most efficient. And there are indeed occasionally major improvements that you will be able to
make in specific computations as a result of such analyses.

But most often the analyses will not be worthwhile. For the internals of Mathematica are quite
complicated, and even given a basic description of the algorithm used for a particular purpose, it is
usually extremely difficult to reach a reliable conclusion about how the detailed implementation of
this algorithm will actually behave in particular circumstances.

A typical problem is that Mathematica has many internal optimizations, and the efficiency of a
computation can be greatly affected by whether the details of the computation do or do not allow a
given internal optimization to be used.

1.12.2 Basic Internal Architecture

numbers sequences of binary digits

strings sequences of character code bytes or byte pairs

symbols pointers to the central table of symbols

general expressions sequences of pointers to the head and elements

Internal representations used by Mathematica.



1.12.2 Basic Internal Architecture 221

When you type input into Mathematica, a data structure is created in the memory of your computer to
represent the expression you have entered.

In general, different pieces of your expression will be stored at different places in memory. Thus,
for example, for a list such as {2, x, y + z} the “backbone” of the list will be stored at one place,
while each of the actual elements will be stored at a different place.

The backbone of the list then consists just of three “pointers” that specify the addresses in computer
memory at which the actual expressions that form the elements of the list are to be found. These
expressions then in turn contain pointers to their subexpressions. The chain of pointers ends when
one reaches an object such as a number or a string, which is stored directly as a pattern of bits in
computer memory.

Crucial to the operation of Mathematica is the notion of symbols such as x. Whenever x appears in
an expression, Mathematica represents it by a pointer. But the pointer is always to the same place in
computer memory—an entry in a central table of all symbols defined in your Mathematica session.

This table is a repository of all information about each symbol. It contains a pointer to a string
giving the symbol’s name, as well as pointers to expressions which give rules for evaluating the
symbol.

Recycle memory as soon as the data in it is no longer referenced.

The basic principle of Mathematica memory management.

Every piece of memory used by Mathematica maintains a count of how many pointers currently
point to it. When this count drops to zero, Mathematica knows that the piece of memory is no longer
being referenced, and immediately makes the piece of memory available for something new.

This strategy essentially ensures that no memory is ever wasted, and that any piece of memory that
Mathematica uses is actually storing data that you need to access in your Mathematica session.

Create an expression corresponding to the input you have given.

Process the expression using all rules known for the objects in it.

Generate output corresponding to the resulting expression.

The basic actions of Mathematica.

At the heart of Mathematica is a conceptually simple procedure known as the evaluator which takes
every function that appears in an expression and evaluates that function.



222 1. A Practical Introduction to Mathematica � 1.12 Special Topic: The Internals of Mathematica

When the function is one of the thousand or so that are built into Mathematica, what the evaluator
does is to execute directly internal code in the Mathematica system. This code is set up to perform the
operations corresponding to the function, and then to build a new expression representing the result.

The built-in functions of Mathematica support universal computation.

The basic feature that makes Mathematica a self-contained system.

A crucial feature of the built-in functions in Mathematica is that they support universal computation.
What this means is that out of these functions you can construct programs that perform absolutely
any kinds of operation that are possible for a computer.

As it turns out, small subsets of Mathematica’s built-in functions would be quite sufficient to support
universal computation. But having the whole collection of functions makes it in practice easier to
construct the programs one needs.

The underlying point, however, is that because Mathematica supports universal computation you
never have to modify its built-in functions: all you have to do to perform a particular task is to
combine these functions in an appropriate way.

Universal computation is the basis for all standard computer languages. But many of these lan-
guages rely on the idea of compilation. If you use C or Fortran, for example, you first write your
program, then you compile it to generate machine code that can actually be executed on your
computer.

Mathematica does not require you to go through the compilation step: once you have input an
expression, the functions in the expression can immediately be executed.

Often Mathematica will preprocess expressions that you enter, arranging things so that subsequent
execution will be as efficient as possible. But such preprocessing never affects the results that are
generated, and can rarely be seen explicitly.

1.12.3 The Algorithms of Mathematica

The built-in functions of Mathematica implement a very large number of algorithms from computer
science and mathematics. Some of these algorithms are fairly old, but the vast majority had to be
created or at least modified specifically for Mathematica. Most of the more mathematical algorithms in
Mathematica ultimately carry out operations which at least at some time in the past were performed
by hand. In almost all cases, however, the algorithms use methods very different from those common
in hand calculation.

Symbolic integration provides an example. In hand calculation, symbolic integration is typically
done by a large number of tricks involving changes of variables and the like.



1.12.3 The Algorithms of Mathematica 223

But in Mathematica symbolic integration is performed by a fairly small number of very systematic
procedures. For indefinite integration, the idea of these procedures is to find the most general form
of the integral, then to differentiate this and try to match up undetermined coefficients.

Often this procedure produces at an intermediate stage immensely complicated algebraic expres-
sions, and sometimes very sophisticated kinds of mathematical functions. But the great advantage of
the procedure is that it is completely systematic, and its operation requires no special cleverness of
the kind that only a human could be expected to provide.

In having Mathematica do integrals, therefore, one can be confident that it will systematically get
results, but one cannot expect that the way these results are derived will have much at all to do with
the way they would be derived by hand.

The same is true with most of the mathematical algorithms in Mathematica. One striking feature
is that even for operations that are simple to describe, the systematic algorithms to perform these
operations in Mathematica involve fairly advanced mathematical or computational ideas.

Thus, for example, factoring a polynomial in x is first done modulo a prime such as 17 by finding
the null space of a matrix obtained by reducing high powers of x modulo the prime and the original
polynomial. Then factorization over the integers is achieved by “lifting” modulo successive powers
of the prime using a collection of intricate theorems in algebra and analysis.

The use of powerful systematic algorithms is important in making the built-in functions in Mathe-
matica able to handle difficult and general cases. But for easy cases that may be fairly common in
practice it is often possible to use simpler and more efficient algorithms.

As a result, built-in functions in Mathematica often have large numbers of extra pieces that handle
various kinds of special cases. These extra pieces can contribute greatly to the complexity of the
internal code, often taking what would otherwise be a five-page algorithm and making it hundreds
of pages long.

Most of the algorithms in Mathematica, including all their special cases, were explicitly constructed
by hand. But some algorithms were instead effectively created automatically by computer.

Many of the algorithms used for machine-precision numerical evaluation of mathematical functions
are examples. The main parts of such algorithms are formulas which are as short as possible but
which yield the best numerical approximations.

Most such formulas used in Mathematica were actually derived by Mathematica itself. Often many
months of computation were required, but the result was a short formula that can be used to evaluate
functions in an optimal way.



224 1. A Practical Introduction to Mathematica � 1.12 Special Topic: The Internals of Mathematica

- 1.12.4 The Software Engineering of Mathematica

Mathematica is one of the more complex software systems ever constructed. Its source code is written
in a combination of C and Mathematica, and for Version 5, the code for the kernel consists of about
1.5 million lines of C and 150,000 lines of Mathematica. This corresponds to roughly 50 megabytes of
data, or some 50,000 printed pages.

The C code in Mathematica is actually written in a custom extension of C which supports certain
memory management and object-oriented features. The Mathematica code is optimized using Share
and DumpSave.

In the Mathematica kernel the breakdown of different parts of the code is roughly as follows:
language and system: 30%; numerical computation: 25%; algebraic computation: 25%; graphics and
kernel output: 20%.

Most of this code is fairly dense and algorithmic: those parts that are in effect simple procedures or
tables use minimal code since they tend to be written at a higher level—often directly in Mathematica.

The source code for the kernel, save a fraction of a percent, is identical for all computer systems on
which Mathematica runs.

For the front end, however, a significant amount of specialized code is needed to support each
different type of user interface environment. The front end contains about 650,000 lines of system-
independent C source code, of which roughly 150,000 lines are concerned with expression formatting.
Then there are between 50,000 and 100,000 lines of specific code customized for each user interface
environment.

Mathematica uses a client-server model of computing. The front end and kernel are connected via
MathLink—the same system as is used to communicate with other programs.

Within the C code portion of the Mathematica kernel, modularity and consistency are achieved by
having different parts communicate primarily by exchanging complete Mathematica expressions.

But it should be noted that even though different parts of the system are quite independent at the
level of source code, they have many algorithmic interdependencies. Thus, for example, it is common
for numerical functions to make extensive use of algebraic algorithms, or for graphics code to use
fairly advanced mathematical algorithms embodied in quite different Mathematica functions.

Since the beginning of its development in 1986, the effort spent directly on creating the source
code for Mathematica is a substantial fraction of a thousand man-years. In addition, a comparable or
somewhat larger effort has been spent on testing and verification.

The source code of Mathematica has changed greatly since Version 1 was released. The total number
of lines of code in the kernel grew from 150,000 in Version 1 to 350,000 in Version 2, 600,000 in Version
3, 800,000 in Version 4 and about 1.5 million in Version 5. In addition, at every stage existing code
has been revised—so that Version 5 has only a few percent of its code in common with Version 1.



1.12.5 Testing and Verification 225

Despite these changes in internal code, however, the user-level design of Mathematica has re-
mained compatible from Version 1 on. Much functionality has been added, but programs created for
Mathematica Version 1 will almost always run absolutely unchanged under Version 5.

1.12.5 Testing and Verification

Every version of Mathematica is subjected to a large amount of testing before it is released. The vast
majority of this testing is done by an automated system that is written in Mathematica.

The automated system feeds millions of pieces of input to Mathematica, and checks that the output
obtained from them is correct. Often there is some subtlety in doing such checking: one must account
for different behavior of randomized algorithms and for such issues as differences in machine-precision
arithmetic on different computers.

The test inputs used by the automated system are obtained in several ways:

For every Mathematica function, inputs are devised that exercise both common and extreme cases.

Inputs are devised to exercise each feature of the internal code.

All the examples in this book and in other books about Mathematica are used.

Standard numerical tables are optically scanned for test inputs.

Formulas from all standard mathematical tables are entered.

Exercises from textbooks are entered.

For pairs of functions such as Integrate and D or Factor and Expand, random expressions are
generated and tested.

When tests are run, the automated testing system checks not only the results, but also side effects
such as messages, as well as memory usage and speed.

There is also a special instrumented version of Mathematica which is set up to perform internal con-
sistency tests. This version of Mathematica runs at a small fraction of the speed of the real Mathematica,
but at every step it checks internal memory consistency, interruptibility, and so on.

The instrumented version of Mathematica also records which pieces of Mathematica source code have
been accessed, allowing one to confirm that all of the various internal functions in Mathematica have
been exercised by the tests given.

All standard Mathematica tests are routinely run on each version of Mathematica, on each different
computer system. Depending on the speed of the computer system, these tests take a few days to a
few weeks of computer time.

In addition, huge numbers of tests based on random inputs are run for the equivalent of many
years of computer time on a sampling of different computer systems.



226 1. A Practical Introduction to Mathematica � 1.12 Special Topic: The Internals of Mathematica

Even with all this testing, however, it is inevitable in a system as complex as Mathematica that errors
will remain.

The standards of correctness for Mathematica are certainly much higher than for typical mathemati-
cal proofs. But just as long proofs will inevitably contain errors that go undetected for many years, so
also a complex software system such as Mathematica will contain errors that go undetected even after
millions of people have used it.

Nevertheless, particularly after all the testing that has been done on it, the probability that you will
actually discover an error in Mathematica in the course of your work is extremely low.

Doubtless there will be times when Mathematica does things you do not expect. But you should
realize that the probabilities are such that it is vastly more likely that there is something wrong with
your input to Mathematica or your understanding of what is happening than with the internal code of
the Mathematica system itself.

If you do believe that you have found a genuine error in Mathematica, then you should contact
Wolfram Research Technical Support, so that the error can be corrected in future versions.



Part 2

Part 1 introduced Mathematica by showing you how to use some of its

more common features. This part looks at Mathematica in a different way.

Instead of discussing individual features, it concentrates on the global

structure of Mathematica, and describes the framework into which all 

the features fit. 

When you first start doing calculations with Mathematica, you 

will probably find it sufficient just to read the relevant parts of Part 1.

However, once you have some general familiarity with the Mathematica

system, you should make a point of reading this part. 

This part describes the basic structure of the Mathematica language,

with which you can extend Mathematica, adding your own functions,

objects or other constructs. This part shows how Mathematica uses a 

fairly small number of very powerful symbolic programming methods 

to allow you to build up many different kinds of programs.

Most of this part assumes no specific prior knowledge of computer 

science. Nevertheless, some of it ventures into some fairly complicated

issues. You can probably ignore these issues unless they specifically affect

programs you are writing.

If you are an expert on computer languages, you may be able to glean

some understanding of Mathematica by looking at the Reference Guide 

at the end of this book. Nevertheless, to get a real appreciation for the

principles of Mathematica, you will have to read this part.  



Part 2Part 2



Principles of Mathematica

2.1 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 230

2.2 Functional Operations . . . . . . . . . . . . . . . . . . . 240

2.3 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

2.4 Manipulating Lists . . . . . . . . . . . . . . . . . . . . . 283

2.5 Transformation Rules and Definitions . . . . . . . . . . 299

2.6 Evaluation of Expressions . . . . . . . . . . . . . . . . . 324

2.7 Modularity and the Naming of Things . . . . . . . . . 378

2.8 Strings and Characters . . . . . . . . . . . . . . . . . . . 406

2.9 Textual Input and Output . . . . . . . . . . . . . . . . . 424

2.10 The Structure of Graphics and Sound . . . . . . . . . . 486

2.11 Manipulating Notebooks . . . . . . . . . . . . . . . . . 572

2.12 Files and Streams . . . . . . . . . . . . . . . . . . . . . . 623

2.13 MathLink and External Program Communication . . . 657

2.14 Global Aspects of Mathematica Sessions . . . . . . . . 702



230 2. Principles of Mathematica � 2.1 Expressions

2.1 Expressions

2.1.1 Everything Is an Expression

Mathematica handles many different kinds of things: mathematical formulas, lists and graphics, to
name a few. Although they often look very different, Mathematica represents all of these things in one
uniform way. They are all expressions.

A prototypical example of a Mathematica expression is f[x, y]. You might use f[x, y] to represent
a mathematical function f�x� y�. The function is named f, and it has two arguments, x and y.

You do not always have to write expressions in the form f[x, y, . . . ]. For example, x + y is also
an expression. When you type in x + y, Mathematica converts it to the standard form Plus[x, y].
Then, when it prints it out again, it gives it as x + y.

The same is true of other “operators”, such as ^ (Power) and / (Divide).

In fact, everything you type into Mathematica is treated as an expression.

x + y + z Plus[x, y, z]

x y z Times[x, y, z]

x^n Power[x, n]

{a, b, c} List[a, b, c]

a -> b Rule[a, b]

a = b Set[a, b]

Some examples of Mathematica expressions.

You can see the full form of any expression by using FullForm[expr].

Here is an expression. In[1]:= x + y + z

Out[1]= x � y � z

This is the full form of the expression. In[2]:= FullForm[%]

Out[2]//FullForm= Plusx, y, z�
Here is another expression. In[3]:= 1 + x^2 + (y + z)^2

Out[3]= 1 � x2 � �y � z�2

Its full form has several nested pieces. In[4]:= FullForm[%]

Out[4]//FullForm= Plus1, Powerx, 2�, PowerPlusy, z�, 2��



2.1.2 The Meaning of Expressions 231

The object f in an expression f[x, y, . . . ] is known as the head of the expression. You can extract it
using Head[expr]. Particularly when you write programs in Mathematica, you will often want to test
the head of an expression to find out what kind of thing the expression is.

Head gives the “function name” f. In[5]:= Head[f[x, y]]

Out[5]= f

Here Head gives the name of the
“operator”.

In[6]:= Head[a + b + c]

Out[6]= Plus

Everything has a head. In[7]:= Head[{a, b, c}]

Out[7]= List

Numbers also have heads. In[8]:= Head[23432]

Out[8]= Integer

You can distinguish different kinds of
numbers by their heads.

In[9]:= Head[345.6]

Out[9]= Real

Head[expr] give the head of an expression: the f in f[x, y]

FullForm[expr] display an expression in the full form used by Mathematica

Functions for manipulating expressions.

2.1.2 The Meaning of Expressions

The notion of expressions is a crucial unifying principle in Mathematica. It is the fact that every object
in Mathematica has the same underlying structure that makes it possible for Mathematica to cover so
many areas with a comparatively small number of basic operations.

Although all expressions have the same basic structure, there are many different ways that expres-
sions can be used. Here are a few of the interpretations you can give to the parts of an expression.



232 2. Principles of Mathematica � 2.1 Expressions

meaning of f meaning of x, y, 			 examples

Function arguments or parameters Sin[x], f[x, y]

Command arguments or parameters Expand[(x + 1)^2]

Operator operands x + y, a = b

Head elements {a, b, c}

Object type contents RGBColor[r, g, b]

Some interpretations of parts of expressions.

Expressions in Mathematica are often used to specify operations. So, for example, typing in 2 + 3
causes 2 and 3 to be added together, while Factor[x^6 - 1] performs factorization.

Perhaps an even more important use of expressions in Mathematica, however, is to maintain a struc-
ture, which can then be acted on by other functions. An expression like {a, b, c} does not specify
an operation. It merely maintains a list structure, which contains a collection of three elements. Other
functions, such as Reverse or Dot, can act on this structure.

The full form of the expression {a, b, c} is List[a, b, c]. The head List performs no operations.
Instead, its purpose is to serve as a “tag” to specify the “type” of the structure.

You can use expressions in Mathematica to create your own structures. For example, you might
want to represent points in three-dimensional space, specified by three coordinates. You could give
each point as point[x, y, z]. The “function” point again performs no operation. It serves merely
to collect the three coordinates together, and to label the resulting object as a point.

You can think of expressions like point[x, y, z] as being “packets of data”, tagged with a partic-
ular head. Even though all expressions have the same basic structure, you can distinguish different
“types” of expressions by giving them different heads. You can then set up transformation rules and
programs which treat different types of expressions in different ways.

2.1.3 Special Ways to Input Expressions

Mathematica allows you to use special notation for many common operators. For example, although
internally Mathematica represents a sum of two terms as Plus[x, y], you can enter this expression in
the much more convenient form x + y.

The Mathematica language has a definite grammar which specifies how your input should be con-
verted to internal form. One aspect of the grammar is that it specifies how pieces of your input
should be grouped. For example, if you enter an expression such as a + b ^ c, the Mathematica gram-
mar specifies that this should be considered, following standard mathematical notation, as a + (b ^ c)
rather than (a + b) ^ c. Mathematica chooses this grouping because it treats the operator ^ as having



2.1.3 Special Ways to Input Expressions 233

a higher precedence than +. In general, the arguments of operators with higher precedence are grouped
before those of operators with lower precedence.

You should realize that absolutely every special input form in Mathematica is assigned a definite
precedence. This includes not only the traditional mathematical operators, but also forms such as ->,
:= or the semicolons used to separate expressions in a Mathematica program.

The table on pages 1024–1029 gives all the operators of Mathematica in order of decreasing prece-
dence. The precedence is arranged, where possible, to follow standard mathematical usage, and to
minimize the number of parentheses that are usually needed.

You will find, for example, that relational operators such as < have lower precedence than arith-
metic operators such as +. This means that you can write expressions such as x + y > 7 without using
parentheses.

There are nevertheless many cases where you do have to use parentheses. For example, since ; has
a lower precedence than =, you need to use parentheses to write x = ( a ; b ). Mathematica interprets
the expression x = a ; b as (x = a) ; b. In general, it can never hurt to include extra parentheses,
but it can cause a great deal of trouble if you leave parentheses out, and Mathematica interprets your
input in a way you do not expect.

f [x, y] standard form for f [x, y]

f @ x prefix form for f [x]

x // f postfix form for f [x]

x M f M y infix form for f [x, y]

Four ways to write expressions in Mathematica.

There are several common types of operators in Mathematica. The + in x + y is an “infix” oper-
ator. The - in -p is a “prefix” operator. Even when you enter an expression such as f[x, y, . . . ]
Mathematica allows you to do it in ways that mimic infix, prefix and postfix forms.

This “postfix form” is exactly
equivalent to f[x + y].

In[1]:= x + y //f

Out[1]= fx � y�
You will often want to add functions
like N as “afterthoughts”, and give
them in postfix form.

In[2]:= 3^(1/4) + 1 //N

Out[2]= 2.31607

It is sometimes easier to understand
what a function is doing when you
write it in infix form.

In[3]:= {a, b, c} �Join� {d, e}

Out[3]= �a, b, c, d, e�



234 2. Principles of Mathematica � 2.1 Expressions

You should notice that // has very low precedence. If you put //f at the end of any expression
containing arithmetic or logical operators, the f is applied to the whole expression. So, for example,
x+y //f means f[x+y], not x+f[y].

The prefix form @ has a much higher precedence. f @ x + y is equivalent to f[x] + y, not f[x + y].
You can write f[x + y] in prefix form as f @ (x + y).

2.1.4 Parts of Expressions

Since lists are just a particular kind of expression, it will come as no surprise that you can refer to
parts of any expression much as you refer to parts of a list.

This gets the second element in the list
{a, b, c}.

In[1]:= {a, b, c}[[2]]

Out[1]= b

You can use the same method to get
the second element in the sum
x + y + z.

In[2]:= (x + y + z)[[2]]

Out[2]= y

This gives the last element in the sum. In[3]:= (x + y + z)[[-1]]

Out[3]= z

Part 0 is the head. In[4]:= (x + y + z)[[0]]

Out[4]= Plus

You can refer to parts of an expression such as f[g[a], g[b]] just as you refer to parts of nested
lists.

This is part 1. In[5]:= f[g[a], g[b]] [[1]]

Out[5]= ga�
This is part {1,1}. In[6]:= f[g[a], g[b]] [[1, 1]]

Out[6]= a

This extracts part {2,1} of the
expression 1 + x^2.

In[7]:= (1 + x^2) [[2, 1]]

Out[7]= x

To see what part is {2,1}, you can
look at the full form of the expression.

In[8]:= FullForm[1 + x^2]

Out[8]//FullForm= Plus1, Powerx, 2��
You should realize that the assignment of indices to parts of expressions is done on the basis of

the internal Mathematica forms of the expression, as shown by FullForm . These forms do not always
correspond directly with what you see printed out. This is particularly true for algebraic expressions,
where Mathematica uses a standard internal form, but prints the expressions in special ways.

Here is the internal form of x / y. In[9]:= FullForm[x / y]

Out[9]//FullForm= Timesx, Powery, �1��



2.1.4 Parts of Expressions 235

It is the internal form that is used in
specifying parts.

In[10]:= (x / y)[[2]]

Out[10]=
1
�������
y

You can manipulate parts of expressions just as you manipulate parts of lists.

This replaces the third part of
a + b + c + d by x^2. Note that the
sum is automatically rearranged when
the replacement is done.

In[11]:= ReplacePart[a + b + c + d, x^2, 3]

Out[11]= a � b � d � x2

Here is an expression. In[12]:= t = 1 + (3 + x)^2 / y

Out[12]= 1 �
�3 � x�2

����������������������������������
y

This is the full form of t. In[13]:= FullForm[ t ]

Out[13]//FullForm= Plus1, TimesPowerPlus3, x�, 2�, Powery, �1���
This resets a part of the expression t. In[14]:= t[[2, 1, 1]] = x

Out[14]= x

Now the form of t has been changed. In[15]:= t

Out[15]= 1 �
x2

������������
y

Part[expr, n] or expr[[n]] the nth part of expr

Part[expr, {n�, n�, . . . }] or expr[[{n�, n�, . . . }]]
a combination of parts of an expression

ReplacePart[expr, elem, n] replace the nth part of expr by elem

Functions for manipulating parts of expressions.

Section 1.2.4 discussed how you can use lists of indices to pick out several elements of a list at a
time. You can use the same procedure to pick out several parts in an expression at a time.

This picks out elements 2 and 4 in the
list, and gives a list of these elements.

In[16]:= {a, b, c, d, e}[[{2, 4}]]

Out[16]= �b, d�
This picks out parts 2 and 4 of the
sum, and gives a sum of these
elements.

In[17]:= (a + b + c + d + e)[[{2, 4}]]

Out[17]= b � d

Any part in an expression can be viewed as being an argument of some function. When you pick
out several parts by giving a list of indices, the parts are combined using the same function as in the
expression.



236 2. Principles of Mathematica � 2.1 Expressions

2.1.5 Manipulating Expressions like Lists

You can use most of the list operations discussed in Section 1.8 on any kind of Mathematica expression.
By using these operations, you can manipulate the structure of expressions in many ways.

Here is an expression that corresponds
to a sum of terms.

In[1]:= t = 1 + x + x^2 + y^2

Out[1]= 1 � x � x2 � y2

Take[t, 2] takes the first two elements
from t, just as if t were a list.

In[2]:= Take[t, 2]

Out[2]= 1 � x

Length gives the number of elements
in t.

In[3]:= Length[t]

Out[3]= 4

You can use FreeQ[expr, form] to test
whether form appears nowhere in expr.

In[4]:= FreeQ[t, x]

Out[4]= False

This gives a list of the positions at
which x appears in t.

In[5]:= Position[t, x]

Out[5]= ��2�, �3, 1��
You should remember that all functions which manipulate the structure of expressions act on the

internal forms of these expressions. You can see these forms using FullForm[expr]. They may not be
what you would expect from the printed versions of the expressions.

Here is a function with four
arguments.

In[6]:= f[a, b, c, d]

Out[6]= fa, b, c, d�
You can add an argument using
Append.

In[7]:= Append[%, e]

Out[7]= fa, b, c, d, e�
This reverses the arguments. In[8]:= Reverse[%]

Out[8]= fe, d, c, b, a�
There are a few extra functions that can be used with expressions, as discussed in Section 2.2.10.

2.1.6 Expressions as Trees

Here is an expression in full form. In[1]:= FullForm[x^3 + (1 + x)^2]

Out[1]//FullForm= PlusPowerx, 3�, PowerPlus1, x�, 2��
TreeForm prints out expressions to
show their “tree” structure.

In[2]:= TreeForm[x^3 + (1 + x)^2]

Out[2]//TreeForm= Plus� �
Powerx, 3� , �

Power� �
Plus1, x� , 2�

�



2.1.7 Levels in Expressions 237

You can think of any Mathematica expression as a tree. In the expression above, the top node in the
tree consists of a Plus. From this node come two “branches”, x^3 and (1 + x)^2. From the x^3 node,
there are then two branches, x and 3, which can be viewed as “leaves” of the tree.

This matrix is a simple tree with just
two levels.

In[3]:= TreeForm[{{a, b}, {c, d}}]

Out[3]//TreeForm= List� �
Lista, b� , �

Listc, d��

Here is a more complicated expression. In[4]:= {{a b, c d^2}, {x^3 y^4}}

Out[4]= ��a b, c d2�, �x3 y4��
The tree for this expression has several
levels. The representation of the tree
here was too long to fit on a single
line, so it had to be broken onto two
lines.

In[5]:= TreeForm[%]

Out[5]//TreeForm= List� �
List� �

Timesa, b� , �
Times�c, �

Powerd, 2��
�

,

�
List� �

Times� �
Powerx, 3� , �

Powery, 4��
�
�

The indices that label each part of an expression have a simple interpretation in terms of trees.
Descending from the top node of the tree, each index specifies which branch to take in order to reach
the part you want.

2.1.7 Levels in Expressions

The Part function allows you to access specific parts of Mathematica expressions. But particularly
when your expressions have fairly uniform structure, it is often convenient to be able to refer to a
whole collection of parts at the same time.

Levels provide a general way of specifying collections of parts in Mathematica expressions. Many
Mathematica functions allow you to specify the levels in an expression on which they should act.

Here is a simple expression, displayed
in tree form.

In[1]:= (t = {x, {x, y}, y}) // TreeForm

Out[1]//TreeForm= List�x, �
Listx, y� , y�

This searches for x in the expression t
down to level 1. It finds only one
occurrence.

In[2]:= Position[t, x, 1]

Out[2]= ��1��



238 2. Principles of Mathematica � 2.1 Expressions

This searches down to level 2. Now it
finds both occurrences of x.

In[3]:= Position[t, x, 2]

Out[3]= ��1�, �2, 1��
This searches only at level 2. It finds
just one occurrence of x.

In[4]:= Position[t, x, {2}]

Out[4]= ��2, 1��

Position[expr, form, n] give the positions at which form occurs in expr down to
level n

Position[expr, form, {n}] give the positions exactly at level n

Controlling Position using levels.

You can think of levels in expressions in terms of trees. The level of a particular part in an ex-
pression is simply the distance down the tree at which that part appears, with the top of the tree
considered as level 0.

It is equivalent to say that the parts which appear at level n are those that can be specified by a
sequence of exactly n indices.

n levels 1 through n

Infinity all levels (except 0)

{n} level n only

{n�, n�} levels n� through n�

Heads -> True include heads

Heads -> False exclude heads

Level specifications.

Here is an expression, displayed in tree
form.

In[5]:= (u = f[f[g[a], a], a, h[a], f]) // TreeForm

Out[5]//TreeForm= f� �
f� �

ga� , a�
, a, �

ha� , f�

This searches for a at levels from 2
downwards.

In[6]:= Position[u, a, {2, Infinity}]

Out[6]= ��1, 1, 1�, �1, 2�, �3, 1��
This shows where f appears other than
in the head of an expression.

In[7]:= Position[u, f, Heads->False]

Out[7]= ��4��



2.1.7 Levels in Expressions 239

This includes occurrences of f in heads
of expressions.

In[8]:= Position[u, f, Heads->True]

Out[8]= ��0�, �1, 0�, �4��

Level[expr, lev] a list of the parts of expr at the levels specified by lev

Depth[expr] the total number of levels in expr

Testing and extracting levels.

This gives a list of all parts of u that
occur down to level 2.

In[9]:= Level[u, 2]

Out[9]= �ga�, a, fga�, a�, a, a, ha�, f�
Here are the parts specifically at
level 2.

In[10]:= Level[u, {2}]

Out[10]= �ga�, a, a�
When you have got the hang of ordinary levels, you can try thinking about negative levels. Negative

levels label parts of expressions starting at the bottom of the tree. Level -1 contains all the leaves of
the tree: objects like symbols and numbers.

This shows the parts of u at level ��. In[11]:= Level[u, {-1}]

Out[11]= �a, a, a, a, f�
You can think of expressions as having a “depth”, which is equal to the maximum number of levels

shown by TreeForm . In general, level -n in an expression is defined to consist of all subexpressions
whose depth is n.

The depth of g[a] is 2. In[12]:= Depth[ g[a] ]

Out[12]= 2

The parts of u at level �� are those
that have depth exactly 2.

In[13]:= Level[u, {-2}]

Out[13]= �ga�, ha��



240 2. Principles of Mathematica � 2.2 Functional Operations

2.2 Functional Operations

2.2.1 Function Names as Expressions

In an expression like f[x], the “function name” f is itself an expression, and you can treat it as you
would any other expression.

You can replace names of functions
using transformation rules.

In[1]:= f[x] + f[1 - x] /. f -> g

Out[1]= g1 � x� � gx�
Any assignments you have made are
used on function names.

In[2]:= p1 = p2; p1[x, y]

Out[2]= p2x, y�
This defines a function which takes a
function name as an argument.

In[3]:= pf[f_, x_] := f[x] + f[1 - x]

This gives Log as the function name to
use.

In[4]:= pf[Log, q]

Out[4]= Log1 � q� � Logq�
The ability to treat the names of functions just like other kinds of expressions is an important

consequence of the symbolic nature of the Mathematica language. It makes possible the whole range
of functional operations discussed in the sections that follow.

Ordinary Mathematica functions such as Log or Integrate typically operate on data such as num-
bers and algebraic expressions. Mathematica functions that represent functional operations, however,
can operate not only on ordinary data, but also on functions themselves. Thus, for example, the func-
tional operation InverseFunction takes a Mathematica function name as an argument, and represents
the inverse of that function.

InverseFunction is a functional
operation: it takes a Mathematica
function as an argument, and returns
another function which represents its
inverse.

In[5]:= InverseFunction[ArcSin]

Out[5]= Sin

The result obtained from
InverseFunction is a function which
you can apply to data.

In[6]:= %[x]

Out[6]= Sinx�
You can also use InverseFunction in
a purely symbolic way.

In[7]:= InverseFunction[f] [x]

Out[7]= f��1�x�
There are many kinds of functional operations in Mathematica. Some represent mathematical oper-

ations; others represent various kinds of procedures and algorithms.

Unless you are familiar with advanced symbolic languages, you will probably not recognize most
of the functional operations discussed in the sections that follow. At first, the operations may seem



2.2.2 Applying Functions Repeatedly 241

difficult to understand. But it is worth persisting. Functional operations provide one of the most
conceptually and practically efficient ways to use Mathematica.

2.2.2 Applying Functions Repeatedly

Many programs you write will involve operations that need to be iterated several times. Nest and
NestList are powerful constructs for doing this.

Nest[f, x, n] apply the function f nested n times to x

NestList[f, x, n] generate the list {x, f[x], f[f[x]], . . . }, where f is nested
up to n deep

Applying functions of one argument repeatedly.

Nest[f, x, n] takes the “name” f of a
function, and applies the function n
times to x.

In[1]:= Nest[f, x, 4]

Out[1]= ffffx����
This makes a list of each successive
nesting.

In[2]:= NestList[f, x, 4]

Out[2]= �x, fx�, ffx��, fffx���, ffffx�����
Here is a simple function. In[3]:= recip[x_] := 1/(1 + x)

You can iterate the function using
Nest.

In[4]:= Nest[recip, x, 3]

Out[4]=
1

��������������������������������������
1 � 1�������������������

1� 1����������1�x

Nest and NestList allow you to apply functions a fixed number of times. Often you may
want to apply functions until the result no longer changes. You can do this using FixedPoint and
FixedPointList .

FixedPoint[f, x] apply the function f repeatedly until the result no longer
changes

FixedPointList[f, x] generate the list {x, f[x], f[f[x]], . . . }, stopping when the
elements no longer change

Applying functions until the result no longer changes.

Here is a function that takes one step
in Newton’s approximation to

 

.
In[5]:= newton3[x_] := N[ 1/2 ( x + 3/x ) ]



242 2. Principles of Mathematica � 2.2 Functional Operations

Here are five successive iterates of the
function, starting at x � �.

In[6]:= NestList[newton3, 1.0, 5]

Out[6]= �1., 2., 1.75, 1.73214, 1.73205, 1.73205�
Using the function FixedPoint, you
can automatically continue applying
newton3 until the result no longer
changes.

In[7]:= FixedPoint[newton3, 1.0]

Out[7]= 1.73205

Here is the sequence of results. In[8]:= FixedPointList[newton3, 1.0]

Out[8]= �1., 2., 1.75, 1.73214, 1.73205, 1.73205, 1.73205�

NestWhile[f, x, test] apply the function f repeatedly until applying test to the
result no longer yields True

NestWhileList[f, x, test] generate the list {x, f[x], f[f[x]], . . . }, stopping when
applying test to the result no longer yields True

NestWhile[f, x, test, m], NestWhileList[f, x, test, m]
supply the m most recent results as arguments for test at
each step

NestWhile[f, x, test, All], NestWhileList[f, x, test, All]
supply all results so far as arguments for test

Applying functions repeatedly until a test fails.

Here is a function which divides a
number by 2.

In[9]:= divide2[n_] := n/2

This repeatedly applies divide2 until
the result is no longer an even number.

In[10]:= NestWhileList[divide2, 123456, EvenQ]

Out[10]= �123456, 61728, 30864, 15432, 7716, 3858, 1929�
This repeatedly applies newton3,
stopping when two successive results
are no longer considered unequal, just
as in FixedPointList.

In[11]:= NestWhileList[newton3, 1.0, Unequal, 2]

Out[11]= �1., 2., 1.75, 1.73214, 1.73205, 1.73205, 1.73205�

This goes on until the first time a result
that has been seen before reappears.

In[12]:= NestWhileList[Mod[5 #, 7]&, 1, Unequal, All]

Out[12]= �1, 5, 4, 6, 2, 3, 1�
Operations such as Nest take a function f of one argument, and apply it repeatedly. At each step,

they use the result of the previous step as the new argument of f.

It is important to generalize this notion to functions of two arguments. You can again apply the
function repeatedly, but now each result you get supplies only one of the new arguments you need.
A convenient approach is to get the other argument at each step from the successive elements of a list.



2.2.3 Applying Functions to Lists and Other Expressions 243

FoldList[f, x, {a, b, . . . }] create the list {x, f[x, a], f[f[x, a], b], . . . }

Fold[f, x, {a, b, . . . }] give the last element of the list produced by
FoldList[f, x, {a, b, . . . }]

Ways to repeatedly apply functions of two arguments.

Here is an example of what FoldList
does.

In[13]:= FoldList[f, x, {a, b, c}]

Out[13]= �x, fx, a�, ffx, a�, b�, fffx, a�, b�, c��
Fold gives the last element of the list
produced by FoldList.

In[14]:= Fold[f, x, {a, b, c}]

Out[14]= fffx, a�, b�, c�
This gives a list of cumulative sums. In[15]:= FoldList[Plus, 0, {a, b, c}]

Out[15]= �0, a, a � b, a � b � c�
Using Fold and FoldList you can write many elegant and efficient programs in Mathematica. In

some cases, you may find it helpful to think of Fold and FoldList as producing a simple nesting of
a family of functions indexed by their second argument.

This defines a function nextdigit. In[16]:= nextdigit[a_, b_] := 10 a + b

This is now like the built-in function
FromDigits.

In[17]:= fromdigits[digits_] := Fold[nextdigit, 0, digits]

Here is an example of the function in
action.

In[18]:= fromdigits[{1, 3, 7, 2, 9, 1}]

Out[18]= 137291

2.2.3 Applying Functions to Lists and Other Expressions

In an expression like f[{a, b, c}] you are giving a list as the argument to a function. Often you
need instead to apply a function directly to the elements of a list, rather than to the list as a whole.
You can do this in Mathematica using Apply.

This makes each element of the list an
argument of the function f.

In[1]:= Apply[f, {a, b, c}]

Out[1]= fa, b, c�
This gives Plus[a, b, c] which yields
the sum of the elements in the list.

In[2]:= Apply[Plus, {a, b, c}]

Out[2]= a � b � c

Here is the definition of the statistical
mean, written using Apply.

In[3]:= mean[list_] := Apply[Plus, list] / Length[list]



244 2. Principles of Mathematica � 2.2 Functional Operations

Apply[f, {a, b, . . . }] apply f to a list, giving f[a, b, . . . ]

Apply[f, expr] or f @@ expr apply f to the top level of an expression

Apply[f, expr, {1}] or f @@@ expr apply f at the first level in an expression

Apply[f, expr, lev] apply f at the specified levels in an expression

Applying functions to lists and other expressions.

What Apply does in general is to
replace the head of an expression with
the function you specify. Here it
replaces Plus by List.

In[4]:= Apply[List, a + b + c]

Out[4]= �a, b, c�

Here is a matrix. In[5]:= m = {{a, b, c}, {b, c, d}}

Out[5]= ��a, b, c�, �b, c, d��
Using Apply without an explicit level
specification replaces the top-level list
with f.

In[6]:= Apply[f, m]

Out[6]= f�a, b, c�, �b, c, d��
This applies f only to parts of m at
level 1.

In[7]:= Apply[f, m, {1}]

Out[7]= �fa, b, c�, fb, c, d��
This applies f at levels 0 through 1. In[8]:= Apply[f, m, {0, 1}]

Out[8]= ffa, b, c�, fb, c, d��

2.2.4 Applying Functions to Parts of Expressions

If you have a list of elements, it is often important to be able to apply a function separately to each
of the elements. You can do this in Mathematica using Map.

This applies f separately to each
element in a list.

In[1]:= Map[f, {a, b, c}]

Out[1]= �fa�, fb�, fc��
This defines a function which takes the
first two elements from a list.

In[2]:= take2[list_] := Take[list, 2]

You can use Map to apply take2 to
each element of a list.

In[3]:= Map[take2, {{1, 3, 4}, {5, 6, 7}, {2, 1, 6, 6}}]

Out[3]= ��1, 3�, �5, 6�, �2, 1��

Map[f, {a, b, . . . }] apply f to each element in a list, giving {f[a], f[b], . . . }

Applying a function to each element in a list.



2.2.4 Applying Functions to Parts of Expressions 245

What Map[f, expr] effectively does is to “wrap” the function f around each element of the expression
expr. You can use Map on any expression, not just a list.

This applies f to each element in the
sum.

In[4]:= Map[f, a + b + c]

Out[4]= fa� � fb� � fc�
This applies Sqrt to each argument
of g.

In[5]:= Map[Sqrt, g[x^2, x^3]]

Out[5]= g�������
x2 ,

������
x3 �

Map[f, expr] applies f to the first level of parts in expr. You can use MapAll[f, expr] to apply f to
all the parts of expr.

This defines a � � � matrix m. In[6]:= m = {{a, b}, {c, d}}

Out[6]= ��a, b�, �c, d��
Map applies f to the first level of m, in
this case the rows of the matrix.

In[7]:= Map[f, m]

Out[7]= �f�a, b��, f�c, d���
MapAll applies f at all levels in m. If
you look carefully at this expression,
you will see an f wrapped around
every part.

In[8]:= MapAll[f, m]

Out[8]= f�f�fa�, fb���, f�fc�, fd�����

In general, you can use level specifications as described on page 238 to tell Map to which parts of
an expression to apply your function.

This applies f only to the parts of m at
level 2.

In[9]:= Map[f, m, {2}]

Out[9]= ��fa�, fb��, �fc�, fd���
Setting the option Heads->True wraps
f around the head of each part, as well
as its elements.

In[10]:= Map[f, m, Heads->True]

Out[10]= fList�f�a, b��, f�c, d���

Map[f, expr] or f /@ expr apply f to the first-level parts of expr

MapAll[f, expr] or f //@ expr apply f to all parts of expr

Map[f, expr, lev] apply f to each part of expr at levels specified by lev

Ways to apply a function to different parts of expressions.

Level specifications allow you to tell Map to which levels of parts in an expression you want a
function applied. With MapAt, however, you can instead give an explicit list of parts where you want
a function applied. You specify each part by giving its indices, as discussed in Section 2.1.4.

Here is a � �  matrix. In[11]:= mm = {{a, b, c}, {b, c, d}}

Out[11]= ��a, b, c�, �b, c, d��



246 2. Principles of Mathematica � 2.2 Functional Operations

This applies f to parts {1, 2} and
{2, 3}.

In[12]:= MapAt[f, mm, {{1, 2}, {2, 3}}]

Out[12]= ��a, fb�, c�, �b, c, fd���
This gives a list of the positions at
which b occurs in mm.

In[13]:= Position[mm, b]

Out[13]= ��1, 2�, �2, 1��
You can feed the list of positions you
get from Position directly into MapAt.

In[14]:= MapAt[f, mm, %]

Out[14]= ��a, fb�, c�, �fb�, c, d��
To avoid ambiguity, you must put each
part specification in a list, even when it
involves only one index.

In[15]:= MapAt[f, {a, b, c, d}, {{2}, {3}}]

Out[15]= �a, fb�, fc�, d�

MapAt[f, expr, {part�, part�, . . . }] apply f to specified parts of expr

Applying a function to specific parts of an expression.

Here is an expression. In[16]:= t = 1 + (3 + x)^2 / x

Out[16]= 1 �
�3 � x�2

����������������������������������
x

This is the full form of t. In[17]:= FullForm[ t ]

Out[17]//FullForm= Plus1, TimesPowerx, �1�, PowerPlus3, x�, 2���
You can use MapAt on any expression.
Remember that parts are numbered on
the basis of the full forms of
expressions.

In[18]:= MapAt[f, t, {{2, 1, 1}, {2, 2}}]

Out[18]= 1 �
f��3 � x�2�
�������������������������������������������������

fx�

MapIndexed[f, expr] apply f to the elements of an expression, giving the part
specification of each element as a second argument to f

MapIndexed[f, expr, lev] apply f to parts at specified levels, giving the list of indices
for each part as a second argument to f

Applying a function to parts and their indices.

This applies f to each element in a list,
giving the index of the element as a
second argument to f.

In[19]:= MapIndexed[f, {a, b, c}]

Out[19]= �fa, �1��, fb, �2��, fc, �3���
This applies f to both levels in a
matrix.

In[20]:= MapIndexed[f, {{a, b}, {c, d}}, 2]

Out[20]= �f�fa, �1, 1��, fb, �1, 2���, �1��,
f�fc, �2, 1��, fd, �2, 2���, �2���



2.2.4 Applying Functions to Parts of Expressions 247

Map allows you to apply a function of one argument to parts of an expression. Sometimes, however,
you may instead want to apply a function of several arguments to corresponding parts of several
different expressions. You can do this using MapThread .

MapThread[f, {expr�, expr�, . . . }] apply f to corresponding elements in each of the expri

MapThread[f, {expr�, expr�, . . . }, lev] apply f to parts of the expri at the specified level

Applying a function to several expressions at once.

This applies f to corresponding pairs
of list elements.

In[21]:= MapThread[f, {{a, b, c}, {ap, bp, cp}}]

Out[21]= �fa, ap�, fb, bp�, fc, cp��
MapThread works with any number of
expressions, so long as they have the
same structure.

In[22]:= MapThread[f, {{a, b}, {ap, bp}, {app, bpp}}]

Out[22]= �fa, ap, app�, fb, bp, bpp��
Functions like Map allow you to create expressions with parts modified. Sometimes you simply

want to go through an expression, and apply a particular function to some parts of it, without building
a new expression. A typical case is when the function you apply has certain “side effects”, such as
making assignments, or generating output.

Scan[f, expr] evaluate f applied to each element of expr in turn

Scan[f, expr, lev] evaluate f applied to parts of expr on levels specified by lev

Evaluating functions on parts of expressions.

Map constructs a new list in which f
has been applied to each element of
the list.

In[23]:= Map[f, {a, b, c}]

Out[23]= �fa�, fb�, fc��
Scan evaluates the result of applying a
function to each element, but does not
construct a new expression.

In[24]:= Scan[Print, {a, b, c}]

a
b
c

Scan visits the parts of an expression
in a depth-first walk, with the leaves
visited first.

In[25]:= Scan[Print, 1 + x^2, Infinity]

1
x
2
2

x



248 2. Principles of Mathematica � 2.2 Functional Operations

2.2.5 Pure Functions

Function[x, body] a pure function in which x is replaced by any argument you
provide

Function[{x�, x�, . . . }, body] a pure function that takes several arguments

body & a pure function in which arguments are specified as # or #1,
#2, #3, etc.

Pure functions.

When you use functional operations such as Nest and Map, you always have to specify a function to
apply. In all the examples above, we have used the “name” of a function to specify the function. Pure
functions allow you to give functions which can be applied to arguments, without having to define
explicit names for the functions.

This defines a function h. In[1]:= h[x_] := f[x] + g[x]

Having defined h, you can now use its
name in Map.

In[2]:= Map[h, {a, b, c}]

Out[2]= �fa� � ga�, fb� � gb�, fc� � gc��
Here is a way to get the same result
using a pure function.

In[3]:= Map[ f[#] + g[#] &, {a, b, c} ]

Out[3]= �fa� � ga�, fb� � gb�, fc� � gc��
There are several equivalent ways to write pure functions in Mathematica. The idea in all cases is to

construct an object which, when supplied with appropriate arguments, computes a particular function.
Thus, for example, if fun is a pure function, then fun[a] evaluates the function with argument a.

Here is a pure function which
represents the operation of squaring.

In[4]:= Function[x, x^2]

Out[4]= Functionx, x2�
Supplying the argument n to the pure
function yields the square of n.

In[5]:= %[n]

Out[5]= n2

You can use a pure function wherever you would usually give the name of a function.

You can use a pure function in Map. In[6]:= Map[ Function[x, x^2], a + b + c ]

Out[6]= a2 � b2 � c2

Or in Nest. In[7]:= Nest[ Function[q, 1/(1+q)], x, 3 ]

Out[7]=
1

��������������������������������������
1 � 1�������������������

1� 1����������1�x

This sets up a pure function with two
arguments and then applies the
function to the arguments a and b.

In[8]:= Function[{x, y}, x^2 + y^3] [a, b]

Out[8]= a2 � b3



2.2.5 Pure Functions 249

If you are going to use a particular function repeatedly, then you can define the function using
f[x_] := body, and refer to the function by its name f. On the other hand, if you only intend to use
a function once, you will probably find it better to give the function in pure function form, without
ever naming it.

If you are familiar with formal logic or the LISP programming language, you will recognize Mathe-
matica pure functions as being like Λ expressions or anonymous functions. Pure functions are also
close to the pure mathematical notion of operators.

# the first variable in a pure function

#n the nth variable in a pure function

## the sequence of all variables in a pure function

##n the sequence of variables starting with the nth one

Short forms for pure functions.

Just as the name of a function is irrelevant if you do not intend to refer to the function again, so
also the names of arguments in a pure function are irrelevant. Mathematica allows you to avoid using
explicit names for the arguments of pure functions, and instead to specify the arguments by giving
“slot numbers” #n. In a Mathematica pure function, #n stands for the nth argument you supply. #
stands for the first argument.

#^2 & is a short form for a pure
function that squares its argument.

In[9]:= Map[ #^2 &, a + b + c ]

Out[9]= a2 � b2 � c2

This applies a function that takes the
first two elements from each list. By
using a pure function, you avoid
having to define the function
separately.

In[10]:= Map[Take[#, 2]&, {{2, 1, 7}, {4, 1, 5}, {3, 1, 2}}]

Out[10]= ��2, 1�, �4, 1�, �3, 1��

Using short forms for pure functions,
you can simplify the definition of
fromdigits given on page 243.

In[11]:= fromdigits[digits_] := Fold[(10 #1 + #2)&, 0, digits]

When you use short forms for pure functions, it is very important that you do not forget the
ampersand. If you leave the ampersand out, Mathematica will not know that the expression you give
is to be used as a pure function.

When you use the ampersand notation for pure functions, you must be careful about the grouping
of pieces in your input. As shown on page 1029 the ampersand notation has fairly low precedence,
which means that you can type expressions like #1 + #2 & without parentheses. On the other hand,
if you want, for example, to set an option to be a pure function, you need to use parentheses, as in
option -> (fun &).



250 2. Principles of Mathematica � 2.2 Functional Operations

Pure functions in Mathematica can take any number of arguments. You can use ## to stand for all
the arguments that are given, and ##n to stand for the nth and subsequent arguments.

## stands for all arguments. In[12]:= f[##, ##]& [x, y]

Out[12]= fx, y, x, y�
##2 stands for all arguments except the
first one.

In[13]:= Apply[f[##2, #1]&, {{a, b, c}, {ap, bp}}, {1}]

Out[13]= �fb, c, a�, fbp, ap��

2.2.6 Building Lists from Functions

Array[f, n] generate a length n list of the form {f[1], f[2], . . . }

Array[f, {n�, n�, . . . }] generate an n� � n� � 			 nested list, each of whose entries
consists of f applied to its indices

NestList[f, x, n] generate a list of the form {x, f[x], f[f[x]], . . . }, where f
is nested up to n deep

FoldList[f, x, {a, b, . . . }] generate a list of the form {x, f[x, a], f[f[x, a], b], . . . }

ComposeList[{f�, f�, . . . }, x] generate a list of the form {x, f�[x], f�[f�[x]], . . . }

Making lists from functions.

This makes a list of 5 elements, each of
the form p[i].

In[1]:= Array[p, 5]

Out[1]= �p1�, p2�, p3�, p4�, p5��
Here is another way to produce the
same list.

In[2]:= Table[p[i], {i, 5}]

Out[2]= �p1�, p2�, p3�, p4�, p5��
This produces a list whose elements
are i � i�.

In[3]:= Array[ # + #^2 &, 5]

Out[3]= �2, 6, 12, 20, 30�
This generates a � �  matrix whose
entries are m[i, j].

In[4]:= Array[m, {2, 3}]

Out[4]= ��m1, 1�, m1, 2�, m1, 3��,�m2, 1�, m2, 2�, m2, 3���
This generates a  �  matrix whose
elements are the squares of the sums
of their indices.

In[5]:= Array[Plus[##]^2 &, {3, 3}]

Out[5]= ��4, 9, 16�, �9, 16, 25�, �16, 25, 36��
NestList and FoldList were discussed in Section 2.2.2. Particularly by using them with pure
functions, you can construct some very elegant and efficient Mathematica programs.

This gives a list of results obtained by
successively differentiating xn with
respect to x.

In[6]:= NestList[ D[#, x]&, x^n, 3 ]

Out[6]= �xn, n x�1�n, ��1 � n� n x�2�n, ��2 � n� ��1 � n� n x�3�n�



2.2.8 Expressions with Heads That Are Not Symbols 251

2.2.7 Selecting Parts of Expressions with Functions

Section 1.2.4 showed how you can pick out elements of lists based on their positions. Often, however,
you will need to select elements based not on where they are, but rather on what they are.

Select[list, f] selects elements of list using the function f as a criterion. Select applies f to each
element of list in turn, and keeps only those for which the result is True.

This selects the elements of the list for
which the pure function yields True,
i.e., those numerically greater than 4.

In[1]:= Select[{2, 15, 1, a, 16, 17}, # > 4 &]

Out[1]= �15, 16, 17�
You can use Select to pick out pieces of any expression, not just elements of a list.

This gives a sum of terms involving x,
y and z.

In[2]:= t = Expand[(x + y + z)^2]

Out[2]= x2 � 2 x y � y2 � 2 x z � 2 y z � z2

You can use Select to pick out only
those terms in the sum that do not
involve the symbol x.

In[3]:= Select[t, FreeQ[#, x]&]

Out[3]= y2 � 2 y z � z2

Select[expr, f] select the elements in expr for which the function f gives
True

Select[expr, f, n] select the first n elements in expr for which the function f
gives True

Selecting pieces of expressions.

Section 2.3.5 discusses some “predicates” that are often used as criteria in Select.

This gives the first element which
satisfies the criterion you specify.

In[4]:= Select[{-1, 3, 10, 12, 14}, # > 3 &, 1]

Out[4]= �10�

- 2.2.8 Expressions with Heads That Are Not Symbols

In most cases, you want the head f of a Mathematica expression like f[x] to be a single symbol. There
are, however, some important applications of heads that are not symbols.

This expression has f[3] as a head.
You can use heads like this to
represent “indexed functions”.

In[1]:= f[3][x, y]

Out[1]= f3�x, y�
You can use any expression as a head.
Remember to put in the necessary
parentheses.

In[2]:= (a + b)[x]

Out[2]= �a � b�x�



252 2. Principles of Mathematica � 2.2 Functional Operations

One case where we have already encountered the use of complicated expressions as heads is in
working with pure functions in Section 2.2.5. By giving Function[vars, body] as the head of an
expression, you specify a function of the arguments to be evaluated.

With the head Function[x, x^2], the
value of the expression is the square of
the argument.

In[3]:= Function[x, x^2] [a + b]

Out[3]= �a � b�2

There are several constructs in Mathematica which work much like pure functions, but which repre-
sent specific kinds of functions, typically numerical ones. In all cases, the basic mechanism involves
giving a head which contains complete information about the function you want to use.

Function[vars, body][args] pure function

InterpolatingFunction[data][args] approximate numerical function (generated by
Interpolation and NDSolve)

CompiledFunction[data][args] compiled numerical function (generated by Compile)

, LinearSolveFunction[data][vec] matrix solution function (generated by LinearSolve)

Some expressions which have heads that are not symbols.

NDSolve returns a list of rules that give
y as an InterpolatingFunction
object.

In[4]:= NDSolve[{y''[x] == y[x], y[0]==y'[0]==1}, y, {x, 0, 5}]

Out[4]= ��y � InterpolatingFunction��0., 5.��, ?>���
Here is the InterpolatingFunction
object.

In[5]:= y /. First[%]

Out[5]= InterpolatingFunction��0., 5.��, ?>�
You can use the
InterpolatingFunction object as a
head to get numerical approximations
to values of the function y.

In[6]:= % [3.8]

Out[6]= 44.7012

Another important use of more complicated expressions as heads is in implementing functionals and
functional operators in mathematics.

As one example, consider the operation of differentiation. As will be discussed in Section 3.5.4, an
expression like f' represents a derivative function, obtained from f by applying a functional operator to
it. In Mathematica, f' is represented as Derivative[1][f]: the “functional operator” Derivative[1]
is applied to f to give another function, represented as f'.

This expression has a head which
represents the application of the
“functional operator” Derivative[1]
to the “function” f.

In[7]:= f'[x] // FullForm

Out[7]//FullForm= Derivative1�f�x�



2.2.9 Advanced Topic: Working with Operators 253

You can replace the head f' with
another head, such as fp. This
effectively takes fp to be a “derivative
function” obtained from f.

In[8]:= % /. f' -> fp

Out[8]= fpx�

2.2.9 Advanced Topic: Working with Operators

You can think of an expression like f[x] as being formed by applying an operator f to the expression
x. You can think of an expression like f[g[x]] as the result of composing the operators f and g, and
applying the result to x.

Composition[f, g, . . . ] the composition of functions f, g, . . .

InverseFunction[f] the inverse of a function f

Identity the identity function

Some functional operations.

This represents the composition of the
functions f, g and h.

In[1]:= Composition[f, g, h]

Out[1]= Compositionf, g, h�
You can manipulate compositions of
functions symbolically.

In[2]:= InverseFunction[Composition[%, q]]

Out[2]= Compositionq��1�, h��1�, g��1�, f��1��
The composition is evaluated explicitly
when you supply a specific argument.

In[3]:= %[x]

Out[3]= q��1�h��1�g��1�f��1�x����
You can get the sum of two expressions in Mathematica just by typing x + y. Sometimes it is also

worthwhile to consider performing operations like addition on operators.

You can think of this as containing a
sum of two operators f and g.

In[4]:= (f + g)[x]

Out[4]= �f � g�x�
Using Through, you can convert the
expression to a more explicit form.

In[5]:= Through[%, Plus]

Out[5]= fx� � gx�
This corresponds to the mathematical
operator � � ""x .

In[6]:= Identity + (D[#, x]&)

Out[6]= Identity � �8x #1 &�
Mathematica does not automatically
apply the separate pieces of the
operator to an expression.

In[7]:= % [x^2]

Out[7]= �Identity � �8x #1 &��x2�
You can use Through to apply the
operator.

In[8]:= Through[%, Plus]

Out[8]= 2 x � x2



254 2. Principles of Mathematica � 2.2 Functional Operations

Identity[expr] the identity function

Through[p[f�, f�][x], q] give p[f�[x], f�[x]] if p is the same as q

Operate[p, f[x]] give p[f][x]

Operate[p, f[x], n] apply p at level n in f

MapAll[p, expr, Heads->True] apply p to all parts of expr, including heads

Operations for working with operators.

This has a complicated expression as a
head.

In[9]:= t = ((1 + a)(1 + b))[x]

Out[9]= ��1 � a� �1 � b��x�
Functions like Expand do not
automatically go inside heads of
expressions.

In[10]:= Expand[%]

Out[10]= ��1 � a� �1 � b��x�
With the Heads option set to True,
MapAll goes inside heads.

In[11]:= MapAll[Expand, t, Heads->True]

Out[11]= �1 � a � b � a b�x�
The replacement operator /. does go
inside heads of expressions.

In[12]:= t /. a->1

Out[12]= �2 �1 � b��x�
You can use Operate to apply a
function specifically to the head of an
expression.

In[13]:= Operate[p, t]

Out[13]= p�1 � a� �1 � b��x�

- 2.2.10 Structural Operations

Mathematica contains some powerful primitives for making structural changes to expressions. You can
use these primitives both to implement mathematical properties such as associativity and distributivity,
and to provide the basis for some succinct and efficient programs.

This section describes various operations that you can explicitly perform on expressions. Section
2.6.3 will describe how some of these operations can be performed automatically on all expressions
with a particular head by assigning appropriate attributes to that head.

You can use the Mathematica function Sort[expr] to sort elements not only of lists, but of expres-
sions with any head. In this way, you can implement the mathematical properties of commutativity
or symmetry for arbitrary functions.

You can use Sort to put the arguments
of any function into a standard order.

In[1]:= Sort[ f[c, a, b] ]

Out[1]= fa, b, c�



2.2.10 Structural Operations 255

Sort[expr] sort the elements of a list or other expression into a standard
order

Sort[expr, pred] sort using the function pred to determine whether pairs are
in order

, Ordering[expr] give the ordering of elements when sorted

, Ordering[expr, n] give the ordering of the first n elements when sorted

, Ordering[expr, n, pred] use the function pred to determine whether pairs are in
order

OrderedQ[expr] give True if the elements of expr are in standard order, and
False otherwise

Order[expr�, expr�] give 1 if expr� comes before expr� in standard order, and -1
if it comes after

Sorting into order.

The second argument to Sort is a
function used to determine whether
pairs are in order. This sorts numbers
into descending order.

In[2]:= Sort[ {5, 1, 8, 2}, (#2 < #1)& ]

Out[2]= �8, 5, 2, 1�

This sorting criterion puts elements
that do not depend on x before those
that do.

In[3]:= Sort[ {x^2, y, x+y, y-2}, FreeQ[#1, x]& ]

Out[3]= �y, �2 � y, x � y, x2�

Flatten[expr] flatten out all nested functions with the same head as expr

Flatten[expr, n] flatten at most n levels of nesting

Flatten[expr, n, h] flatten functions with head h

FlattenAt[expr, i] flatten only the ith element of expr

Flattening out expressions.

Flatten removes nested occurrences of
a function.

In[4]:= Flatten[ f[a, f[b, c], f[f[d]]] ]

Out[4]= fa, b, c, d�
You can use Flatten to “splice”
sequences of elements into lists or
other expressions.

In[5]:= Flatten[ {a, f[b, c], f[a, b, d]}, 1, f ]

Out[5]= �a, b, c, a, b, d�
You can use Flatten to implement the mathematical property of associativity. The function

Distribute allows you to implement properties such as distributivity and linearity.



256 2. Principles of Mathematica � 2.2 Functional Operations

Distribute[f[a + b + . . . , . . . ]] distribute f over sums to give f[a, . . . ] + f[b, . . . ] + . . .

Distribute[f[args], g] distribute f over any arguments which have head g

Distribute[expr, g, f] distribute only when the head is f

Distribute[expr, g, f, gp, fp] distribute f over g, replacing them with fp and gp,
respectively

Applying distributive laws.

This “distributes” f over a + b. In[6]:= Distribute[ f[a + b] ]

Out[6]= fa� � fb�
Here is a more complicated example. In[7]:= Distribute[ f[a + b, c + d] ]

Out[7]= fa, c� � fa, d� � fb, c� � fb, d�
In general, if f is distributive over Plus, then an expression like f[a + b] can be “expanded” to give

f[a] + f[b]. The function Expand does this kind of expansion for standard algebraic operators such
as Times. Distribute allows you to perform the same kind of expansion for arbitrary operators.

Expand uses the distributivity of Times
over Plus to perform algebraic
expansions.

In[8]:= Expand[ (a + b) (c + d) ]

Out[8]= a c � b c � a d � b d

This applies distributivity over lists,
rather than sums. The result contains
all possible pairs of arguments.

In[9]:= Distribute[ f[{a, b}, {c, d}], List ]

Out[9]= �fa, c�, fa, d�, fb, c�, fb, d��
This distributes over lists, but does so
only if the head of the whole
expression is f.

In[10]:= Distribute[ f[{a, b}, {c, d}], List, f ]

Out[10]= �fa, c�, fa, d�, fb, c�, fb, d��
This distributes over lists, making sure
that the head of the whole expression
is f. In the result, it uses gp in place
of List, and fp in place of f.

In[11]:= Distribute[ f[{a, b}, {c, d}], List, f, gp, fp ]

Out[11]= gpfpa, c�, fpa, d�, fpb, c�, fpb, d��

Related to Distribute is the function Thread. What Thread effectively does is to apply a function
in parallel to all the elements of a list or other expression.

Thread[f[{a�, a�}, {b�, b�}]] thread f over lists to give {f[a�, b�], f[a�, b�]}

Thread[f[args], g] thread f over objects with head g in args

Functions for threading expressions.



2.2.10 Structural Operations 257

Here is a function whose arguments
are lists.

In[12]:= f[{a1, a2}, {b1, b2}]

Out[12]= f�a1, a2�, �b1, b2��
Thread applies the function “in
parallel” to each element of the lists.

In[13]:= Thread[%]

Out[13]= �fa1, b1�, fa2, b2��
Arguments that are not lists get
repeated.

In[14]:= Thread[ f[{a1, a2}, {b1, b2}, c, d] ]

Out[14]= �fa1, b1, c, d�, fa2, b2, c, d��
As mentioned in Section 1.8.1, and discussed in more detail in Section 2.6.3, many built-in Mathe-

matica functions have the property of being “listable”, so that they are automatically threaded over
any lists that appear as arguments.

Built-in mathematical functions such as
Log are listable, so that they are
automatically threaded over lists.

In[15]:= Log[{a, b, c}]

Out[15]= �Loga�, Logb�, Logc��
Log is, however, not automatically
threaded over equations.

In[16]:= Log[x == y]

Out[16]= Logx � y�
You can use Thread to get functions
applied to both sides of an equation.

In[17]:= Thread[%, Equal]

Out[17]= Logx� � Logy�

Outer[f, list�, list�] generalized outer product

Inner[f, list�, list�, g] generalized inner product

Generalized outer and inner products.

Outer[f, list�, list�] takes all possible combinations of elements from list� and list�, and combines
them with f. Outer can be viewed as a generalization of a Cartesian product for tensors, as discussed
in Section 3.7.11.

Outer forms all possible combinations
of elements, and applies f to them.

In[18]:= Outer[f, {a, b}, {1, 2, 3}]

Out[18]= ��fa, 1�, fa, 2�, fa, 3��,�fb, 1�, fb, 2�, fb, 3���
Here Outer produces a
lower-triangular Boolean matrix.

In[19]:= Outer[ Greater, {1, 2, 3}, {1, 2, 3} ]

Out[19]= ��False, False, False�,�True, False, False�, �True, True, False��
You can use Outer on any sequence of
expressions with the same head.

In[20]:= Outer[ g, f[a, b], f[c, d] ]

Out[20]= ffga, c�, ga, d��, fgb, c�, gb, d���
Outer, like Distribute, constructs all possible combinations of elements. On the other hand,

Inner, like Thread, constructs only combinations of elements that have corresponding positions in the
expressions it acts on.



258 2. Principles of Mathematica � 2.2 Functional Operations

Here is a structure built by Inner. In[21]:= Inner[f, {a, b}, {c, d}, g]

Out[21]= gfa, c�, fb, d��
Inner is a generalization of Dot. In[22]:= Inner[Times, {a, b}, {c, d}, Plus]

Out[22]= a c � b d

2.2.11 Sequences

The function Flatten allows you to
explicitly flatten out all sublists.

In[1]:= Flatten[{a, {b, c}, {d, e}}]

Out[1]= �a, b, c, d, e�
FlattenAt lets you specify at what
positions you want sublists flattened.

In[2]:= FlattenAt[{a, {b, c}, {d, e}}, 2]

Out[2]= �a, b, c, �d, e��
Sequence objects automatically get
spliced in, and do not require any
explicit flattening.

In[3]:= {a, Sequence[b, c], Sequence[d, e]}

Out[3]= �a, b, c, d, e�

Sequence[e�, e�, . . . ] a sequence of arguments that will automatically be spliced
into any function

Representing sequences of arguments in functions.

Sequence works in any function. In[4]:= f[Sequence[a, b], c]

Out[4]= fa, b, c�
This includes functions with special
input forms.

In[5]:= a == Sequence[b, c]

Out[5]= a � b � c

Here is a common way that Sequence
is used.

In[6]:= {a, b, f[x, y], g[w], f[z, y]} /. f->Sequence

Out[6]= �a, b, x, y, gw�, z, y�



2.3.1 Introduction 259

2.3 Patterns

2.3.1 Introduction

Patterns are used throughout Mathematica to represent classes of expressions. A simple example of
a pattern is the expression f[x_]. This pattern represents the class of expressions with the form
f[anything].

The main power of patterns comes from the fact that many operations in Mathematica can be done
not only with single expressions, but also with patterns that represent whole classes of expressions.

You can use patterns in transformation
rules to specify how classes of
expressions should be transformed.

In[1]:= f[a] + f[b] /. f[x_] -> x^2

Out[1]= a2 � b2

You can use patterns to find the
positions of all expressions in a
particular class.

In[2]:= Position[{f[a], g[b], f[c]}, f[x_]]

Out[2]= ��1�, �3��
The basic object that appears in almost all Mathematica patterns is _ (traditionally called “blank” by

Mathematica programmers). The fundamental rule is simply that _ stands for any expression. On most
keyboards the _ underscore character appears as the shifted version of the - dash character.

Thus, for example, the pattern f[_] stands for any expression of the form f[anything]. The pattern
f[x_] also stands for any expression of the form f[anything], but gives the name x to the expression
anything, allowing you to refer to it on the right-hand side of a transformation rule.

You can put blanks anywhere in an expression. What you get is a pattern which matches all
expressions that can be made by “filling in the blanks” in any way.

f[n_] f with any argument, named n

f[n_, m_] f with two arguments, named n and m

x^n_ x to any power, with the power named n

x_^n_ any expression to any power

a_ + b_ a sum of two expressions

{a1_, a2_} a list of two expressions

f[n_, n_] f with two identical arguments

Some examples of patterns.



260 2. Principles of Mathematica � 2.3 Patterns

You can construct patterns for
expressions with any structure.

In[3]:= f[{a, b}] + f[c] /. f[{x_, y_}] -> p[x + y]

Out[3]= fc� � pa � b�
One of the most common uses of patterns is for “destructuring” function arguments. If you make

a definition for f[list_], then you need to use functions like Part explicitly in order to pick out
elements of the list. But if you know for example that the list will always have two elements, then it
is usually much more convenient instead to give a definition instead for f[{x_, y_}]. Then you can
refer to the elements of the list directly as x and y. In addition, Mathematica will not use the definition
you have given unless the argument of f really is of the required form of a list of two expressions.

Here is one way to define a function
which takes a list of two elements, and
evaluates the first element raised to the
power of the second element.

In[4]:= g[list_] := Part[list, 1] ^ Part[list, 2]

Here is a much more elegant way to
make the definition, using a pattern.

In[5]:= h[{x_, y_}] := x ^ y

A crucial point to understand is that Mathematica patterns represent classes of expressions with a
given structure. One pattern will match a particular expression if the structure of the pattern is the
same as the structure of the expression, in the sense that by filling in blanks in the pattern you can get
the expression. Even though two expressions may be mathematically equal, they cannot be represented
by the same Mathematica pattern unless they have the same structure.

Thus, for example, the pattern (1 + x_)^2 can stand for expressions like (1 + a)^2 or (1 + b^3)^2
that have the same structure. However, it cannot stand for the expression 1 + 2 a + a^2. Although
this expression is mathematically equal to (1 + a)^2, it does not have the same structure as the pattern
(1 + x_)^2.

The fact that patterns in Mathematica specify the structure of expressions is crucial in making it
possible to set up transformation rules which change the structure of expressions, while leaving them
mathematically equal.

It is worth realizing that in general it would be quite impossible for Mathematica to match patterns
by mathematical, rather than structural, equivalence. In the case of expressions like (1 + a)^2 and
1 + 2 a + a^2, you can determine equivalence just by using functions like Expand and Factor. But, as
discussed on page 327 there is no general way to find out whether an arbitrary pair of mathematical
expressions are equal.

As another example, the pattern x^_ will match the expression x^2. It will not, however, match the
expression 1, even though this could be considered as x^0. Section 2.3.9 will discuss how to construct
a pattern for which this particular case will match. But you should understand that in all cases pattern
matching in Mathematica is fundamentally structural.

The x^n_ matches only x^2 and x^3. 1
and x can mathematically be written as
xn, but do not have the same structure.

In[6]:= {1, x, x^2, x^3} /. x^n_ -> r[n]

Out[6]= �1, x, r2�, r3��



2.3.2 Finding Expressions That Match a Pattern 261

Another point to realize is that the structure Mathematica uses in pattern matching is the full form
of expressions printed by FullForm . Thus, for example, an object such as 1/x, whose full form is
Power[x, -1] will be matched by the pattern x_^n_, but not by the pattern x_/y_, whose full form is
Times[x_, Power[y_, -1]]. Again, Section 2.3.9 will discuss how you can construct patterns which
can match all these cases.

The expressions in the list contain
explicit powers of b, so the
transformation rule can be applied.

In[7]:= {a/b, 1/b^2, 2/b^2} /. b^n_ -> d[n]

Out[7]= �a d�1�, d�2�, 2 d�2��
Here is the full form of the list. In[8]:= FullForm[{a/b, 1/b^2, 2/b^2}]

Out[8]//FullForm= ListTimesa, Powerb, �1��,
Powerb, �2�, Times2, Powerb, �2���

Although Mathematica does not use mathematical equivalences such as x� � x when matching
patterns, it does use certain structural equivalences. Thus, for example, Mathematica takes account of
properties such as commutativity and associativity in pattern matching.

To apply this transformation rule,
Mathematica makes use of the
commutativity and associativity of
addition.

In[9]:= f[a + b] + f[a + c] + f[b + d] /.
f[a + x_] + f[c + y_] -> p[x, y]

Out[9]= fb � d� � pb, a�
The discussion so far has considered only pattern objects such as x_ which can stand for any single

expression. In later subsections, we discuss the constructs that Mathematica uses to extend and restrict
the classes of expressions represented by patterns.

2.3.2 Finding Expressions That Match a Pattern

Cases[list, form] give the elements of list that match form

Count[list, form] give the number of elements in list that match form

Position[list, form, {1}] give the positions of elements in list that match form

Select[list, test] give the elements of list on which test gives True

Picking out elements that match a pattern.

This gives the elements of the list
which match the pattern x^_.

In[1]:= Cases[ {3, 4, x, x^2, x^3}, x^_ ]

Out[1]= �x2, x3�
Here is the total number of elements
which match the pattern.

In[2]:= Count[ {3, 4, x, x^2, x^3}, x^_ ]

Out[2]= 2

You can apply functions like Cases not only to lists, but to expressions of any kind. In addition, you
can specify the level of parts at which you want to look.



262 2. Principles of Mathematica � 2.3 Patterns

Cases[expr, lhs->rhs] find elements of expr that match lhs, and give a list of the
results of applying the transformation rule to them

Cases[expr, lhs->rhs, lev] test parts of expr at levels specified by lev

Count[expr, form, lev] give the total number of parts that match form at levels
specified by lev

Position[expr, form, lev] give the positions of parts that match form at levels specified
by lev

Searching for parts of expressions that match a pattern.

This returns a list of the exponents n. In[3]:= Cases[ {3, 4, x, x^2, x^3}, x^n_ -> n]

Out[3]= �2, 3�
The pattern _Integer matches any
integer. This gives a list of integers
appearing at any level.

In[4]:= Cases[ {3, 4, x, x^2, x^3}, _Integer, Infinity]

Out[4]= �3, 4, 2, 3�

Cases[expr, form, lev, n] find only the first n parts that match form

Position[expr, form, lev, n] give the positions of the first n parts that match form

Limiting the number of parts to search for.

This gives the positions of the first two
powers of x appearing at any level.

In[5]:= Position[ {4, 4 + x^a, x^b, 6 + x^5}, x^_, Infinity, 2]

Out[5]= ��2, 2�, �3��
The positions are specified in exactly
the form used by functions such as
Extract and ReplacePart discussed in
Section 1.8.

In[6]:= ReplacePart[ {4, 4 + x^a, x^b, 6 + x^5}, zzz, % ]

Out[6]= �4, 4 � zzz, zzz, 6 � x5�

DeleteCases[expr, form] delete elements of expr that match form

DeleteCases[expr, form, lev] delete parts of expr that match form at levels specified by lev

Deleting parts of expressions that match a pattern.

This deletes the elements which match
x^n_.

In[7]:= DeleteCases[ {3, 4, x, x^2, x^3}, x^n_ ]

Out[7]= �3, 4, x�
This deletes all integers appearing at
any level.

In[8]:= DeleteCases[ {3, 4, x, 2+x, 3+x}, _Integer, Infinity ]

Out[8]= �x, x, x�



2.3.3 Naming Pieces of Patterns 263

ReplaceList[expr, lhs -> rhs] find all ways that expr can match lhs

Finding arrangements of an expression that match a pattern.

This finds all ways that the sum can be
written in two parts.

In[9]:= ReplaceList[a + b + c, x_ + y_ -> g[x, y]]

Out[9]= �ga, b � c�, gb, a � c�, gc, a � b�,
ga � b, c�, ga � c, b�, gb � c, a��

This finds all pairs of identical
elements. The pattern ___ stands for
any sequence of elements.

In[10]:= ReplaceList[{a, b, b, b, c, c, a},
{___, x_, x_, ___} -> x]

Out[10]= �b, b, c�

2.3.3 Naming Pieces of Patterns

Particularly when you use transformation rules, you often need to name pieces of patterns. An object
like x_ stands for any expression, but gives the expression the name x. You can then, for example,
use this name on the right-hand side of a transformation rule.

An important point is that when you use x_, Mathematica requires that all occurrences of blanks
with the same name x in a particular expression must stand for the same expression.

Thus f[x_, x_] can only stand for expressions in which the two arguments of f are exactly the
same. f[_, _], on the other hand, can stand for any expression of the form f[x, y], where x and y
need not be the same.

The transformation rule applies only to
cases where the two arguments of f
are identical.

In[1]:= {f[a, a], f[a, b]} /. f[x_, x_] -> p[x]

Out[1]= �pa�, fa, b��
Mathematica allows you to give names not just to single blanks, but to any piece of a pattern. The

object x:pattern in general represents a pattern which is assigned the name x. In transformation rules,
you can use this mechanism to name exactly those pieces of a pattern that you need to refer to on the
right-hand side of the rule.

_ any expression

x_ any expression, to be named x

x:pattern an expression to be named x, matching pattern

Patterns with names.



264 2. Principles of Mathematica � 2.3 Patterns

This gives a name to the complete
form _^_ so you can refer to it as a
whole on the right-hand side of the
transformation rule.

In[2]:= f[a^b] /. f[x:_^_] -> p[x]

Out[2]= pab�

Here the exponent is named n, while
the whole object is x.

In[3]:= f[a^b] /. f[x:_^n_] -> p[x, n]

Out[3]= pab, b�
When you give the same name to two pieces of a pattern, you constrain the pattern to match only

those expressions in which the corresponding pieces are identical.

Here the pattern matches both cases. In[4]:= {f[h[4], h[4]], f[h[4], h[5]]} /. f[h[_], h[_]] -> q

Out[4]= �q, q�
Now both arguments of f are
constrained to be the same, and only
the first case matches.

In[5]:= {f[h[4], h[4]], f[h[4], h[5]]} /. f[x:h[_], x_] -> r[x]

Out[5]= �rh4��, fh4�, h5���

2.3.4 Specifying Types of Expression in Patterns

You can tell a lot about what “type” of expression something is by looking at its head. Thus, for
example, an integer has head Integer, while a list has head List.

In a pattern, _h and x_h represent expressions that are constrained to have head h. Thus, for
example, _Integer represents any integer, while _List represents any list.

x_h an expression with head h

x_Integer an integer

x_Real an approximate real number

x_Complex a complex number

x_List a list

x_Symbol a symbol

Patterns for objects with specified heads.

This replaces just those elements that
are integers.

In[1]:= {a, 4, 5, b} /. x_Integer -> p[x]

Out[1]= �a, p4�, p5�, b�
You can think of making an assignment for f[x_Integer] as like defining a function f that must

take an argument of “type” Integer.

This defines a value for the function
gamma when its argument is an integer.

In[2]:= gamma[n_Integer] := (n - 1)!



2.3.5 Putting Constraints on Patterns 265

The definition applies only when the
argument of gamma is an integer.

In[3]:= gamma[4] + gamma[x]

Out[3]= 6 � gammax�
The object 4. has head Real, so the
definition does not apply.

In[4]:= gamma[4.]

Out[4]= gamma4.�
This defines values for expressions
with integer exponents.

In[5]:= d[x_^n_Integer] := n x^(n-1)

The definition is used only when the
exponent is an integer.

In[6]:= d[x^4] + d[(a+b)^3] + d[x^(1/2)]

Out[6]= 3 �a � b�2 � 4 x3 � d�����
x �

- 2.3.5 Putting Constraints on Patterns

Mathematica provides a general mechanism for specifying constraints on patterns. All you need do is
to put /; condition at the end of a pattern to signify that it applies only when the specified condition
is True. You can read the operator /; as “slash-semi”, “whenever” or “provided that”.

pattern /; condition a pattern that matches only when a condition is satisfied

lhs :> rhs /; condition a rule that applies only when a condition is satisfied

lhs := rhs /; condition a definition that applies only when a condition is satisfied

Putting conditions on patterns and transformation rules.

This gives a definition for fac that
applies only when its argument n is
positive.

In[1]:= fac[n_ /; n > 0] := n!

The definition for fac is used only
when the argument is positive.

In[2]:= fac[6] + fac[-4]

Out[2]= 720 � fac�4�
This gives the negative elements in the
list.

In[3]:= Cases[{3, -4, 5, -2}, x_ /; x < 0]

Out[3]= ��4, �2�
You can use /; on whole definitions and transformation rules, as well as on individual patterns. In

general, you can put /; condition at the end of any := definition or :> rule to tell Mathematica that the
definition or rule applies only when the specified condition holds. Note that /; conditions should not
usually be put at the end of = definitions or -> rules, since they will then be evaluated immediately,
as discussed in Section 2.5.8.

Here is another way to give a
definition which applies only when its
argument n is positive.

In[4]:= fac2[n_] := n! /; n > 0



266 2. Principles of Mathematica � 2.3 Patterns

Once again, the factorial functions
evaluate only when their arguments
are positive.

In[5]:= fac2[6] + fac2[-4]

Out[5]= 720 � fac2�4�
You can use the /; operator to implement arbitrary mathematical constraints on the applicability

of rules. In typical cases, you give patterns which structurally match a wide range of expressions, but
then use mathematical constraints to reduce the range of expressions to a much smaller set.

This rule applies only to expressions
that have the structure v[x_, 1 - x_].

In[6]:= v[x_, 1 - x_] := p[x]

This expression has the appropriate
structure, so the rule applies.

In[7]:= v[a^2, 1 - a^2]

Out[7]= pa2�
This expression, while mathematically
of the correct form, does not have the
appropriate structure, so the rule does
not apply.

In[8]:= v[4, -3]

Out[8]= v4, �3�

This rule applies to any expression of
the form w[x_, y_], with the added
restriction that y == 1 - x.

In[9]:= w[x_, y_] := p[x] /; y == 1 - x

The new rule does apply to this
expression.

In[10]:= w[4, -3]

Out[10]= p4�
In setting up patterns and transformation rules, there is often a choice of where to put /; con-

ditions. For example, you can put a /; condition on the right-hand side of a rule in the form
lhs :> rhs /; condition, or you can put it on the left-hand side in the form lhs /; condition -> rhs. You
may also be able to insert the condition inside the expression lhs. The only constraint is that all the
names of patterns that you use in a particular condition must appear in the pattern to which the
condition is attached. If this is not the case, then some of the names needed to evaluate the condition
may not yet have been “bound” in the pattern-matching process. If this happens, then Mathematica
uses the global values for the corresponding variables, rather than the values determined by pattern
matching.

Thus, for example, the condition in f[x_, y_] /; (x + y < 2) will use values for x and y that are
found by matching f[x_, y_], but the condition in f[x_ /; x + y < 2, y_] will use the global value
for y, rather than the one found by matching the pattern.

As long as you make sure that the appropriate names are defined, it is usually most efficient to
put /; conditions on the smallest possible parts of patterns. The reason for this is that Mathematica
matches pieces of patterns sequentially, and the sooner it finds a /; condition which fails, the sooner
it can reject a match.

Putting the /; condition around the x_
is slightly more efficient than putting it
around the whole pattern.

In[11]:= Cases[{z[1, 1], z[-1, 1], z[-2, 2]}, z[x_ /; x < 0, y_]]

Out[11]= �z�1, 1�, z�2, 2��



2.3.5 Putting Constraints on Patterns 267

You need to put parentheses around
the /; piece in a case like this.

In[12]:= {1 + a, 2 + a, -3 + a} /. (x_ /; x < 0) + a -> p[x]

Out[12]= �1 � a, 2 � a, p�3��
It is common to use /; to set up patterns and transformation rules that apply only to expressions

with certain properties. There is a collection of functions built into Mathematica for testing the proper-
ties of expressions. It is a convention that functions of this kind have names that end with the letter
Q, indicating that they “ask a question”.

IntegerQ[expr] integer

EvenQ[expr] even number

OddQ[expr] odd number

PrimeQ[expr] prime number

NumberQ[expr] explicit number of any kind

NumericQ[expr] numeric quantity

PolynomialQ[expr, {x�, x�, . . . }] polynomial in x�, x�, 			

VectorQ[expr] a list representing a vector

MatrixQ[expr] a list of lists representing a matrix

VectorQ[expr, NumericQ], MatrixQ[expr, NumericQ]
vectors and matrices where all elements are numeric

VectorQ[expr, test], MatrixQ[expr, test]
vectors and matrices for which the function test yields
True on every element

, ArrayQ[expr, d] full array with depth matching d

Some functions for testing mathematical properties of expressions.

The rule applies to all elements of the
list that are numbers.

In[13]:= {2.3, 4, 7/8, a, b} /. (x_ /; NumberQ[x]) -> x^2

Out[13]= 	5.29, 16,
49
������������
64

, a, b

This definition applies only to vectors
of integers.

In[14]:= mi[list_] := list^2 /; VectorQ[list, IntegerQ]

The definition is now used only in the
first case.

In[15]:= {mi[{2, 3}], mi[{2.1, 2.2}], mi[{a, b}]}

Out[15]= ��4, 9�, mi�2.1, 2.2��, mi�a, b���



268 2. Principles of Mathematica � 2.3 Patterns

An important feature of all the Mathematica property-testing functions whose names end in Q is that
they always return False if they cannot determine whether the expression you give has a particular
property.

4561 is an integer, so this returns True. In[16]:= IntegerQ[4561]

Out[16]= True

This returns False, since x is not
known to be an integer.

In[17]:= IntegerQ[x]

Out[17]= False

In some cases, you can explicitly specify the results that property-testing functions should give.
Thus, with a definition such as x /: IntegerQ[x] = True, as discussed in Section 2.5.10, Mathematica
will assume that x is an integer. This means that if you explicitly ask for IntegerQ[x], you will now
get True, rather than False. However, Mathematica does not automatically propagate assertions, so it
cannot determine for example that IntegerQ[x^2] is True. You must load an appropriate Mathematica
package to make this possible.

SameQ[x, y] or x === y x and y are identical

UnsameQ[x, y] or x =!= y x and y are not identical

OrderedQ[{a, b, . . . }] a, b, 			 are in standard order

MemberQ[expr, form] form matches an element of expr

FreeQ[expr, form] form matches nothing in expr

MatchQ[expr, form] expr matches the pattern form

ValueQ[expr] a value has been defined for expr

AtomQ[expr] expr has no subexpressions

Some functions for testing structural properties of expressions.

With ==, the equation remains in
symbolic form; === yields False unless
the expressions are manifestly equal.

In[18]:= {x == y, x === y}

Out[18]= �x � y, False�
The expression n is not a member of the
list {x, x^n}.

In[19]:= MemberQ[{x, x^n}, n]

Out[19]= False

However, {x, x^n} is not completely
free of n.

In[20]:= FreeQ[{x, x^n}, n]

Out[20]= False

You can use FreeQ to define a
“linearity” rule for h.

In[21]:= h[a_ b_, x_] := a h[b, x] /; FreeQ[a, x]



2.3.6 Patterns Involving Alternatives 269

Terms free of x are pulled out of
each h.

In[22]:= h[a b x, x] + h[2 (1+x) x^2, x]

Out[22]= a b hx, x� � 2 hx2 �1 � x�, x�

pattern ? test a pattern which matches an expression only if test yields
True when applied to the expression

Another way to constrain patterns.

The construction pattern /; condition allows you to evaluate a condition involving pattern names to
determine whether there is a match. The construction pattern ? test instead applies a function test to
the whole expression matched by pattern to determine whether there is a match. Using ? instead of
/; sometimes leads to more succinct definitions.

With this definition matches for x_ are
tested with the function NumberQ.

In[23]:= p[x_?NumberQ] := x^2

The definition applies only when p has
a numerical argument.

In[24]:= p[4.5] + p[3/2] + p[u]

Out[24]= 22.5 � pu�
Here is a more complicated definition.
Do not forget the parentheses around
the pure function.

In[25]:= q[{x_Integer, y_Integer} ?
(Function[v, v.v > 4])] := qp[x + y]

The definition applies only in certain
cases.

In[26]:= {q[{3, 4}], q[{1, 1}], q[{-5, -7}]}

Out[26]= �qp7�, q�1, 1��, qp�12��

2.3.6 Patterns Involving Alternatives

patt� | patt� | . . . a pattern that can have one of several forms

Specifying patterns that involve alternatives.

This defines h to give p when its
argument is either a or b.

In[1]:= h[a | b] := p

The first two cases give p. In[2]:= {h[a], h[b], h[c], h[d]}

Out[2]= �p, p, hc�, hd��
You can also use alternatives in
transformation rules.

In[3]:= {a, b, c, d} /. (a | b) -> p

Out[3]= �p, p, c, d�
Here is another example, in which one
of the alternatives is itself a pattern.

In[4]:= {1, x, x^2, x^3, y^2} /. (x | x^_) -> q

Out[4]= �1, q, q, q, y2�



270 2. Principles of Mathematica � 2.3 Patterns

When you use alternatives in patterns, you should make sure that the same set of names appear in
each alternative. When a pattern like (a[x_] | b[x_]) matches an expression, there will always be a
definite expression that corresponds to the object x. On the other hand, if you try to match a pattern
like (a[x_] | b[y_]), then there will be a definite expression corresponding either to x, or to y, but
not to both. As a result, you cannot use x and y to refer to definite expressions, for example on the
right-hand side of a transformation rule.

Here f is used to name the head,
which can be either a or b.

In[5]:= {a[2], b[3], c[4], a[5]} /. (f:(a|b))[x_] -> r[f, x]

Out[5]= �ra, 2�, rb, 3�, c4�, ra, 5��

2.3.7 Flat and Orderless Functions

Although Mathematica matches patterns in a purely structural fashion, its notion of structural equiv-
alence is quite sophisticated. In particular, it takes account of properties such as commutativity and
associativity in functions like Plus and Times.

This means, for example, that Mathematica considers the expressions x + y and y + x equivalent for
the purposes of pattern matching. As a result, a pattern like g[x_ + y_, x_] can match not only
g[a + b, a], but also g[a + b, b].

This expression has exactly the same
form as the pattern.

In[1]:= g[a + b, a] /. g[x_ + y_, x_] -> p[x, y]

Out[1]= pa, b�
In this case, the expression has to be
put in the form g[b + a, b] in order
to have the same structure as the
pattern.

In[2]:= g[a + b, b] /. g[x_ + y_, x_] -> p[x, y]

Out[2]= pb, a�

Whenever Mathematica encounters an orderless or commutative function such as Plus or Times in a
pattern, it effectively tests all the possible orders of arguments to try and find a match. Sometimes,
there may be several orderings that lead to matches. In such cases, Mathematica just uses the first
ordering it finds. For example, h[x_ + y_, x_ + z_] could match h[a + b, a + b] with x#a, y#b,
z#b or with x#b, y#a, z#a. Mathematica tries the case x#a, y#b, z#b first, and so uses this match.

This can match either with x # a or
with x # b. Mathematica tries x # a
first, and so uses this match.

In[3]:= h[a + b, a + b] /. h[x_ + y_, x_ + z_] -> p[x, y, z]

Out[3]= pa, b, b�
ReplaceList shows both possible
matches.

In[4]:= ReplaceList[h[a + b, a + b],
h[x_ + y_, x_ + z_] -> p[x, y, z]]

Out[4]= �pa, b, b�, pb, a, a��
As discussed in Section 2.6.3, Mathematica allows you to assign certain attributes to functions,

which specify how those functions should be treated in evaluation and pattern matching. Functions
can for example be assigned the attribute Orderless, which specifies that they should be treated as
commutative or symmetric, and allows their arguments to be rearranged in trying to match patterns.



2.3.7 Flat and Orderless Functions 271

Orderless commutative function: f[b, c, a], etc., are equivalent to
f[a, b, c]

Flat associative function: f[f[a], b], etc., are equivalent to
f[a, b]

OneIdentity f[f[a]], etc., are equivalent to a

Attributes[f] give the attributes assigned to f

SetAttributes[f, attr] add attr to the attributes of f

ClearAttributes[f, attr] remove attr from the attributes of f

Some attributes that can be assigned to functions.

Plus has attributes Orderless and
Flat, as well as others.

In[5]:= Attributes[Plus]

Out[5]= �Flat, Listable, NumericFunction,
OneIdentity, Orderless, Protected�

This defines q to be an orderless or
commutative function.

In[6]:= SetAttributes[q, Orderless]

The arguments of q are automatically
sorted into order.

In[7]:= q[b, a, c]

Out[7]= qa, b, c�
Mathematica rearranges the arguments
of q functions to find a match.

In[8]:= f[q[a, b], q[b, c]] /.
f[q[x_, y_], q[x_, z_]] -> p[x, y, z]

Out[8]= pb, a, c�
In addition to being orderless, functions like Plus and Times also have the property of being flat

or associative. This means that you can effectively “parenthesize” their arguments in any way, so that,
for example, x + (y + z) is equivalent to x + y + z, and so on.

Mathematica takes account of flatness in matching patterns. As a result, a pattern like g[x_ + y_]
can match g[a + b + c], with x # a and y # (b + c).

The argument of g is written as
a + (b + c) so as to match the pattern.

In[9]:= g[a + b + c] /. g[x_ + y_] -> p[x, y]

Out[9]= pa, b � c�
If there are no other constraints,
Mathematica will match x_ to the first
element of the sum.

In[10]:= g[a + b + c + d] /. g[x_ + y_] -> p[x, y]

Out[10]= pa, b � c � d�
This shows all the possible matches. In[11]:= ReplaceList[g[a + b + c], g[x_ + y_] -> p[x, y]]

Out[11]= �pa, b � c�, pb, a � c�, pc, a � b�,
pa � b, c�, pa � c, b�, pb � c, a��



272 2. Principles of Mathematica � 2.3 Patterns

Here x_ is forced to match b + d. In[12]:= g[a + b + c + d, b + d] /. g[x_ + y_, x_] -> p[x, y]

Out[12]= pb � d, a � c�
Mathematica can usually apply a transformation rule to a function only if the pattern in the rule

covers all the arguments in the function. However, if you have a flat function, it is sometimes possible
to apply transformation rules even though not all the arguments are covered.

This rule applies even though it does
not cover all the terms in the sum.

In[13]:= a + b + c /. a + c -> p

Out[13]= b � p

This combines two of the terms in the
sum.

In[14]:= u[a] + u[b] + v[c] + v[d] /. u[x_] + u[y_] -> u[x + y]

Out[14]= ua � b� � vc� � vd�
Functions like Plus and Times are both flat and orderless. There are, however, some functions,

such as Dot, which are flat, but not orderless.

Both x_ and y_ can match any
sequence of terms in the dot product.

In[15]:= a . b . c . d . a . b /. x_ . y_ . x_ -> p[x, y]

Out[15]= pa.b, c.d�
This assigns the attribute Flat to the
function r.

In[16]:= SetAttributes[r, Flat]

Mathematica writes the expression in
the form r[r[a, b], r[a, b]] to
match the pattern.

In[17]:= r[a, b, a, b] /. r[x_, x_] -> rp[x]

Out[17]= rpra, b��
Mathematica writes this expression in
the form r[a, r[r[b], r[b]], c] to
match the pattern.

In[18]:= r[a, b, b, c] /. r[x_, x_] -> rp[x]

Out[18]= ra, rprb��, c�
In an ordinary function that is not flat, a pattern such as x_ matches an individual argument of

the function. But in a function f[a, b, c, . . . ] that is flat, x_ can match objects such as f[b, c] which
effectively correspond to a sequence of arguments. However, in the case where x_ matches a single
argument in a flat function, the question comes up as to whether the object it matches is really just
the argument a itself, or f[a]. Mathematica chooses the first of these cases if the function carries the
attribute OneIdentity, and chooses the second case otherwise.

This adds the attribute OneIdentity to
the function r.

In[19]:= SetAttributes[r, OneIdentity]

Now x_ matches individual arguments,
without r wrapped around them.

In[20]:= r[a, b, b, c] /. r[x_, x_] -> rp[x]

Out[20]= ra, rpb�, c�
The functions Plus, Times and Dot all have the attribute OneIdentity, reflecting the fact that

Plus[x] is equivalent to x, and so on. However, in representing mathematical objects, it is often
convenient to deal with flat functions that do not have the attribute OneIdentity.



2.3.8 Functions with Variable Numbers of Arguments 273

2.3.8 Functions with Variable Numbers of Arguments

Unless f is a flat function, a pattern like f[x_, y_] stands only for instances of the function with exactly
two arguments. Sometimes you need to set up patterns that can allow any number of arguments.

You can do this using multiple blanks. While a single blank such as x_ stands for a single Mathematica
expression, a double blank such as x__ stands for a sequence of one or more expressions.

Here x__ stands for the sequence of
expressions (a, b, c).

In[1]:= f[a, b, c] /. f[x__] -> p[x, x, x]

Out[1]= pa, b, c, a, b, c, a, b, c�
Here is a more complicated definition,
which picks out pairs of duplicated
elements in h.

In[2]:= h[a___, x_, b___, x_, c___] := hh[x] h[a, b, c]

The definition is applied twice, picking
out the two paired elements.

In[3]:= h[2, 3, 2, 4, 5, 3]

Out[3]= h4, 5� hh2� hh3�
“Double blanks” __ stand for sequences of one or more expressions. “Triple blanks” ___ stand

for sequences of zero or more expressions. You should be very careful whenever you use triple
blank patterns. It is easy to make a mistake that can lead to an infinite loop. For example, if you
define p[x_, y___] := p[x] q[y], then typing in p[a] will lead to an infinite loop, with y repeatedly
matching a sequence with zero elements. Unless you are sure you want to include the case of zero
elements, you should always use double blanks rather than triple blanks.

_ any single expression

x_ any single expression, to be named x

__ any sequence of one or more expressions

x__ sequence named x

x__h sequence of expressions, all of whose heads are h

___ any sequence of zero or more expressions

x___ sequence of zero or more expressions named x

x___h sequence of zero or more expressions, all of whose heads
are h

More kinds of pattern objects.

Notice that with flat functions such as Plus and Times, Mathematica automatically handles variable
numbers of arguments, so you do not explicitly need to use double or triple blanks, as discussed in
Section 2.3.7.



274 2. Principles of Mathematica � 2.3 Patterns

When you use multiple blanks, there are often several matches that are possible for a particular
expression. In general, Mathematica tries first those matches that assign the shortest sequences of
arguments to the first multiple blanks that appear in the pattern.

This gives a list of all the matches that
Mathematica tries.

In[4]:= ReplaceList[f[a, b, c, d], f[x__, y__] -> g[{x}, {y}]]

Out[4]= �g�a�, �b, c, d��,
g�a, b�, �c, d��, g�a, b, c�, �d���

Many kinds of enumeration can be
done by using ReplaceList with
various kinds of patterns.

In[5]:= ReplaceList[f[a, b, c, d], f[___, x__] -> g[x]]

Out[5]= �ga, b, c, d�, gb, c, d�, gc, d�, gd��
This effectively enumerates all sublists
with at least one element.

In[6]:= ReplaceList[f[a, b, c, d], f[___, x__, ___] -> g[x]]

Out[6]= �ga�, ga, b�, gb�, ga, b, c�, gb, c�,
gc�, ga, b, c, d�, gb, c, d�, gc, d�, gd��

2.3.9 Optional and Default Arguments

Sometimes you may want to set up functions where certain arguments, if omitted, are given “default
values”. The pattern x_:v stands for an object that can be omitted, and if so, will be replaced by the
default value v.

This defines a function j with a
required argument x, and optional
arguments y and z, with default values
1 and 2, respectively.

In[1]:= j[x_, y_:1, z_:2] := jp[x, y, z]

The default value of z is used here. In[2]:= j[a, b]

Out[2]= jpa, b, 2�
Now the default values of both y and
z are used.

In[3]:= j[a]

Out[3]= jpa, 1, 2�

x_:v an expression which, if omitted, is taken to have default
value v

x_h:v an expression with head h and default value v

x_. an expression with a built-in default value

Pattern objects with default values.

Some common Mathematica functions have built-in default values for their arguments. In such cases,
you need not explicitly give the default value in x_:v, but instead you can use the more convenient
notation x_. in which a built-in default value is assumed.



2.3.10 Setting Up Functions with Optional Arguments 275

x_ + y_. default for y is 0

x_ y_. default for y is 1

x_^y_. default for y is 1

Some patterns with optional pieces.

Here a matches the pattern x_ + y_.
with y taken to have the default
value 0.

In[4]:= {f[a], f[a + b]} /. f[x_ + y_.] -> p[x, y]

Out[4]= �pa, 0�, pb, a��
Because Plus is a flat function, a pattern such as x_ + y_ can match a sum with any number of

terms. This pattern cannot, however, match a single term such as a. However, the pattern x_ + y_.
contains an optional piece, and can match either an explicit sum of terms in which both x_ and y_
appear, or a single term x_, with y taken to be 0.

Using constructs such as x_., you can easily construct single patterns that match expressions with
several different structures. This is particularly useful when you want to match several mathematically
equal forms that do not have the same structure.

The pattern matches g[a^2], but not
g[a + b].

In[5]:= {g[a^2], g[a + b]} /. g[x_^n_] -> p[x, n]

Out[5]= �pa, 2�, ga � b��
By giving a pattern in which the
exponent is optional, you can match
both cases.

In[6]:= {g[a^2], g[a + b]} /. g[x_^n_.] -> p[x, n]

Out[6]= �pa, 2�, pa � b, 1��
The pattern a_. + b_. x_ matches any
linear function of x_.

In[7]:= lin[a_. + b_. x_, x_] := p[a, b]

In this case, b # 1. In[8]:= lin[1 + x, x]

Out[8]= p1, 1�
Here b # 1 and a # 0. In[9]:= lin[y, y]

Out[9]= p0, 1�
Standard Mathematica functions such as Plus and Times have built-in default values for their

arguments. You can also set up defaults for your own functions, as described in Section A.5.1.

2.3.10 Setting Up Functions with Optional Arguments

When you define a complicated function, you will often want to let some of the arguments of the
function be “optional”. If you do not give those arguments explicitly, you want them to take on
certain “default” values.

Built-in Mathematica functions use two basic methods for dealing with optional arguments. You can
choose between the same two methods when you define your own functions in Mathematica.



276 2. Principles of Mathematica � 2.3 Patterns

The first method is to have the meaning of each argument determined by its position, and then
to allow one to drop arguments, replacing them by default values. Almost all built-in Mathematica
functions that use this method drop arguments from the end. For example, the built-in function
Flatten[list, n] allows you to drop the second argument, which is taken to have a default value of
Infinity.

You can implement this kind of “positional” argument using _: patterns.

f[x_, k_:kdef] := value a typical definition for a function whose second argument is
optional, with default value kdef

Defining a function with positional arguments.

This defines a function with an
optional second argument. When the
second argument is omitted, it is taken
to have the default value Infinity.

In[1]:= f[list_, n_:Infinity] := f0[list, n]

Here is a function with two optional
arguments.

In[2]:= fx[list_, n1_:1, n2_:2] := fx0[list, n1, n2]

Mathematica assumes that arguments
are dropped from the end. As a result
m here gives the value of n1, while n2
has its default value of 2.

In[3]:= fx[k, m]

Out[3]= fx0k, m, 2�

The second method that built-in Mathematica functions use for dealing with optional arguments is
to give explicit names to the optional arguments, and then to allow their values to be given using
transformation rules. This method is particularly convenient for functions like Plot which have a very
large number of optional parameters, only a few of which usually need to be set in any particular
instance.

The typical arrangement is that values for “named” optional arguments can be specified by includ-
ing the appropriate transformation rules at the end of the arguments to a particular function. Thus,
for example, the rule PlotJoined->True, which specifies the setting for the named optional argument
PlotJoined, could appear as ListPlot[list, PlotJoined->True].

When you set up named optional arguments for a function f, it is conventional to store the default
values of these arguments as a list of transformation rules assigned to Options[f].



2.3.11 Repeated Patterns 277

f[x_, opts___] := value a typical definition for a function with zero or more named
optional arguments

name /. {opts} /. Options[f] replacements used to get the value of a named optional
argument in the body of the function

Named arguments.

This sets up default values for two
named optional arguments opt1 and
opt2 in the function fn.

In[4]:= Options[fn] = { opt1 -> 1, opt2 -> 2 }

Out[4]= �opt1 � 1, opt2 � 2�
This gives the default value for opt1. In[5]:= opt1 /. Options[fn]

Out[5]= 1

The rule opt1->3 is applied first, so
the default rule for opt1 in
Options[fn] is not used.

In[6]:= opt1 /. opt1->3 /. Options[fn]

Out[6]= 3

Here is the definition for a function fn
which allows zero or more named
optional arguments to be specified.

In[7]:= fn[x_, opts___] := k[x, opt2/.{opts}/.Options[fn]]

With no optional arguments specified,
the default rule for opt2 is used.

In[8]:= fn[4]

Out[8]= k4, 2�
If you explicitly give a rule for opt2, it
will be used before the default rules
stored in Options[fn] are tried.

In[9]:= fn[4, opt2->7]

Out[9]= k4, 7�

2.3.11 Repeated Patterns

expr.. a pattern or other expression repeated one or more times

expr... a pattern or other expression repeated zero or more times

Repeated patterns.

Multiple blanks such as x__ allow you to give patterns in which sequences of arbitrary expressions
can occur. The Mathematica pattern repetition operators .. and ... allow you to construct patterns in
which particular forms can be repeated any number of times. Thus, for example, f[a..] represents
any expression of the form f[a], f[a, a], f[a, a, a] and so on.

The pattern f[a..] allows the
argument a to be repeated any number
of times.

In[1]:= Cases[{ f[a], f[a, b, a], f[a, a, a] }, f[a..]]

Out[1]= �fa�, fa, a, a��



278 2. Principles of Mathematica � 2.3 Patterns

This pattern allows any number of a
arguments, followed by any number of
b arguments.

In[2]:= Cases[{ f[a], f[a, a, b], f[a, b, a], f[a, b, b] },
f[a.., b..]]

Out[2]= �fa, a, b�, fa, b, b��
Here each argument can be either a
or b.

In[3]:= Cases[{ f[a], f[a, b, a], f[a, c, a] }, f[(a | b)..]]

Out[3]= �fa�, fa, b, a��
You can use .. and ... to represent repetitions of any pattern. If the pattern contains named parts,

then each instance of these parts must be identical.

This defines a function whose
argument must consist of a list of
pairs.

In[4]:= v[x:{{_, _}..}] := Transpose[x]

The definition applies in this case. In[5]:= v[{{a1, b1}, {a2, b2}, {a3, b3}}]

Out[5]= ��a1, a2, a3�, �b1, b2, b3��
With this definition, the second
elements of all the pairs must be the
same.

In[6]:= vn[x:{{_, n_}..}] := Transpose[x]

The definition applies in this case. In[7]:= vn[{{a, 2}, {b, 2}, {c, 2}}]

Out[7]= ��a, b, c�, �2, 2, 2��

2.3.12 Verbatim Patterns

Verbatim[expr] an expression that must be matched verbatim

Verbatim patterns.

Here the x_ in the rule matches any
expression.

In[1]:= {f[2], f[a], f[x_], f[y_]} /. f[x_] -> x^2

Out[1]= �4, a2, x_2, y_2�
The Verbatim tells Mathematica that
only the exact expression x_ should be
matched.

In[2]:= {f[2], f[a], f[x_], f[y_]} /. f[Verbatim[x_]] -> x^2

Out[2]= �f2�, fa�, x2, fy_��

2.3.13 Patterns for Some Common Types of Expression

Using the objects described above, you can set up patterns for many kinds of expressions. In all cases,
you must remember that the patterns must represent the structure of the expressions in Mathematica
internal form, as shown by FullForm .



2.3.13 Patterns for Some Common Types of Expression 279

Especially for some common kinds of expressions, the standard output format used by Mathematica
is not particularly close to the full internal form. But it is the internal form that you must use in
setting up patterns.

n_Integer an integer n

x_Real an approximate real number x

z_Complex a complex number z

Complex[x_, y_] a complex number x � iy

Complex[x_Integer, y_Integer] a complex number where both real and imaginary
parts are integers

(r_Rational | r_Integer) rational number or integer r

Rational[n_, d_] a rational number n
d

(x_ /; NumberQ[x] && Im[x]==0) a real number of any kind

(x_ /; NumberQ[x]) a number of any kind

Some typical patterns for numbers.

Here are the full forms of some
numbers.

In[1]:= {2, 2.5, 2.5 + I, 2/7} // FullForm

Out[1]//FullForm= List2, 2.5`, Complex2.5`, 1�, Rational2, 7��
The rule picks out each piece of the
complex numbers.

In[2]:= {2.5 - I, 3 + I} /. Complex[x_, y_] -> p[x, y]

Out[2]= �p2.5, �1�, p3, 1��
The fact that these expressions have
different full forms means that you
cannot use x_ + I y_ to match a
complex number.

In[3]:= {2.5 - I, x + I y} // FullForm

Out[3]//FullForm= ListComplex2.5`, �1�,
Plusx, TimesComplex0, 1�, y���

The pattern here matches both ordinary
integers, and complex numbers where
both the real and imaginary parts are
integers.

In[4]:= Cases[ {2.5 - I, 2, 3 + I, 2 - 0.5 I, 2 + 2 I},
_Integer | Complex[_Integer, _Integer] ]

Out[4]= �2, 3 � �, 2 � 2 ��
As discussed in Section 1.4.1, Mathematica puts all algebraic expressions into a standard form, in

which they are written essentially as a sum of products of powers. In addition, ratios are converted
into products of powers, with denominator terms having negative exponents, and differences are
converted into sums with negated terms. To construct patterns for algebraic expressions, you must
use this standard form. This form often differs from the way Mathematica prints out the algebraic
expressions. But in all cases, you can find the full internal form using FullForm[expr].



280 2. Principles of Mathematica � 2.3 Patterns

Here is a typical algebraic expression. In[5]:= -1/z^2 - z/y + 2 (x z)^2 y

Out[5]= �
1
������������
z2

�
z
�������
y
� 2 x2 y z2

This is the full internal form of the
expression.

In[6]:= FullForm[%]

Out[6]//FullForm= PlusTimes�1, Powerz, �2��,
Times�1, Powery, �1�, z�,
Times2, Powerx, 2�, y, Powerz, 2���

This is what you get by applying a
transformation rule to all powers in the
expression.

In[7]:= % /. x_^n_ -> e[x, n]

Out[7]= �z ey, �1� � ez, �2� � 2 y ex, 2� ez, 2�

x_ + y_ a sum of two or more terms

x_ + y_. a single term or a sum of terms

n_Integer x_ an expression with an explicit integer multiplier

a_. + b_. x_ a linear expression a � bx

x_ ^ n_ xn with n ^ �� �

x_ ^ n_. xn with n ^ �

a_. + b_. x_ + c_. x_^2 a quadratic expression with non-zero linear term

Some typical patterns for algebraic expressions.

This pattern picks out linear functions
of x.

In[8]:= {1, a, x, 2 x, 1 + 2 x} /. a_. + b_. x -> p[a, b]

Out[8]= �1, a, p0, 1�, p0, 2�, p1, 2��

x_List or x:{___} a list

x_List /; VectorQ[x] a vector containing no sublists

x_List /; VectorQ[x, NumberQ] a vector of numbers

x:{___List} or x:{{___}...} a list of lists

x_List /; MatrixQ[x] a matrix containing no sublists

x_List /; MatrixQ[x, NumberQ] a matrix of numbers

x:{{_, _}...} a list of pairs

Some typical patterns for lists.



2.3.14 An Example: Defining Your Own Integration Function 281

This defines a function whose
argument must be a list containing lists
with either one or two elements.

In[9]:= h[x:{ ({_} | {_, _})... }] := q

The definition applies in the second
and third cases.

In[10]:= {h[{a, b}], h[{{a}, {b}}], h[{{a}, {b, c}}]}

Out[10]= �h�a, b��, q, q�

2.3.14 An Example: Defining Your Own Integration Function

Now that we have introduced the basic features of patterns in Mathematica, we can use them to give
a more or less complete example. We will show how you could define your own simple integration
function in Mathematica.

From a mathematical point of view, the integration function is defined by a sequence of mathemat-
ical relations. By setting up transformation rules for patterns, you can implement these mathematical
relations quite directly in Mathematica.

mathematical form Mathematica definition

� �y � z� dx � � y dx � � z dx integrate[y_ + z_, x_] :=
integrate[y, x] + integrate[z, x]

� c y dx � c � y dx (c independent of x) integrate[c_ y_, x_] :=
c integrate[y, x] /; FreeQ[c, x]

� c dx � c x integrate[c_, x_] := c x /; FreeQ[c, x]

� xn dx � x�n���
n�� , n ^ �� integrate[x_^n_., x_] := x^(n+1)/(n+1) /;

FreeQ[n, x] && n != -1

� �
ax�b dx � log�ax�b�

a integrate[1/(a_. x_ + b_.), x_] :=
Log[a x + b]/a /; FreeQ[{a,b}, x]

� eax�b dx � �a eax�b integrate[Exp[a_. x_ + b_.], x_] :=
Exp[a x + b]/a /; FreeQ[{a,b}, x]

Definitions for an integration function.

This implements the linearity relation
for integrals:

� �y � z� dx � � y dx � � z dx.

In[1]:= integrate[y_ + z_, x_] :=
integrate[y, x] + integrate[z, x]



282 2. Principles of Mathematica � 2.3 Patterns

The associativity of Plus makes the
linearity relation work with any
number of terms in the sum.

In[2]:= integrate[a x + b x^2 + 3, x]

Out[2]= integrate3, x� �
integratea x, x� � integrateb x2, x�

This makes integrate pull out factors
that are independent of the integration
variable x.

In[3]:= integrate[c_ y_, x_] := c integrate[y, x] /; FreeQ[c, x]

Mathematica tests each term in each
product to see whether it satisfies the
FreeQ condition, and so can be pulled
out.

In[4]:= integrate[a x + b x^2 + 3, x]

Out[4]= integrate3, x� �
a integratex, x� � b integratex2, x�

This gives the integral � c dx � c x of a
constant.

In[5]:= integrate[c_, x_] := c x /; FreeQ[c, x]

Now the constant term in the sum can
be integrated.

In[6]:= integrate[a x + b x^2 + 3, x]

Out[6]= 3 x � a integratex, x� � b integratex2, x�
This gives the standard formula for the
integral of xn. By using the pattern
x_^n_., rather than x_^n_, we include
the case of x� � x.

In[7]:= integrate[x_^n_., x_] :=
x^(n+1)/(n+1) /; FreeQ[n, x] && n != -1

Now this integral can be done
completely.

In[8]:= integrate[a x + b x^2 + 3, x]

Out[8]= 3 x �
a x2

������������������
2

�
b x3

������������������
3

Of course, the built-in integration
function Integrate (with a capital I)
could have done the integral anyway.

In[9]:= Integrate[a x + b x^2 + 3, x]

Out[9]= 3 x �
a x2

������������������
2

�
b x3

������������������
3

Here is the rule for integrating the
reciprocal of a linear function. The
pattern a_. x_ + b_. stands for any
linear function of x.

In[10]:= integrate[1/(a_. x_ + b_.), x_] :=
Log[a x + b]/a /; FreeQ[{a,b}, x]

Here both a and b take on their
default values.

In[11]:= integrate[1/x, x]

Out[11]= Logx�
Here is a more complicated case. The
symbol a now matches 2 p.

In[12]:= integrate[1/(2 p x - 1), x]

Out[12]=
Log�1 � 2 p x�
��������������������������������������������������������������

2 p

You can go on and add many more
rules for integration. Here is a rule for
integrating exponentials.

In[13]:= integrate[Exp[a_. x_ + b_.], x_] :=
Exp[a x + b]/a /; FreeQ[{a,b}, x]



2.4.1 Constructing Lists 283

2.4 Manipulating Lists

, 2.4.1 Constructing Lists

Lists are widely used in Mathematica, and there are many ways to construct them.

Range[n] the list {1, 2, 3, . . . , n}

Table[expr, {i, n}] the values of expr with i from 1 to n

Array[f, n] the list {f[1], f[2], . . . , f[n]}

NestList[f, x, n] {x, f[x], f[f[x]], . . . } with up to n nestings

, Normal[SparseArray[{i�->v�, . . . }, n]]
a length n list with element ik being vk

Apply[List, f[e�, e�, . . . ]] the list {e�, e�, . . . }

Some explicit ways to construct lists.

This gives a table of the first five
powers of two.

In[1]:= Table[2^i, {i, 5}]

Out[1]= �2, 4, 8, 16, 32�
Here is another way to get the same
result.

In[2]:= Array[2^# &, 5]

Out[2]= �2, 4, 8, 16, 32�
This gives a similar list. In[3]:= NestList[2 #&, 1, 5]

Out[3]= �1, 2, 4, 8, 16, 32�
SparseArray lets you specify values at
particular positions.

In[4]:= Normal[SparseArray[{3->x, 4->y}, 5]]

Out[4]= �0, 0, x, y, 0�
You can also use patterns to specify
values.

In[5]:= Normal[SparseArray[{i_ -> 2^i}, 5]]

Out[5]= �2, 4, 8, 16, 32�
Often you will know in advance how long a list is supposed to be, and how each of its elements

should be generated. And often you may get one list from another.



284 2. Principles of Mathematica � 2.4 Manipulating Lists

Map[f, list] apply f to each element of list

MapIndexed[f, list] give f[elem, {i}] for the ith element

Cases[list, form] give elements of list that match form

Select[list, test] select elements for which test[elem] is True

list[[{i�, i�, . . . }]] or Part[list, {i�, i�, . . . }]
give a list of the specified parts of list

Constructing lists from other lists.

This selects elements larger than 5. In[6]:= Select[{1, 3, 6, 8, 10}, # > 5&]

Out[6]= �6, 8, 10�
This explicitly picks out numbered
parts.

In[7]:= {a, b, c, d}[[{2, 1, 4}]]

Out[7]= �b, a, d�
Sometimes you may want to accumulate a list of results during the execution of a program. You

can do this using Sow and Reap.

, Sow[val] sow the value val for the nearest enclosing Reap

, Reap[expr] evaluate expr, returning also a list of values sown by Sow

Using Sow and Reap.

This program iteratively squares a
number.

In[8]:= Nest[#^2&, 2, 5]

Out[8]= 4294967296

This does the same computation, but
accumulating a list of intermediate
results above 1000.

In[9]:= Reap[Nest[(If[# > 1000, Sow[#]]; #^2) &, 2, 6]]

Out[9]= �18446744073709551616, ��65536, 4294967296���
An alternative but less efficient approach involves introducing a temporary variable, then starting

with t = {}, and successively using AppendTo[t, elem].



2.4.2 Manipulating Lists by Their Indices 285

, 2.4.2 Manipulating Lists by Their Indices

Part[list, spec] or list[[spec]] part or parts of a list

Part[list, spec�, spec�, . . . ] or list[[spec�, spec�, . . . ]]
part or parts of a nested list

n the nth part from the beginning

-n the nth part from the end

{i�, i�, . . . } a list of parts

All all parts

Getting parts of lists.

This gives a list of parts 1 and 3. In[1]:= {a, b, c, d}[[{1, 3}]]

Out[1]= �a, c�
Here is a nested list. In[2]:= m = {{a, b, c}, {d, e}, {f, g, h}};

This gives a list of its first and third
parts.

In[3]:= m[[{1, 3}]]

Out[3]= ��a, b, c�, �f, g, h��
This gives a list of the first part of
each of these.

In[4]:= m[[{1, 3}, 1]]

Out[4]= �a, f�
And this gives a list of the first two
parts.

In[5]:= m[[{1, 3}, {1, 2}]]

Out[5]= ��a, b�, �f, g��
This gives the second part of all
sublists.

In[6]:= m[[All, 2]]

Out[6]= �b, e, g�
You can always reset one or more pieces of a list by doing an assignment like m[[. . . ]] = value.

This resets part 1,2 of m. In[7]:= m[[1, 2]] = x

Out[7]= x

This is now the form of m. In[8]:= m

Out[8]= ��a, x, c�, �d, e�, �f, g, h��
This resets part 1 to x and part 3 to y. In[9]:= m[[{1, 3}]] = {x, y}; m

Out[9]= �x, �d, e�, y�
This resets parts 1 and 3 both to p. In[10]:= m[[{1, 3}]] = p; m

Out[10]= �p, �d, e�, p�



286 2. Principles of Mathematica � 2.4 Manipulating Lists

This restores the original form of m. In[11]:= m = {{a, b, c}, {d, e}, {f, g, h}};

This now resets all parts specified by
m[[{1, 3}, {1, 2}]].

In[12]:= m[[{1, 3}, {1, 2}]] = x; m

Out[12]= ��x, x, c�, �d, e�, �x, x, h��
You can use Range to indicate all
indices in a given range.

In[13]:= m[[Range[1, 3], 2]] = y; m

Out[13]= ��x, y, c�, �d, y�, �x, y, h��
It is sometimes useful to think of a nested list as being laid out in space, with each element being

at a coordinate position given by its indices. There is then a direct geometrical interpretation for
list[[spec�, spec�, . . . ]]. If a given speck is a single integer, then it represents extracting a single slice
in the kth dimension, while if it is a list, it represents extracting a list of parallel slices. The final result
for list[[spec�, spec�, . . . ]] is then the collection of elements obtained by slicing in each successive
dimension.

Here is a nested list laid out as a
two-dimensional array.

In[14]:= (m = {{a, b, c}, {d, e, f}, {g, h, i}}) // TableForm

Out[14]//TableForm=

a b c

d e f

g h i

This picks out rows 1 and 3, then
columns 1 and 2.

In[15]:= m[[{1, 3}, {1, 2}]] // TableForm

Out[15]//TableForm=
a b

g h

Part is set up to make it easy to pick out structured slices of nested lists. Sometimes, however,
you may want to pick out arbitrary collections of individual parts. You can do this conveniently with
Extract.

Part[list, {i�, i�, . . . }] the list {list[[i�]], list[[i�]], . . . }

Extract[list, {i�, i�, . . . }] the element list[[i�, i�, . . . ]]

Part[list, spec�, spec�, . . . ] parts specified by successive slicing

Extract[list, {{i�, i�, . . . }, {j�, j�, . . . }, . . . }]
the list of individual parts
{list[[i�, i�, . . . ]], list[[j�, j�, . . . ]], . . . }

Getting slices versus lists of individual parts.

This extracts the individual parts 1,3
and 1,2.

In[16]:= Extract[m, {{1, 3}, {1, 2}}]

Out[16]= �c, b�
An important feature of Extract is that it takes lists of part positions in the same form as they are

returned by functions like Position.



2.4.2 Manipulating Lists by Their Indices 287

This sets up a nested list. In[17]:= m = {{a[1], a[2], b[1]}, {b[2], c[1]}, {{b[3]}}};

This gives a list of positions in m. In[18]:= Position[m, b[_]]

Out[18]= ��1, 3�, �2, 1�, �3, 1, 1��
This extracts the elements at those
positions.

In[19]:= Extract[m, %]

Out[19]= �b1�, b2�, b3��

Take[list, spec] take the specified parts of a list

Drop[list, spec] drop the specified parts of a list

Take[list, spec�, spec�, . . . ], Drop[list, spec�, spec�, . . . ]
take or drop specified parts at each level in nested lists

n the first n elements

-n the last n elements

{n} element n only

{m, n} elements m through n (inclusive)

{m, n, s} elements m through n in steps of s

All all parts

None no parts

Taking and dropping sequences of elements in lists.

This takes every second element
starting at position 2.

In[20]:= Take[{a, b, c, d, e, f, g}, {2, -1, 2}]

Out[20]= �b, d, f�
This drops every second element. In[21]:= Drop[{a, b, c, d, e, f, g}, {2, -1, 2}]

Out[21]= �a, c, e, g�
Much like Part, Take and Drop can be viewed as picking out sequences of slices at successive

levels in a nested list. You can use Take and Drop to work with blocks of elements in arrays.

Here is a  �  array. In[22]:= (m = {{a, b, c}, {d, e, f}, {g, h, i}}) // TableForm

Out[22]//TableForm=

a b c

d e f

g h i

Here is the first � � � subarray. In[23]:= Take[m, 2, 2] // TableForm

Out[23]//TableForm=
a b

d e



288 2. Principles of Mathematica � 2.4 Manipulating Lists

This takes all elements in the first two
columns.

In[24]:= Take[m, All, 2] // TableForm

Out[24]//TableForm=

a b

d e

g h

This leaves no elements from the first
two columns.

In[25]:= Drop[m, None, 2] // TableForm

Out[25]//TableForm=

c

f

i

Prepend[list, elem] add element at the beginning of list

Append[list, elem] add element at the end of list

Insert[list, elem, i] insert element at position i

Insert[list, elem, {i, j, . . . }] insert at position i, j, . . .

Delete[list, i] delete the element at position i

Delete[list, {i, j, . . . }] delete at position i, j, . . .

Adding and deleting elements in lists.

This makes the 2,1 element of the list
be x.

In[26]:= Insert[{{a, b, c}, {d, e}}, x, {2, 1}]

Out[26]= ��a, b, c�, �x, d, e��
This deletes the element again. In[27]:= Delete[%, {2, 1}]

Out[27]= ��a, b, c�, �d, e��

ReplacePart[list, new, i] replace the element at position i in list with new

ReplacePart[list, new, {i, j, . . . }]
replace list[[i, j, . . . ]] with new

ReplacePart[list, new, {{i�, j�, . . . }, {i�, . . . }, . . . }]
replace all parts list[[ik, jk, . . . ]] with new

ReplacePart[list, new, {{i�, . . . }, . . . }, {n�, . . . }]
replace part list[[ik, . . . ]] with new[[nk]]

Replacing parts of lists.

This replaces the third element in the
list with x.

In[28]:= ReplacePart[{a, b, c, d}, x, 3]

Out[28]= �a, b, x, d�



2.4.3 Nested Lists 289

This replaces the first and fourth parts
of the list. Notice the need for double
lists in specifying multiple parts to
replace.

In[29]:= ReplacePart[{a, b, c, d}, x, {{1}, {4}}]

Out[29]= �x, b, c, x�

Here is a  �  identity matrix. In[30]:= IdentityMatrix[3]

Out[30]= ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��
This replaces the 2,2 component of the
matrix by x.

In[31]:= ReplacePart[%, x, {2, 2}]

Out[31]= ��1, 0, 0�, �0, x, 0�, �0, 0, 1��

, 2.4.3 Nested Lists

{list�, list�, . . . } list of lists

Table[expr, {i, m}, {j, n}, . . . ] m � n � � � � table of values of expr

Array[f, {m, n, . . . }] m � n � � � � array of values f[i, j, . . . ]

, Normal[SparseArray[{{i�, j�,. . . } -> v�, . . . }, {m, n, . . . }]]
m � n � � � � array with element {is, js,. . . } being vs

Outer[f, list�, list�, . . . ] generalized outer product with elements combined using f

Ways to construct nested lists.

This generates a table corresponding to
a � �  nested list.

In[1]:= Table[x^i + j, {i, 2}, {j, 3}]

Out[1]= ��1 � x, 2 � x, 3 � x�, �1 � x2, 2 � x2, 3 � x2��
This generates an array corresponding
to the same nested list.

In[2]:= Array[x^#1 + #2 &, {2, 3}]

Out[2]= ��1 � x, 2 � x, 3 � x�, �1 � x2, 2 � x2, 3 � x2��
Elements not explicitly specified in the
sparse array are taken to be 0.

In[3]:= Normal[SparseArray[{{1, 3} -> 3 + x}, {2, 3}]]

Out[3]= ��0, 0, 3 � x�, �0, 0, 0��
Each element in the final list contains
one element from each input list.

In[4]:= Outer[f, {a, b}, {c, d}]

Out[4]= ��fa, c�, fa, d��, �fb, c�, fb, d���
Functions like Array, SparseArray and Outer always generate full arrays, in which all sublists at a
particular level are the same length.



290 2. Principles of Mathematica � 2.4 Manipulating Lists

Dimensions[list] the dimensions of a full array

, ArrayQ[list] test whether all sublists at a given level are the same length

, ArrayDepth[list] the depth to which all sublists are the same length

Functions for full arrays.

Mathematica can handle arbitrary nested lists. There is no need for the lists to form a full array.
You can easily generate ragged arrays using Table.

This generates a triangular array. In[5]:= Table[x^i + j, {i, 3}, {j, i}]

Out[5]= ��1 � x�, �1 � x2, 2 � x2�, �1 � x3, 2 � x3, 3 � x3��

Flatten[list] flatten out all levels of list

Flatten[list, n] flatten out the top n levels

Flattening out sublists.

This generates a � �  array. In[6]:= Array[a, {2, 3}]

Out[6]= ��a1, 1�, a1, 2�, a1, 3��,�a2, 1�, a2, 2�, a2, 3���
Flatten in effect puts elements in
lexicographic order of their indices.

In[7]:= Flatten[%]

Out[7]= �a1, 1�, a1, 2�, a1, 3�, a2, 1�, a2, 2�, a2, 3��

Transpose[list] transpose the top two levels of list

Transpose[list, {n�, n�, . . . }] put the kth level in list at level nk

Transposing levels in nested lists.

This generates a � � � � � array. In[8]:= Array[a, {2, 2, 2}]

Out[8]= ���a1, 1, 1�, a1, 1, 2��, �a1, 2, 1�, a1, 2, 2���,��a2, 1, 1�, a2, 1, 2��, �a2, 2, 1�, a2, 2, 2����
This permutes levels so that level 3
appears at level 1.

In[9]:= Transpose[%, {3, 1, 2}]

Out[9]= ���a1, 1, 1�, a2, 1, 1��, �a1, 1, 2�, a2, 1, 2���,��a1, 2, 1�, a2, 2, 1��, �a1, 2, 2�, a2, 2, 2����
This restores the original array. In[10]:= Transpose[%, {2, 3, 1}]

Out[10]= ���a1, 1, 1�, a1, 1, 2��, �a1, 2, 1�, a1, 2, 2���,��a2, 1, 1�, a2, 1, 2��, �a2, 2, 1�, a2, 2, 2����



2.4.3 Nested Lists 291

Map[f, list, {n}] map f across elements at level n

Apply[f, list, {n}] apply f to the elements at level n

MapIndexed[f, list, {n}] map f onto parts at level n and their indices

Applying functions in nested lists.

Here is a nested list. In[11]:= m = {{{a, b}, {c, d}}, {{e, f}, {g, h}, {i}}};

This maps a function f at level 2. In[12]:= Map[f, m, {2}]

Out[12]= ��f�a, b��, f�c, d���,�f�e, f��, f�g, h��, f�i����
This applies the function at level 2. In[13]:= Apply[f, m, {2}]

Out[13]= ��fa, b�, fc, d��, �fe, f�, fg, h�, fi���
This applies f to both parts and their
indices.

In[14]:= MapIndexed[f, m, {2}]

Out[14]= ��f�a, b�, �1, 1��, f�c, d�, �1, 2���,�f�e, f�, �2, 1��,
f�g, h�, �2, 2��, f�i�, �2, 3����

Partition[list, {n�, n�, . . . }] partition into n� � n� � � � � blocks

PadLeft[list, {n�, n�, . . . }] pad on the left to make an n� � n� � � � � array

PadRight[list, {n�, n�, . . . }] pad on the right to make an n� � n� � � � � array

RotateLeft[list, {n�, n�, . . . }] rotate nk places to the left at level k

RotateRight[list, {n�, n�, . . . }] rotate nk places to the right at level k

Operations on nested lists.

Here is a nested list. In[15]:= m = {{{a, b, c}, {d, e}}, {{f, g}, {h}, {i}}};

This rotates different amounts at each
level.

In[16]:= RotateLeft[m, {0, 1, -1}]

Out[16]= ���e, d�, �c, a, b��, ��h�, �i�, �g, f���
This pads with zeros to make a
� �  �  array.

In[17]:= PadRight[%, {2, 3, 3}]

Out[17]= ���e, d, 0�, �c, a, b�, �0, 0, 0��,��h, 0, 0�, �i, 0, 0�, �g, f, 0���



292 2. Principles of Mathematica � 2.4 Manipulating Lists

, 2.4.4 Partitioning and Padding Lists

Partition[list, n] partition list into sublists of length n

Partition[list, n, d] partition into sublists with offset d

Split[list] split list into runs of identical elements

Split[list, test] split into runs with adjacent elements satisfying test

Partitioning elements in a list.

This partitions in blocks of 3. In[1]:= Partition[{a, b, c, d, e, f}, 3]

Out[1]= ��a, b, c�, �d, e, f��
This partitions in blocks of 3 with
offset 1.

In[2]:= Partition[{a, b, c, d, e, f}, 3, 1]

Out[2]= ��a, b, c�, �b, c, d�, �c, d, e�, �d, e, f��
The offset can be larger than the block
size.

In[3]:= Partition[{a, b, c, d, e, f}, 2, 3]

Out[3]= ��a, b�, �d, e��
This splits into runs of identical
elements.

In[4]:= Split[{1, 4, 1, 1, 1, 2, 2, 3, 3}]

Out[4]= ��1�, �4�, �1, 1, 1�, �2, 2�, �3, 3��
This splits into runs where adjacent
elements are unequal.

In[5]:= Split[{1, 4, 1, 1, 1, 2, 2, 3, 3}, Unequal]

Out[5]= ��1, 4, 1�, �1�, �1, 2�, �2, 3�, �3��
Partition in effect goes through a list, grouping successive elements into sublists. By default it does
not include any sublists that would “overhang” the original list.

This stops before any overhang occurs. In[6]:= Partition[{a, b, c, d, e}, 2]

Out[6]= ��a, b�, �c, d��
The same is true here. In[7]:= Partition[{a, b, c, d, e}, 3, 1]

Out[7]= ��a, b, c�, �b, c, d�, �c, d, e��
You can tell Partition to include sublists that overhang the ends of the original list. By default, it

fills in additional elements by treating the original list as cyclic. It can also treat it as being padded
with elements that you specify.

This includes additional sublists,
treating the original list as cyclic.

In[8]:= Partition[{a, b, c, d, e}, 3, 1, {1, 1}]

Out[8]= ��a, b, c�, �b, c, d�, �c, d, e�, �d, e, a�, �e, a, b��
Now the original list is treated as
being padded with the element x.

In[9]:= Partition[{a, b, c, d, e}, 3, 1, {1, 1}, x]

Out[9]= ��a, b, c�, �b, c, d�, �c, d, e�, �d, e, x�, �e, x, x��



2.4.4 Partitioning and Padding Lists 293

This pads cyclically with elements x
and y.

In[10]:= Partition[{a, b, c, d, e}, 3, 1, {1, 1}, {x, y}]

Out[10]= ��a, b, c�, �b, c, d�, �c, d, e�, �d, e, y�, �e, y, x��
This introduces no padding, yielding
sublists of differing lengths.

In[11]:= Partition[{a, b, c, d, e}, 3, 1, {1, 1}, {}]

Out[11]= ��a, b, c�, �b, c, d�, �c, d, e�, �d, e�, �e��
You can think of Partition as extracting sublists by sliding a template along and picking out

elements from the original list. You can tell Partition where to start and stop this process.

This gives all sublists that overlap the
original list.

In[12]:= Partition[{a, b, c, d}, 3, 1, {-1, 1}, x]

Out[12]= ��x, x, a�, �x, a, b�, �a, b, c�,�b, c, d�, �c, d, x�, �d, x, x��
This allows overlaps only at the
beginning.

In[13]:= Partition[{a, b, c, d}, 3, 1, {-1, -1}, x]

Out[13]= ��x, x, a�, �x, a, b�, �a, b, c�, �b, c, d��

Partition[list, n, d] or Partition[list, n, d, {1, -1}]
keep only sublists with no overhangs

Partition[list, n, d, {1, 1}] allow an overhang at the end

Partition[list, n, d, {-1, -1}] allow an overhang at the beginning

Partition[list, n, d, {-1, 1}] allow overhangs at both the beginning and end

Partition[list, n, d, {kL, kR}] specify alignments of first and last sublists

Partition[list, n, d, spec] pad by cyclically repeating elements in list

Partition[list, n, d, spec, x] pad by repeating the element x

Partition[list, n, d, spec, {x�, x�, . . . }]
pad by cyclically repeating the xi

Partition[list, n, d, spec, {}] use no padding

Specifying alignment and padding.

An alignment specification {kL, kR} tells Partition to give the sequence of sublists in which the
first element of the original list appears at position kL in the first sublist, and the last element of the
original list appears at position kR in the last sublist.

This makes a appear at position 1 in
the first sublist.

In[14]:= Partition[{a, b, c, d}, 3, 1, {1, 1}, x]

Out[14]= ��a, b, c�, �b, c, d�, �c, d, x�, �d, x, x��



294 2. Principles of Mathematica � 2.4 Manipulating Lists

This makes a appear at position 2 in
the first sublist.

In[15]:= Partition[{a, b, c, d}, 3, 1, {2, 1}, x]

Out[15]= ��x, a, b�, �a, b, c�, �b, c, d�, �c, d, x�, �d, x, x��
Here a is in effect made to appear first
at position 4.

In[16]:= Partition[{a, b, c, d}, 3, 1, {4, 1}, x]

Out[16]= ��x, x, x�, �x, x, a�, �x, a, b�,�a, b, c�, �b, c, d�, �c, d, x�, �d, x, x��
This fills in padding cyclically from the
list given.

In[17]:= Partition[{a, b, c, d}, 3, 1, {4, 1}, {x, y}]

Out[17]= ��y, x, y�, �x, y, a�, �y, a, b�,�a, b, c�, �b, c, d�, �c, d, x�, �d, x, y��
Functions like ListConvolve use the same alignment and padding specifications as Partition.

In some cases it may be convenient to insert explicit padding into a list. You can do this using
PadLeft and PadRight.

PadLeft[list, n] pad to length n by inserting zeros on the left

PadLeft[list, n, x] pad by repeating the element x

PadLeft[list, n, {x�, x�, . . . }] pad by cyclically repeating the xi

PadLeft[list, n, list] pad by cyclically repeating list

PadLeft[list, n, padding, m] leave a margin of m elements on the right

PadRight[list, n] pad by inserting zeros on the right

Padding a list.

This pads the list to make it length 6. In[18]:= PadLeft[{a, b, c}, 6]

Out[18]= �0, 0, 0, a, b, c�
This cyclically inserts {x, y} as the
padding.

In[19]:= PadLeft[{a, b, c}, 6, {x, y}]

Out[19]= �x, y, x, a, b, c�
This also leaves a margin of 3 on the
right.

In[20]:= PadLeft[{a, b, c}, 10, {x, y}, 3]

Out[20]= �y, x, y, x, a, b, c, x, y, x�
PadLeft, PadRight and Partition can all be used on nested lists.

This creates a  �  array. In[21]:= PadLeft[{{a, b}, {e}, {f}}, {3, 3}, x]

Out[21]= ��x, a, b�, �x, x, e�, �x, x, f��
This partitions the array into � � �
blocks with offset 1.

In[22]:= Partition[%, {2, 2}, {1, 1}]

Out[22]= ����x, a�, �x, x��, ��a, b�, �x, e���,���x, x�, �x, x��, ��x, e�, �x, f����



2.4.5 Sparse Arrays 295

If you give a nested list as a padding specification, its elements are picked up cyclically at each
level.

This cyclically fills in copies of the
padding list.

In[23]:= PadLeft[{{a, b}, {e}, {f}}, {4, 4}, {{x, y}, {z, w}}]

Out[23]= ��x, y, x, y�, �z, w, a, b�, �x, y, x, e�, �z, w, z, f��
Here is a list containing only padding. In[24]:= PadLeft[{{}}, {4, 4}, {{x, y}, {z, w}}]

Out[24]= ��x, y, x, y�, �z, w, z, w�, �x, y, x, y�, �z, w, z, w��

, 2.4.5 Sparse Arrays

Lists are normally specified in Mathematica just by giving explicit lists of their elements. But partic-
ularly in working with large arrays, it is often useful instead to be able to say what the values of
elements are only at certain positions, with all other elements taken to have a default value, usually
zero. You can do this in Mathematica using SparseArray objects.

{e�, e�, . . . }, {{e��, e��, . . . }, . . . }, . . . ordinary lists

, SparseArray[{pos� -> val�, pos� -> val�, . . . }] sparse arrays

Ordinary lists and sparse arrays.

This specifies a sparse array. In[1]:= SparseArray[{2->a, 5->b}]

Out[1]= SparseArray?2>, �5��
Here it is as an ordinary list. In[2]:= Normal[%]

Out[2]= �0, a, 0, 0, b�
This specifies a two-dimensional sparse
array.

In[3]:= SparseArray[{{1,2}->a, {3,2}->b, {3,3}->c}]

Out[3]= SparseArray?3>, �3, 3��
Here it is an ordinary list of lists. In[4]:= Normal[%]

Out[4]= ��0, a, 0�, �0, 0, 0�, �0, b, c��



296 2. Principles of Mathematica � 2.4 Manipulating Lists

, SparseArray[list] sparse array version of list

, SparseArray[{pos�->val�, pos�->val�, . . . }]
sparse array with values vali at positions posi

, SparseArray[{pos�, pos�, . . . }->{val�, val�, . . . }]
the same sparse array

, SparseArray[data, {d�, d�, . . . }] d� � d� � 			 sparse array

, SparseArray[data, dims, val] sparse array with default value val

, Normal[array] ordinary list version of array

, ArrayRules[array] position-value rules for array

Creating and converting sparse arrays.

This generates a sparse array version
of a list.

In[5]:= SparseArray[{a, b, c, d}]

Out[5]= SparseArray?4>, �4��
This converts back to an ordinary list. In[6]:= Normal[%]

Out[6]= �a, b, c, d�
This makes a length 7 sparse array
with default value x.

In[7]:= SparseArray[{3->a, 5->b}, 7, x]

Out[7]= SparseArray?2>, �7�, x�
Here is the corresponding ordinary list. In[8]:= Normal[%]

Out[8]= �x, x, a, x, b, x, x�
This shows the rules used in the sparse
array.

In[9]:= ArrayRules[%%]

Out[9]= ��3� � a, �5� � b, �_� � x�
An important feature of SparseArray is that the positions you specify can be patterns.

This specifies a 
 � 
 sparse array with
1 at every position matching {i_, i_}.

In[10]:= SparseArray[{i_, i_} -> 1, {4, 4}]

Out[10]= SparseArray?4>, �4, 4��
The result is a 
 � 
 identity matrix. In[11]:= Normal[%]

Out[11]= ��1, 0, 0, 0�, �0, 1, 0, 0�, �0, 0, 1, 0�, �0, 0, 0, 1��
Here is an identity matrix with an
extra element.

In[12]:= Normal[SparseArray[{{1, 3}->a, {i_, i_}->1}, {4, 4}]]

Out[12]= ��1, 0, a, 0�, �0, 1, 0, 0�, �0, 0, 1, 0�, �0, 0, 0, 1��
This makes the whole third column
be a.

In[13]:= Normal[SparseArray[{{_, 3}->a, {i_, i_}->1}, {4, 4}]]

Out[13]= ��1, 0, a, 0�, �0, 1, a, 0�, �0, 0, a, 0�, �0, 0, a, 1��



2.4.5 Sparse Arrays 297

You can think of SparseArray[rules] as taking all possible position specifications, then applying
rules to determine values in each case. As usual, rules given earlier in the list will be tried first.

This generates a random diagonal
matrix.

In[14]:= Normal[SparseArray[{{i_, i_} :> Random[]}, {3, 3}]]

Out[14]= ��0.0560708, 0, 0�, �0, 0.6303, 0�, �0, 0, 0.359894��
You can have rules where values
depend on indices.

In[15]:= Normal[SparseArray[i_ -> i^2, 10]]

Out[15]= �1, 4, 9, 16, 25, 36, 49, 64, 81, 100�
This fills in even-numbered positions
with p.

In[16]:= Normal[SparseArray[{_?EvenQ->p, i_->i^2}, 10]]

Out[16]= �1, p, 9, p, 25, p, 49, p, 81, p�
You can use patterns involving
alternatives.

In[17]:= Normal[SparseArray[{1|3, 2|4}->a, {4, 4}]]

Out[17]= ��0, a, 0, a�, �0, 0, 0, 0�, �0, a, 0, a�, �0, 0, 0, 0��
You can also give conditions on
patterns.

In[18]:= Normal[SparseArray[i_/;3<i<7 -> p, 10]]

Out[18]= �0, 0, 0, p, p, p, 0, 0, 0, 0�
This makes a band-diagonal matrix. In[19]:= Normal[SparseArray[{{i_, j_} /;

Abs[i - j] < 2 -> i + j}, {5, 5}]]

Out[19]= ��2, 3, 0, 0, 0�, �3, 4, 5, 0, 0�,�0, 5, 6, 7, 0�, �0, 0, 7, 8, 9�, �0, 0, 0, 9, 10��
For many purposes, Mathematica treats SparseArray objects just like the ordinary lists to which

they correspond. Thus, for example, if you ask for parts of a sparse array object, Mathematica will
operate as if you had asked for parts in the corresponding ordinary list.

This generates a sparse array object. In[20]:= s = SparseArray[{2->a, 4->b, 5->c}, 10]

Out[20]= SparseArray?3>, �10��
Here is the corresponding ordinary list. In[21]:= Normal[s]

Out[21]= �0, a, 0, b, c, 0, 0, 0, 0, 0�
Parts of the sparse array are just like
parts of the corresponding ordinary
list.

In[22]:= s[[2]]

Out[22]= a

This part has the default value 0. In[23]:= s[[3]]

Out[23]= 0

Many operations treat SparseArray objects just like ordinary lists. When possible, they give sparse
arrays as results.

This gives a sparse array. In[24]:= 3 s + x

Out[24]= SparseArray?3>, �10�, x�
Here is the corresponding ordinary list. In[25]:= Normal[%]

Out[25]= �x, 3 a � x, x, 3 b � x, 3 c � x, x, x, x, x, x�



298 2. Principles of Mathematica � 2.4 Manipulating Lists

Dot works directly with sparse array
objects.

In[26]:= s . s

Out[26]= a2 � b2 � c2

You can mix sparse arrays and
ordinary lists.

In[27]:= s . Range[10]

Out[27]= 2 a � 4 b � 5 c

Mathematica represents sparse arrays as expressions with head SparseArray. Whenever a sparse
array is evaluated, it is automatically converted to an optimized standard form with structure
SparseArray[Automatic, dims, val, . . . ].

This structure is, however, rarely evident, since even operations like Length are set up to give
results for the corresponding ordinary list, not for the raw SparseArray expression structure.

This generates a sparse array. In[28]:= t = SparseArray[{1->a, 5->b}, 10]

Out[28]= SparseArray?2>, �10��
Here is the underlying optimized
expression structure.

In[29]:= InputForm[%]

Out[29]//InputForm= SparseArray[Automatic, {10}, 0,

{1, {{0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2}, {}}, {a, b}}]

Length gives the length of the
corresponding ordinary list.

In[30]:= Length[t]

Out[30]= 10

Map also operates on individual values. In[31]:= Normal[Map[f, t]]

Out[31]= �fa�, f0�, f0�, f0�,
fb�, f0�, f0�, f0�, f0�, f0��



2.5.1 Applying Transformation Rules 299

2.5 Transformation Rules and Definitions

2.5.1 Applying Transformation Rules

expr /. lhs -> rhs apply a transformation rule to expr

expr /. {lhs� -> rhs�, lhs� -> rhs�, . . . }
try a sequence of rules on each part of expr

Applying transformation rules.

The replacement operator /.
(pronounced “slash-dot”) applies rules
to expressions.

In[1]:= x + y /. x -> 3

Out[1]= 3 � y

You can give a list of rules to apply.
Each rule will be tried once on each
part of the expression.

In[2]:= x + y /. {x -> a, y -> b}

Out[2]= a � b

expr /. {rules�, rules�, . . . } give a list of the results from applying each of the rulesi to
expr

Applying lists of transformation rules.

If you give a list of lists of rules, you
get a list of results.

In[3]:= x + y /. {{x -> 1, y -> 2}, {x -> 4, y -> 2}}

Out[3]= �3, 6�
Functions such as Solve and NSolve
return lists whose elements are lists of
rules, each representing a solution.

In[4]:= Solve[x^3 - 5x^2 +2x + 8 == 0, x]

Out[4]= ��x � �1�, �x � 2�, �x � 4��
When you apply these rules, you get a
list of results, one corresponding to
each solution.

In[5]:= x^2 + 6 /. %

Out[5]= �7, 10, 22�
When you use expr /. rules, each rule is tried in turn on each part of expr. As soon as a rule applies,
the appropriate transformation is made, and the resulting part is returned.

The rule for x^3 is tried first; if it does
not apply, the rule for x^n_ is used.

In[6]:= {x^2, x^3, x^4} /. {x^3 -> u, x^n_ -> p[n]}

Out[6]= �p2�, u, p4��
A result is returned as soon as the rule
has been applied, so the inner instance
of h is not replaced.

In[7]:= h[x + h[y]] /. h[u_] -> u^2

Out[7]= �x � hy��2

The replacement expr /. rules tries each rule just once on each part of expr.



300 2. Principles of Mathematica � 2.5 Transformation Rules and Definitions

Since each rule is tried just once, this
serves to swap x and y.

In[8]:= {x^2, y^3} /. {x -> y, y -> x}

Out[8]= �y2, x3�
You can use this notation to apply one
set of rules, followed by another.

In[9]:= x^2 /. x -> (1 + y) /. y -> b

Out[9]= �1 � b�2

Sometimes you may need to go on applying rules over and over again, until the expression
you are working on no longer changes. You can do this using the repeated replacement operation
expr //. rules (or ReplaceRepeated[expr, rules]).

expr /. rules try rules once on each part of expr

expr //. rules try rules repeatedly until the result no longer changes

Single and repeated rule application.

With the single replacement operator
/. each rule is tried only once on each
part of the expression.

In[10]:= x^2 + y^6 /. {x -> 2 + a, a -> 3}

Out[10]= �2 � a�2 � y6

With the repeated replacement operator
//. the rules are tried repeatedly until
the expression no longer changes.

In[11]:= x^2 + y^6 //. {x -> 2 + a, a -> 3}

Out[11]= 25 � y6

Here the rule is applied only once. In[12]:= log[a b c d] /. log[x_ y_] -> log[x] + log[y]

Out[12]= loga� � logb c d�
With the repeated replacement
operator, the rule is applied repeatedly,
until the result no longer changes.

In[13]:= log[a b c d] //. log[x_ y_] -> log[x] + log[y]

Out[13]= loga� � logb� � logc� � logd�
When you use //. (pronounced “slash-slash-dot”), Mathematica repeatedly passes through your

expression, trying each of the rules given. It goes on doing this until it gets the same result on two
successive passes.

If you give a set of rules that is circular, then //. can keep on getting different results forever. In
practice, the maximum number of passes that //. makes on a particular expression is determined by
the setting for the option MaxIterations. If you want to keep going for as long as possible, you can
use ReplaceRepeated[expr, rules, MaxIterations -> Infinity]. You can always stop by explicitly
interrupting Mathematica.

By setting the option MaxIterations,
you can explicitly tell
ReplaceRepeated how many times to
try the rules you give.

In[14]:= ReplaceRepeated[x, x -> x + 1, MaxIterations -> 1000]

ReplaceRepeated::rrlim:
Exiting after x scanned 1000 times.

Out[14]= 1000 � x



2.5.1 Applying Transformation Rules 301

The replacement operators /. and //. share the feature that they try each rule on every subpart of
your expression. On the other hand, Replace[expr, rules] tries the rules only on the whole of expr,
and not on any of its subparts.

You can use Replace, together with functions like Map and MapAt, to control exactly which
parts of an expression a replacement is applied to. Remember that you can use the function
ReplacePart[expr, new, pos] to replace part of an expression with a specific object.

The operator /. applies rules to all
subparts of an expression.

In[15]:= x^2 /. x -> a

Out[15]= a2

Without a level specification, Replace
applies rules only to the whole
expression.

In[16]:= Replace[x^2, x^2 -> b]

Out[16]= b

No replacement is done here. In[17]:= Replace[x^2, x -> a]

Out[17]= x2

This applies rules down to level 2, and
so replaces x.

In[18]:= Replace[x^2, x -> a, 2]

Out[18]= a2

expr /. rules apply rules to all subparts of expr

Replace[expr, rules] apply rules to the whole of expr only

Replace[expr, rules, levspec] apply rules to parts of expr on levels specified by levspec

Applying rules to whole expressions.

Replace returns the result from using
the first rule that applies.

In[19]:= Replace[f[u], {f[x_] -> x^2, f[x_] -> x^3}]

Out[19]= u2

ReplaceList gives a list of the results
from every rule that applies.

In[20]:= ReplaceList[f[u], {f[x_] -> x^2, f[x_] -> x^3}]

Out[20]= �u2, u3�
If a single rule can be applied in
several ways, ReplaceList gives a list
of all the results.

In[21]:= ReplaceList[a + b + c, x_ + y_ -> g[x, y]]

Out[21]= �ga, b � c�, gb, a � c�, gc, a � b�,
ga � b, c�, ga � c, b�, gb � c, a��

This gives a list of ways of breaking
the original list in two.

In[22]:= ReplaceList[{a, b, c, d}, {x__, y__} -> g[{x}, {y}]]

Out[22]= �g�a�, �b, c, d��,
g�a, b�, �c, d��, g�a, b, c�, �d���

This finds all sublists that are flanked
by the same element.

In[23]:= ReplaceList[{a, b, c, a, d, b, d},
{___, x_, y__, x_, ___} -> g[x, {y}]]

Out[23]= �ga, �b, c��, gb, �c, a, d��, gd, �b���



302 2. Principles of Mathematica � 2.5 Transformation Rules and Definitions

Replace[expr, rules] apply rules in one way only

ReplaceList[expr, rules] apply rules in all possible ways

Applying rules in one way or all possible ways.

2.5.2 Manipulating Sets of Transformation Rules

You can manipulate lists of transformation rules in Mathematica just like other symbolic expressions.
It is common to assign a name to a rule or set of rules.

This assigns the “name” sinexp to the
trigonometric expansion rule.

In[1]:= sinexp = Sin[2 x_] -> 2 Sin[x] Cos[x]

Out[1]= Sin2 x_� � 2 Cosx� Sinx�
You can now request the rule “by
name”.

In[2]:= Sin[2 (1 + x)^2] /. sinexp

Out[2]= 2 Cos��1 � x�2� Sin��1 � x�2�
You can use lists of rules to represent mathematical and other relations. Typically you will find it

convenient to give names to the lists, so that you can easily specify the list you want in a particular
case.

In most situations, it is only one rule from any given list that actually applies to a particular
expression. Nevertheless, the /. operator tests each of the rules in the list in turn. If the list is very
long, this process can take a long time.

Mathematica allows you to preprocess lists of rules so that /. can operate more quickly on them.
You can take any list of rules and apply the function Dispatch to them. The result is a representation
of the original list of rules, but including dispatch tables which allow /. to “dispatch” to potentially
applicable rules immediately, rather than testing all the rules in turn.

Here is a list of rules for the first five
factorials.

In[3]:= facs = Table[f[i] -> i!, {i, 5}]

Out[3]= �f1� � 1, f2� � 2, f3� � 6, f4� � 24, f5� � 120�
This sets up dispatch tables that make
the rules faster to use.

In[4]:= dfacs = Dispatch[facs]

Out[4]= Dispatch�f1� � 1, f2� � 2, f3� � 6,
f4� � 24, f5� � 120�, �DispatchTables ��

You can apply the rules using the /.
operator.

In[5]:= f[4] /. dfacs

Out[5]= 24



2.5.3 Making Definitions 303

Dispatch[rules] create a representation of a list of rules that includes
dispatch tables

expr /. drules apply rules that include dispatch tables

Creating and using dispatch tables.

For long lists of rules, you will find that setting up dispatch tables makes replacement operations
much faster. This is particularly true when your rules are for individual symbols or other expressions
that do not involve pattern objects. Once you have built dispatch tables in such cases, you will find
that the /. operator takes a time that is more or less independent of the number of rules you have.
Without dispatch tables, however, /. will take a time directly proportional to the total number of
rules.

2.5.3 Making Definitions

The replacement operator /. allows you to apply transformation rules to a specific expression. Often,
however, you want to have transformation rules automatically applied whenever possible.

You can do this by assigning explicit values to Mathematica expressions and patterns. Each assign-
ment specifies a transformation rule to be applied whenever an expression of the appropriate form
occurs.

expr /. lhs -> rhs apply a transformation rule to a specific expression

lhs = rhs assign a value which defines a transformation rule to be
used whenever possible

Manual and automatic application of transformation rules.

This applies a transformation rule for x
to a specific expression.

In[1]:= (1 + x)^6 /. x -> 3 - a

Out[1]= �4 � a�6

By assigning a value to x, you tell
Mathematica to apply a transformation
rule for x whenever possible.

In[2]:= x = 3 - a

Out[2]= 3 � a

Now x is transformed automatically. In[3]:= (1 + x)^7

Out[3]= �4 � a�7

You should realize that except inside constructs like Module and Block, all assignments you make
in a Mathematica session are permanent. They continue to be used for the duration of the session,
unless you explicitly clear or overwrite them.



304 2. Principles of Mathematica � 2.5 Transformation Rules and Definitions

The fact that assignments are permanent means that they must be made with care. Probably the
single most common mistake in using Mathematica is to make an assignment for a variable like x at
one point in your session, and then later to use x having forgotten about the assignment you made.

There are several ways to avoid this kind of mistake. First, you should avoid using assignments
whenever possible, and instead use more controlled constructs such as the /. replacement operator.
Second, you should explicitly use the deassignment operator =. or the function Clear to remove
values you have assigned when you have finished with them.

Another important way to avoid mistakes is to think particularly carefully before assigning values
to variables with common or simple names. You will often want to use a variable such as x as a
symbolic parameter. But if you make an assignment such as x = 3, then x will be replaced by 3
whenever it occurs, and you can no longer use x as a symbolic parameter.

In general, you should be sure not to assign permanent values to any variables that you might
want to use for more than one purpose. If at one point in your session you wanted the variable c to
stand for the speed of light, you might assign it a value such as 3.*10^8. But then you cannot use
c later in your session to stand, say, for an undetermined coefficient. One way to avoid this kind of
problem is to make assignments only for variables with more explicit names, such as SpeedOfLight.

x =. remove the value assigned to the object x

Clear[x, y, . . . ] clear all the values of x, y, . . .

Removing assignments.

This does not give what you might
expect, because x still has the value
you assigned it above.

In[4]:= Factor[ x^2 - 1 ]

Out[4]= ��4 � a� ��2 � a�
This removes any value assigned to x. In[5]:= Clear[x]

Now this gives the result you expect. In[6]:= Factor[ x^2 - 1 ]

Out[6]= ��1 � x� �1 � x�

2.5.4 Special Forms of Assignment

Particularly when you write procedural programs in Mathematica, you will often need to modify the
value of a particular variable repeatedly. You can always do this by constructing the new value
and explicitly performing an assignment such as x = value. Mathematica, however, provides special
notations for incrementing the values of variables, and for some other common cases.



2.5.4 Special Forms of Assignment 305

i++ increment the value of i by 1

i-- decrement i

++i pre-increment i

--i pre-decrement i

i += di add di to the value of i

i -= di subtract di from i

x *= c multiply x by c

x /= c divide x by c

Modifying values of variables.

This assigns the value 7x to the
variable t.

In[1]:= t = 7x

Out[1]= 7 x

This increments the value of t by 18x. In[2]:= t += 18x

Out[2]= 25 x

The value of t has been modified. In[3]:= t

Out[3]= 25 x

This sets t to 8, multiplies its value by
7, then gives the final value of t.

In[4]:= t = 8; t *= 7; t

Out[4]= 56

The value of i++ is the value of i
before the increment is done.

In[5]:= i=5; Print[i++]; Print[i]

5
6

The value of ++i is the value of i after
the increment.

In[6]:= i=5; Print[++i]; Print[i]

6
6

x = y = value assign the same value to both x and y

{x, y} = {value�, value�} assign different values to x and y

{x, y} = {y, x} interchange the values of x and y

Assigning values to several variables at a time.

This assigns the value 5 to x and 8
to y.

In[7]:= {x, y} = {5, 8}

Out[7]= �5, 8�



306 2. Principles of Mathematica � 2.5 Transformation Rules and Definitions

This interchanges the values of x
and y.

In[8]:= {x, y} = {y, x}

Out[8]= �8, 5�
Now x has value 8. In[9]:= x

Out[9]= 8

And y has value 5. In[10]:= y

Out[10]= 5

You can use assignments to lists to
permute values of variables in any
way.

In[11]:= {a, b, c} = {1, 2, 3}; {b, a, c} = {a, c, b}; {a, b, c}

Out[11]= �3, 1, 2�
When you write programs in Mathematica, you will sometimes find it convenient to take a list, and

successively add elements to it. You can do this using the functions PrependTo and AppendTo.

PrependTo[v, elem] prepend elem to the value of v

AppendTo[v, elem] append elem

v = {v, elem} make a nested list containing elem

Assignments for modifying lists.

This assigns the value of v to be the
list {5, 7, 9}.

In[12]:= v = {5, 7, 9}

Out[12]= �5, 7, 9�
This appends the element 11 to the
value of v.

In[13]:= AppendTo[v, 11]

Out[13]= �5, 7, 9, 11�
Now the value of v has been modified. In[14]:= v

Out[14]= �5, 7, 9, 11�
Although AppendTo[v, elem] is always equivalent to v = Append[v, elem], it is often a convenient

notation. However, you should realize that because of the way Mathematica stores lists, it is usually
less efficient to add a sequence of elements to a particular list than to create a nested structure that
consists, for example, of lists of length 2 at each level. When you have built up such a structure, you
can always reduce it to a single list using Flatten .

This sets up a nested list structure
for w.

In[15]:= w = {1}; Do[ w = {w, k^2}, {k, 1, 4} ]; w

Out[15]= �����1�, 1�, 4�, 9�, 16�
You can use Flatten to unravel the
structure.

In[16]:= Flatten[w]

Out[16]= �1, 1, 4, 9, 16�



2.5.5 Making Definitions for Indexed Objects 307

2.5.5 Making Definitions for Indexed Objects

In many kinds of calculations, you need to set up “arrays” which contain sequences of expressions,
each specified by a certain index. One way to implement arrays in Mathematica is by using lists.
You can define a list, say a = {x, y, z, . . . }, then access its elements using a[[i]], or modify them
using a[[i]] = value. This approach has a drawback, however, in that it requires you to fill in all the
elements when you first create the list.

Often, it is more convenient to set up arrays in which you can fill in only those elements that you
need at a particular time. You can do this by making definitions for expressions such as a[i].

This defines a value for a[1]. In[1]:= a[1] = 9

Out[1]= 9

This defines a value for a[2]. In[2]:= a[2] = 7

Out[2]= 7

This shows all the values you have
defined for expressions associated with
a so far.

In[3]:= ?a

Global`a

a[1] = 9

a[2] = 7

You can define a value for a[5], even
though you have not yet given values
to a[3] and a[4].

In[4]:= a[5] = 0

Out[4]= 0

This generates a list of the values of
the a[i].

In[5]:= Table[a[i], {i, 5}]

Out[5]= �9, 7, a3�, a4�, 0�
You can think of the expression a[i] as being like an “indexed” or “subscripted” variable.

a[i] = value add or overwrite a value

a[i] access a value

a[i] =. remove a value

?a show all defined values

Clear[a] clear all defined values

Table[a[i], {i, 1, n}] or Array[a, n]
convert to an explicit List

Manipulating indexed variables.



308 2. Principles of Mathematica � 2.5 Transformation Rules and Definitions

When you have an expression of the form a[i], there is no requirement that the “index” i be a
number. In fact, Mathematica allows the index to be any expression whatsoever. By using indices that
are symbols, you can for example build up simple databases in Mathematica.

This defines the “object” area with
“index” square to have value 1.

In[6]:= area[square] = 1

Out[6]= 1

This adds another result to the area
“database”.

In[7]:= area[triangle] = 1/2

Out[7]=
1
�������
2

Here are the entries in the area
database so far.

In[8]:= ?area

Global`area

area[square] = 1

area[triangle] = 1/2

You can use these definitions wherever
you want. You have not yet assigned a
value for area[pentagon].

In[9]:= 4 area[square] + area[pentagon]

Out[9]= 4 � areapentagon�

2.5.6 Making Definitions for Functions

Section 1.7.1 discussed how you can define functions in Mathematica. In a typical case, you would type
in f[x_] = x^2 to define a function f. (Actually, the definitions in Section 1.7.1 used the := operator,
rather than the = one. Section 2.5.8 will explain exactly when to use each of the := and = operators.)

The definition f[x_] = x^2 specifies that whenever Mathematica encounters an expression which
matches the pattern f[x_], it should replace the expression by x^2. Since the pattern f[x_] matches
all expressions of the form f[anything], the definition applies to functions f with any “argument”.

Function definitions like f[x_] = x^2 can be compared with definitions like f[a] = b for indexed
variables discussed in the previous subsection. The definition f[a] = b specifies that whenever the
particular expression f[a] occurs, it is to be replaced by b. But the definition says nothing about
expressions such as f[y], where f appears with another “index”.

To define a “function”, you need to specify values for expressions of the form f[x], where the
argument x can be anything. You can do this by giving a definition for the pattern f[x_], where the
pattern object x_ stands for any expression.

f[x] = value definition for a specific expression x

f[x_] = value definition for any expression, referred to as x

The difference between defining an indexed variable and a function.



2.5.6 Making Definitions for Functions 309

Making definitions for f[2] or f[a] can be thought of as being like giving values to various
elements of an “array” named f. Making a definition for f[x_] is like giving a value for a set of
“array elements” with arbitrary “indices”. In fact, you can actually think of any function as being like
an array with an arbitrarily variable index.

In mathematical terms, you can think of f as a mapping. When you define values for, say, f[1]
and f[2], you specify the image of this mapping for various discrete points in its domain. Defining
a value for f[x_] specifies the image of f on a continuum of points.

This defines a transformation rule for
the specific expression f[x].

In[1]:= f[x] = u

Out[1]= u

When the specific expression f[x]
appears, it is replaced by u. Other
expressions of the form f[argument]
are, however, not modified.

In[2]:= f[x] + f[y]

Out[2]= u � fy�

This defines a value for f with any
expression as an “argument”.

In[3]:= f[x_] = x^2

Out[3]= x2

The old definition for the specific
expression f[x] is still used, but the
new general definition for f[x_] is
now used to find a value for f[y].

In[4]:= f[x] + f[y]

Out[4]= u � y2

This removes all definitions for f. In[5]:= Clear[f]

Mathematica allows you to define transformation rules for any expression or pattern. You can mix
definitions for specific expressions such as f[1] or f[a] with definitions for patterns such as f[x_].

Many kinds of mathematical functions can be set up by mixing specific and general definitions in
Mathematica. As an example, consider the factorial function. This particular function is in fact built
into Mathematica (it is written n!). But you can use Mathematica definitions to set up the function for
yourself.

The standard mathematical definition for the factorial function can be entered almost directly into
Mathematica, in the form: f[n_] := n f[n-1]; f[1] = 1. This definition specifies that for any n, f[n]
should be replaced by n f[n-1], except that when n is 1, f[1] should simply be replaced by 1.

Here is the value of the factorial
function with argument 1.

In[6]:= f[1] = 1

Out[6]= 1

Here is the general recursion relation
for the factorial function.

In[7]:= f[n_] := n f[n-1]

Now you can use these definitions to
find values for the factorial function.

In[8]:= f[10]

Out[8]= 3628800

The results are the same as you get
from the built-in version of factorial.

In[9]:= 10!

Out[9]= 3628800



310 2. Principles of Mathematica � 2.5 Transformation Rules and Definitions

2.5.7 The Ordering of Definitions

When you make a sequence of definitions in Mathematica, some may be more general than others.
Mathematica follows the principle of trying to put more general definitions after more specific ones.
This means that special cases of rules are typically tried before more general cases.

This behavior is crucial to the factorial function example given in the previous section. Regardless
of the order in which you entered them, Mathematica will always put the rule for the special case f[1]
ahead of the rule for the general case f[n_]. This means that when Mathematica looks for the value
of an expression of the form f[n], it tries the special case f[1] first, and only if this does not apply,
it tries the general case f[n_]. As a result, when you ask for f[5], Mathematica will keep on using
the general rule until the “end condition” rule for f[1] applies.

Mathematica tries to put specific definitions before more general definitions.

Treatment of definitions in Mathematica.

If Mathematica did not follow the principle of putting special rules before more general ones, then
the special rules would always be “shadowed” by more general ones. In the factorial example, if the
rule for f[n_] was ahead of the rule for f[1], then even when Mathematica tried to evaluate f[1], it
would use the general f[n_] rule, and it would never find the special f[1] rule.

Here is a general definition for f[n_]. In[1]:= f[n_] := n f[n-1]

Here is a definition for the special case
f[1].

In[2]:= f[1] = 1

Out[2]= 1

Mathematica puts the special case before
the general one.

In[3]:= ?f

Global`f

f[1] = 1

f[n_] := n*f[n - 1]

In the factorial function example used above, it is clear which rule is more general. Often, however,
there is no definite ordering in generality of the rules you give. In such cases, Mathematica simply
tries the rules in the order you give them.

These rules have no definite ordering
in generality.

In[4]:= log[x_ y_] := log[x] + log[y] ; log[x_^n_] := n log[x]

Mathematica stores the rules in the
order you gave them.

In[5]:= ?log

Global`log

log[(x_)*(y_)] := log[x] + log[y]

log[(x_)^(n_)] := n*log[x]

This rule is a special case of the rule
for log[x_ y_].

In[6]:= log[2 x_] := log[x] + log2



2.5.8 Immediate and Delayed Definitions 311

Mathematica puts the special rule before
the more general one.

In[7]:= ?log

Global`log

log[2*(x_)] := log[x] + log2

log[(x_)*(y_)] := log[x] + log[y]

log[(x_)^(n_)] := n*log[x]

Although in many practical cases, Mathematica can recognize when one rule is more general than
another, you should realize that this is not always possible. For example, if two rules both contain
complicated /; conditions, it may not be possible to work out which is more general, and, in fact,
there may not be a definite ordering. Whenever the appropriate ordering is not clear, Mathematica
stores rules in the order you give them.

2.5.8 Immediate and Delayed Definitions

You may have noticed that there are two different ways to make assignments in Mathematica: lhs = rhs
and lhs := rhs. The basic difference between these forms is when the expression rhs is evaluated.
lhs = rhs is an immediate assignment, in which rhs is evaluated at the time when the assignment is
made. lhs := rhs, on the other hand, is a delayed assignment, in which rhs is not evaluated when the
assignment is made, but is instead evaluated each time the value of lhs is requested.

lhs = rhs (immediate assignment) rhs is evaluated when the assignment is made

lhs := rhs (delayed assignment) rhs is evaluated each time the value of lhs is requested

The two types of assignments in Mathematica.

This uses the := operator to define the
function ex.

In[1]:= ex[x_] := Expand[(1 + x)^2]

Because := was used, the definition is
maintained in an unevaluated form.

In[2]:= ?ex

Global`ex

ex[x_] := Expand[(1 + x)^2]

When you make an assignment with
the = operator, the right-hand side is
evaluated immediately.

In[3]:= iex[x_] = Expand[(1 + x)^2]

Out[3]= 1 � 2 x � x2

The definition now stored is the result
of the Expand command.

In[4]:= ?iex

Global`iex

iex[x_] = 1 + 2*x + x^2

When you execute ex, the Expand is
performed.

In[5]:= ex[y + 2]

Out[5]= 9 � 6 y � y2



312 2. Principles of Mathematica � 2.5 Transformation Rules and Definitions

iex simply substitutes its argument
into the already expanded form, giving
a different answer.

In[6]:= iex[y + 2]

Out[6]= 1 � 2 �2 � y� � �2 � y�2

As you can see from the example above, both = and := can be useful in defining functions, but
they have different meanings, and you must be careful about which one to use in a particular case.

One rule of thumb is the following. If you think of an assignment as giving the final “value” of an
expression, use the = operator. If instead you think of the assignment as specifying a “command” for
finding the value, use the := operator. If in doubt, it is usually better to use the := operator than the
= one.

lhs = rhs rhs is intended to be the “final value” of lhs
(e.g., f[x_] = 1 - x^2)

lhs := rhs rhs gives a “command” or “program” to be executed
whenever you ask for the value of lhs
(e.g., f[x_] := Expand[1 - x^2])

Interpretations of assignments with the = and := operators.

Although := is probably used more often than = in defining functions, there is one important case
in which you must use = to define a function. If you do a calculation, and get an answer in terms of
a symbolic parameter x, you often want to go on and find results for various specific values of x. One
way to do this is to use the /. operator to apply appropriate rules for x in each case. It is usually
more convenient however, to use = to define a function whose argument is x.

Here is an expression involving x. In[7]:= D[Log[Sin[x]]^2, x]

Out[7]= 2 Cotx� LogSinx��
This defines a function whose
argument is the value to be taken
for x.

In[8]:= dlog[x_] = %

Out[8]= 2 Cotx� LogSinx��
Here is the result when x is taken to
be 1 + a.

In[9]:= dlog[1 + a]

Out[9]= 2 Cot1 � a� LogSin1 � a��
An important point to notice in the example above is that there is nothing special about the name

x that appears in the x_ pattern. It is just a symbol, indistinguishable from an x that appears in any
other expression.

f[x_] = expr define a function which gives the value expr for any
particular value of x

Defining functions for evaluating expressions.



2.5.8 Immediate and Delayed Definitions 313

You can use = and := not only to define functions, but also to assign values to variables. If you
type x = value, then value is immediately evaluated, and the result is assigned to x. On the other
hand, if you type x := value, then value is not immediately evaluated. Instead, it is maintained in an
unevaluated form, and is evaluated afresh each time x is used.

This evaluates Random[ ] to find a
pseudorandom number, then assigns
this number to r1.

In[10]:= r1 = Random[ ]

Out[10]= 0.0560708

Here Random[ ] is maintained in an
unevaluated form, to be evaluated
afresh each time r2 is used.

In[11]:= r2 := Random[ ]

Here are values for r1 and r2. In[12]:= {r1, r2}

Out[12]= �0.0560708, 0.6303�
The value of r1 never changes. Every
time r2 is used, however, a new
pseudorandom number is generated.

In[13]:= {r1, r2}

Out[13]= �0.0560708, 0.359894�
The distinction between immediate and delayed assignments is particularly important when you

set up chains of assignments.

This defines a to be 1. In[14]:= a = 1

Out[14]= 1

Here a + 2 is evaluated to give 3, and
the result is assigned to be the value
of ri.

In[15]:= ri = a + 2

Out[15]= 3

Here a + 2 is maintained in an
unevaluated form, to be evaluated
every time the value of rd is
requested.

In[16]:= rd := a + 2

In this case, ri and rd give the same
values.

In[17]:= {ri, rd}

Out[17]= �3, 3�
Now the value of a is changed. In[18]:= a = 2

Out[18]= 2

Now rd uses the new value for a,
while ri keeps its original value.

In[19]:= {ri, rd}

Out[19]= �3, 4�
You can use delayed assignments such as t := rhs to set up variables whose values you can find in

a variety of different “environments”. Every time you ask for t, the expression rhs is evaluated using
the current values of the objects on which it depends.

The right-hand side of the delayed
assignment is maintained in an
unevaluated form.

In[20]:= t := {a, Factor[x^a - 1]}



314 2. Principles of Mathematica � 2.5 Transformation Rules and Definitions

This sets a to 4, then finds the value
of t.

In[21]:= a = 4; t

Out[21]= �4, ��1 � x� �1 � x� �1 � x2��
Here a is 6. In[22]:= a = 6; t

Out[22]= �6, ��1 � x� �1 � x� �1 � x � x2� �1 � x � x2��
In the example above, the symbol a acts as a “global variable”, whose value affects the value of

t. When you have a large number of parameters, many of which change only occasionally, you may
find this kind of setup convenient. However, you should realize that implicit or hidden dependence
of one variable on others can often become quite confusing. When possible, you should make all
dependencies explicit, by defining functions which take all necessary parameters as arguments.

lhs -> rhs rhs is evaluated when the rule is given

lhs :> rhs rhs is evaluated when the rule is used

Two types of transformation rules in Mathematica.

Just as you can make immediate and delayed assignments in Mathematica, so you can also set up
immediate and delayed transformation rules.

The right-hand side of this rule is
evaluated when you give the rule.

In[23]:= f[x_] -> Expand[(1 + x)^2]

Out[23]= fx_� � 1 � 2 x � x2

A rule like this is probably not
particularly useful.

In[24]:= f[x_] -> Expand[x]

Out[24]= fx_� � x

Here the right-hand side of the rule is
maintained in an unevaluated form, to
be evaluated every time the rule is
used.

In[25]:= f[x_] :> Expand[x]

Out[25]= fx_�  Expandx�

Applying the rule causes the expansion
to be done.

In[26]:= f[(1 + p)^2] /. f[x_] :> Expand[x]

Out[26]= 1 � 2 p � p2

In analogy with assignments, you should typically use -> when you want to replace an expression
with a definite value, and you should use :> when you want to give a command for finding the
value.

2.5.9 Functions That Remember Values They Have Found

When you make a function definition using :=, the value of the function is recomputed every time
you ask for it. In some kinds of calculations, you may end up asking for the same function value
many times. You can save time in these cases by having Mathematica remember all the function values
it finds. Here is an “idiom” for defining a function that does this.



2.5.9 Functions That Remember Values They Have Found 315

f[x_] := f[x] = rhs define a function which remembers values that it finds

Defining a function that remembers values it finds.

This defines a function f which stores
all values that it finds.

In[1]:= f[x_] := f[x] = f[x - 1] + f[x - 2]

Here are the end conditions for the
recursive function f.

In[2]:= f[0] = f[1] = 1

Out[2]= 1

Here is the original definition of f. In[3]:= ?f

Global`f

f[1] = 1

f[0] = 1

f[x_] := f[x] = f[x - 1] + f[x - 2]

This computes f[5]. The computation
involves finding the sequence of values
f[5], f[4], 			 f[2].

In[4]:= f[5]

Out[4]= 8

All the values of f found so far are
explicitly stored.

In[5]:= ?f

Global`f

f[1] = 1

f[0] = 1

f[2] = 2

f[3] = 3

f[4] = 5

f[5] = 8

f[x_] := f[x] = f[x - 1] + f[x - 2]

If you ask for f[5] again, Mathematica
can just look up the value immediately;
it does not have to recompute it.

In[6]:= f[5]

Out[6]= 8

You can see how a definition like f[x_] := f[x] = f[x-1] + f[x-2] works. The function f[x_] is
defined to be the “program” f[x] = f[x-1] + f[x-2]. When you ask for a value of the function f,
the “program” is executed. The program first calculates the value of f[x-1] + f[x-2], then saves the
result as f[x].

It is often a good idea to use functions that remember values when you implement mathematical
recursion relations in Mathematica. In a typical case, a recursion relation gives the value of a function f
with an integer argument x in terms of values of the same function with arguments x � �, x � �, etc.
The Fibonacci function definition f�x� � f�x � �� � f�x � �� used above is an example of this kind of
recursion relation. The point is that if you calculate say f���� by just applying the recursion relation
over and over again, you end up having to recalculate quantities like f��� many times. In a case like



316 2. Principles of Mathematica � 2.5 Transformation Rules and Definitions

this, it is therefore better just to remember the value of f���, and look it up when you need it, rather
than having to recalculate it.

There is of course a trade-off involved in remembering values. It is faster to find a particular value,
but it takes more memory space to store all of them. You should usually define functions to remember
values only if the total number of different values that will be produced is comparatively small, or
the expense of recomputing them is very great.

2.5.10 Associating Definitions with Different Symbols

When you make a definition in the form f[args] = rhs or f[args] := rhs, Mathematica associates your
definition with the object f. This means, for example, that such definitions are displayed when you
type ?f. In general, definitions for expressions in which the symbol f appears as the head are termed
downvalues of f.

Mathematica however also supports upvalues, which allow definitions to be associated with symbols
that do not appear directly as their head.

Consider for example a definition like Exp[g[x_]] := rhs. One possibility is that this definition
could be associated with the symbol Exp, and considered as a downvalue of Exp. This is however
probably not the best thing either from the point of view of organization or efficiency.

Better is to consider Exp[g[x_]] := rhs to be associated with g, and to correspond to an upvalue
of g.

f[args] := rhs define a downvalue for f

f[g[args], . . . ] ^:= rhs define an upvalue for g

Associating definitions with different symbols.

This is taken to define a downvalue
for f.

In[1]:= f[g[x_]] := fg[x]

You can see the definition when you
ask about f.

In[2]:= ?f

Global`f

f[g[x_]] := fg[x]

This defines an upvalue for g. In[3]:= Exp[g[x_]] ^:= expg[x]

The definition is associated with g. In[4]:= ?g

Global`g

Exp[g[x_]] ^:= expg[x]



2.5.10 Associating Definitions with Different Symbols 317

It is not associated with Exp. In[5]:= ??Exp

Exp[z] is the exponential function.

Attributes[Exp] = {Listable, NumericFunction, Protected,

ReadProtected}

The definition is used to evaluate this
expression.

In[6]:= Exp[g[5]]

Out[6]= expg5�
In simple cases, you will get the same answers to calculations whether you give a definition for

f[g[x]] as a downvalue for f or an upvalue for g. However, one of the two choices is usually much
more natural and efficient than the other.

A good rule of thumb is that a definition for f[g[x]] should be given as an upvalue for g in cases
where the function f is more common than g. Thus, for example, in the case of Exp[g[x]], Exp is a
built-in Mathematica function, while g is presumably a function you have added. In such a case, you
will typically think of definitions for Exp[g[x]] as giving relations satisfied by g. As a result, it is
more natural to treat the definitions as upvalues for g than as downvalues for Exp.

This gives the definition as an upvalue
for g.

In[7]:= g/: g[x_] + g[y_] := gplus[x, y]

Here are the definitions for g so far. In[8]:= ?g

Global`g

Exp[g[x_]] ^:= expg[x]

g[x_] + g[y_] ^:= gplus[x, y]

The definition for a sum of g’s is used
whenever possible.

In[9]:= g[5] + g[7]

Out[9]= gplus5, 7�
Since the full form of the pattern g[x_] + g[y_] is Plus[g[x_], g[y_]], a definition for this

pattern could be given as a downvalue for Plus. It is almost always better, however, to give the
definition as an upvalue for g.

In general, whenever Mathematica encounters a particular function, it tries all the definitions you
have given for that function. If you had made the definition for g[x_] + g[y_] a downvalue for Plus,
then Mathematica would have tried this definition whenever Plus occurs. The definition would thus
be tested every time Mathematica added expressions together, making this very common operation
slower in all cases.

However, by giving a definition for g[x_] + g[y_] as an upvalue for g, you associate the definition
with g. In this case, Mathematica only tries the definition when it finds a g inside a function such
as Plus. Since g presumably occurs much less frequently than Plus, this is a much more efficient
procedure.



318 2. Principles of Mathematica � 2.5 Transformation Rules and Definitions

f[g] ^= value or f[g[args]] ^= value
make assignments to be associated with g, rather than f

f[g] ^:= value or f[g[args]] ^:= value
make delayed assignments associated with g

f[arg�, arg�, . . . ] ^= value make assignments associated with the heads of all the argi

Shorter ways to define upvalues.

A typical use of upvalues is in setting up a “database” of properties of a particular object. With
upvalues, you can associate each definition you make with the object that it concerns, rather than with
the property you are specifying.

This defines an upvalue for square
which gives its area.

In[10]:= area[square] ^= 1

Out[10]= 1

This adds a definition for the
perimeter.

In[11]:= perimeter[square] ^= 4

Out[11]= 4

Both definitions are now associated
with the object square.

In[12]:= ?square

Global`square

area[square] ^= 1

perimeter[square] ^= 4

In general, you can associate definitions for an expression with any symbol that occurs at a suffi-
ciently high level in the expression. With an expression of the form f[args], you can define an upvalue
for a symbol g so long as either g itself, or an object with head g, occurs in args. If g occurs at a lower
level in an expression, however, you cannot associate definitions with it.

g occurs as the head of an argument,
so you can associate a definition with
it.

In[13]:= g/: h[w[x_], g[y_]] := hwg[x, y]

Here g appears too deep in the
left-hand side for you to associate a
definition with it.

In[14]:= g/: h[w[g[x_]], y_] := hw[x, y]

TagSetDelayed::tagpos:
Tag g in h[w[g[x_]], y_]

is too deep for an assigned rule to be found.

Out[14]= $Failed



2.5.10 Associating Definitions with Different Symbols 319

f[ . . . ] := rhs downvalue for f

f/: f[g[ . . . ]][ . . . ] := rhs downvalue for f

g/: f[ . . . , g, . . . ] := rhs upvalue for g

g/: f[ . . . , g[ . . . ], . . . ] := rhs upvalue for g

Possible positions for symbols in definitions.

As discussed in Section 2.1.2, you can use Mathematica symbols as “tags”, to indicate the “type” of
an expression. For example, complex numbers in Mathematica are represented internally in the form
Complex[x, y], where the symbol Complex serves as a tag to indicate that the object is a complex
number.

Upvalues provide a convenient mechanism for specifying how operations act on objects that are
tagged to have a certain type. For example, you might want to introduce a class of abstract mathe-
matical objects of type quat. You can represent each object of this type by a Mathematica expression
of the form quat[data].

In a typical case, you might want quat objects to have special properties with respect to arithmetic
operations such as addition and multiplication. You can set up such properties by defining upvalues
for quat with respect to Plus and Times.

This defines an upvalue for quat with
respect to Plus.

In[15]:= quat[x_] + quat[y_] ^:= quat[x + y]

The upvalue you have defined is used
to simplify this expression.

In[16]:= quat[a] + quat[b] + quat[c]

Out[16]= quata � b � c�
When you define an upvalue for quat with respect to an operation like Plus, what you are effec-

tively doing is to extend the domain of the Plus operation to include quat objects. You are telling
Mathematica to use special rules for addition in the case where the things to be added together are
quat objects.

In defining addition for quat objects, you could always have a special addition operation, say
quatPlus, to which you assign an appropriate downvalue. It is usually much more convenient, how-
ever, to use the standard Mathematica Plus operation to represent addition, but then to “overload”
this operation by specifying special behavior when quat objects are encountered.

You can think of upvalues as a way to implement certain aspects of object-oriented programming.
A symbol like quat represents a particular type of object. Then the various upvalues for quat specify
“methods” that define how quat objects should behave under certain operations, or on receipt of
certain “messages”.



320 2. Principles of Mathematica � 2.5 Transformation Rules and Definitions

- 2.5.11 Defining Numerical Values

If you make a definition such as f[x_] := value, Mathematica will use the value you give for any f
function it encounters. In some cases, however, you may want to define a value that is to be used
specifically when you ask for numerical values.

expr = value define a value to be used whenever possible

N[expr] = value define a value to be used for numerical approximation

Defining ordinary and numerical values.

This defines a numerical value for the
function f.

In[1]:= N[f[x_]] := Sum[x^-i/i^2, {i, 20}]

Defining the numerical value does not
tell Mathematica anything about the
ordinary value of f.

In[2]:= f[2] + f[5]

Out[2]= f2� � f5�
If you ask for a numerical
approximation, however, Mathematica
uses the numerical values you have
defined.

In[3]:= N[%]

Out[3]= 0.793244

You can define numerical values for both functions and symbols. The numerical values are used
by all numerical Mathematica functions, including NIntegrate, FindRoot and so on.

N[expr] = value define a numerical value to be used when default
numerical precision is requested

, N[expr, {n, Infinity}] = value define a numerical value to be used when n-digit precision
and any accuracy is requested

Defining numerical values that depend on numerical precision.

This defines a numerical value for the
symbol const, using 4n + 5 terms in
the product for n-digit precision.

In[4]:= N[const, {n_, Infinity}] := Product[1 - 2^-i, {i, 2, 4n + 5}]

Here is the value of const, computed
to 30-digit precision using the value
you specified.

In[5]:= N[const, 30]

Out[5]= 0.577576190173204842557799443858

Mathematica treats numerical values essentially like upvalues. When you define a numerical value
for f, Mathematica effectively enters your definition as an upvalue for f with respect to the numerical
evaluation operation N.



2.5.12 Modifying Built-in Functions 321

2.5.12 Modifying Built-in Functions

Mathematica allows you to define transformation rules for any expression. You can define such rules
not only for functions that you add to Mathematica, but also for intrinsic functions that are already
built into Mathematica. As a result, you can enhance, or modify, the features of built-in Mathematica
functions.

This capability is powerful, but potentially dangerous. Mathematica will always follow the rules you
give it. This means that if the rules you give are incorrect, then Mathematica will give you incorrect
answers.

To avoid the possibility of changing built-in functions by mistake, Mathematica “protects” all built-in
functions from redefinition. If you want to give a definition for a built-in function, you have to remove
the protection first. After you give the definition, you should usually restore the protection, to prevent
future mistakes.

Unprotect[f] remove protection

Protect[f] add protection

Protection for functions.

Built-in functions are usually
“protected”, so you cannot redefine
them.

In[1]:= Log[7] = 2

Set::write: Tag Log in Log[7] is Protected.

Out[1]= 2

This removes protection for Log. In[2]:= Unprotect[Log]

Out[2]= �Log�
Now you can give your own
definitions for Log. This particular
definition is not mathematically correct,
but Mathematica will still allow you to
give it.

In[3]:= Log[7] = 2

Out[3]= 2

Mathematica will use your definitions
whenever it can, whether they are
mathematically correct or not.

In[4]:= Log[7] + Log[3]

Out[4]= 2 � Log3�
This removes the incorrect definition
for Log.

In[5]:= Log[7] =.

This restores the protection for Log. In[6]:= Protect[Log]

Out[6]= �Log�
Definitions you give can override built-in features of Mathematica. In general, Mathematica tries to

use your definitions before it uses built-in definitions.



322 2. Principles of Mathematica � 2.5 Transformation Rules and Definitions

The rules that are built into Mathematica are intended to be appropriate for the broadest range of
calculations. In specific cases, however, you may not like what the built-in rules do. In such cases,
you can give your own rules to override the ones that are built in.

There is a built-in rule for simplifying
Exp[Log[expr]].

In[7]:= Exp[Log[y]]

Out[7]= y

You can give your own rule for
Exp[Log[expr]], overriding the built-in
rule.

In[8]:= (
Unprotect[Exp] ;
Exp[Log[expr_]] := explog[expr] ;
Protect[Exp] ;

)

Now your rule is used, rather than the
built-in one.

In[9]:= Exp[Log[y]]

Out[9]= explogy�

2.5.13 Advanced Topic: Manipulating Value Lists

DownValues[f] give the list of downvalues of f

UpValues[f] give the list of upvalues of f

DownValues[f] = rules set the downvalues of f

UpValues[f] = rules set the upvalues of f

Finding and setting values of symbols.

Mathematica effectively stores all definitions you give as lists of transformation rules. When a particular
symbol is encountered, the lists of rules associated with it are tried.

Under most circumstances, you do not need direct access to the actual transformation rules asso-
ciated with definitions you have given. Instead, you can simply use lhs = rhs and lhs =. to add and
remove rules. In some cases, however, you may find it useful to have direct access to the actual rules.

Here is a definition for f. In[1]:= f[x_] := x^2

This gives the explicit rule
corresponding to the definition you
made for f.

In[2]:= DownValues[f]

Out[2]= �HoldPatternfx_��  x2�
Notice that the rules returned by DownValues and UpValues are set up so that neither their left-

nor right-hand sides get evaluated. The left-hand sides are wrapped in HoldPattern, and the rules
are delayed, so that the right-hand sides are not immediately evaluated.

As discussed in Section 2.5.6, Mathematica tries to order definitions so that more specific ones appear
before more general ones. In general, however, there is no unique way to make this ordering, and



2.5.13 Advanced Topic: Manipulating Value Lists 323

you may want to choose a different ordering from the one that Mathematica chooses by default. You
can do this by reordering the list of rules obtained from DownValues or UpValues.

Here are some definitions for the
object g.

In[3]:= g[x_ + y_] := gp[x, y] ; g[x_ y_] := gm[x, y]

This shows the default ordering used
for the definitions.

In[4]:= DownValues[g]

Out[4]= �HoldPatterngx_ � y_��  gpx, y�,
HoldPatterngx_ y_��  gmx, y��

This reverses the order of the
definitions for g.

In[5]:= DownValues[g] = Reverse[DownValues[g]]

Out[5]= �HoldPatterngx_ y_��  gmx, y�,
HoldPatterngx_ � y_��  gpx, y��



324 2. Principles of Mathematica � 2.6 Evaluation of Expressions

2.6 Evaluation of Expressions

2.6.1 Principles of Evaluation

The fundamental operation that Mathematica performs is evaluation. Whenever you enter an expression,
Mathematica evaluates the expression, then returns the result.

Evaluation in Mathematica works by applying a sequence of definitions. The definitions can either
be ones you explicitly entered, or ones that are built into Mathematica.

Thus, for example, Mathematica evaluates the expression 6 + 7 using a built-in procedure for adding
integers. Similarly, Mathematica evaluates the algebraic expression x - 3x + 1 using a built-in simplifi-
cation procedure. If you had made the definition x = 5, then Mathematica would use this definition to
reduce x - 3x + 1 to -9.

The two most central concepts in Mathematica are probably expressions and evaluation. Section 2.1
discussed how all the different kinds of objects that Mathematica handles are represented in a uniform
way using expressions. This section describes how all the operations that Mathematica can perform
can also be viewed in a uniform way as examples of evaluation.

Computation 5 + 6  11

Simplification x - 3x + 1  1 - 2x

Execution x = 5  5

Some interpretations of evaluation.

Mathematica is an infinite evaluation system. When you enter an expression, Mathematica will keep
on using definitions it knows until it gets a result to which no definitions apply.

This defines x1 in terms of x2, and
then defines x2.

In[1]:= x1 = x2 + 2 ; x2 = 7

Out[1]= 7

If you ask for x1, Mathematica uses all
the definitions it knows to give you a
result.

In[2]:= x1

Out[2]= 9

Here is a recursive definition in which
the factorial function is defined in
terms of itself.

In[3]:= fac[1] = 1 ; fac[n_] := n fac[n-1]

If you ask for fac[10], Mathematica
will keep on applying the definitions
you have given until the result it gets
no longer changes.

In[4]:= fac[10]

Out[4]= 3628800



2.6.2 Reducing Expressions to Their Standard Form 325

When Mathematica has used all the definitions it knows, it gives whatever expression it has obtained
as the result. Sometimes the result may be an object such as a number. But usually the result is an
expression in which some objects are represented in a symbolic form.

Mathematica uses its built-in definitions
for simplifying sums, but knows no
definitions for f[3], so leaves this in
symbolic form.

In[5]:= f[3] + 4f[3] + 1

Out[5]= 1 � 5 f3�

Mathematica follows the principle of applying definitions until the result it gets no longer changes.
This means that if you take the final result that Mathematica gives, and enter it as Mathematica input,
you will get back the same result again. (There are some subtle cases discussed in Section 2.6.13 in
which this does not occur.)

If you type in a result from
Mathematica, you get back the same
expression again.

In[6]:= 1 + 5 f[3]

Out[6]= 1 � 5 f3�
At any given time, Mathematica can only use those definitions that it knows at that time. If you

add more definitions later, however, Mathematica will be able to use these. The results you get from
Mathematica may change in this case.

Here is a new definition for the
function f.

In[7]:= f[x_] = x^2

Out[7]= x2

With the new definition, the results
you get can change.

In[8]:= 1 + 5 f[3]

Out[8]= 46

The simplest examples of evaluation involve using definitions such as f[x_] = x^2 which trans-
form one expression directly into another. But evaluation is also the process used to execute programs
written in Mathematica. Thus, for example, if you have a procedure consisting of a sequence of Mathe-
matica expressions, some perhaps representing conditionals and loops, the execution of this procedure
corresponds to the evaluation of these expressions. Sometimes the evaluation process may involve
evaluating a particular expression several times, as in a loop.

The expression Print[zzzz] is
evaluated three times during the
evaluation of the Do expression.

In[9]:= Do[Print[zzzz], {3}]

zzzz
zzzz
zzzz

2.6.2 Reducing Expressions to Their Standard Form

The built-in functions in Mathematica operate in a wide variety of ways. But many of the mathemat-
ical functions share an important approach: they are set up so as to reduce classes of mathematical
expressions to standard forms.

The built-in definitions for the Plus function, for example, are set up to write any sum of terms in a
standard unparenthesized form. The associativity of addition means that expressions like (a + b) + c,
a + (b + c) and a + b + c are all equivalent. But for many purposes it is convenient for all these



326 2. Principles of Mathematica � 2.6 Evaluation of Expressions

forms to be reduced to the single standard form a + b + c. The built-in definitions for Plus are set
up to do this.

Through the built-in definitions for
Plus, this expression is reduced to a
standard unparenthesized form.

In[1]:= (a + b) + c

Out[1]= a � b � c

Whenever Mathematica knows that a function is associative, it tries to remove parentheses (or nested
invocations of the function) to get the function into a standard “flattened” form.

A function like addition is not only associative, but also commutative, which means that expressions
like a + c + b and a + b + c with terms in different orders are equal. Once again, Mathematica tries to
put all such expressions into a “standard” form. The standard form it chooses is the one in which all
the terms are in a definite order, corresponding roughly to alphabetical order.

Mathematica sorts the terms in this sum
into a standard order.

In[2]:= c + a + b

Out[2]= a � b � c

flat (associative) f[f[a, b], c] is equivalent to f[a, b, c], etc.

orderless (commutative) f[b, a] is equivalent to f[a, b], etc.

Two important properties that Mathematica uses in reducing certain functions to standard form.

There are several reasons to try to put expressions into standard forms. The most important is that
if two expressions are really in standard form, it is obvious whether or not they are equal.

When the two sums are put into
standard order, they are immediately
seen to be equal, so that two f’s
cancel, leaving the result 0.

In[3]:= f[a + c + b] - f[c + a + b]

Out[3]= 0

You could imagine finding out whether a + c + b was equal to c + a + b by testing all possible
orderings of each sum. It is clear that simply reducing both sums to standard form is a much more
efficient procedure.

One might think that Mathematica should somehow automatically reduce all mathematical expres-
sions to a single standard canonical form. With all but the simplest kinds of expressions, however, it
is quite easy to see that you do not want the same standard form for all purposes.

For polynomials, for example, there are two obvious standard forms, which are good for different
purposes. The first standard form for a polynomial is a simple sum of terms, as would be generated
in Mathematica by applying the function Expand. This standard form is most appropriate if you need
to add and subtract polynomials.



2.6.3 Attributes 327

There is, however, another possible standard form that you can use for polynomials. By applying
Factor, you can write any polynomial as a product of irreducible factors. This canonical form is
useful if you want to do operations like division.

Expanded and factored forms are in a sense both equally good standard forms for polynomials.
Which one you decide to use simply depends on what you want to use it for. As a result, Mathematica
does not automatically put polynomials into one of these two forms. Instead, it gives you functions
like Expand and Factor that allow you explicitly to put polynomials in whatever form you want.

Here is a list of two polynomials that
are mathematically equal.

In[4]:= t = {x^2 - 1, (x + 1)(x - 1)}

Out[4]= ��1 � x2, ��1 � x� �1 � x��
You can write both of them in
expanded form just by applying
Expand. In this form, the equality of
the polynomials is obvious.

In[5]:= Expand[t]

Out[5]= ��1 � x2, �1 � x2�

You can also see that the polynomials
are equal by writing them both in
factored form.

In[6]:= Factor[t]

Out[6]= ���1 � x� �1 � x�, ��1 � x� �1 � x��
Although it is clear that you do not always want expressions reduced to the same standard form,

you may wonder whether it is at least possible to reduce all expressions to some standard form.

There is a basic result in the mathematical theory of computation which shows that this is, in fact,
not always possible. You cannot guarantee that any finite sequence of transformations will take any
two arbitrarily chosen expressions to a standard form.

In a sense, this is not particularly surprising. If you could in fact reduce all mathematical expres-
sions to a standard form, then it would be quite easy to tell whether any two expressions were equal.
The fact that so many of the difficult problems of mathematics can be stated as questions about the
equality of expressions suggests that this can in fact be difficult.

2.6.3 Attributes

Definitions such as f[x_] = x^2 specify values for functions. Sometimes, however, you need to specify
general properties of functions, without necessarily giving explicit values.

Mathematica provides a selection of attributes that you can use to specify various properties of
functions. For example, you can use the attribute Flat to specify that a particular function is “flat”,
so that nested invocations are automatically flattened, and it behaves as if it were associative.



328 2. Principles of Mathematica � 2.6 Evaluation of Expressions

This assigns the attribute Flat to the
function f.

In[1]:= SetAttributes[f, Flat]

Now f behaves as a flat, or associative,
function, so that nested invocations are
automatically flattened.

In[2]:= f[f[a, b], c]

Out[2]= fa, b, c�
Attributes like Flat can affect not only evaluation, but also operations such as pattern matching.

If you give definitions or transformation rules for a function, you must be sure to have specified the
attributes of the function first.

Here is a definition for the flat
function f.

In[3]:= f[x_, x_] := f[x]

Because f is flat, the definition is
automatically applied to every
subsequence of arguments.

In[4]:= f[a, a, a, b, b, b, c, c]

Out[4]= fa, b, c�

Attributes[f] give the attributes of f

Attributes[f] = {attr�, attr�, . . . } set the attributes of f

Attributes[f] = {} set f to have no attributes

SetAttributes[f, attr] add attr to the attributes of f

ClearAttributes[f, attr] remove attr from the attributes of f

Manipulating attributes of symbols.

This shows the attributes assigned to f. In[5]:= Attributes[f]

Out[5]= �Flat�
This removes the attributes assigned
to f.

In[6]:= Attributes[f] = { }

Out[6]= ��



2.6.3 Attributes 329

Orderless orderless, commutative function (arguments are sorted into
standard order)

Flat flat, associative function (arguments are “flattened out”)

OneIdentity f[f[a]], etc. are equivalent to a for pattern matching

Listable f is automatically “threaded” over lists that appear as
arguments (e.g., f[{a,b}] becomes {f[a], f[b]})

Constant all derivatives of f are zero

NumericFunction f is assumed to have a numerical value when its arguments
are numeric quantities

Protected values of f cannot be changed

Locked attributes of f cannot be changed

ReadProtected values of f cannot be read

HoldFirst the first argument of f is not evaluated

HoldRest all but the first argument of f is not evaluated

HoldAll none of the arguments of f are evaluated

HoldAllComplete the arguments of f are treated as completely inert

NHoldFirst the first argument of f is not affected by N

NHoldRest all but the first argument of f is not affected by N

NHoldAll none of the arguments of f are affected by N

SequenceHold Sequence objects appearing in the arguments of f are not
flattened out

Temporary f is a local variable, removed when no longer used

Stub Needs is automatically called if f is ever explicitly input

The complete list of attributes for symbols in Mathematica.

Here are the attributes for the built-in
function Plus.

In[7]:= Attributes[Plus]

Out[7]= �Flat, Listable, NumericFunction,
OneIdentity, Orderless, Protected�

An important attribute assigned to built-in mathematical functions in Mathematica is the attribute
Listable. This attribute specifies that a function should automatically be distributed or “threaded”
over lists that appear as its arguments. This means that the function effectively gets applied separately
to each element in any lists that appear as its arguments.



330 2. Principles of Mathematica � 2.6 Evaluation of Expressions

The built-in Log function is Listable. In[8]:= Log[{5, 8, 11}]

Out[8]= �Log5�, Log8�, Log11��
This defines the function p to be
listable.

In[9]:= SetAttributes[p, Listable]

Now p is automatically threaded over
lists that appear as its arguments.

In[10]:= p[{a, b, c}, d]

Out[10]= �pa, d�, pb, d�, pc, d��
Many of the attributes you can assign to functions in Mathematica directly affect the evaluation

of those functions. Some attributes, however, affect only other aspects of the treatment of func-
tions. For example, the attribute OneIdentity affects only pattern matching, as discussed in Section
2.3.7. Similarly, the attribute Constant is only relevant in differentiation, and operations that rely on
differentiation.

The Protected attribute affects assignments. Mathematica does not allow you to make any def-
inition associated with a symbol that carries this attribute. The functions Protect and Unprotect
discussed in Section 2.5.12 can be used as alternatives to SetAttributes and ClearAttributes to set
and clear this attribute. As discussed in Section 2.5.12 most built-in Mathematica objects are initially
protected so that you do not make definitions for them by mistake.

Here is a definition for the function g. In[11]:= g[x_] = x + 1

Out[11]= 1 � x

This sets the Protected attribute for g. In[12]:= Protect[g]

Out[12]= �g�
Now you cannot modify the definition
of g.

In[13]:= g[x_] = x

Set::write: Tag g in g[x_] is Protected.

Out[13]= x

You can usually see the definitions you have made for a particular symbol by typing ?f, or by
using a variety of built-in Mathematica functions. However, if you set the attribute ReadProtected,
Mathematica will not allow you to look at the definition of a particular symbol. It will nevertheless
continue to use the definitions in performing evaluation.

Although you cannot modify it, you
can still look at the definition of g.

In[14]:= ?g

Global`g

Attributes[g] = {Protected}

g[x_] = 1 + x

This sets the ReadProtected attribute
for g.

In[15]:= SetAttributes[g, ReadProtected]

Now you can no longer read the
definition of g.

In[16]:= ?g

Global`g

Attributes[g] = {Protected, ReadProtected}



2.6.3 Attributes 331

Functions like SetAttributes and ClearAttributes usually allow you to modify the attributes of
a symbol in any way. However, if you once set the Locked attribute on a symbol, then Mathematica
will not allow you to modify the attributes of that symbol for the remainder of your Mathematica
session. Using the Locked attribute in addition to Protected or ReadProtected , you can arrange for
it to be impossible for users to modify or read definitions.

Clear[f] remove values for f, but not attributes

ClearAll[f] remove both values and attributes of f

Clearing values and attributes.

This clears values and attributes of p
which was given attribute Listable
above.

In[17]:= ClearAll[p]

Now p is no longer listable. In[18]:= p[{a, b, c}, d]

Out[18]= p�a, b, c�, d�
By defining attributes for a function you specify properties that Mathematica should assume when-

ever that function appears. Often, however, you want to assume the properties only in a particular
instance. In such cases, you will be better off not to use attributes, but instead to call a particular
function to implement the transformation associated with the attributes.

By explicitly calling Thread, you can
implement the transformation that
would be done automatically if p were
listable.

In[19]:= Thread[p[{a, b, c}, d]]

Out[19]= �pa, d�, pb, d�, pc, d��

Orderless Sort[f[args]]

Flat Flatten[f[args]]

Listable Thread[f[args]]

Constant Dt[expr, Constants->f]

Functions that perform transformations associated with some attributes.

Attributes in Mathematica can only be permanently defined for single symbols. However, Mathemat-
ica also allows you to set up pure functions which behave as if they carry attributes.



332 2. Principles of Mathematica � 2.6 Evaluation of Expressions

Function[vars, body, {attr�, . . . }] a pure function with attributes attr�, . . .

Pure functions with attributes.

This pure function applies p to the
whole list.

In[20]:= Function[{x}, p[x]] [{a, b, c}]

Out[20]= p�a, b, c��
By adding the attribute Listable, the
function gets distributed over the
elements of the list before applying p.

In[21]:= Function[{x}, p[x], {Listable}] [{a, b, c}]

Out[21]= �pa�, pb�, pc��

2.6.4 The Standard Evaluation Procedure

This section describes the standard procedure used by Mathematica to evaluate expressions. This proce-
dure is the one followed for most kinds of expressions. There are however some kinds of expressions,
such as those used to represent Mathematica programs and control structures, which are evaluated in a
non-standard way. The treatment of such expressions is discussed in the sections that follow this one.

In the standard evaluation procedure, Mathematica first evaluates the head of an expression, and
then evaluates each element of the expressions. These elements are in general themselves expressions,
to which the same evaluation procedure is recursively applied.

The three Print functions are
evaluated in turn, each printing its
argument, then returning the value
Null.

In[1]:= {Print[1], Print[2], Print[3]}

1
2
3

Out[1]= �Null, Null, Null�
This assigns the symbol ps to be Plus. In[2]:= ps = Plus

Out[2]= Plus

The head ps is evaluated first, so this
expression behaves just like a sum of
terms.

In[3]:= ps[ps[a, b], c]

Out[3]= a � b � c

As soon as Mathematica has evaluated the head of an expression, it sees whether the head is
a symbol that has attributes. If the symbol has the attributes Orderless, Flat or Listable, then
immediately after evaluating the elements of the expression Mathematica performs the transformations
associated with these attributes.

The next step in the standard evaluation procedure is to use definitions that Mathematica knows for
the expression it is evaluating. Mathematica first tries to use definitions that you have made, and if
there are none that apply, it tries built-in definitions.

If Mathematica finds a definition that applies, it performs the corresponding transformation on the
expression. The result is another expression, which must then in turn be evaluated according to the
standard evaluation procedure.



2.6.4 The Standard Evaluation Procedure 333

Evaluate the head of the expression.

Evaluate each element in turn.

Apply transformations associated with the attributes Orderless, Listable and Flat.

Apply any definitions that you have given.

Apply any built-in definitions.

Evaluate the result.

The standard evaluation procedure.

As discussed in Section 2.6.1, Mathematica follows the principle that each expression is evaluated
until no further definitions apply. This means that Mathematica must continue re-evaluating results
until it gets an expression which remains unchanged through the evaluation procedure.

Here is an example that shows how the standard evaluation procedure works on a simple expres-
sion. We assume that a = 7.

2 a x + a^2 + 1 here is the original expression

Plus[Times[2, a, x], Power[a, 2], 1]
this is the internal form

Times[2, a, x] this is evaluated first

Times[2, 7, x] a is evaluated to give 7

Times[14, x] built-in definitions for Times give this result

Power[a, 2] this is evaluated next

Power[7, 2] here is the result after evaluating a

49 built-in definitions for Power give this result

Plus[Times[14, x], 49, 1] here is the result after the arguments of Plus have been
evaluated

Plus[50, Times[14, x]] built-in definitions for Plus give this result

50 + 14 x the result is printed like this

A simple example of evaluation in Mathematica.



334 2. Principles of Mathematica � 2.6 Evaluation of Expressions

Mathematica provides various ways to “trace” the evaluation process, as discussed in Section 2.6.11.
The function Trace[expr] gives a nested list showing each subexpression generated during evalua-
tion. (Note that the standard evaluation traverses the expression tree in a depth-first way, so that the
smallest subparts of the expression appear first in the results of Trace.)

First set a to 7. In[4]:= a = 7

Out[4]= 7

This gives a nested list of all the
subexpressions generated during the
evaluation of the expression.

In[5]:= Trace[2 a x + a^2 + 1]

Out[5]= ���a, 7�, 2 7 x, 14 x�,��a, 7�, 72, 49�, 14 x � 49 � 1, 50 � 14 x�
The order in which Mathematica applies different kinds of definitions is important. The fact that

Mathematica applies definitions you have given before it applies built-in definitions means that you
can give definitions which override the built-in ones, as discussed in Section 2.5.12.

This expression is evaluated using the
built-in definition for ArcSin.

In[6]:= ArcSin[1]

Out[6]=
Π
�������
2

You can give your own definitions for
ArcSin. You need to remove the
protection attribute first.

In[7]:= Unprotect[ArcSin]; ArcSin[1] = 5Pi/2;

Your definition is used before the one
that is built in.

In[8]:= ArcSin[1]

Out[8]=
5 Π
��������������
2

As discussed in Section 2.5.10, you can associate definitions with symbols either as upvalues or
downvalues. Mathematica always tries upvalue definitions before downvalue ones.

If you have an expression like f[g[x]], there are in general two sets of definitions that could
apply: downvalues associated with f, and upvalues associated with g. Mathematica tries the definitions
associated with g before those associated with f.

This ordering follows the general strategy of trying specific definitions before more general ones.
By applying upvalues associated with arguments before applying downvalues associated with a func-
tion, Mathematica allows you to make definitions for special arguments which override the general
definitions for the function with any arguments.

This defines a rule for f[g[x_]], to be
associated with f.

In[9]:= f/: f[g[x_]] := frule[x]

This defines a rule for f[g[x_]], to be
associated with g.

In[10]:= g/: f[g[x_]] := grule[x]

The rule associated with g is tried
before the rule associated with f.

In[11]:= f[g[2]]

Out[11]= grule2�



2.6.4 The Standard Evaluation Procedure 335

If you remove rules associated with g,
the rule associated with f is used.

In[12]:= Clear[g] ; f[g[1]]

Out[12]= frule1�

Definitions associated with g are applied before definitions associated with f in the expression
f[g[x]].

The order in which definitions are applied.

Most functions such as Plus that are built into Mathematica have downvalues. There are, however,
some objects in Mathematica which have built-in upvalues. For example, SeriesData objects, which
represent power series, have built-in upvalues with respect to various mathematical operations.

For an expression like f[g[x]], the complete sequence of definitions that are tried in the standard
evaluation procedure is:

Definitions you have given associated with g;

Built-in definitions associated with g;

Definitions you have given associated with f;

Built-in definitions associated with f.

The fact that upvalues are used before downvalues is important in many situations. In a typical
case, you might want to define an operation such as composition. If you give upvalues for vari-
ous objects with respect to composition, these upvalues will be used whenever such objects appear.
However, you can also give a general procedure for composition, to be used if no special objects are
present. You can give this procedure as a downvalue for composition. Since downvalues are tried
after upvalues, the general procedure will be used only if no objects with upvalues are present.

Here is a definition associated with q
for composition of “q objects”.

In[13]:= q/: comp[q[x_], q[y_]] := qcomp[x, y]

Here is a general rule for composition,
associated with comp.

In[14]:= comp[f_[x_], f_[y_]] := gencomp[f, x, y]

If you compose two q objects, the rule
associated with q is used.

In[15]:= comp[q[1], q[2]]

Out[15]= qcomp1, 2�
If you compose r objects, the general
rule associated with comp is used.

In[16]:= comp[r[1], r[2]]

Out[16]= gencompr, 1, 2�
In general, there can be several objects that have upvalues in a particular expression. Mathematica

first looks at the head of the expression, and tries any upvalues associated with it. Then it successively
looks at each element of the expression, trying any upvalues that exist. Mathematica performs this
procedure first for upvalues that you have explicitly defined, and then for upvalues that are built in.



336 2. Principles of Mathematica � 2.6 Evaluation of Expressions

The procedure means that in a sequence of elements, upvalues associated with earlier elements take
precedence over those associated with later elements.

This defines an upvalue for p with
respect to c.

In[17]:= p/: c[l___, p[x_], r___] := cp[x, {l, r}]

This defines an upvalue for q. In[18]:= q/: c[l___, q[x_], r___] := cq[x, {l, r}]

Which upvalue is used depends on
which occurs first in the sequence of
arguments to c.

In[19]:= {c[p[1], q[2]], c[q[1], p[2]]}

Out[19]= �cp1, �q2���, cq1, �p2����

2.6.5 Non-Standard Evaluation

While most built-in Mathematica functions follow the standard evaluation procedure, some important
ones do not. For example, most of the Mathematica functions associated with the construction and
execution of programs use non-standard evaluation procedures. In typical cases, the functions either
never evaluate some of their arguments, or do so in a special way under their own control.

x = y do not evaluate the left-hand side

If[p, a, b] evaluate a if p is True, and b if it is False

Do[expr, {n}] evaluate expr n times

Plot[f, {x, . . . }] evaluate f with a sequence of numerical values for x

Function[{x}, body] do not evaluate until the function is applied

Some functions that use non-standard evaluation procedures.

When you give a definition such as a = 1, Mathematica does not evaluate the a that appears on the
left-hand side. You can see that there would be trouble if the a was evaluated. The reason is that if
you had previously set a = 7, then evaluating a in the definition a = 1 would put the definition into
the nonsensical form 7 = 1.

In the standard evaluation procedure, each argument of a function is evaluated in turn. This is pre-
vented by setting the attributes HoldFirst, HoldRest and HoldAll. These attributes make Mathematica
“hold” particular arguments in an unevaluated form.



2.6.5 Non-Standard Evaluation 337

HoldFirst do not evaluate the first argument

HoldRest evaluate only the first argument

HoldAll evaluate none of the arguments

Attributes for holding function arguments in unevaluated form.

With the standard evaluation
procedure, all arguments to a function
are evaluated.

In[1]:= f[1 + 1, 2 + 4]

Out[1]= f2, 6�
This assigns the attribute HoldFirst
to h.

In[2]:= SetAttributes[h, HoldFirst]

The first argument to h is now held in
an unevaluated form.

In[3]:= h[1 + 1, 2 + 4]

Out[3]= h1 � 1, 6�
When you use the first argument to h
like this, it will get evaluated.

In[4]:= h[1 + 1, 2 + 4] /. h[x_, y_] -> x^y

Out[4]= 64

Built-in functions like Set carry
attributes such as HoldFirst.

In[5]:= Attributes[Set]

Out[5]= �HoldFirst, Protected, SequenceHold�
Even though a function may have attributes which specify that it should hold certain arguments

unevaluated, you can always explicitly tell Mathematica to evaluate those arguments by giving the
arguments in the form Evaluate[arg].

Evaluate effectively overrides the
HoldFirst attribute, and causes the
first argument to be evaluated.

In[6]:= h[Evaluate[1 + 1], 2 + 4]

Out[6]= h2, 6�

f[Evaluate[arg]] evaluate arg immediately, even though attributes of f may
specify that it should be held

Forcing the evaluation of function arguments.

By holding its arguments, a function can control when those arguments are evaluated. By using
Evaluate, you can force the arguments to be evaluated immediately, rather than being evaluated
under the control of the function. This capability is useful in a number of circumstances.

One example discussed on page 132 occurs when plotting graphs of expressions. The Mathematica
Plot function holds unevaluated the expression you are going to plot, then evaluates it at a sequence
of numerical positions. In some cases, you may instead want to evaluate the expression immediately,
and have Plot work with the evaluated form. For example, if you want to plot a list of functions



338 2. Principles of Mathematica � 2.6 Evaluation of Expressions

generated by Table, then you will want the Table operation done immediately, rather than being
done every time a point is to be plotted.

Evaluate causes the list of functions to
be constructed immediately, rather than
being constructed at each value of x
chosen by Plot.

In[7]:= Plot[
Evaluate[Table[Sin[n x], {n, 1, 3}]],

{x, 0, 2Pi} ]

1 2 3 4 5 6

-1

-0.5

0.5

1

There are a number of built-in Mathematica functions which, like Plot, are set up to hold some of
their arguments. You can always override this behavior using Evaluate.

The Mathematica Set function holds its
first argument, so the symbol a is not
evaluated in this case.

In[8]:= a = b

Out[8]= b

You can make Set evaluate its first
argument using Evaluate. In this case,
the result is the object which is the
value of a, namely b is set to 6.

In[9]:= Evaluate[a] = 6

Out[9]= 6

b has now been set to 6. In[10]:= b

Out[10]= 6

In most cases, you want all expressions you give to Mathematica to be evaluated. Sometimes,
however, you may want to prevent the evaluation of certain expressions. For example, if you want
to manipulate pieces of a Mathematica program symbolically, then you must prevent those pieces from
being evaluated while you are manipulating them.

You can use the functions Hold and HoldForm to keep expressions unevaluated. These functions
work simply by carrying the attribute HoldAll, which prevents their arguments from being evaluated.
The functions provide “wrappers” inside which expressions remain unevaluated.

The difference between Hold[expr] and HoldForm[expr] is that in standard Mathematica output
format, Hold is printed explicitly, while HoldForm is not. If you look at the full internal Mathematica
form, you can however see both functions.

Hold maintains expressions in an
unevaluated form.

In[11]:= Hold[1 + 1]

Out[11]= Hold1 � 1�



2.6.5 Non-Standard Evaluation 339

HoldForm also keeps expressions
unevaluated, but is invisible in
standard Mathematica output format.

In[12]:= HoldForm[1 + 1]

Out[12]= 1 � 1

HoldForm is still present internally. In[13]:= FullForm[%]

Out[13]//FullForm= HoldFormPlus1, 1��
The function ReleaseHold removes
Hold and HoldForm, so the expressions
they contain get evaluated.

In[14]:= ReleaseHold[%]

Out[14]= 2

Hold[expr] keep expr unevaluated

HoldComplete[expr] keep expr unevaluated and prevent upvalues associated with
expr from being used

HoldForm[expr] keep expr unevaluated, and print without HoldForm

ReleaseHold[expr] remove Hold and HoldForm in expr

Extract[expr, index, Hold] get a part of expr, wrapping it with Hold to prevent
evaluation

ReplacePart[expr, Hold[value], index, 1]
replace part of expr, extracting value without evaluating it

Functions for handling unevaluated expressions.

Parts of expressions are usually
evaluated as soon as you extract them.

In[15]:= Extract[ Hold[1 + 1, 2 + 3], 2]

Out[15]= 5

This extracts a part and immediately
wraps it with Hold, so it does not get
evaluated.

In[16]:= Extract[ Hold[1 + 1, 2 + 3], 2, Hold]

Out[16]= Hold2 � 3�
The last argument of 1 tells
ReplacePart to extract the first part of
Hold[7 + 8] before inserting it.

In[17]:= ReplacePart[ Hold[1 + 1, 2 + 3], Hold[7 + 8], 2, 1]

Out[17]= Hold1 � 1, 7 � 8�

f[ . . . , Unevaluated[expr], . . . ] give expr unevaluated as an argument to f

Temporary prevention of argument evaluation.

1 + 1 evaluates to 2, and Length[2]
gives 0.

In[18]:= Length[1 + 1]

Out[18]= 0



340 2. Principles of Mathematica � 2.6 Evaluation of Expressions

This gives the unevaluated form 1 + 1
as the argument of Length.

In[19]:= Length[Unevaluated[1 + 1]]

Out[19]= 2

Unevaluated[expr] effectively works by temporarily giving a function an attribute like HoldFirst,
and then supplying expr as an argument to the function.

SequenceHold do not flatten out Sequence objects that appear as
arguments

HoldAllComplete treat all arguments as completely inert

Attributes for preventing other aspects of evaluation.

By setting the attribute HoldAll, you can prevent Mathematica from evaluating the arguments of a
function. But even with this attribute set, Mathematica will still do some transformations on the argu-
ments. By setting SequenceHold you can prevent it from flattening out Sequence objects that appear in
the arguments. And by setting HoldAllComplete you can also inhibit the stripping of Unevaluated ,
and prevent Mathematica from using any upvalues it finds associated with the arguments.

2.6.6 Evaluation in Patterns, Rules and Definitions

There are a number of important interactions in Mathematica between evaluation and pattern match-
ing. The first observation is that pattern matching is usually done on expressions that have already
been at least partly evaluated. As a result, it is usually appropriate that the patterns to which these
expressions are matched should themselves be evaluated.

The fact that the pattern is evaluated
means that it matches the expression
given.

In[1]:= f[k^2] /. f[x_^(1 + 1)] -> p[x]

Out[1]= pk�
The right-hand side of the /; condition
is not evaluated until it is used during
pattern matching.

In[2]:= f[{a, b}] /. f[list_ /; Length[list] > 1] -> list^2

Out[2]= �a2, b2�
There are some cases, however, where you may want to keep all or part of a pattern unevaluated.

You can do this by wrapping the parts you do not want to evaluate with HoldPattern . In general,
whenever HoldPattern[patt] appears within a pattern, this form is taken to be equivalent to patt for
the purpose of pattern matching, but the expression patt is maintained unevaluated.

HoldPattern[patt] equivalent to patt for pattern matching, with patt kept
unevaluated

Preventing evaluation in patterns.



2.6.6 Evaluation in Patterns, Rules and Definitions 341

One application for HoldPattern is in specifying patterns which can apply to unevaluated expres-
sions, or expressions held in an unevaluated form.

HoldPattern keeps the 1 + 1 from
being evaluated, and allows it to match
the 1 + 1 on the left-hand side of the
/. operator.

In[3]:= Hold[u[1 + 1]] /. HoldPattern[1 + 1] -> x

Out[3]= Holdux��

Notice that while functions like Hold prevent evaluation of expressions, they do not affect the
manipulation of parts of those expressions with /. and other operators.

This defines values for r whenever its
argument is not an atomic object.

In[4]:= r[x_] := x^2 /; !AtomQ[x]

According to the definition, expressions
like r[3] are left unchanged.

In[5]:= r[3]

Out[5]= r3�
However, the pattern r[x_] is
transformed according to the definition
for r.

In[6]:= r[x_]

Out[6]= x_2

You need to wrap HoldPattern around
r[x_] to prevent it from being
evaluated.

In[7]:= {r[3], r[5]} /. HoldPattern[r[x_]] -> x

Out[7]= �3, 5�
As illustrated above, the left-hand sides of transformation rules such as lhs -> rhs are usually

evaluated immediately, since the rules are usually applied to expressions which have already been
evaluated. The right-hand side of lhs -> rhs is also evaluated immediately. With the delayed rule
lhs :> rhs, however, the expression rhs is not evaluated.

The right-hand side is evaluated
immediately in -> but not :> rules.

In[8]:= {{x -> 1 + 1}, {x :> 1 + 1}}

Out[8]= ��x � 2�, �x  1 � 1��
Here are the results of applying the
rules. The right-hand side of the :>
rule gets inserted inside the Hold
without evaluation.

In[9]:= {x^2, Hold[x]} /. %

Out[9]= ��4, Hold2��, �4, Hold1 � 1���

lhs -> rhs evaluate both lhs and rhs

lhs :> rhs evaluate lhs but not rhs

Evaluation in transformation rules.

While the left-hand sides of transformation rules are usually evaluated, the left-hand sides of defi-
nitions are usually not. The reason for the difference is as follows. Transformation rules are typically
applied using /. to expressions that have already been evaluated. Definitions, however, are used
during the evaluation of expressions, and are applied to expressions that have not yet been completely



342 2. Principles of Mathematica � 2.6 Evaluation of Expressions

evaluated. To work on such expressions, the left-hand sides of definitions must be maintained in a
form that is at least partially unevaluated.

Definitions for symbols are the simplest case. As discussed in the previous section, a symbol on
the left-hand side of a definition such as x = value is not evaluated. If x had previously been assigned
a value y, then if the left-hand side of x = value were evaluated, it would turn into the quite unrelated
definition y = value.

Here is a definition. The symbol on
the left-hand side is not evaluated.

In[10]:= k = w[3]

Out[10]= w3�
This redefines the symbol. In[11]:= k = w[4]

Out[11]= w4�
If you evaluate the left-hand side, then
you define not the symbol k, but the
value w[4] of the symbol k.

In[12]:= Evaluate[k] = w[5]

Out[12]= w5�
Now w[4] has value w[5]. In[13]:= w[4]

Out[13]= w5�
Although individual symbols that appear on the left-hand sides of definitions are not evaluated,

more complicated expressions are partially evaluated. In an expression such as f[args] on the left-hand
side of a definition, the args are evaluated.

The 1 + 1 is evaluated, so that a value
is defined for g[2].

In[14]:= g[1 + 1] = 5

Out[14]= 5

This shows the value defined for g. In[15]:= ?g

Global`g

g[2] = 5

You can see why the arguments of a function that appears on the left-hand side of a definition
must be evaluated by considering how the definition is used during the evaluation of an expression.
As discussed in Section 2.6.1, when Mathematica evaluates a function, it first evaluates each of the
arguments, then tries to find definitions for the function. As a result, by the time Mathematica applies
any definition you have given for a function, the arguments of the function must already have been
evaluated. An exception to this occurs when the function in question has attributes which specify that
it should hold some of its arguments unevaluated.



2.6.7 Evaluation in Iteration Functions 343

symbol = value symbol is not evaluated; value is evaluated

symbol := value neither symbol nor value is evaluated

f[args] = value args are evaluated; left-hand side as a whole is not

f[HoldPattern[arg]] = value f[arg] is assigned, without evaluating arg

Evaluate[lhs] = value left-hand side is evaluated completely

Evaluation in definitions.

While in most cases it is appropriate for the arguments of a function that appears on the left-hand
side of a definition to be evaluated, there are some situations in which you do not want this to happen.
In such cases, you can wrap HoldPattern around the parts that you do not want to be evaluated.

2.6.7 Evaluation in Iteration Functions

The built-in Mathematica iteration functions such as Table and Sum, as well as Plot and Plot3D,
evaluate their arguments in a slightly special way.

When evaluating an expression like Table[f, {i, imax}], the first step, as discussed on page 390,
is to make the value of i local. Next, the limit imax in the iterator specification is evaluated. The
expression f is maintained in an unevaluated form, but is repeatedly evaluated as a succession of
values are assigned to i. When this is finished, the global value of i is restored.

The function Random[ ] is evaluated
four separate times here, so four
different pseudorandom numbers are
generated.

In[1]:= Table[Random[ ], {4}]

Out[1]= �0.0560708, 0.6303, 0.359894, 0.871377�

This evaluates Random[ ] before
feeding it to Table. The result is a list
of four identical numbers.

In[2]:= Table[ Evaluate[Random[ ]], {4} ]

Out[2]= �0.858645, 0.858645, 0.858645, 0.858645�
In most cases, it is convenient for the function f in an expression like Table[f, {i, imax}] to be

maintained in an unevaluated form until specific values have been assigned to i. This is true in
particular if a complete symbolic form for f valid for any i cannot be found.

This defines fac to give the factorial
when it has an integer argument, and
to give NaN (standing for “Not a
Number”) otherwise.

In[3]:= fac[n_Integer] := n! ; fac[x_] := NaN

In this form, fac[i] is not evaluated
until an explicit integer value has been
assigned to i.

In[4]:= Table[fac[i], {i, 5}]

Out[4]= �1, 2, 6, 24, 120�



344 2. Principles of Mathematica � 2.6 Evaluation of Expressions

Using Evaluate forces fac[i] to be
evaluated with i left as a symbolic
object.

In[5]:= Table[Evaluate[fac[i]], {i, 5}]

Out[5]= �NaN, NaN, NaN, NaN, NaN�
In cases where a complete symbolic form for f with arbitrary i in expressions such as

Table[f, {i, imax}] can be found, it is often more efficient to compute this form first, and then feed
it to Table. You can do this using Table[Evaluate[f], {i, imax}].

The Sum in this case is evaluated
separately for each value of i.

In[6]:= Table[Sum[i^k, {k, 4}], {i, 8}]

Out[6]= �4, 30, 120, 340, 780, 1554, 2800, 4680�
It is however possible to get a
symbolic formula for the sum, valid for
any value of i.

In[7]:= Sum[i^k, {k, 4}]

Out[7]= i � i2 � i3 � i4

By inserting Evaluate, you tell
Mathematica first to evaluate the sum
symbolically, then to iterate over i.

In[8]:= Table[Evaluate[Sum[i^k, {k, 4}]], {i, 8}]

Out[8]= �4, 30, 120, 340, 780, 1554, 2800, 4680�

Table[f, {i, imax}] keep f unevaluated until specific values are assigned to i

Table[Evaluate[f], {i, imax}] evaluate f first with i left symbolic

Evaluation in iteration functions.

As discussed on page 132, it is convenient to use Evaluate when you plot a graph of a function or
a list of functions. This causes the symbolic form of the function or list to be found first, before the
iteration begins.



2.6.8 Conditionals 345

2.6.8 Conditionals

Mathematica provides various ways to set up conditionals, which specify that particular expressions
should be evaluated only if certain conditions hold.

lhs := rhs /; test use the definition only if test evaluates to True

If[test, then, else] evaluate then if test is True, and else if it is False

Which[test�, value�, test�, . . . ] evaluate the testi in turn, giving the value associated with
the first one that is True

Switch[expr, form�, value�, form�, . . . ]
compare expr with each of the formi, giving the value
associated with the first form it matches

Switch[expr, form�, value�, form�, . . . , _, def]
use def as a default value

Conditional constructs.

The test gives False, so the “else”
expression y is returned.

In[1]:= If[7 > 8, x, y]

Out[1]= y

Only the “else” expression is evaluated
in this case.

In[2]:= If[7 > 8, Print[x], Print[y]]

y

When you write programs in Mathematica, you will often have a choice between making a single
definition whose right-hand side involves several branches controlled by If functions, or making
several definitions, each controlled by an appropriate /; condition. By using several definitions, you
can often produce programs that are both clearer, and easier to modify.

This defines a step function, with value
1 for x > 0, and -1 otherwise.

In[3]:= f[x_] := If[x > 0, 1, -1]

This defines the positive part of the
step function using a /; condition.

In[4]:= g[x_] := 1 /; x > 0

Here is the negative part of the step
function.

In[5]:= g[x_] := -1 /; x <= 0

This shows the complete definition
using /; conditions.

In[6]:= ?g

Global`g

g[x_] := 1 /; x > 0

g[x_] := -1 /; x <= 0

The function If provides a way to choose between two alternatives. Often, however, there will be
more than two alternatives. One way to handle this is to use a nested set of If functions. Usually,
however, it is instead better to use functions like Which and Switch.



346 2. Principles of Mathematica � 2.6 Evaluation of Expressions

This defines a function with three
regions. Using True as the third test
makes this the default case.

In[7]:= h[x_] := Which[x < 0, x^2, x > 5, x^3, True, 0]

This uses the first case in the Which. In[8]:= h[-5]

Out[8]= 25

This uses the third case. In[9]:= h[2]

Out[9]= 0

This defines a function that depends on
the values of its argument modulo 3.

In[10]:= r[x_] := Switch[Mod[x, 3], 0, a, 1, b, 2, c]

Mod[7, 3] is 1, so this uses the second
case in the Switch.

In[11]:= r[7]

Out[11]= b

17 matches neither 0 nor 1, but does
match _.

In[12]:= Switch[17, 0, a, 1, b, _, q]

Out[12]= q

An important point about symbolic systems such as Mathematica is that the conditions you give
may yield neither True nor False. Thus, for example, the condition x == y does not yield True or
False unless x and y have specific values, such as numerical ones.

In this case, the test gives neither True
nor False, so both branches in the If
remain unevaluated.

In[13]:= If[x == y, a, b]

Out[13]= Ifx � y, a, b�
You can add a special fourth argument
to If, which is used if the test does
not yield True or False.

In[14]:= If[x == y, a, b, c]

Out[14]= c

If[test, then, else, unknown] a form of If which includes the expression to use if test
is neither True nor False

TrueQ[expr] give True if expr is True, and False otherwise

lhs === rhs or SameQ[lhs, rhs] give True if lhs and rhs are identical, and False
otherwise

lhs =!= rhs or UnsameQ[lhs, rhs] give True if lhs and rhs are not identical, and False
otherwise

MatchQ[expr, form] give True if the pattern form matches expr, and give
False otherwise

Functions for dealing with symbolic conditions.

Mathematica leaves this as a symbolic
equation.

In[15]:= x == y

Out[15]= x � y



2.6.8 Conditionals 347

Unless expr is manifestly True,
TrueQ[expr] effectively assumes that
expr is False.

In[16]:= TrueQ[x == y]

Out[16]= False

Unlike ==, === tests whether two
expressions are manifestly identical. In
this case, they are not.

In[17]:= x === y

Out[17]= False

The main difference between lhs === rhs and lhs == rhs is that === always returns True or False,
whereas == can leave its input in symbolic form, representing a symbolic equation, as discussed in
Section 1.5.5. You should typically use === when you want to test the structure of an expression, and
== if you want to test mathematical equality. The Mathematica pattern matcher effectively uses === to
determine when one literal expression matches another.

You can use === to test the structure of
expressions.

In[18]:= Head[a + b + c] === Times

Out[18]= False

The == operator gives a less useful
result.

In[19]:= Head[a + b + c] == Times

Out[19]= Plus � Times

In setting up conditionals, you will often need to use combinations of tests, such as
test� && test� && . . . . An important point is that the result from this combination of tests will be False
if any of the testi yield False. Mathematica always evaluates the testi in turn, stopping if any of the
testi yield False.

expr� && expr� && expr evaluate until one of the expri is found to be False

expr� || expr� || expr evaluate until one of the expri is found to be True

Evaluation of logical expressions.

This function involves a combination of
two tests.

In[20]:= t[x_] := (x != 0 && 1/x < 3)

Here both tests are evaluated. In[21]:= t[2]

Out[21]= True

Here the first test yields False, so the
second test is not tried. The second
test would involve 1/0, and would
generate an error.

In[22]:= t[0]

Out[22]= False

The way that Mathematica evaluates logical expressions allows you to combine sequences of tests
where later tests may make sense only if the earlier ones are satisfied. The behavior, which is analo-
gous to that found in languages such as C, is convenient in constructing many kinds of Mathematica
programs.



348 2. Principles of Mathematica � 2.6 Evaluation of Expressions

2.6.9 Loops and Control Structures

The execution of a Mathematica program involves the evaluation of a sequence of Mathematica expres-
sions. In simple programs, the expressions to be evaluated may be separated by semicolons, and
evaluated one after another. Often, however, you need to evaluate expressions several times, in some
kind of “loop”.

Do[expr, {i, imax}] evaluate expr repetitively, with i varying from 1 to imax in
steps of 1

Do[expr, {i, imin, imax, di}] evaluate expr with i varying from imin to imax in steps of di

Do[expr, {n}] evaluate expr n times

Simple looping constructs.

This evaluates Print[i^2], with i
running from 1 to 4.

In[1]:= Do[Print[i^2], {i, 4}]

1
4
9
16

This executes an assignment for t in a
loop with k running from 2 to 6 in
steps of 2.

In[2]:= t = x; Do[t = 1/(1 + k t), {k, 2, 6, 2}]; t

Out[2]=
1

�����������������������������������������
1 � 6����������������������

1� 4��������������1�2 x

The way iteration is specified in Do is exactly the same as in functions like Table and Sum. Just as
in those functions, you can set up several nested loops by giving a sequence of iteration specifications
to Do.

This loops over values of i from 1 to
4, and for each value of i, loops over
j from 1 to i-1.

In[3]:= Do[Print[{i,j}], {i, 4}, {j, i-1}]

{2, 1}
{3, 1}
{3, 2}
{4, 1}
{4, 2}
{4, 3}

Sometimes you may want to repeat a particular operation a certain number of times, without
changing the value of an iteration variable. You can specify this kind of repetition in Do just as you
can in Table and other iteration functions.

This repeats the assignment
t = 1/(1+t) three times.

In[4]:= t = x; Do[t = 1/(1+t), {3}]; t

Out[4]=
1

��������������������������������������
1 � 1�������������������

1� 1����������1�x

You can put a procedure inside Do. In[5]:= t = 67; Do[Print[t]; t = Floor[t/2], {3}]

67
33
16



2.6.9 Loops and Control Structures 349

Nest[f, expr, n] apply f to expr n times

FixedPoint[f, expr] start with expr, and apply f repeatedly until the result no
longer changes

NestWhile[f, expr, test] start with expr, and apply f repeatedly until applying test to
the result no longer yields True

Applying functions repetitively.

Do allows you to repeat operations by evaluating a particular expression many times with different
values for iteration variables. Often, however, you can make more elegant and efficient programs
using the functional programming constructs discussed in Section 2.2.2. Nest[f, x, n], for example,
allows you to apply a function repeatedly to an expression.

This nests f three times. In[6]:= Nest[f, x, 3]

Out[6]= fffx���
By nesting a pure function, you can get
the same result as in the example with
Do above.

In[7]:= Nest[ Function[t, 1/(1+t)], x, 3 ]

Out[7]=
1

��������������������������������������
1 � 1�������������������

1� 1����������1�x

Nest allows you to apply a function a specified number of times. Sometimes, however, you may
simply want to go on applying a function until the results you get no longer change. You can do this
using FixedPoint[f, x].

FixedPoint goes on applying a
function until the result no longer
changes.

In[8]:= FixedPoint[Function[t, Print[t]; Floor[t/2]], 67]

67
33
16
8
4
2
1
0

Out[8]= 0

You can use FixedPoint to imitate the evaluation process in Mathematica, or the operation of
functions such as expr //. rules. FixedPoint goes on until two successive results it gets are the same.
NestWhile allows you to go on until an arbitrary function no longer yields True.



350 2. Principles of Mathematica � 2.6 Evaluation of Expressions

Catch[expr] evaluate expr until Throw[value] is encountered, then return
value

Catch[expr, form] evaluate expr until Throw[value, tag] is encountered, where
form matches tag

Catch[expr, form, f] return f[value, tag] instead of value

Non-local control of evaluation.

When the Throw is encountered,
evaluation stops, and the current value
of i is returned as the value of the
enclosing Catch.

In[9]:= Catch[Do[Print[i]; If[i > 3, Throw[i]], {i, 10}]]

1
2
3
4

Out[9]= 4

Throw and Catch provide a flexible way to control the process of evaluation in Mathematica. The
basic idea is that whenever a Throw is encountered, the evaluation that is then being done is stopped,
and Mathematica immediately returns to the nearest appropriate enclosing Catch.

Scan applies the function Print to
each successive element in the list, and
in the end just returns Null.

In[10]:= Scan[Print, {7, 6, 5, 4}]

7
6
5
4

The evaluation of Scan stops as soon
as Throw is encountered, and the
enclosing Catch returns as its value the
argument of Throw.

In[11]:= Catch[Scan[(Print[#];
If[# < 6, Throw[#]])&, {7, 6, 5, 4}]]

7
6
5

Out[11]= 5

The same result is obtained with Map,
even though Map would have returned
a list if its evaluation had not been
stopped by encountering a Throw.

In[12]:= Catch[Map[(Print[#];
If[# < 6, Throw[#]])&, {7, 6, 5, 4}]]

7
6
5

Out[12]= 5

You can use Throw and Catch to divert the operation of functional programming constructs, allow-
ing for example the evaluation of such constructs to continue only until some condition has been met.
Note that if you stop evaluation using Throw, then the structure of the result you get may be quite
different from what you would have got if you had allowed the evaluation to complete.

Here is a list generated by repeated
application of a function.

In[13]:= NestList[1/(# + 1)&, -2.5, 6]

Out[13]= ��2.5, �0.666667, 3., 0.25, 0.8, 0.555556, 0.642857�



2.6.9 Loops and Control Structures 351

Since there is no Throw encountered,
the result here is just as before.

In[14]:= Catch[ NestList[1/(# + 1)&, -2.5, 6] ]

Out[14]= ��2.5, �0.666667, 3., 0.25, 0.8, 0.555556, 0.642857�
Now the evaluation of the NestList is
diverted, and the single number given
as the argument of Throw is returned.

In[15]:= Catch[ NestList
[If[# > 1, Throw[#], 1/(# + 1)]&, -2.5, 6] ]

Out[15]= 3.

Throw and Catch operate in a completely global way: it does not matter how or where a Throw is
generated—it will always stop evaluation and return to the enclosing Catch.

The Throw stops the evaluation of f,
and causes the Catch to return just a,
with no trace of f left.

In[16]:= Catch[ f[ Throw[ a ] ] ]

Out[16]= a

This defines a function which generates
a Throw when its argument is larger
than 10.

In[17]:= g[x_] := If[x > 10, Throw[overflow], x!]

No Throw is generated here. In[18]:= Catch[ g[4] ]

Out[18]= 24

But here the Throw generated inside
the evaluation of g returns to the
enclosing Catch.

In[19]:= Catch[ g[40] ]

Out[19]= overflow

In small programs, it is often adequate to use Throw[value] and Catch[expr] in their simplest form.
But particularly if you write larger programs that contain many separate pieces, it is usually much
better to use Throw[value, tag] and Catch[expr, form]. By keeping the expressions tag and form local
to a particular piece of your program, you can then ensure that your Throw and Catch will also
operate only within that piece.

Here the Throw is caught by the inner
Catch.

In[20]:= Catch[ f [ Catch[ Throw[x, a], a ] ], b ]

Out[20]= fx�
But here it is caught only by the outer
Catch.

In[21]:= Catch[ f [ Catch[ Throw[x, b], a ] ], b ]

Out[21]= x

You can use patterns in specifying the
tags which a particular Catch should
catch.

In[22]:= Catch[ Throw[x, a], a | b ]

Out[22]= x

This keeps the tag a completely local. In[23]:= Module[{a}, Catch[ Throw[x, a], a] ]

Out[23]= x

You should realize that there is no need for the tag that appears in Throw to be a constant; in
general it can be any expression.

Here the inner Catch catches all throws
with tags less than 4, and continues
the Do. But as soon as the tag reaches
4, the outer Catch is needed.

In[24]:= Catch[ Do[ Catch[ Throw[i^2, i], n_ /; n < 4],
{i, 10} ], _]

Out[24]= 16



352 2. Principles of Mathematica � 2.6 Evaluation of Expressions

When you use Catch[expr, form] with Throw[value, tag], the value returned by Catch is simply
the expression value given in the Throw. If you use Catch[expr, form, f], however, then the value
returned by Catch is instead f[value, tag].

Here f is applied to the value and tag
in the Throw.

In[25]:= Catch[ Throw[ x, a ], a, f ]

Out[25]= fx, a�
If there is no Throw, f is never used. In[26]:= Catch[ x, a, f ]

Out[26]= x

While[test, body] evaluate body repetitively, so long as test is True

For[start, test, incr, body] evaluate start, then repetitively evaluate body and incr, until
test fails

General loop constructs.

Functions like Do, Nest and FixedPoint provide structured ways to make loops in Mathematica
programs, while Throw and Catch provide opportunities for modifying this structure. Sometimes,
however, you may want to create loops that even from the outset have less structure. And in such
cases, you may find it convenient to use the functions While and For, which perform operations
repeatedly, stopping when a specified condition fails to be true.

The While loop continues until the
condition fails.

In[27]:= n = 17; While[(n = Floor[n/2]) != 0, Print[n]]

8
4
2
1

The functions While and For in Mathematica are similar to the control structures while and for in
languages such as C. Notice, however, that there are a number of important differences. For example,
the roles of comma and semicolon are reversed in Mathematica For loops relative to C language ones.

This is a very common form for a For
loop. i++ increments the value of i.

In[28]:= For[i=1, i < 4, i++, Print[i]]

1
2
3

Here is a more complicated For loop.
Notice that the loop terminates as soon
as the test i^2 < 10 fails.

In[29]:= For[i=1; t=x, i^2 < 10, i++, t = t^2 + i;
Print[t]]

2
1 + x

2 2
2 + (1 + x )

2 2 2
3 + (2 + (1 + x ) )

In Mathematica, both While and For always evaluate the loop test before evaluating the body of
the loop. As soon as the loop test fails to be True, While and For terminate. The body of the loop is
thus only evaluated in situations where the loop test is True.



2.6.9 Loops and Control Structures 353

The loop test fails immediately, so the
body of the loop is never evaluated.

In[30]:= While[False, Print[x]]

In a While or For loop, or in general in any Mathematica procedure, the Mathematica expressions
you give are evaluated in a definite sequence. You can think of this sequence as defining the “flow of
control” in the execution of a Mathematica program.

In most cases, you should try to keep the flow of control in your Mathematica programs as simple
as possible. The more the flow of control depends for example on specific values generated during
the execution of the program, the more difficult you will typically find it to understand the structure
and operation of the program.

Functional programming constructs typically involve very simple flow of control. While and For
loops are always more complicated, since they are set up to make the flow of control depend on the
values of the expressions given as tests. Nevertheless, even in such loops, the flow of control does
not usually depend on the values of expressions given in the body of the loop.

In some cases, however, you may need to construct Mathematica programs in which the flow of
control is affected by values generated during the execution of a procedure or of the body of a loop.
One way to do this, which fits in with functional programming ideas, is to use Throw and Catch.
But Mathematica also provides various functions for modifying the flow of control which work like in
languages such as C.

Break[ ] exit the nearest enclosing loop

Continue[ ] go to the next step in the current loop

Return[expr] return the value expr, exiting all procedures and loops in a
function

Goto[name] go to the element Label[name] in the current procedure

Throw[value] return value as the value of the nearest enclosing Catch
(non-local return)

Control flow functions.

The Break[ ] causes the loop to
terminate as soon as t exceeds 19.

In[31]:= t = 1; Do[t *= k; Print[t];
If[t > 19, Break[]], {k, 10}]

1
2
6
24



354 2. Principles of Mathematica � 2.6 Evaluation of Expressions

When k < 3, the Continue[ ] causes
the loop to be continued, without
executing t += 2.

In[32]:= t = 1; Do[t *= k; Print[t];
If[k < 3, Continue[]]; t += 2, {k, 10}]

1
2
6
32
170
1032
7238
57920
521298
5213000

Return[expr] allows you to exit a particular function, returning a value. You can think of Throw
as a kind of non-local return which allows you to exit a whole sequence of nested functions. Such
behavior can be convenient for handling certain error conditions.

Here is an example of the use of
Return. This particular procedure
could equally well have been written
without using Return.

In[33]:= f[x_] :=
(If[x > 5, Return[big]]; t = x^3; Return[t - 7])

When the argument is greater than 5,
the first Return in the procedure is
used.

In[34]:= f[10]

Out[34]= big

This function “throws” error if its
argument is negative.

In[35]:= h[x_] := If[x < 0, Throw[error], Sqrt[x]]

No Throw is generated here. In[36]:= Catch[ h[6] + 2 ]

Out[36]= 2 �����
6

But in this case a Throw is generated,
and the whole Catch returns the value
error.

In[37]:= Catch[ h[-6] + 2 ]

Out[37]= error

Functions like Continue[ ] and Break[ ] allow you to “transfer control” to the beginning or end of
a loop in a Mathematica program. Sometimes you may instead need to transfer control to a particular
element in a Mathematica procedure. If you give a Label as an element in a procedure, you can use
Goto to transfer control to this element.

This goes on looping until q exceeds 6. In[38]:= (q = 2; Label[begin]; Print[q]; q += 3;
If[q < 6, Goto[begin]])

2
5

Note that you can use Goto in a particular Mathematica procedure only when the Label it specifies
occurs as an element of the same Mathematica procedure. In general, use of Goto reduces the degree
of structure that can readily be perceived in a program, and therefore makes the operation of the
program more difficult to understand.



2.6.10 Collecting Expressions During Evaluation 355

, 2.6.10 Collecting Expressions During Evaluation

In many computations one is concerned only with the final result of evaluating the expression given
as input. But sometimes one also wants to collect expressions that were generated in the course of
the evaluation. You can do this using Sow and Reap.

, Sow[val] sow the value val for the nearest enclosing Reap

, Reap[expr] evaluate expr, returning also a list of values sown by Sow

Using Sow and Reap.

Here the output contains only the final
result.

In[1]:= a = 3; a += a^2 + 1; a = Sqrt[a + a^2]

Out[1]=
��������

182

Here two intermediate results are also
given.

In[2]:= Reap[Sow[a = 3]; a += Sow[a^2 + 1]; a = Sqrt[a + a^2]]

Out[2]=  ��������
182 , ��3, 10��!

This computes a sum, collecting all
terms that are even.

In[3]:= Reap[Sum[If[EvenQ[#], Sow[#], #]& [i^2 + 1], {i, 10}]]

Out[3]= �395, ��2, 10, 26, 50, 82���
Like Throw and Catch, Sow and Reap can be used anywhere in a computation.

This defines a function that can do a
Sow.

In[4]:= f[x_] := (If[x < 1/2, Sow[x]]; 3.5 x (1 - x))

This nests the function, reaping all
cases below 1/2.

In[5]:= Reap[Nest[f, 0.8, 10]]

Out[5]= �0.868312,��0.415332, 0.446472, 0.408785, 0.456285���

, Sow[val, tag] sow val with a tag to indicate when to reap

, Sow[val, {tag�, tag�, . . . }] sow val for each of the tagi

, Reap[expr, form] reap all values whose tags match form

, Reap[expr, {form�, form�, . . . }]
make separate lists for each of the formi

, Reap[expr, {form�, . . . }, f] apply f to each distinct tag and list of values

Sowing and reaping with tags.

This reaps only values sown with
tag x.

In[6]:= Reap[Sow[1, x]; Sow[2, y]; Sow[3, x], x]

Out[6]= �3, ��1, 3���



356 2. Principles of Mathematica � 2.6 Evaluation of Expressions

Here 1 is sown twice with tag x. In[7]:= Reap[Sow[1, {x, x}]; Sow[2, y]; Sow[3, x], x]

Out[7]= �3, ��1, 1, 3���
Values sown with different tags always
appear in different sublists.

In[8]:= Reap[Sow[1, {x, x}]; Sow[2, y]; Sow[3, x]]

Out[8]= �3, ��1, 1, 3�, �2���
The makes a sublist for each form of
tag being reaped.

In[9]:= Reap[Sow[1, {x, x}]; Sow[2, y]; Sow[3, x], {x, x, y}]

Out[9]= �3, ���1, 1, 3��, ��1, 1, 3��, ��2����
This applies f to each distinct tag and
list of values.

In[10]:= Reap[Sow[1, {x, x}]; Sow[2, y]; Sow[3, x], _, f]

Out[10]= �3, �fx, �1, 1, 3��, fy, �2����
The tags can be part of the
computation.

In[11]:= Reap[Do[Sow[i/j, GCD[i, j]], {i, 4}, {j, i}]]

Out[11]= 	Null, 		1, 2, 3,
3
�������
2

, 4,
4
�������
3

, �1, 2�, �1�, �1�



2.6.11 Advanced Topic: Tracing Evaluation

The standard way in which Mathematica works is to take any expression you give as input, evaluate
the expression completely, and then return the result. When you are trying to understand what
Mathematica is doing, however, it is often worthwhile to look not just at the final result of evaluation,
but also at intermediate steps in the evaluation process.

Trace[expr] generate a list of all expressions used in the evaluation of
expr

Trace[expr, form] include only expressions which match the pattern form

Tracing the evaluation of expressions.

The expression 1 + 1 is evaluated
immediately to 2.

In[1]:= Trace[1 + 1]

Out[1]= �1 � 1, 2�
The 2^3 is evaluated before the
addition is done.

In[2]:= Trace[2^3 + 4]

Out[2]= ��23, 8�, 8 � 4, 12�
The evaluation of each subexpression is
shown in a separate sublist.

In[3]:= Trace[2^3 + 4^2 + 1]

Out[3]= ��23, 8�, �42, 16�, 8 � 16 � 1, 25�
Trace[expr] gives a list which includes all the intermediate expressions involved in the evaluation

of expr. Except in rather simple cases, however, the number of intermediate expressions generated in
this way is typically very large, and the list returned by Trace is difficult to understand.



2.6.11 Advanced Topic: Tracing Evaluation 357

Trace[expr, form] allows you to “filter” the expressions that Trace records, keeping only those
which match the pattern form.

Here is a recursive definition of a
factorial function.

In[4]:= fac[n_] := n fac[n-1]; fac[1] = 1

Out[4]= 1

This gives all the intermediate
expressions generated in the evaluation
of fac[3]. The result is quite
complicated.

In[5]:= Trace[fac[3]]

Out[5]= �fac3�, 3 fac3 � 1�, ��3 � 1, 2�, fac2�, 2 fac2 � 1�,��2 � 1, 1�, fac1�, 1�, 2 1, 2�, 3 2, 6�
This shows only intermediate
expressions of the form fac[n_].

In[6]:= Trace[fac[3], fac[n_]]

Out[6]= �fac3�, �fac2�, �fac1����
You can specify any pattern in Trace. In[7]:= Trace[fac[10], fac[n_/;n > 5]]

Out[7]= �fac10�, �fac9�, �fac8�, �fac7�, �fac6������
Trace[expr, form] effectively works by intercepting every expression that is about to be evaluated

during the evaluation of expr, and picking out those that match the pattern form.

If you want to trace “calls” to a function like fac, you can do so simply by telling Trace to pick
out expressions of the form fac[n_]. You can also use patterns like f[n_, 2] to pick out calls with
particular argument structure.

A typical Mathematica program, however, consists not only of “function calls” like fac[n], but
also of other elements, such as assignments to variables, control structures, and so on. All of these
elements are represented as expressions. As a result, you can use patterns in Trace to pick out any
kind of Mathematica program element. Thus, for example, you can use a pattern like k = _ to pick out
all assignments to the symbol k.

This shows the sequence of
assignments made for k.

In[8]:= Trace[(k=2; For[i=1, i<4, i++, k = i/k]; k), k=_]

Out[8]= 	�k = 2�, 		k =
1
�������
2

, �k = 4�, 	k =

3
�������
4





Trace[expr, form] can pick out expressions that occur at any time in the evaluation of expr. The
expressions need not, for example, appear directly in the form of expr that you give. They may instead
occur, say, during the evaluation of functions that are called as part of the evaluation of expr.

Here is a function definition. In[9]:= h[n_] := (k=n/2; Do[k = i/k, {i, n}]; k)

You can look for expressions generated
during the evaluation of h.

In[10]:= Trace[h[3], k=_]

Out[10]= 		k =
3
�������
2

, 		k =

2
�������
3

, �k = 3�, �k = 1�



Trace allows you to monitor intermediate steps in the evaluation not only of functions that you
define, but also of some functions that are built into Mathematica. You should realize, however, that the
specific sequence of intermediate steps followed by built-in Mathematica functions depends in detail
on their implementation and optimization in a particular version of Mathematica.



358 2. Principles of Mathematica � 2.6 Evaluation of Expressions

Trace[expr, f[___]] show all calls to the function f

Trace[expr, i = _] show assignments to i

Trace[expr, _ = _] show all assignments

Trace[expr, Message[___]] show messages generated

Some ways to use Trace.

The function Trace returns a list that represents the “history” of a Mathematica computation. The
expressions in the list are given in the order that they were generated during the computation. In
most cases, the list returned by Trace has a nested structure, which represents the “structure” of the
computation.

The basic idea is that each sublist in the list returned by Trace represents the “evaluation chain”
for a particular Mathematica expression. The elements of this chain correspond to different forms of
the same expression. Usually, however, the evaluation of one expression requires the evaluation of
a number of other expressions, often subexpressions. Each subsidiary evaluation is represented by a
sublist in the structure returned by Trace.

Here is a sequence of assignments. In[11]:= a[1] = a[2]; a[2] = a[3]; a[3] = a[4]

Out[11]= a4�
This yields an evaluation chain
reflecting the sequence of
transformations for a[i] used.

In[12]:= Trace[a[1]]

Out[12]= �a1�, a2�, a3�, a4��
The successive forms generated in the
simplification of y + x + y show up as
successive elements in its evaluation
chain.

In[13]:= Trace[y + x + y]

Out[13]= �y � x � y, x � y � y, x � 2 y�

Each argument of the function f has a
separate evaluation chain, given in a
sublist.

In[14]:= Trace[f[1 + 1, 2 + 3, 4 + 5]]

Out[14]= ��1 � 1, 2�, �2 � 3, 5�, �4 � 5, 9�, f2, 5, 9��
The evaluation chain for each
subexpression is given in a separate
sublist.

In[15]:= Trace[x x + y y]

Out[15]= ��x x, x2�, �y y, y2�, x2 � y2�
Tracing the evaluation of a nested
expression yields a nested list.

In[16]:= Trace[f[f[f[1 + 1]]]]

Out[16]= ����1 � 1, 2�, f2��, ff2���, fff2����
There are two basic ways that subsidiary evaluations can be required during the evaluation of

a Mathematica expression. The first way is that the expression may contain subexpressions, each of
which has to be evaluated. The second way is that there may be rules for the evaluation of the ex-
pression that involve other expressions which themselves must be evaluated. Both kinds of subsidiary
evaluations are represented by sublists in the structure returned by Trace.



2.6.11 Advanced Topic: Tracing Evaluation 359

The subsidiary evaluations here come
from evaluation of the arguments of f
and g.

In[17]:= Trace[f[g[1 + 1], 2 + 3]]

Out[17]= ���1 � 1, 2�, g2��, �2 � 3, 5�, fg2�, 5��
Here is a function with a condition
attached.

In[18]:= fe[n_] := n + 1 /; EvenQ[n]

The evaluation of fe[6] involves a
subsidiary evaluation associated with
the condition.

In[19]:= Trace[fe[6]]

Out[19]= �fe6�, ��EvenQ6�, True�, RuleCondition
$ConditionHold$ConditionHold6 � 1��, True�,

$ConditionHold$ConditionHold6 � 1���, 6 � 1, 7�
You often get nested lists when you trace the evaluation of functions that are defined “recursively”

in terms of other instances of themselves. The reason is typically that each new instance of the
function appears as a subexpression in the expressions obtained by evaluating previous instances of
the function.

Thus, for example, with the definition fac[n_] := n fac[n-1], the evaluation of fac[6] yields the
expression 6 fac[5], which contains fac[5] as a subexpression.

The successive instances of fac
generated appear in successively nested
sublists.

In[20]:= Trace[fac[6], fac[_]]

Out[20]= �fac6�,�fac5�, �fac4�, �fac3�, �fac2�, �fac1�������
With this definition, fp[n-1] is
obtained directly as the value of fp[n].

In[21]:= fp[n_] := fp[n - 1] /; n > 1

fp[n] never appears in a
subexpression, so no sublists are
generated.

In[22]:= Trace[fp[6], fp[_]]

Out[22]= �fp6�, fp6 � 1�, fp5�, fp5 � 1�, fp4�, fp4 � 1�,
fp3�, fp3 � 1�, fp2�, fp2 � 1�, fp1��

Here is the recursive definition of the
Fibonacci numbers.

In[23]:= fib[n_] := fib[n - 1] + fib[n - 2]

Here are the end conditions for the
recursion.

In[24]:= fib[0] = fib[1] = 1

Out[24]= 1

This shows all the steps in the
recursive evaluation of fib[5].

In[25]:= Trace[fib[5], fib[_]]

Out[25]= �fib5�, �fib4�,�fib3�, �fib2�, �fib1��, �fib0���, �fib1���,�fib2�, �fib1��, �fib0����,�fib3�, �fib2�, �fib1��, �fib0���, �fib1����
Each step in the evaluation of any Mathematica expression can be thought of as the result of applying

a particular transformation rule. As discussed in Section 2.5.10, all the rules that Mathematica knows
are associated with specific symbols or “tags”. You can use Trace[expr, f] to see all the steps in
the evaluation of expr that are performed using transformation rules associated with the symbol f. In
this case, Trace gives not only the expressions to which each rule is applied, but also the results of
applying the rules.



360 2. Principles of Mathematica � 2.6 Evaluation of Expressions

In general, Trace[expr, form] picks out all the steps in the evaluation of expr where form matches
either the expression about to be evaluated, or the tag associated with the rule used.

Trace[expr, f] show all evaluations which use transformation rules
associated with the symbol f

Trace[expr, f | g] show all evaluations associated with either f or g

Tracing evaluations associated with particular tags.

This shows only intermediate
expressions that match fac[_].

In[26]:= Trace[fac[3], fac[_]]

Out[26]= �fac3�, �fac2�, �fac1����
This shows all evaluations that use
transformation rules associated with
the symbol fac.

In[27]:= Trace[fac[3], fac]

Out[27]= �fac3�, 3 fac3 � 1�,�fac2�, 2 fac2 � 1�, �fac1�, 1���
Here is a rule for the log function. In[28]:= log[x_ y_] := log[x] + log[y]

This traces the evaluation of
log[a b c d], showing all
transformations associated with log.

In[29]:= Trace[log[a b c d], log]

Out[29]= �loga b c d�, loga� � logb c d�, �logb c d�,
logb� � logc d�, �logc d�, logc� � logd����

Trace[expr, form, TraceOn -> oform]
switch on tracing only within forms matching oform

Trace[expr, form, TraceOff -> oform]
switch off tracing within any form matching oform

Switching off tracing inside certain forms.

Trace[expr, form] allows you to trace expressions matching form generated at any point in the
evaluation of expr. Sometimes, you may want to trace only expressions generated during certain parts
of the evaluation of expr.

By setting the option TraceOn -> oform, you can specify that tracing should be done only during
the evaluation of forms which match oform. Similarly, by setting TraceOff -> oform, you can specify
that tracing should be switched off during the evaluation of forms which match oform.

This shows all steps in the evaluation. In[30]:= Trace[log[fac[2] x]]

Out[30]= ���fac2�, 2 fac2 � 1�, ��2 � 1, 1�, fac1�, 1�,
2 1, 2�, 2 x�, log2 x�, log2� � logx��



2.6.11 Advanced Topic: Tracing Evaluation 361

This shows only those steps that occur
during the evaluation of fac.

In[31]:= Trace[log[fac[2] x], TraceOn -> fac]

Out[31]= ���fac2�, 2 fac2 � 1�,��2 � 1, 1�, fac1�, 1�, 2 1, 2���
This shows only those steps that do not
occur during the evaluation of fac.

In[32]:= Trace[log[fac[2] x], TraceOff -> fac]

Out[32]= ���fac2�, 2�, 2 x�, log2 x�, log2� � logx��

Trace[expr, lhs -> rhs] find all expressions matching lhs that arise during the
evaluation of expr, and replace them with rhs

Applying rules to expressions encountered during evaluation.

This tells Trace to return only the
arguments of fib used in the
evaluation of fib[5].

In[33]:= Trace[fib[5], fib[n_] -> n]

Out[33]= �5, �4, �3, �2, �1�, �0��, �1��, �2, �1�, �0���,�3, �2, �1�, �0��, �1���
A powerful aspect of the Mathematica Trace function is that the object it returns is basically a

standard Mathematica expression which you can manipulate using other Mathematica functions. One
important point to realize, however, is that Trace wraps all expressions that appear in the list it
produces with HoldForm to prevent them from being evaluated. The HoldForm is not displayed in
standard Mathematica output format, but it is still present in the internal structure of the expression.

This shows the expressions generated
at intermediate stages in the evaluation
process.

In[34]:= Trace[1 + 3^2]

Out[34]= ��32, 9�, 1 � 9, 10�
The expressions are wrapped with
HoldForm to prevent them from
evaluating.

In[35]:= Trace[1 + 3^2] // InputForm

Out[35]//InputForm= {{HoldForm[3^2], HoldForm[9]}, HoldForm[1 + 9],

HoldForm[10]}

In standard Mathematica output format,
it is sometimes difficult to tell which
lists are associated with the structure
returned by Trace, and which are
expressions being evaluated.

In[36]:= Trace[{1 + 1, 2 + 3}]

Out[36]= ��1 � 1, 2�, �2 � 3, 5�, �2, 5��

Looking at the input form resolves any
ambiguities.

In[37]:= InputForm[%]

Out[37]//InputForm= {{HoldForm[1 + 1], HoldForm[2]},

{HoldForm[2 + 3], HoldForm[5]}, HoldForm[{2, 5}]}

When you use a transformation rule in
Trace, the result is evaluated before
being wrapped with HoldForm.

In[38]:= Trace[fac[4], fac[n_] -> n + 1]

Out[38]= �5, �4, �3, �2����
For sophisticated computations, the list structures returned by Trace can be quite complicated.

When you use Trace[expr, form], Trace will include as elements in the lists only those expressions



362 2. Principles of Mathematica � 2.6 Evaluation of Expressions

which match the pattern form. But whatever pattern you give, the nesting structure of the lists remains
the same.

This shows all occurrences of fib[_]
in the evaluation of fib[3].

In[39]:= Trace[fib[3], fib[_]]

Out[39]= �fib3�, �fib2�, �fib1��, �fib0���, �fib1���
This shows only occurrences of fib[1],
but the nesting of the lists is the same
as for fib[_].

In[40]:= Trace[fib[3], fib[1]]

Out[40]= ���fib1���, �fib1���
You can set the option TraceDepth -> n to tell Trace to include only lists nested at most n levels

deep. In this way, you can often pick out the “big steps” in a computation, without seeing the
details. Note that by setting TraceDepth or TraceOff you can avoid looking at many of the steps in
a computation, and thereby significantly speed up the operation of Trace for that computation.

This shows only steps that appear in
lists nested at most two levels deep.

In[41]:= Trace[fib[3], fib[_], TraceDepth->2]

Out[41]= �fib3�, �fib1���

Trace[expr, form, TraceDepth -> n] trace the evaluation of expr, ignoring steps that lead to
lists nested more than n levels deep

Restricting the depth of tracing.

When you use Trace[expr, form], you get a list of all the expressions which match form pro-
duced during the evaluation of expr. Sometimes it is useful to see not only these expressions, but
also the results that were obtained by evaluating them. You can do this by setting the option
TraceForward -> True in Trace.

This shows not only expressions which
match fac[_], but also the results of
evaluating those expressions.

In[42]:= Trace[fac[4], fac[_], TraceForward->True]

Out[42]= �fac4�, �fac3�, �fac2�, �fac1�, 1�, 2�, 6�, 24�
Expressions picked out using Trace[expr, form] typically lie in the middle of an evaluation chain.

By setting TraceForward -> True, you tell Trace to include also the expression obtained at the end
of the evaluation chain. If you set TraceForward -> All, Trace will include all the expressions that
occur after the expression matching form on the evaluation chain.

With TraceForward->All , all elements
on the evaluation chain after the one
that matches fac[_] are included.

In[43]:= Trace[fac[4], fac[_], TraceForward->All]

Out[43]= �fac4�, 4 fac4 � 1�,�fac3�, 3 fac3 � 1�, �fac2�, 2 fac2 � 1�,�fac1�, 1�, 2 1, 2�, 3 2, 6�, 4 6, 24�
By setting the option TraceForward , you can effectively see what happens to a particular form of

expression during an evaluation. Sometimes, however, you want to find out not what happens to a
particular expression, but instead how that expression was generated. You can do this by setting the



2.6.11 Advanced Topic: Tracing Evaluation 363

option TraceBackward . What TraceBackward does is to show you what preceded a particular form of
expression on an evaluation chain.

This shows that the number 120 came
from the evaluation of fac[5] during
the evaluation of fac[10].

In[44]:= Trace[fac[10], 120, TraceBackward->True]

Out[44]= ������fac5�, 120������
Here is the whole evaluation chain
associated with the generation of the
number 120.

In[45]:= Trace[fac[10], 120, TraceBackward->All]

Out[45]= ������fac5�, 5 fac5 � 1�, 5 24, 120������
TraceForward and TraceBackward allow you to look forward and backward in a particular evalua-

tion chain. Sometimes, you may also want to look at the evaluation chains within which the particular
evaluation chain occurs. You can do this using TraceAbove. If you set the option TraceAbove -> True,
then Trace will include the initial and final expressions in all the relevant evaluation chains. With
TraceAbove -> All, Trace includes all the expressions in all these evaluation chains.

This includes the initial and final
expressions in all evaluation chains
which contain the chain that contains
120.

In[46]:= Trace[fac[7], 120, TraceAbove->True]

Out[46]= �fac7�, �fac6�, �fac5�, 120�, 720�, 5040�

This shows all the ways that fib[2] is
generated during the evaluation of
fib[5].

In[47]:= Trace[fib[5], fib[2], TraceAbove->True]

Out[47]= �fib5�,�fib4�, �fib3�, �fib2�, 2�, 3�, �fib2�, 2�, 5�,�fib3�, �fib2�, 2�, 3�, 8�

Trace[expr, form, opts] trace the evaluation of expr using the specified options

TraceForward -> True include the final expression in the evaluation chain
containing form

TraceForward -> All include all expressions following form in the evaluation
chain

TraceBackward -> True include the first expression in the evaluation chain
containing form

TraceBackward -> All include all expressions preceding form in the evaluation
chain

TraceAbove -> True include the first and last expressions in all evaluation chains
which contain the chain containing form

TraceAbove -> All include all expressions in all evaluation chains which
contain the chain containing form

Option settings for including extra steps in trace lists.



364 2. Principles of Mathematica � 2.6 Evaluation of Expressions

The basic way that Trace[expr, . . . ] works is to intercept each expression encountered during the
evaluation of expr, and then to use various criteria to determine whether this expression should be
recorded. Normally, however, Trace intercepts expressions only after function arguments have been
evaluated. By setting TraceOriginal -> True, you can get Trace also to look at expressions before
function arguments have been evaluated.

This includes expressions which match
fac[_] both before and after argument
evaluation.

In[48]:= Trace[fac[3], fac[_], TraceOriginal -> True]

Out[48]= �fac3�, �fac3 � 1�, fac2�, �fac2 � 1�, fac1����
The list structure produced by Trace normally includes only expressions that constitute steps in

non-trivial evaluation chains. Thus, for example, individual symbols that evaluate to themselves are
not normally included. Nevertheless, if you set TraceOriginal -> True, then Trace looks at abso-
lutely every expression involved in the evaluation process, including those that have trivial evaluation
chains.

In this case, Trace includes absolutely
all expressions, even those with trivial
evaluation chains.

In[49]:= Trace[fac[1], TraceOriginal -> True]

Out[49]= �fac1�, �fac�, �1�, fac1�, 1�

option name default value

TraceForward False whether to show expressions following form in the evaluation
chain

TraceBackward False whether to show expressions preceding form in the evaluation
chain

TraceAbove False whether to show evaluation chains leading to the evaluation
chain containing form

TraceOriginal False whether to look at expressions before their heads and arguments
are evaluated

Additional options for Trace.

When you use Trace to study the execution of a program, there is an issue about how local vari-
ables in the program should be treated. As discussed in Section 2.7.3, Mathematica scoping constructs
such as Module create symbols with new names to represent local variables. Thus, even if you called
a variable x in the original code for your program, the variable may effectively be renamed x$nnn
when the program is executed.

Trace[expr, form] is set up so that by default a symbol x that appears in form will match all
symbols with names of the form x$nnn that arise in the execution of expr. As a result, you can
for example use Trace[expr, x = _] to trace assignment to all variables, local and global, that were
named x in your original program.



2.6.11 Advanced Topic: Tracing Evaluation 365

Trace[expr, form, MatchLocalNames -> False]
include all steps in the execution of expr that match form,
with no replacements for local variable names allowed

Preventing the matching of local variables.

In some cases, you may want to trace only the global variable x, and not any local variables that
were originally named x. You can do this by setting the option MatchLocalNames -> False.

This traces assignments to all variables
with names of the form x$nnn.

In[50]:= Trace[Module[{x}, x = 5], x = _]

Out[50]= ��x$1 = 5��
This traces assignments only to the
specific global variable x.

In[51]:= Trace[Module[{x}, x = 5], x = _,
MatchLocalNames -> False]

Out[51]= ��
The function Trace performs a complete computation, then returns a structure which represents the

history of the computation. Particularly in very long computations, it is however sometimes useful to
see traces of the computation as it proceeds. The function TracePrint works essentially like Trace,
except that it prints expressions when it encounters them, rather than saving up all of the expressions
to create a list structure.

This prints expressions encountered in
the evaluation of fib[3].

In[52]:= TracePrint[fib[3], fib[_]]

fib[3]

fib[3 - 1]

fib[2]

fib[2 - 1]

fib[1]

fib[2 - 2]

fib[0]

fib[3 - 2]

fib[1]

Out[52]= 3

The sequence of expressions printed by TracePrint corresponds to the sequence of expressions
given in the list structure returned by Trace. Indentation in the output from TracePrint corresponds
to nesting in the list structure from Trace. You can use the Trace options TraceOn, TraceOff and
TraceForward in TracePrint. However, since TracePrint produces output as it goes, it cannot
support the option TraceBackward. In addition, TracePrint is set up so that TraceOriginal is
effectively always set to True.



366 2. Principles of Mathematica � 2.6 Evaluation of Expressions

Trace[expr, . . . ] trace the evaluation of expr, returning a list structure
containing the expressions encountered

TracePrint[expr, . . . ] trace the evaluation of expr, printing the expressions
encountered

TraceDialog[expr, . . . ] trace the evaluation of expr, initiating a dialog when each
specified expression is encountered

TraceScan[f, expr, . . . ] trace the evaluation of expr, applying f to HoldForm of each
expression encountered

Functions for tracing evaluation.

This enters a dialog when fac[5] is
encountered during the evaluation of
fac[10].

In[53]:= TraceDialog[fac[10], fac[5]]

TraceDialog::dgbgn: Entering Dialog; use Return[] to exit.

Out[54]= fac5�
Inside the dialog you can for example
find out where you are by looking at
the “stack”.

In[55]:= Stack[ ]

Out[55]= �TraceDialog, Times,
Times, Times, Times, Times, fac�

This returns from the dialog, and gives
the final result from the evaluation of
fac[10].

In[56]:= Return[ ]

TraceDialog::dgend: Exiting Dialog.

Out[53]= 3628800

The function TraceDialog effectively allows you to stop in the middle of a computation, and
interact with the Mathematica environment that exists at that time. You can for example find values of
intermediate variables in the computation, and even reset those values. There are however a number
of subtleties, mostly associated with pattern and module variables.

What TraceDialog does is to call the function Dialog on a sequence of expressions. The Dialog
function is discussed in detail in Section 2.14.2. When you call Dialog, you are effectively starting a
subsidiary Mathematica session with its own sequence of input and output lines.

In general, you may need to apply arbitrary functions to the expressions you get while tracing
an evaluation. TraceScan[f, expr, . . . ] applies f to each expression that arises. The expression is
wrapped with HoldForm to prevent it from evaluating.

In TraceScan[f, expr, . . . ], the function f is applied to expressions before they are evaluated.
TraceScan[f, expr, patt, fp] applies f before evaluation, and fp after evaluation.



2.6.12 Advanced Topic: The Evaluation Stack 367

2.6.12 Advanced Topic: The Evaluation Stack

Throughout any computation, Mathematica maintains an evaluation stack containing the expressions it
is currently evaluating. You can use the function Stack to look at the stack. This means, for example,
that if you interrupt Mathematica in the middle of a computation, you can use Stack to find out what
Mathematica is doing.

The expression that Mathematica most recently started to evaluate always appears as the last element
of the evaluation stack. The previous elements of the stack are the other expressions whose evaluation
is currently in progress.

Thus at the point when x is being evaluated, the stack associated with the evaluation of an
expression like f [g[x]] will have the form {f [g[x]], g[x], x}.

Stack[_] gives the expressions that are
being evaluated at the time when it is
called, in this case including the Print
function.

In[1]:= f[g[ Print[Stack[_]] ]] ;

{f[g[Print[Stack[_]]]]; , f[g[Print[Stack[_]]]],

g[Print[Stack[_]]], Print[Stack[_]]}

Stack[ ] gives the tags associated with
the evaluations that are being done
when it is called.

In[2]:= f[g[ Print[Stack[ ]] ]] ;

{CompoundExpression, f, g, Print}

In general, you can think of the evaluation stack as showing what functions called what other
functions to get to the point Mathematica is at in your computation. The sequence of expressions
corresponds to the first elements in the successively nested lists returned by Trace with the option
TraceAbove set to True.

Stack[ ] give a list of the tags associated with evaluations that are
currently being done

Stack[_] give a list of all expressions currently being evaluated

Stack[form] include only expressions which match form

Looking at the evaluation stack.

It is rather rare to call Stack directly in your main Mathematica session. More often, you will want
to call Stack in the middle of a computation. Typically, you can do this from within a dialog, or
subsidiary session, as discussed in Section 2.14.2.

Here is the standard recursive
definition of the factorial function.

In[3]:= fac[1] = 1; fac[n_] := n fac[n-1]

This evaluates fac[10], starting a
dialog when it encounters fac[4].

In[4]:= TraceDialog[fac[10], fac[4]]

TraceDialog::dgbgn: Entering Dialog; use Return[] to exit.

Out[5]= fac4�



368 2. Principles of Mathematica � 2.6 Evaluation of Expressions

This shows what objects were being
evaluated when the dialog was started.

In[6]:= Stack[ ]

Out[6]= �TraceDialog, Times, Times,
Times, Times, Times, Times, fac�

This ends the dialog. In[7]:= Return[ ]

TraceDialog::dgend: Exiting Dialog.

Out[4]= 3628800

In the simplest cases, the Mathematica evaluation stack is set up to record all expressions cur-
rently being evaluated. Under some circumstances, however, this may be inconvenient. For example,
executing Print[Stack[ ]] will always show a stack with Print as the last function.

The function StackInhibit allows you to avoid this kind of problem. StackInhibit[expr] evalu-
ates expr without modifying the stack.

StackInhibit prevents Print from
being included on the stack.

In[5]:= f[g[ StackInhibit[Print[Stack[ ]]] ]] ;

Out[5]= �CompoundExpression, f, g�
Functions like TraceDialog automatically call StackInhibit each time they start a dialog. This

means that Stack does not show functions that are called within the dialog, only those outside.

StackInhibit[expr] evaluate expr without modifying the stack

StackBegin[expr] evaluate expr with a fresh stack

StackComplete[expr] evaluate expr with intermediate expressions in evaluation
chains included on the stack

Controlling the evaluation stack.

By using StackInhibit and StackBegin, you can control which parts of the evaluation process
are recorded on the stack. StackBegin[expr] evaluates expr, starting a fresh stack. This means that
during the evaluation of expr, the stack does not include anything outside the StackBegin . Functions
like TraceDialog[expr, . . . ] call StackBegin before they begin evaluating expr, so that the stack
shows how expr is evaluated, but not how TraceDialog was called.

StackBegin[expr] uses a fresh stack in
the evaluation of expr.

In[6]:= f[ StackBegin[ g[h[ StackInhibit[Print[Stack[ ]]] ]] ] ]

{g, h}

Out[6]= fghNull���
Stack normally shows you only those expressions that are currently being evaluated. As a result,

it includes only the latest form of each expression. Sometimes, however, you may find it useful also
to see earlier forms of the expressions. You can do this using StackComplete.

What StackComplete[expr] effectively does is to keep on the stack the complete evaluation chain
for each expression that is currently being evaluated. In this case, the stack corresponds to the
sequence of expressions obtained from Trace with the option TraceBackward -> All as well as
TraceAbove -> True.



2.6.13 Advanced Topic: Controlling Infinite Evaluation 369

2.6.13 Advanced Topic: Controlling Infinite Evaluation

The general principle that Mathematica follows in evaluating expressions is to go on applying trans-
formation rules until the expressions no longer change. This means, for example, that if you make an
assignment like x = x + 1, Mathematica should go into an infinite loop. In fact, Mathematica stops after
a definite number of steps, determined by the value of the global variable $RecursionLimit. You can
always stop Mathematica earlier by explicitly interrupting it.

This assignment could cause an infinite
loop. Mathematica stops after a number
of steps determined by
$RecursionLimit .

In[1]:= x = x + 1

$RecursionLimit::reclim: Recursion depth of 256 exceeded.

Out[1]= 255 � Hold1 � x�
When Mathematica stops without
finishing evaluation, it returns a held
result. You can continue the evaluation
by explicitly calling ReleaseHold.

In[2]:= ReleaseHold[%]

$RecursionLimit::reclim: Recursion depth of 256 exceeded.

Out[2]= 510 � Hold1 � x�

$RecursionLimit maximum depth of the evaluation stack

$IterationLimit maximum length of an evaluation chain

Global variables that limit infinite evaluation.

Here is a circular definition, whose
evaluation is stopped by
$IterationLimit .

In[3]:= {a, b} = {b, a}

$IterationLimit::itlim: Iteration limit of 4096 exceeded.

$IterationLimit::itlim: Iteration limit of 4096 exceeded.

Out[3]= �Holdb�, Holda��
The variables $RecursionLimit and $IterationLimit control the two basic ways that an evalua-

tion can become infinite in Mathematica. $RecursionLimit limits the maximum depth of the evaluation
stack, or equivalently, the maximum nesting depth that would occur in the list structure produced
by Trace. $IterationLimit limits the maximum length of any particular evaluation chain, or the
maximum length of any single list in the structure produced by Trace.

$RecursionLimit and $IterationLimit are by default set to values that are appropriate for most
computations, and most computer systems. You can, however, reset these variables to any integer
(above a lower limit), or to Infinity. Note that on most computer systems, you should never set
$RecursionLimit = Infinity, as discussed on page 715.

This resets $RecursionLimit and
$IterationLimit to 20.

In[4]:= $RecursionLimit = $IterationLimit = 20

Out[4]= 20

Now infinite definitions like this are
stopped after just 20 steps.

In[5]:= t = {t}

$RecursionLimit::reclim: Recursion depth of 20 exceeded.

Out[5]= �������������������Hold�t���������������������



370 2. Principles of Mathematica � 2.6 Evaluation of Expressions

Without an end condition, this
recursive definition leads to infinite
computations.

In[6]:= fn[n_] := {fn[n-1], n}

A fairly large structure is built up
before the computation is stopped.

In[7]:= fn[10]

$RecursionLimit::reclim: Recursion depth of 20 exceeded.

Out[7]= �������������������Holdfn�8 � 1��, �8�, �7�, �6�,
�5�, �4�, �3�, �2�, �1�, 0�, 1�, 2�,

3�, 4�, 5�, 6�, 7�, 8�, 9�, 10�
Here is another recursive definition. In[8]:= fm[n_] := fm[n - 1]

In this case, no complicated structure is
built up, and the computation is
stopped by $IterationLimit.

In[9]:= fm[0]

$IterationLimit::itlim: Iteration limit of 20 exceeded.

Out[9]= Holdfm�19 � 1��
It is important to realize that infinite loops can take up not only time but also computer memory.

Computations limited by $IterationLimit do not normally build up large intermediate structures.
But those limited by $RecursionLimit often do. In many cases, the size of the structures produced is
a linear function of the value of $RecursionLimit. But in some cases, the size can grow exponentially,
or worse, with $RecursionLimit.

An assignment like x = x + 1 is obviously circular. When you set up more complicated recursive
definitions, however, it can be much more difficult to be sure that the recursion terminates, and that
you will not end up in an infinite loop. The main thing to check is that the right-hand sides of your
transformation rules will always be different from the left-hand sides. This ensures that evaluation will
always “make progress”, and Mathematica will not simply end up applying the same transformation
rule to the same expression over and over again.

Some of the trickiest cases occur when you have rules that depend on complicated /; conditions
(see Section 2.3.5). One particularly awkward case is when the condition involves a “global variable”.
Mathematica may think that the evaluation is finished because the expression did not change. However,
a side effect of some other operation could change the value of the global variable, and so should lead
to a new result in the evaluation. The best way to avoid this kind of difficulty is not to use global
variables in /; conditions. If all else fails, you can type Update[s] to tell Mathematica to update all
expressions involving s. Update[ ] tells Mathematica to update absolutely all expressions.

2.6.14 Advanced Topic: Interrupts and Aborts

Section 1.3.12 described how you can interrupt a Mathematica computation by pressing appropriate
keys on your keyboard.

In some cases, you may want to simulate such interrupts from within a Mathematica program. In
general, executing Interrupt[ ] has the same effect as pressing interrupt keys. On a typical system,
a menu of options is displayed, as discussed in Section 1.3.12.



2.6.14 Advanced Topic: Interrupts and Aborts 371

Interrupt[ ] interrupt a computation

Abort[ ] abort a computation

CheckAbort[expr, failexpr] evaluate expr and return the result, or failexpr if an abort
occurs

AbortProtect[expr] evaluate expr, masking the effect of aborts until the
evaluation is complete

Interrupts and aborts.

The function Abort[ ] has the same effect as interrupting a computation, and selecting the abort
option in the interrupt menu.

You can use Abort[ ] to implement an “emergency stop” in a program. In almost all cases,
however, you should try to use functions like Return and Throw, which lead to more controlled
behavior.

Abort terminates the computation, so
only the first Print is executed.

In[1]:= Print[a]; Abort[ ]; Print[b]

a

Out[1]= $Aborted

If you abort at any point during the evaluation of a Mathematica expression, Mathematica normally
abandons the evaluation of the whole expression, and returns the value $Aborted.

You can, however, “catch” aborts using the function CheckAbort. If an abort occurs during the
evaluation of expr in CheckAbort[expr, failexpr], then CheckAbort returns failexpr, but the abort prop-
agates no further. Functions like Dialog use CheckAbort in this way to contain the effect of aborts.

CheckAbort catches the abort, prints c
and returns the value aborted.

In[2]:= CheckAbort[Print[a]; Abort[ ]; Print[b], Print[c]; aborted]

a
c

Out[2]= aborted

The effect of the Abort is contained by
CheckAbort, so b is printed.

In[3]:= CheckAbort[Print[a]; Abort[ ], Print[c]; aborted]; Print[b]

a
c
b

When you construct sophisticated programs in Mathematica, you may sometimes want to guarantee
that a particular section of code in a program cannot be aborted, either interactively or by calling
Abort. The function AbortProtect allows you to evaluate an expression, saving up any aborts until
after the evaluation of the expression is complete.



372 2. Principles of Mathematica � 2.6 Evaluation of Expressions

The Abort is saved up until
AbortProtect is finished.

In[4]:= AbortProtect[Abort[ ]; Print[a]]; Print[b]

a

Out[4]= $Aborted

The CheckAbort sees the abort, but
does not propagate it further.

In[5]:= AbortProtect[Abort[ ]; CheckAbort[Print[a], x]]; Print[b]

b

Even inside AbortProtect, CheckAbort will see any aborts that occur, and will return the ap-
propriate failexpr. Unless this failexpr itself contains Abort[ ], the aborts will be “absorbed” by the
CheckAbort.

2.6.15 Compiling Mathematica Expressions

If you make a definition like f[x_] := x Sin[x], Mathematica will store the expression x Sin[x] in
a form that can be evaluated for any x. Then when you give a particular value for x, Mathematica
substitutes this value into x Sin[x], and evaluates the result. The internal code that Mathematica uses
to perform this evaluation is set up to work equally well whether the value you give for x is a number,
a list, an algebraic object, or any other kind of expression.

Having to take account of all these possibilities inevitably makes the evaluation process slower.
However, if Mathematica could assume that x will be a machine number, then it could avoid many
steps, and potentially evaluate an expression like x Sin[x] much more quickly.

Using Compile, you can construct compiled functions in Mathematica, which evaluate Mathemat-
ica expressions assuming that all the parameters which appear are numbers (or logical variables).
Compile[{x�, x�, . . . }, expr] takes an expression expr and returns a “compiled function” which
evaluates this expression when given arguments x�, x�, . . . .

In general, Compile creates a CompiledFunction object which contains a sequence of simple in-
structions for evaluating the compiled function. The instructions are chosen to be close to those found
in the machine code of a typical computer, and can thus be executed quickly.

Compile[{x�, x�, . . . }, expr] create a compiled function which evaluates expr for
numerical values of the xi

Creating compiled functions.

This defines f to be a pure function
which evaluates x Sin[x] for any x.

In[1]:= f = Function[{x}, x Sin[x]]

Out[1]= Function�x�, x Sinx��
This creates a compiled function for
evaluating x Sin[x].

In[2]:= fc = Compile[{x}, x Sin[x]]

Out[2]= CompiledFunction�x�, x Sinx�, �CompiledCode��



2.6.15 Compiling Mathematica Expressions 373

f and fc yield the same results, but fc
runs faster when the argument you
give is a number.

In[3]:= {f[2.5], fc[2.5]}

Out[3]= �1.49618, 1.49618�
Compile is useful in situations where you have to evaluate a particular numerical or logical expres-

sion many times. By taking the time to call Compile, you can get a compiled function which can be
executed more quickly than an ordinary Mathematica function.

For simple expressions such as x Sin[x], there is usually little difference between the execution
speed for ordinary and compiled functions. However, as the size of the expressions involved increases,
the advantage of compilation also increases. For large expressions, compilation can speed up execution
by a factor as large as 20.

Compilation makes the biggest difference for expressions containing a large number of simple, say
arithmetic, functions. For more complicated functions, such as BesselK or Eigenvalues, most of the
computation time is spent executing internal Mathematica algorithms, on which compilation has no
effect.

This creates a compiled function for
finding values of the tenth Legendre
polynomial. The Evaluate tells
Mathematica to construct the polynomial
explicitly before doing compilation.

In[4]:= pc = Compile[{x}, Evaluate[LegendreP[10, x]]]

Out[4]= CompiledFunction��x�,

�
63
�����������������
256

�
3465 x2

��������������������������������
256

�
15015 x4

�������������������������������������
128

�
45045 x6

�������������������������������������
128

�

109395 x8

������������������������������������������
256

�
46189 x10

����������������������������������������
256

, �CompiledCode��
This finds the value of the tenth
Legendre polynomial with argument
0.4.

In[5]:= pc[0.4]

Out[5]= 0.0968391

This uses built-in numerical code. In[6]:= LegendreP[10, 0.4]

Out[6]= 0.0968391

Even though you can use compilation to speed up numerical functions that you write, you should
still try to use built-in Mathematica functions whenever possible. Built-in functions will usually run
faster than any compiled Mathematica programs you can create. In addition, they typically use more
extensive algorithms, with more complete control over numerical precision and so on.

You should realize that built-in Mathematica functions quite often themselves use Compile. Thus, for
example, NIntegrate by default automatically uses Compile on the expression you tell it to integrate.
Similarly, functions like Plot and Plot3D use Compile on the expressions you ask them to plot.
Built-in functions that use Compile typically have the option Compiled. Setting Compiled -> False
tells the functions not to use Compile.



374 2. Principles of Mathematica � 2.6 Evaluation of Expressions

Compile[{{x�, t�}, {x�, t�}, . . . }, expr]
compile expr assuming that xi is of type ti

Compile[{{x�, t�, n�}, {x�, t�, n�}, . . . }, expr]
compile expr assuming that xi is a rank ni array of objects
each of type ti

Compile[vars, expr, {{p�, pt�}, . . . }]
compile expr, assuming that subexpressions which match pi
are of type pti

_Integer machine-size integer

_Real machine-precision approximate real number

_Complex machine-precision approximate complex number

True | False logical variable

Specifying types for compilation.

Compile works by making assumptions about the types of objects that occur in evaluating the
expression you give. The default assumption is that all variables in the expression are approximate
real numbers.

Compile nevertheless also allows integers, complex numbers and logical variables (True or False),
as well as arrays of numbers. You can specify the type of a particular variable by giving a pattern
which matches only values that have that type. Thus, for example, you can use the pattern _Integer
to specify the integer type. Similarly, you can use True | False to specify a logical variable that must
be either True or False.

This compiles the expression 5 i + j
with the assumption that i and j are
integers.

In[7]:= Compile[{{i, _Integer}, {j, _Integer}}, 5 i + j]

Out[7]= CompiledFunction�i, j�, 5 i � j, �CompiledCode��
This yields an integer result. In[8]:= %[8, 7]

Out[8]= 47

This compiles an expression that
performs an operation on a matrix of
integers.

In[9]:= Compile[{{m, _Integer, 2}}, Apply[Plus, Flatten[m]]]

Out[9]= CompiledFunction�m�,
Plus SS Flattenm�, �CompiledCode��

The list operations are now carried out
in a compiled way, and the result is an
integer.

In[10]:= %[{{1, 2, 3}, {7, 8, 9}}]

Out[10]= 30



2.6.15 Compiling Mathematica Expressions 375

The types that Compile handles correspond essentially to the types that computers typically handle
at a machine-code level. Thus, for example, Compile can handle approximate real numbers that have
machine precision, but it cannot handle arbitrary-precision numbers. In addition, if you specify that
a particular variable is an integer, Compile generates code only for the case when the integer is of
“machine size”, typically between M��.

When the expression you ask to compile involves only standard arithmetic and logical operations,
Compile can deduce the types of objects generated at every step simply from the types of the input
variables. However, if you call other functions, Compile will typically not know what type of value
they return. If you do not specify otherwise, Compile assumes that any other function yields an
approximate real number value. You can, however, also give an explicit list of patterns, specifying
what type to assume for an expression that matches a particular pattern.

This defines a function which yields an
integer result when given an integer
argument.

In[11]:= com[i_] := Binomial[2i, i]

This compiles x^com[i] using the
assumption that com[_] is always an
integer.

In[12]:= Compile[{x, {i, _Integer}}, x^com[i],
{{com[_], _Integer}}]

Out[12]= CompiledFunction�x, i�, xcomi�, �CompiledCode��
This evaluates the compiled function. In[13]:= %[5.6, 1]

Out[13]= 31.36

The idea of Compile is to create a function which is optimized for certain types of arguments.
Compile is nevertheless set up so that the functions it creates work with whatever types of arguments
they are given. When the optimization cannot be used, a standard Mathematica expression is evaluated
to find the value of the function.

Here is a compiled function for taking
the square root of a variable.

In[14]:= sq = Compile[{x}, Sqrt[x]]

Out[14]= CompiledFunction��x�,
����

x , �CompiledCode��
If you give a real number argument,
optimized code is used.

In[15]:= sq[4.5]

Out[15]= 2.12132

The compiled code cannot be used, so
Mathematica prints a warning, then just
evaluates the original symbolic
expression.

In[16]:= sq[1 + u]

CompiledFunction::cfsa:
Argument 1 + u at position 1 should be a
machine-size real number.

Out[16]=
���������

1 � u

The compiled code generated by Compile must make assumptions not only about the types of
arguments you will supply, but also about the types of all objects that arise during the execution of
the code. Sometimes these types depend on the actual values of the arguments you specify. Thus, for
example, Sqrt[x] yields a real number result for real x if x is not negative, but yields a complex
number if x is negative.



376 2. Principles of Mathematica � 2.6 Evaluation of Expressions

Compile always makes a definite assumption about the type returned by a particular function. If
this assumption turns out to be invalid in a particular case when the code generated by Compile is
executed, then Mathematica simply abandons the compiled code in this case, and evaluates an ordinary
Mathematica expression to get the result.

The compiled code does not expect a
complex number, so Mathematica has to
revert to explicitly evaluating the
original symbolic expression.

In[17]:= sq[-4.5]

CompiledFunction::cfn:
Numerical error encountered at instruction 2;

proceeding with uncompiled evaluation.

Out[17]= 0. � 2.12132 �

An important feature of Compile is that it can handle not only mathematical expressions, but
also various simple Mathematica programs. Thus, for example, Compile can handle conditionals and
control flow structures.

In all cases, Compile[vars, expr] holds its arguments unevaluated. This means that you can explic-
itly give a “program” as the expression to compile.

This creates a compiled version of a
Mathematica program which implements
Newton’s approximation to square
roots.

In[18]:= newt = Compile[ {x, {n, _Integer}},
Module[{t}, t = x; Do[t = (t + x/t)/2, {n}]; t]

]

Out[18]= CompiledFunction��x, n�,

Module��t�, t = x; Do�t =
1
�������
2
�t �

x
�������
t
�, �n��; t�,

�CompiledCode��
This executes the compiled code. In[19]:= newt[2.4, 6]

Out[19]= 1.54919

2.6.16 Advanced Topic: Manipulating Compiled Code

If you use compiled code created by Compile only within Mathematica itself, then you should never
need to know the details of its internal form. Nevertheless, the compiled code can be represented by
an ordinary Mathematica expression, and it is sometimes useful to manipulate it.

For example, you can take compiled code generated by Compile, and feed it to external programs
or devices. You can also create CompiledFunction objects yourself, then execute them in Mathematica.

In all of these cases, you need to know the internal form of CompiledFunction objects. The first
element of a CompiledFunction object is always a list of patterns which specifies the types of argu-
ments accepted by the object. The fifth element of a CompiledFunction object is a Mathematica pure
function that is used if the compiled code instruction stream fails for any reason to give a result.



2.6.16 Advanced Topic: Manipulating Compiled Code 377

CompiledFunction[{arg�, arg�, . . . }, {reg�, reg�, . . . }, {nl, ni, nr, nc, nt}, instr, func]
compiled code taking arguments of type argi and executing
the instruction stream instr using nk registers of type k

The structure of a compiled code object.

This shows the explicit form of the
compiled code generated by Compile.

In[1]:= Compile[{x}, x^2] // InputForm

Out[1]//InputForm= CompiledFunction[{_Real}, {{3, 0, 0}, {3, 0, 1}},

{0, 0, 2, 0, 0}, {{1, 5}, {29, 0, 0, 1}, {2}},

Function[{x}, x^2], Evaluate]

The instruction stream in a CompiledFunction object consists of a list of instructions for a simple
idealized computer. The computer is assumed to have numbered “registers”, on which operations
can be performed. There are five basic types of registers: logical, integer, real, complex and tensor.
For each of these basic types it is then possible to have either a single scalar register or an array
of registers of any rank. A list of the total number of registers of each type required to evaluate a
particular CompiledFunction object is given as the second element of the object.

The actual instructions in the compiled code object are given as lists. The first element is an integer
“opcode” which specifies what operation should be performed. Subsequent elements are either the
numbers of registers of particular types, or literal constants. Typically the last element of the list is
the number of a “destination register”, into which the result of the operation should be put.



378 2. Principles of Mathematica � 2.7 Modularity and the Naming of Things

2.7 Modularity and the Naming of Things

2.7.1 Modules and Local Variables

Mathematica normally assumes that all your variables are global. This means that every time you use
a name like x, Mathematica normally assumes that you are referring to the same object.

Particularly when you write programs, however, you may not want all your variables to be global.
You may, for example, want to use the name x to refer to two quite different variables in two different
programs. In this case, you need the x in each program to be treated as a local variable.

You can set up local variables in Mathematica using modules. Within each module, you can give a
list of variables which are to be treated as local to the module.

Module[{x, y, . . . }, body] a module with local variables x, y, . . .

Creating modules in Mathematica.

This defines the global variable t to
have value 17.

In[1]:= t = 17

Out[1]= 17

The t inside the module is local, so it
can be treated independently of the
global t.

In[2]:= Module[{t}, t=8; Print[t]]

8

The global t still has value 17. In[3]:= t

Out[3]= 17

The most common way that modules are used is to set up temporary or intermediate variables
inside functions you define. It is important to make sure that such variables are kept local. If they
are not, then you will run into trouble whenever their names happen to coincide with the names of
other variables.

The intermediate variable t is specified
to be local to the module.

In[4]:= f[v_] := Module[{t}, t = (1 + v)^2; t = Expand[t] ]

This runs the function f. In[5]:= f[a + b]

Out[5]= 1 � 2 a � a2 � 2 b � 2 a b � b2

The global t still has value 17. In[6]:= t

Out[6]= 17

You can treat local variables in modules just like other symbols. Thus, for example, you can use
them as names for local functions, you can assign attributes to them, and so on.



2.7.1 Modules and Local Variables 379

This sets up a module which defines a
local function f.

In[7]:= gfac10[k_] :=
Module[{f, n}, f[1] = 1; f[n_] := k + n f[n-1]; f[10]]

In this case, the local function f is just
an ordinary factorial.

In[8]:= gfac10[0]

Out[8]= 3628800

In this case, f is set up as a
generalized factorial.

In[9]:= gfac10[2]

Out[9]= 8841802

When you set up a local variable in a module, Mathematica initially assigns no value to the variable.
This means that you can use the variable in a purely symbolic way, even if there was a global value
defined for the variable outside the module.

This uses the global value of t defined
above, and so yields a number.

In[10]:= Expand[(1 + t)^3]

Out[10]= 5832

Here Length simply receives a number
as its argument.

In[11]:= Length[Expand[(1 + t)^3]]

Out[11]= 0

The local variable t has no value, so it
acts as a symbol, and Expand produces
the anticipated algebraic result.

In[12]:= Module[{t}, Length[Expand[(1 + t)^3]]]

Out[12]= 4

Module[{x = x�, y = y�, . . . }, body] a module with initial values for local variables

Assigning initial values to local variables.

This specifies t to be a local variable,
with initial value u.

In[13]:= g[u_] := Module[{ t = u }, t += t/(1 + u)]

This uses the definition of g. In[14]:= g[a]

Out[14]= a �
a

���������������������
1 � a

You can define initial values for any of the local variables in a module. The initial values are always
evaluated before the module is executed. As a result, even if a variable x is defined as local to the
module, the global x will be used if it appears in an expression for an initial value.

The initial value of u is taken to be the
global value of t.

In[15]:= Module[{t = 6, u = t}, u^2]

Out[15]= 289

lhs := Module[vars, rhs /; cond] share local variables between rhs and cond

Using local variables in definitions with conditions.



380 2. Principles of Mathematica � 2.7 Modularity and the Naming of Things

When you set up /; conditions for definitions, you often need to introduce temporary variables.
In many cases, you may want to share these temporary variables with the body of the right-hand side
of the definition. Mathematica allows you to enclose the whole right-hand side of your definition in a
module, including the condition.

This defines a function with a
condition attached.

In[16]:= h[x_] := Module[{t}, t^2 - 1 /; (t = x - 4) > 1]

Mathematica shares the value of the
local variable t between the condition
and the body of the right-hand side.

In[17]:= h[10]

Out[17]= 35

2.7.2 Local Constants

With[{x = x�, y = y�, . . . }, body] define local constants x, y, . . .

Defining local constants.

Module allows you to set up local variables, to which you can assign any sequence of values. Of-
ten, however, all you really need are local constants, to which you assign a value only once. The
Mathematica With construct allows you to set up such local constants.

This defines a global value for t. In[1]:= t = 17

Out[1]= 17

This defines a function using t as a
local constant.

In[2]:= w[x_] := With[{t = x + 1}, t + t^3]

This uses the definition of w. In[3]:= w[a]

Out[3]= 1 � a � �1 � a�3

t still has its global value. In[4]:= t

Out[4]= 17

Just as in Module, the initial values you define in With are evaluated before the With is executed.

The expression t + 1 which gives the
value of the local constant t is
evaluated using the global t.

In[5]:= With[{t = t + 1}, t^2]

Out[5]= 324

The way With[{x = x�, . . . }, body] works is to take body, and replace every occurrence of x, etc.
in it by x�, etc. You can think of With as a generalization of the /. operator, suitable for application
to Mathematica code instead of other expressions.

This replaces x with a. In[6]:= With[{x = a}, x = 5]

Out[6]= 5



2.7.3 How Modules Work 381

After the replacement, the body of the
With is a = 5, so a gets the global
value 5.

In[7]:= a

Out[7]= 5

This clears the value of a. In[8]:= Clear[a]

In some respects, With is like a special case of Module, in which each local variable is assigned a
value exactly once.

One of the main reasons for using With rather than Module is that it typically makes the Mathematica
programs you write easier to understand. In a module, if you see a local variable x at a particular
point, you potentially have to trace through all of the code in the module to work out the value of
x at that point. In a With construct, however, you can always find out the value of a local constant
simply by looking at the initial list of values, without having to trace through specific code.

If you have several With constructs, it is always the innermost one for a particular variable that is
in effect. You can mix Module and With. The general rule is that the innermost one for a particular
variable is the one that is in effect.

With nested With constructs, the
innermost one is always the one in
effect.

In[9]:= With[{t = 8}, With[{t = 9}, t^2]]

Out[9]= 81

You can mix Module and With
constructs.

In[10]:= Module[{t = 8}, With[{t = 9}, t^2]]

Out[10]= 81

Local variables in inner constructs do
not mask ones outside unless the
names conflict.

In[11]:= With[{t = a}, With[{u = b}, t + u]]

Out[11]= a � b

Except for the question of when x and body are evaluated, With[{x = x�}, body] works essentially
like body /. x -> x�. However, With behaves in a special way when the expression body itself contains
With or Module constructs. The main issue is to prevent the local constants in the various With
constructs from conflicting with each other, or with global objects. The details of how this is done are
discussed in Section 2.7.3.

The y in the inner With is renamed to
prevent it from conflicting with the
global y.

In[12]:= With[{x = 2 + y}, Hold[With[{y = 4}, x + y]]]

Out[12]= HoldWith�y$ = 4�, �2 � y� � y$��

2.7.3 How Modules Work

The way modules work in Mathematica is basically very simple. Every time any module is used, a
new symbol is created to represent each of its local variables. The new symbol is given a unique name
which cannot conflict with any other names. The name is formed by taking the name you specify for
the local variable, followed by $, with a unique “serial number” appended.

The serial number is found from the value of the global variable $ModuleNumber. This variable
counts the total number of times any Module of any form has been used.



382 2. Principles of Mathematica � 2.7 Modularity and the Naming of Things

Module generates symbols with names of the form x$nnn to represent each local variable.

The basic principle of modules in Mathematica.

This shows the symbol generated for t
within the module.

In[1]:= Module[{t}, Print[t]]

t$1

The symbols are different every time
any module is used.

In[2]:= Module[{t, u}, Print[t]; Print[u]]

t$2
u$2

For most purposes, you will never have to deal directly with the actual symbols generated inside
modules. However, if for example you start up a dialog while a module is being executed, then
you will see these symbols. The same is true whenever you use functions like Trace to watch the
evaluation of modules.

You see the symbols that are generated
inside modules when you use Trace.

In[3]:= Trace[ Module[{t}, t = 3] ]

Out[3]= �Module�t�, t = 3�, �t$3 = 3, 3�, 3�
This starts a dialog inside a module. In[4]:= Module[{t}, t = 6; Dialog[ ]]

Inside the dialog, you see the symbols
generated for local variables such as t.

In[5]:= Stack[_]

Out[5]= �Module�t�, t = 6; Dialog��,
t$4 = 6; Dialog�, Dialog��

You can work with these symbols as
you would with any other symbols.

In[6]:= t$4 + 1

Out[6]= 7

This returns from the dialog. In[7]:= Return[t$4 ^ 2]

Out[4]= 36

Under some circumstances, it is convenient explicitly to return symbols that are generated inside
modules.

You can explicitly return symbols that
are generated inside modules.

In[5]:= Module[{t}, t]

Out[5]= t$6

You can treat these symbols as you
would any others.

In[6]:= %^2 + 1

Out[6]= 1 � t$6
2

Unique[x] generate a new symbol with a unique name of the form
x$nnn

Unique[{x, y, . . . }] generate a list of new symbols

Generating new symbols with unique names.



2.7.3 How Modules Work 383

The function Unique allows you to generate new symbols in the same way as Module does.
Each time you call Unique, $ModuleNumber is incremented, so that the names of new symbols are
guaranteed to be unique.

This generates a unique new symbol
whose name starts with x.

In[7]:= Unique[x]

Out[7]= x$7

Each time you call Unique you get a
symbol with a larger serial number.

In[8]:= {Unique[x], Unique[x], Unique[x]}

Out[8]= �x$8, x$9, x$10�
If you call Unique with a list of names,
you get the same serial number for
each of the symbols.

In[9]:= Unique[{x, xa, xb}]

Out[9]= �x$11, xa$11, xb$11�
You can use the standard Mathematica ?name mechanism to get information on symbols that were

generated inside modules or by the function Unique.

Executing this module generates the
symbol q$nnn.

In[10]:= Module[{q}, q^2 + 1]

Out[10]= 1 � q$12
2

You can see the generated symbol here. In[11]:= ?q*

q q$12

Symbols generated by Module behave in exactly the same way as other symbols for the purposes of
evaluation. However, these symbols carry the attribute Temporary, which specifies that they should
be removed completely from the system when they are no longer used. Thus most symbols that are
generated inside modules are removed when the execution of those modules is finished. The symbols
survive only if they are explicitly returned.

This shows a new q variable generated
inside a module.

In[12]:= Module[{q}, Print[q]]

q$13

The new variable is removed when the
execution of the module is finished, so
it does not show up here.

In[13]:= ?q*

q q$12

You should realize that the use of names such as x$nnn for generated symbols is purely a con-
vention. You can in principle give any symbol a name of this form. But if you do, the symbol may
collide with one that is produced by Module.

An important point to note is that symbols generated by Module are in general unique only within
a particular Mathematica session. The variable $ModuleNumber which determines the serial numbers
for these symbols is always reset at the beginning of each session.

This means in particular that if you save expressions containing generated symbols in a file, and
then read them into another session, there is no guarantee that conflicts will not occur.

One way to avoid such conflicts is explicitly to set $ModuleNumber differently at the beginning
of each session. In particular, if you set $ModuleNumber = 10^10 $SessionID, you should avoid any
conflicts. The global variable $SessionID should give a unique number which characterizes a partic-



384 2. Principles of Mathematica � 2.7 Modularity and the Naming of Things

ular Mathematica session on a particular computer. The value of this variable is determined from such
quantities as the absolute date and time, the ID of your computer, and, if appropriate, the ID of the
particular Mathematica process.

$ModuleNumber the serial number for symbols generated by Module and
Unique

$SessionID a number that should be different for every Mathematica
session

Variables to be used in determining serial numbers for generated symbols.

Having generated appropriate symbols to represent the local variables you have specified,
Module[vars, body] then has to evaluate body using these symbols. The first step is to take the actual
expression body as it appears inside the module, and effectively to use With to replace all occurrences
of each local variable name with the appropriate generated symbol. After this is done, Module actually
performs the evaluation of the resulting expression.

An important point to note is that Module[vars, body] inserts generated symbols only into the
actual expression body. It does not, for example, insert such symbols into code that is called from
body, but does not explicitly appear in body.

Section 2.7.6 will discuss how you can use Block to set up “local values” which work in a different
way.

Since x does not appear explicitly in
the body of the module, the local value
is not used.

In[14]:= tmp = x^2 + 1; Module[{x = 4}, tmp]

Out[14]= 1 � x2

Most of the time, you will probably set up modules by giving explicit Mathematica input of the
form Module[vars, body]. Since the function Module has the attribute HoldAll, the form of body will
usually be kept unevaluated until the module is executed.

It is, however, possible to build modules dynamically in Mathematica. The generation of new sym-
bols, and their insertion into body are always done only when a module is actually executed, not when
the module is first given as Mathematica input.

This evaluates the body of the module
immediately, making x appear
explicitly.

In[15]:= tmp = x^2 + 1; Module[{x = 4}, Evaluate[tmp]]

Out[15]= 17



2.7.4 Advanced Topic: Variables in Pure Functions and Rules 385

2.7.4 Advanced Topic: Variables in Pure Functions and Rules

Module and With allow you to give a specific list of symbols whose names you want to treat as local.
In some situations, however, you want to automatically treat certain symbol names as local.

For example, if you use a pure function such as Function[{x}, x + a], you want x to be treated
as a “formal parameter”, whose specific name is local. The same is true of the x that appears in a
rule like f[x_] -> x^2, or a definition like f[x_] := x^2.

Mathematica uses a uniform scheme to make sure that the names of formal parameters which appear
in constructs like pure functions and rules are kept local, and are never confused with global names.
The basic idea is to replace formal parameters when necessary by symbols with names of the form
x$. By convention, x$ is never used as a global name.

Here is a nested pure function. In[1]:= Function[{x}, Function[{y}, x + y]]

Out[1]= Function�x�, Function�y�, x � y��
Mathematica renames the formal
parameter y in the inner function to
avoid conflict with the global object y.

In[2]:= %[2y]

Out[2]= Function�y$�, 2 y � y$�
The resulting pure function behaves as
it should.

In[3]:= %[a]

Out[3]= a � 2 y

In general, Mathematica renames the formal parameters in an object like Function[vars, body]
whenever body is modified in any way by the action of another pure function.

The formal parameter y is renamed
because the body of the inner pure
function was changed.

In[4]:= Function[{x}, Function[{y}, x + y]] [a]

Out[4]= Function�y$�, a � y$�
Since the body of the inner function
does not change, the formal parameter
is not renamed.

In[5]:= Function[{x}, x + Function[{y}, y^2]] [a]

Out[5]= a � Function�y�, y2�
Mathematica renames formal parameters in pure functions more liberally than is strictly necessary.

In principle, renaming could be avoided if the names of the formal parameters in a particular function
do not actually conflict with parts of expressions substituted into the body of the pure function. For
uniformity, however, Mathematica still renames formal parameters even in such cases.

In this case, the formal parameter x in
the inner function shields the body of
the function, so no renaming is needed.

In[6]:= Function[{x}, Function[{x}, x + y]] [a]

Out[6]= Function�x�, x � y�
Here are three nested functions. In[7]:= Function[{x}, Function[{y}, Function[{z}, x + y + z]]]

Out[7]= Function�x�,
Function�y�, Function�z�, x � y � z���

Both inner functions are renamed in
this case.

In[8]:= %[a]

Out[8]= Function�y$�, Function�z$�, a � y$ � z$��



386 2. Principles of Mathematica � 2.7 Modularity and the Naming of Things

As mentioned on page 249, pure functions in Mathematica are like Λ expressions in formal logic.
The renaming of formal parameters allows Mathematica pure functions to reproduce all the semantics
of standard Λ expressions faithfully.

Function[{x, . . . }, body] local parameters

lhs -> rhs and lhs :> rhs local pattern names

lhs = rhs and lhs := rhs local pattern names

With[{x = x�, . . . }, body] local constants

Module[{x, . . . }, body] local variables

Scoping constructs in Mathematica.

Mathematica has several “scoping constructs” in which certain names are treated as local. When
you mix these constructs in any way, Mathematica does appropriate renamings to avoid conflicts.

Mathematica renames the formal
parameter of the pure function to
avoid a conflict.

In[9]:= With[{x = a}, Function[{a}, a + x]]

Out[9]= Function�a$�, a$ � a�
Here the local constant in the inner
With is renamed to avoid a conflict.

In[10]:= With[{x = y}, Hold[With[{y = 4}, x + y]]]

Out[10]= HoldWith�y$ = 4�, y � y$��
There is no conflict between names in
this case, so no renaming is done.

In[11]:= With[{x = y}, Hold[With[{z = x + 2}, z + 2]]]

Out[11]= HoldWith�z = y � 2�, z � 2��
The local variable y in the module is
renamed to avoid a conflict.

In[12]:= With[{x = y}, Hold[Module[{y}, x + y]]]

Out[12]= HoldModule�y$�, y � y$��
If you execute the module, however,
the local variable is renamed again to
make its name unique.

In[13]:= ReleaseHold[%]

Out[13]= y � y$1

Mathematica treats transformation rules as scoping constructs, in which the names you give to
patterns are local. You can set up named patterns either using x_, x__ and so on, or using x:patt.

The x in the h goes with the x_, and is
considered local to the rule.

In[14]:= With[{x = 5}, g[x_, x] -> h[x]]

Out[14]= gx_, 5� � hx�
In a rule like f[x_] -> x + y, the x which appears on the right-hand side goes with the name of

the x_ pattern. As a result, this x is treated as a variable local to the rule, and cannot be modified by
other scoping constructs.

The y, on the other hand, is not local to the rule, and can be modified by other scoping constructs.
When this happens, Mathematica renames the patterns in the rule to prevent the possibility of a conflict.



2.7.5 Dummy Variables in Mathematics 387

Mathematica renames the x in the rule
to prevent a conflict.

In[15]:= With[{w = x}, f[x_] -> w + x]

Out[15]= fx$_� � x � x$

When you use With on a scoping construct, Mathematica automatically performs appropriate renam-
ings. In some cases, however, you may want to make substitutions inside scoping constructs, without
any renaming. You can do this using the /. operator.

When you substitute for y using With,
the x in the pure function is renamed
to prevent a conflict.

In[16]:= With[{y = x + a}, Function[{x}, x + y]]

Out[16]= Function�x$�, x$ � �a � x��
If you use /. rather than With, no
such renaming is done.

In[17]:= Function[{x}, x + y] /. y -> a + x

Out[17]= Function�x�, x � �a � x��
When you apply a rule such as f[x_] -> rhs, or use a definition such as f[x_] := rhs, Mathematica

implicitly has to substitute for x everywhere in the expression rhs. It effectively does this using the
/. operator. As a result, such substitution does not respect scoping constructs. However, when the
insides of a scoping construct are modified by the substitution, the other variables in the scoping
construct are renamed.

This defines a function for creating
pure functions.

In[18]:= mkfun[var_, body_] := Function[{var}, body]

The x and x^2 are explicitly inserted
into the pure function, effectively by
using the /. operator.

In[19]:= mkfun[x, x^2]

Out[19]= Function�x�, x2�
This defines a function that creates a
pair of nested pure functions.

In[20]:= mkfun2[var_, body_] := Function[{x},
Function[{var}, body + x]]

The x in the outer pure function is
renamed in this case.

In[21]:= mkfun2[x, x^2]

Out[21]= Function�x$�, Function�x�, x2 � x$��

2.7.5 Dummy Variables in Mathematics

When you set up mathematical formulas, you often have to introduce various kinds of local objects
or “dummy variables”. You can treat such dummy variables using modules and other Mathematica
scoping constructs.

Integration variables are a common example of dummy variables in mathematics. When you write
down a formal integral, conventional notation requires you to introduce an integration variable with
a definite name. This variable is essentially “local” to the integral, and its name, while arbitrary, must
not conflict with any other names in your mathematical expression.

Here is a function for evaluating an
integral.

In[1]:= p[n_] := Integrate[f[s] s^n, {s, 0, 1}]



388 2. Principles of Mathematica � 2.7 Modularity and the Naming of Things

The s here conflicts with the
integration variable.

In[2]:= p[s + 1]

Out[2]= �
0

1

s1�s fs��7s

Here is a definition with the
integration variable specified as local to
a module.

In[3]:= pm[n_] := Module[{s}, Integrate[f[s] s^n, {s, 0, 1}]]

Since you have used a module,
Mathematica automatically renames the
integration variable to avoid a conflict.

In[4]:= pm[s + 1]

Out[4]= �
0

1

s$242
1�s

fs$242��7s$242

In many cases, the most important issue is that dummy variables should be kept local, and should
not interfere with other variables in your mathematical expression. In some cases, however, what is
instead important is that different uses of the same dummy variable should not conflict.

Repeated dummy variables often appear in products of vectors and tensors. With the “summation
convention”, any vector or tensor index that appears exactly twice is summed over all its possible
values. The actual name of the repeated index never matters, but if there are two separate repeated
indices, it is essential that their names do not conflict.

This sets up the repeated index j as a
dummy variable.

In[5]:= q[i_] := Module[{j}, a[i, j] b[j]]

The module gives different instances of
the dummy variable different names.

In[6]:= q[i1] q[i2]

Out[6]= ai1, j$387� ai2, j$388� bj$387� bj$388�
There are many situations in mathematics where you need to have variables with unique names.

One example is in representing solutions to equations. With an equation like sin�x� � �, there are
an infinite number of solutions, each of the form x � nΠ, where n is a dummy variable that can be
equal to any integer. If you generate solutions to the equation on two separate occasions, there is no
guarantee that the value of n should be the same in both cases. As a result, you must set up the
solution so that the object n is different every time.

This defines a value for sinsol, with n
as a dummy variable.

In[7]:= sinsol := Module[{n}, n Pi]

Different occurrences of the dummy
variable are distinguished.

In[8]:= sinsol - sinsol

Out[8]= n$389 Π � n$390 Π

Another place where unique objects are needed is in representing “constants of integration”. When
you do an integral, you are effectively solving an equation for a derivative. In general, there are
many possible solutions to the equation, differing by additive “constants of integration”. The standard
Mathematica Integrate function always returns a solution with no constant of integration. But if you
were to introduce constants of integration, you would need to use modules to make sure that they
are always unique.



2.7.6 Blocks and Local Values 389

2.7.6 Blocks and Local Values

Modules in Mathematica allow you to treat the names of variables as local. Sometimes, however, you
want the names to be global, but values to be local. You can do this in Mathematica using Block.

Block[{x, y, . . . }, body] evaluate body using local values for x, y, . . .

Block[{x = x�, y = y�, . . . }, body] assign initial values to x, y, . . .

Setting up local values.

Here is an expression involving x. In[1]:= x^2 + 3

Out[1]= 3 � x2

This evaluates the previous expression,
using a local value for x.

In[2]:= Block[{x = a + 1}, %]

Out[2]= 3 � �1 � a�2

There is no global value for x. In[3]:= x

Out[3]= x

As described in the sections above, the variable x in a module such as Module[{x}, body] is always
set up to refer to a unique symbol, different each time the module is used, and distinct from the global
symbol x. The x in a block such as Block[{x}, body] is, however, taken to be the global symbol x.
What the block does is to make the value of x local. The value x had when you entered the block is
always restored when you exit the block. And during the execution of the block, x can take on any
value.

This sets the symbol t to have
value 17.

In[4]:= t = 17

Out[4]= 17

Variables in modules have unique local
names.

In[5]:= Module[{t}, Print[t]]

t$1

In blocks, variables retain their global
names, but can have local values.

In[6]:= Block[{t}, Print[t]]

t

t is given a local value inside the
block.

In[7]:= Block[{t}, t = 6; t^4 + 1]

Out[7]= 1297

When the execution of the block is
over, the previous value of t is
restored.

In[8]:= t

Out[8]= 17

Blocks in Mathematica effectively allow you to set up “environments” in which you can temporarily
change the values of variables. Expressions you evaluate at any point during the execution of a block
will use the values currently defined for variables in the block. This is true whether the expressions
appear directly as part of the body of the block, or are produced at any point in its evaluation.



390 2. Principles of Mathematica � 2.7 Modularity and the Naming of Things

This defines a delayed value for the
symbol u.

In[9]:= u := x^2 + t^2

If you evaluate u outside a block, the
global value for t is used.

In[10]:= u

Out[10]= 289 � x2

You can specify a temporary value for
t to use inside the block.

In[11]:= Block[{t = 5}, u + 7]

Out[11]= 32 � x2

An important implicit use of Block in Mathematica is for iteration constructs such as Do, Sum and
Table. Mathematica effectively uses Block to set up local values for the iteration variables in all of
these constructs.

Sum automatically makes the value of
the iterator t local.

In[12]:= Sum[t^2, {t, 10}]

Out[12]= 385

The local values in iteration constructs
are slightly more general than in
Block. They handle variables such as
a[1], as well as pure symbols.

In[13]:= Sum[a[1]^2, {a[1], 10}]

Out[13]= 385

When you set up functions in Mathematica, it is sometimes convenient to have “global variables”
which can affect the functions without being given explicitly as arguments. Thus, for example, Mathe-
matica itself has a global variable $RecursionLimit which affects the evaluation of all functions, but
is never explicitly given as an argument.

Mathematica will usually keep any value you define for a global variable until you explicitly change
it. Often, however, you want to set up values which last only for the duration of a particular com-
putation, or part of a computation. You can do this by making the values local to a Mathematica
block.

This defines a function which depends
on the “global variable” t.

In[14]:= f[x_] := x^2 + t

In this case, the global value of t is
used.

In[15]:= f[a]

Out[15]= 17 � a2

Inside a block, you can set up a local
value for t.

In[16]:= Block[{t = 2}, f[b]]

Out[16]= 2 � b2

You can use global variables not only to set parameters in functions, but also to accumulate results
from functions. By setting up such variables to be local to a block, you can arrange to accumulate
results only from functions called during the execution of the block.

This function increments the global
variable t, and returns its current
value.

In[17]:= h[x_] := (t += x^2)



2.7.7 Blocks Compared with Modules 391

If you do not use a block, evaluating
h[a] changes the global value of t.

In[18]:= h[a]

Out[18]= 17 � a2

With a block, only the local value of t
is affected.

In[19]:= Block[{t = 0}, h[c]]

Out[19]= c2

The global value of t remains
unchanged.

In[20]:= t

Out[20]= 17 � a2

When you enter a block such as Block[{x}, body], any value for x is removed. This means that
you can in principle treat x as a “symbolic variable” inside the block. However, if you explicitly return
x from the block, it will be replaced by its value outside the block as soon as it is evaluated.

The value of t is removed when you
enter the block.

In[21]:= Block[{t}, Print[Expand[(t + 1)^2]]]

2
1 + 2 t + t

If you return an expression involving
t, however, it is evaluated using the
global value for t.

In[22]:= Block[{t}, t^2 - 3]

Out[22]= �3 � �17 � a2�2

2.7.7 Blocks Compared with Modules

When you write a program in Mathematica, you should always try to set it up so that its parts are as
independent as possible. In this way, the program will be easier for you to understand, maintain and
add to.

One of the main ways to ensure that different parts of a program do not interfere is to give their
variables only a certain “scope”. Mathematica provides two basic mechanisms for limiting the scope
of variables: modules and blocks.

In writing actual programs, modules are far more common than blocks. When scoping is needed
in interactive calculations, however, blocks are often convenient.

Module[vars, body] lexical scoping

Block[vars, body] dynamic scoping

Mathematica variable scoping mechanisms.

Most traditional computer languages use a so-called “lexical scoping” mechanism for variables,
which is analogous to the module mechanism in Mathematica. Some symbolic computer languages
such as LISP also allow “dynamic scoping”, analogous to Mathematica blocks.



392 2. Principles of Mathematica � 2.7 Modularity and the Naming of Things

When lexical scoping is used, variables are treated as local to a particular section of the code in a
program. In dynamic scoping, the values of variables are local to a part of the execution history of the
program.

In compiled languages like C and Java, there is a very clear distinction between “code” and “ex-
ecution history”. The symbolic nature of Mathematica makes this distinction slightly less clear, since
“code” can in principle be built up dynamically during the execution of a program.

What Module[vars, body] does is to treat the form of the expression body at the time when the
module is executed as the “code” of a Mathematica program. Then when any of the vars explicitly
appears in this “code”, it is considered to be local.

Block[vars, body] does not look at the form of the expression body. Instead, throughout the evalu-
ation of body, the block uses local values for the vars.

This defines m in terms of i. In[1]:= m = i^2

Out[1]= i2

The local value for i in the block is
used throughout the evaluation of
i + m.

In[2]:= Block[{i = a}, i + m]

Out[2]= a � a2

Here only the i that appears explicitly
in i + m is treated as a local variable.

In[3]:= Module[{i = a}, i + m]

Out[3]= a � i2

2.7.8 Contexts

It is always a good idea to give variables and functions names that are as explicit as possible.
Sometimes, however, such names may get inconveniently long.

In Mathematica, you can use the notion of “contexts” to organize the names of symbols. Contexts
are particularly important in Mathematica packages which introduce symbols whose names must not
conflict with those of any other symbols. If you write Mathematica packages, or make sophisticated
use of packages that others have written, then you will need to know about contexts.

The basic idea is that the full name of any symbol is broken into two parts: a context and a short
name. The full name is written as context`short, where the ` is the backquote or grave accent character
(ASCII decimal code 96), called a “context mark” in Mathematica.

Here is a symbol with short name x,
and context aaaa.

In[1]:= aaaa`x

Out[1]= aaaa`x

You can use this symbol just like any
other symbol.

In[2]:= %^2 - %

Out[2]= �aaaa`x � aaaa`x2

You can for example define a value for
the symbol.

In[3]:= aaaa`x = 78

Out[3]= 78



2.7.8 Contexts 393

Mathematica treats a`x and b`x as
completely different symbols.

In[4]:= a`x == b`x

Out[4]= a`x � b`x

It is typical to have all the symbols that relate a particular topic in a particular context. Thus, for
example, symbols that represent physical units might have a context PhysicalUnits`. Such symbols
might have full names like PhysicalUnits`Joule or PhysicalUnits`Mole.

Although you can always refer to a symbol by its full name, it is often convenient to use a shorter
name.

At any given point in a Mathematica session, there is always a current context $Context. You can
refer to symbols that are in this context simply by giving their short names.

The default context for Mathematica
sessions is Global`.

In[5]:= $Context

Out[5]= Global`

Short names are sufficient for symbols
that are in the current context.

In[6]:= {x, Global`x}

Out[6]= �x, x�
Contexts in Mathematica work somewhat like file directories in many operating systems. You can

always specify a particular file by giving its complete name, including its directory. But at any given
point, there is usually a current working directory, analogous to the current Mathematica context. Files
that are in this directory can then be specified just by giving their short names.

Like directories in many operating systems, contexts in Mathematica can be hierarchical. Thus, for
example, the full name of a symbol can involve a sequence of context names, as in c�`c�`c`name.

context`name or c�`c�` . . . `name a symbol in an explicitly specified context

`name a symbol in the current context

`context`name or `c�`c�` . . . `name a symbol in a specific context relative to the current
context

name a symbol in the current context, or found on the
context search path

Specifying symbols in various contexts.

Here is a symbol in the context a`b`. In[7]:= a`b`x

Out[7]= a`b`x

When you start a Mathematica session, the default current context is Global`. Symbols that you
introduce will usually be in this context. However, built-in symbols such as Pi are in the context
System`.



394 2. Principles of Mathematica � 2.7 Modularity and the Naming of Things

In order to let you easily access not only symbols in the context Global`, but also in contexts such
as System`, Mathematica supports the notion of a context search path. At any point in a Mathematica ses-
sion, there is both a current context $Context, and also a current context search path $ContextPath .
The idea of the search path is to allow you to type in the short name of a symbol, then have
Mathematica search in a sequence of contexts to find a symbol with that short name.

The context search path for symbols in Mathematica is analogous to the “search path” for program
files provided in operating systems such as Unix and MS-DOS.

The default context path includes the
contexts for system-defined symbols.

In[8]:= $ContextPath

Out[8]= �Global`, System`�
When you type in Pi, Mathematica
interprets it as the symbol with full
name System`Pi.

In[9]:= Context[Pi]

Out[9]= System`

Context[s] the context of a symbol

$Context the current context in a Mathematica session

$ContextPath the current context search path

Contexts[ ] a list of all contexts

Finding contexts and context search paths.

When you use contexts in Mathematica, there is no reason that two symbols which are in different
contexts cannot have the same short name. Thus, for example, you can have symbols with the short
name Mole both in the context PhysicalUnits` and in the context BiologicalOrganisms`.

There is, however, then the question of which symbol you actually get when you type in only the
short name Mole. The answer to this question is determined by which of the contexts comes first in
the sequence of contexts listed in the context search path.

This introduces two symbols, both with
short name Mole.

In[10]:= {PhysicalUnits`Mole, BiologicalOrganisms`Mole}

Out[10]= �PhysicalUnits`Mole, BiologicalOrganisms`Mole�
This adds two additional contexts to
$ContextPath.

In[11]:= $ContextPath =
Join[$ContextPath,

{"PhysicalUnits`", "BiologicalOrganisms`"}]

Out[11]= �Global`, System`,
PhysicalUnits`, BiologicalOrganisms`�

Now if you type in Mole, you get the
symbol in the context PhysicalUnits`.

In[12]:= Context[Mole]

Out[12]= PhysicalUnits`

In general, when you type in a short name for a symbol, Mathematica assumes that you want the
symbol with that name whose context appears earliest in the context search path. As a result, symbols



2.7.8 Contexts 395

with the same short name whose contexts appear later in the context search path are effectively
“shadowed”. To refer to these symbols, you need to use their full names.

Mathematica always warns you when you introduce new symbols that “shadow” existing sym-
bols with your current choice for $ContextPath . If you use a notebook front end, Mathematica will
typically let you select in such cases which symbol you want to keep.

This introduces a symbol with short
name Mole in the context Global`.
Mathematica warns you that the new
symbol shadows existing symbols with
short name Mole.

In[13]:= Global`Mole

Mole::shdw:
Symbol Mole appears in multiple contexts
{Global`, P<<11>>s`, BiologicalOrganisms`}
; definitions in context Global`
may shadow or be shadowed by other definitions.

Out[13]= Mole

Now when you type in Mole, you get
the symbol in context Global`.

In[14]:= Context[Mole]

Out[14]= Global`

If you once introduce a symbol which shadows existing symbols, it will continue to do so until
you either rearrange $ContextPath, or explicitly remove the symbol. You should realize that it is not
sufficient to clear the value of the symbol; you need to actually remove the symbol completely from
Mathematica. You can do this using the function Remove[s].

Clear[s] clear the values of a symbol

Remove[s] remove a symbol completely from the system

Clearing and removing symbols in Mathematica.

This removes the symbol Global`Mole. In[15]:= Remove[Mole]

Now if you type in Mole, you get the
symbol PhysicalUnits`Mole .

In[16]:= Context[Mole]

Out[16]= PhysicalUnits`

When Mathematica prints out the name of a symbol, it has to choose whether to give the full name,
or just the short name. What it does is to give whatever version of the name you would have to type
in to get the particular symbol, given your current settings for $Context and $ContextPath .

The short name is printed for the first
symbol, so this would give that symbol
if you typed it in.

In[17]:= {PhysicalUnits`Mole, BiologicalOrganisms`Mole}

Out[17]= �Mole, BiologicalOrganisms`Mole�
If you type in a short name for which there is no symbol either in the current context, or in any

context on the context search path, then Mathematica has to create a new symbol with this name. It
always puts new symbols of this kind in the current context, as specified by $Context.

This introduces the new symbol with
short name tree.

In[18]:= tree

Out[18]= tree



396 2. Principles of Mathematica � 2.7 Modularity and the Naming of Things

Mathematica puts tree in the current
context Global`.

In[19]:= Context[tree]

Out[19]= Global`

2.7.9 Contexts and Packages

A typical package written in Mathematica introduces several new symbols intended for use outside the
package. These symbols may correspond for example to new functions or new objects defined in the
package.

There is a general convention that all new symbols introduced in a particular package are put into
a context whose name is related to the name of the package. When you read in the package, it adds
this context at the beginning of your context search path $ContextPath .

This reads in a package for finding
Padé approximants.

In[1]:= <<Calculus`Pade`

The package prepends its context to
$ContextPath.

In[2]:= $ContextPath

Out[2]= �Calculus`Pade`, Global`, System`�
The symbol Pade is in the context set
up by the package.

In[3]:= Context[Pade]

Out[3]= Calculus`Pade`

You can refer to the symbol using its
short name.

In[4]:= Pade[Exp[x], {x, 0, 2, 4}]

Out[4]=
1 � x������3 � x2

���������30��������������������������������������������������������������������������������������������
1 � 2 x����������3 � x2

���������5 � x3

���������30 � x4

�������������360

The full names of symbols defined in packages are often quite long. In most cases, however, you
will only need to use their short names. The reason for this is that after you have read in a package,
its context is added to $ContextPath, so the context is automatically searched whenever you type in
a short name.

There is a complication, however, when two symbols with the same short name appear in two
different packages. In such a case, Mathematica will warn you when you read in the second package.
It will tell you which symbols will be “shadowed” by the new symbols that are being introduced.

The symbol Pade in the context
Calculus`Pade` is shadowed by the
symbol with the same short name in
the new package.

In[5]:= <<NewPade`

Pade::shdw:
Symbol Pade appears in multiple contexts
{NewPade`, Calculus`Pade`}; definitions in context
NewPade` may shadow or be shadowed by other
definitions.

You can access the shadowed symbol
by giving its full name.

In[6]:= Calculus`Pade`Pade[Exp[x], {x, 0, 2, 4}]

Out[6]=
1 � x������3 � x2

���������30��������������������������������������������������������������������������������������������
1 � 2 x����������3 � x2

���������5 � x3

���������30 � x4

�������������360



2.7.10 Setting Up Mathematica Packages 397

Conflicts can occur not only between symbols in different packages, but also between symbols in
packages and symbols that you introduce directly in your Mathematica session. If you define a symbol
in your current context, then this symbol will shadow any other symbol with the same short name in
packages that you read in. The reason for this is that Mathematica always searches for symbols in the
current context before looking in contexts on the context search path.

This defines a function in the current
context.

In[7]:= Div[f_] = 1/f

Out[7]=
1
�������
f

Any other functions with short name
Div will be shadowed by the one in
your current context.

In[8]:= <<Calculus`VectorAnalysis`

Div::shdw: Symbol Div appears in multiple contexts
{Calculus`VectorAnalysis`, Global`}
; definitions in context Calculus`VectorAnalysis`
may shadow or be shadowed by other definitions.

This sets up the coordinate system for
vector analysis.

In[9]:= SetCoordinates[Cartesian[x, y, z]]

Out[9]= Cartesianx, y, z�
This removes Div completely from the
current context.

In[10]:= Clear[Div]; Remove[Div]

Now the Div from the package is used. In[11]:= Div[{x, y^2, x}]

Out[11]= 1 � 2 y

If you get into the situation where unwanted symbols are shadowing the symbols you want, the
best thing to do is usually to get rid of the unwanted symbols using Remove[s]. An alternative that is
sometimes appropriate is to rearrange the entries in $ContextPath and to reset the value of $Context
so as to make the contexts that contain the symbols you want be the ones that are searched first.

$Packages a list of the contexts corresponding to all packages loaded
into your Mathematica session

Getting a list of packages.

2.7.10 Setting Up Mathematica Packages

In a typical Mathematica package, there are generally two kinds of new symbols that are introduced.
The first kind are ones that you want to “export” for use outside the package. The second kind are
ones that you want to use only internally within the package. You can distinguish these two kinds of
symbols by putting them in different contexts.

The usual convention is to put symbols intended for export in a context with a name Package` that
corresponds to the name of the package. Whenever the package is read in, it adds this context to the
context search path, so that the symbols in this context can be referred to by their short names.



398 2. Principles of Mathematica � 2.7 Modularity and the Naming of Things

Symbols that are not intended for export, but are instead intended only for internal use within the
package, are conventionally put into a context with the name Package`Private`. This context is not
added to the context search path. As a result, the symbols in this context cannot be accessed except
by giving their full names.

Package` symbols for export

Package`Private` symbols for internal use only

System` built-in Mathematica symbols

Needed�`, Needed�`, . . . other contexts needed in the package

Contexts conventionally used in Mathematica packages.

There is a standard sequence of Mathematica commands that is typically used to set up the contexts
in a package. These commands set the values of $Context and $ContextPath so that the new symbols
which are introduced are created in the appropriate contexts.

BeginPackage["Package`"] set Package` to be the current context, and put only System`
on the context search path

f::usage = "text", . . . introduce the objects intended for export (and no others)

Begin["`Private`"] set the current context to Package`Private`

f[args] = value, . . . give the main body of definitions in the package

End[ ] revert to the previous context (here Package`)

EndPackage[ ] end the package, prepending the Package` to the context
search path

The standard sequence of context control commands in a package.



2.7.10 Setting Up Mathematica Packages 399

BeginPackage["Collatz`"]

Collatz::usage =
"Collatz[n] gives a list of the iterates in the 3n+1 problem,
starting from n. The conjecture is that this sequence always
terminates."

Begin["`Private`"]

Collatz[1] := {1}

Collatz[n_Integer] := Prepend[Collatz[3 n + 1], n] /; OddQ[n] && n > 0

Collatz[n_Integer] := Prepend[Collatz[n/2], n] /; EvenQ[n] && n > 0

End[ ]

EndPackage[ ]

The sample package Collatz.m.

Defining usage messages at the beginning of a package is the standard way of making sure that
symbols you want to export are created in the appropriate context. The way this works is that in
defining these messages, the only symbols you mention are exactly the ones you want to export.
These symbols are then created in the context Package`, which is then current.

In the actual definitions of the functions in a package, there are typically many new symbols,
introduced as parameters, temporary variables, and so on. The convention is to put all these symbols
in the context Package`Private`, which is not put on the context search path when the package is
read in.

This reads in the sample package given
above.

In[1]:= <<Collatz.m

The EndPackage command in the
package adds the context associated
with the package to the context search
path.

In[2]:= $ContextPath

Out[2]= �Collatz`, Global`, System`�

The Collatz function was created in
the context Collatz`.

In[3]:= Context[Collatz]

Out[3]= Collatz`

The parameter n is put in the private
context Collatz`Private` .

In[4]:= ?Collatz`Private`*

Collatz`Private`n

In the Collatz package, the functions that are defined depend only on built-in Mathematica func-
tions. Often, however, the functions defined in one package may depend on functions defined in
another package.



400 2. Principles of Mathematica � 2.7 Modularity and the Naming of Things

Two things are needed to make this work. First, the other package must be read in, so that the
functions needed are defined. And second, the context search path must include the context that these
functions are in.

You can explicitly tell Mathematica to read in a package at any point using the command <<context`.
(Section 2.12.5 discusses the tricky issue of translation from system-independent context names to
system-dependent file names.) Often, however, you want to set it up so that a particular package is
read in only if it is needed. The command Needs["context`"] tells Mathematica to read in a package
if the context associated with that package is not already in the list $Packages.

Get["context`"] or <<context` read in the package corresponding to the specified context

Needs["context`"] read in the package if the specified context is not already in
$Packages

BeginPackage["Package`", {"Needed�`", . . . }]
begin a package, specifying that certain contexts in addition
to System` are needed

Functions for specifying interdependence of packages.

If you use BeginPackage["Package`"] with a single argument, Mathematica puts on the context
search path only the Package` context and the contexts for built-in Mathematica symbols. If the defini-
tions you give in your package involve functions from other packages, you must make sure that the
contexts for these packages are also included in your context search path. You can do this by giving
a list of the additional contexts as a second argument to BeginPackage. BeginPackage automatically
calls Needs on these contexts, reading in the corresponding packages if necessary, and then making
sure that the contexts are on the context search path.

Begin["context`"] switch to a new current context

End[ ] revert to the previous context

Context manipulation functions.

Executing a function like Begin which manipulates contexts changes the way that Mathematica
interprets names you type in. However, you should realize that the change is effective only in subse-
quent expressions that you type in. The point is that Mathematica always reads in a complete input
expression, and interprets the names in it, before it executes any part of the expression. As a result,
by the time Begin is executed in a particular expression, the names in the expression have already
been interpreted, and it is too late for Begin to have an effect.



2.7.11 Automatic Loading of Packages 401

The fact that context manipulation functions do not have an effect until the next complete expression
is read in means that you must be sure to give those functions as separate expressions, typically on
separate lines, when you write Mathematica packages.

The name x is interpreted before this
expression is executed, so the Begin
has no effect.

In[5]:= Begin["a`"]; Print[Context[x]]; End[ ]

Global`

Out[5]= a`

Context manipulation functions are used primarily as part of packages intended to be read into
Mathematica. Sometimes, however, you may find it convenient to use such functions interactively.

This can happen, for example, if you go into a dialog, say using TraceDialog, while executing a
function defined in a package. The parameters and temporary variables in the function are typically
in a private context associated with the package. Since this context is not on your context search path,
Mathematica will print out the full names of the symbols, and will require you to type in these full
names in order to refer to the symbols. You can however use Begin["Package`Private`"] to make
the private context of the package your current context. This will make Mathematica print out short
names for the symbols, and allow you to refer to the symbols by their short names.

2.7.11 Automatic Loading of Packages

Previous sections have discussed explicit loading of Mathematica packages using <<package and
Needs[package]. Sometimes, however, you may want to set Mathematica up so that it automatically
loads a particular package when the package is needed.

You can use DeclarePackage to give the names of symbols which are defined in a particular
package. Then, when one of these symbols is actually used, Mathematica will automatically load the
package where the symbol is defined.

DeclarePackage["context`", {"name�", "name�", . . . }]
declare that a package should automatically be loaded if a
symbol with any of the names namei is used

Arranging for automatic loading of packages.

This specifies that the symbols Div,
Grad and Curl are defined in
Calculus`VectorAnalysis` .

In[1]:= DeclarePackage["Calculus`VectorAnalysis`",
{"Div", "Grad", "Curl"}]

Out[1]= Calculus`VectorAnalysis`

When you first use Grad, Mathematica
automatically loads the package that
defines it.

In[2]:= Grad[x^2 + y^2, Cartesian[x, y, z]]

Out[2]= �2 x, 2 y, 0�



402 2. Principles of Mathematica � 2.7 Modularity and the Naming of Things

When you set up a large collection of Mathematica packages, it is often a good idea to create an
additional “names file” which contains a sequence of DeclarePackage commands, specifying packages
to load when particular names are used. Within a particular Mathematica session, you then need to
load explicitly only the names file. When you have done this, all the other packages will automatically
be loaded if and when they are needed.

DeclarePackage works by immediately creating symbols with the names you specify, but giving
each of these symbols the special attribute Stub. Whenever Mathematica finds a symbol with the Stub
attribute, it automatically loads the package corresponding to the context of the symbol, in an attempt
to find the definition of the symbol.

2.7.12 Manipulating Symbols and Contexts by Name

Symbol["name"] construct a symbol with a given name

SymbolName[symb] find the name of a symbol

Converting between symbols and their names.

Here is the symbol x. In[1]:= x // InputForm

Out[1]//InputForm= x

Its name is a string. In[2]:= SymbolName[x] // InputForm

Out[2]//InputForm= "x"

This gives the symbol x again. In[3]:= Symbol["x"] // InputForm

Out[3]//InputForm= x

Once you have made an assignment such as x = 2, then whenever x is evaluated, it is replaced by 2.
Sometimes, however, you may want to continue to refer to x itself, without immediately getting the
value of x.

You can do this by referring to x by name. The name of the symbol x is the string "x", and even
though x itself may be replaced by a value, the string "x" will always stay the same.

The names of the symbols x and xp
are the strings "x" and "xp".

In[4]:= t = {SymbolName[x], SymbolName[xp]} // InputForm

Out[4]//InputForm= {"x", "xp"}

This assigns a value to x. In[5]:= x = 2

Out[5]= 2

Whenever you enter x it is now
replaced by 2.

In[6]:= {x, xp} // InputForm

Out[6]//InputForm= {2, xp}



2.7.12 Manipulating Symbols and Contexts by Name 403

The name "x" is not affected, however. In[7]:= t // InputForm

Out[7]//InputForm= InputForm[{"x", "xp"}]

NameQ["form"] test whether any symbol has a name which matches form

Names["form"] give a list of all symbol names which match form

Contexts["form`"] give a list of all context names which match form

Referring to symbols and contexts by name.

x and xp are symbols that have been
created in this Mathematica session; xpp
is not.

In[8]:= {NameQ["x"], NameQ["xp"], NameQ["xpp"]}

Out[8]= �True, True, False�
You can specify the form of symbol names using string patterns of the kind discussed on page 411.

"x*" stands, for example, for all names that start with x.

This gives a list of all symbol names in
this Mathematica session that begin
with x.

In[9]:= Names["x*"] // InputForm

Out[9]//InputForm= {"x", "xp", "x$"}

These names correspond to built-in
functions in Mathematica.

In[10]:= Names["Qu*"] // InputForm

Out[10]//InputForm= {"Quantile", "Quartics", "QuasiMonteCarlo",

"QuasiNewton", "Quit", "Quotient"}

This asks for names “close” to
WeierstrssP.

In[11]:= Names["WeierstrssP", SpellingCorrection->True]

Out[11]= �WeierstrassP�

Clear["form"] clear the values of all symbols whose names match form

Clear["context`*"] clear the values of all symbols in the specified context

Remove["form"] remove completely all symbols whose names match form

Remove["context`*"] remove completely all symbols in the specified context

Getting rid of symbols by name.

This clears the values of all symbols
whose names start with x.

In[12]:= Clear["x*"]

The name "x" is still known, however. In[13]:= Names["x*"]

Out[13]= �x, xp, x$�



404 2. Principles of Mathematica � 2.7 Modularity and the Naming of Things

But the value of x has been cleared. In[14]:= {x, xp}

Out[14]= �x, xp�
This removes completely all symbols
whose names start with x.

In[15]:= Remove["x*"]

Now not even the name "x" is known. In[16]:= Names["x*"]

Out[16]= ��

Remove["Global`*"] remove completely all symbols in the Global` context

Removing all symbols you have introduced.

If you do not set up any additional contexts, then all the symbols that you introduce in a Mathe-
matica session will be placed in the Global` context. You can remove these symbols completely using
Remove["Global`*"]. Built-in Mathematica objects are in the System` context, and are thus unaffected
by this.

2.7.13 Advanced Topic: Intercepting the Creation of New Symbols

Mathematica creates a new symbol when you first enter a particular name. Sometimes it is useful to
“intercept” the process of creating a new symbol. Mathematica provides several ways to do this.

On[General::newsym] print a message whenever a new symbol is created

Off[General::newsym] switch off the message printed when new symbols are
created

Printing a message when new symbols are created.

This tells Mathematica to print a
message whenever a new symbol is
created.

In[1]:= On[General::newsym]

Mathematica now prints a message
about each new symbol that it creates.

In[2]:= sin[k]

General::newsym: Symbol sin is new.

General::newsym: Symbol k is new.

Out[2]= sink�
This switches off the message. In[3]:= Off[General::newsym]

Generating a message when Mathematica creates a new symbol is often a good way to catch typing
mistakes. Mathematica itself cannot tell the difference between an intentionally new name, and a



2.7.13 Advanced Topic: Intercepting the Creation of New Symbols 405

misspelling of a name it already knows. But by reporting all new names it encounters, Mathematica
allows you to see whether any of them are mistakes.

$NewSymbol a function to be applied to the name and context of new
symbols which are created

Performing operations when new symbols are created.

When Mathematica creates a new symbol, you may want it not just to print a message, but in-
stead to perform some other action. Any function you specify as the value of the global variable
$NewSymbol will automatically be applied to strings giving the name and context of each new symbol
that Mathematica creates.

This defines a function to be applied to
each new symbol which is created.

In[4]:= $NewSymbol = Print["Name: ", #1, " Context: ", #2]&

Out[4]= PrintName: , #1, Context: , #2� &

The function is applied once to v and
once to w.

In[5]:= v + w

Name: v Context: Global`
Name: w Context: Global`

Out[5]= v � w



406 2. Principles of Mathematica � 2.8 Strings and Characters

2.8 Strings and Characters

2.8.1 Properties of Strings

Much of what Mathematica does revolves around manipulating structured expressions. But you can
also use Mathematica as a system for handling unstructured strings of text.

"text" a string containing arbitrary text

Text strings.

When you input a string of text to Mathematica you must always enclose it in quotes. However,
when Mathematica outputs the string it usually does not explicitly show the quotes.

You can see the quotes by asking for the input form of the string. In addition, in a Mathematica
notebook, quotes will typically appear automatically as soon as you start to edit a string.

When Mathematica outputs a string, it
usually does not explicitly show the
quotes.

In[1]:= "This is a string."

Out[1]= This is a string.

You can see the quotes, however, by
asking for the input form of the string.

In[2]:= InputForm[%]

Out[2]//InputForm= "This is a string."

The fact that Mathematica does not usually show explicit quotes around strings makes it possible
for you to use strings to specify quite directly the textual output you want.

The strings are printed out here
without explicit quotes.

In[3]:= Print["The value is ", 567, "."]

The value is 567.

You should understand, however, that even though the string "x" often appears as x in output, it
is still a quite different object from the symbol x.

The string "x" is not the same as the
symbol x.

In[4]:= "x" === x

Out[4]= False

You can test whether any particular expression is a string by looking at its head. The head of any
string is always String.

All strings have head String. In[5]:= Head["x"]

Out[5]= String

The pattern _String matches any
string.

In[6]:= Cases[{"ab", x, "a", y}, _String]

Out[6]= �ab, a�



2.8.2 Operations on Strings 407

You can use strings just like other expressions as elements of patterns and transformations. Note,
however, that you cannot assign values directly to strings.

This gives a definition for an
expression that involves a string.

In[7]:= z["gold"] = 79

Out[7]= 79

This replaces each occurrence of the
string "aa" by the symbol x.

In[8]:= {"aaa", "aa", "bb", "aa"} /. "aa" -> x

Out[8]= �aaa, x, bb, x�

2.8.2 Operations on Strings

Mathematica provides a variety of functions for manipulating strings. Most of these functions are based
on viewing strings as a sequence of characters, and many of the functions are analogous to ones for
manipulating lists.

s� <> s� <> . . . or StringJoin[{s�, s�, . . . }]
join several strings together

StringLength[s] give the number of characters in a string

StringReverse[s] reverse the characters in a string

Operations on complete strings.

You can join together any number of
strings using <>.

In[1]:= "aaaaaaa" <> "bbb" <> "cccccccccc"

Out[1]= aaaaaaabbbcccccccccc

StringLength gives the number of
characters in a string.

In[2]:= StringLength[%]

Out[2]= 20

StringReverse reverses the characters
in a string.

In[3]:= StringReverse["A string."]

Out[3]= .gnirts A

StringTake[s, n] make a string by taking the first n characters from s

StringTake[s, {n}] take the nth character from s

StringTake[s, {n�, n�}] take characters n� through n�

StringDrop[s, n] make a string by dropping the first n characters in s

StringDrop[s, {n�, n�}] drop characters n� through n�

Taking and dropping substrings.



408 2. Principles of Mathematica � 2.8 Strings and Characters

StringTake and StringDrop are the analogs for strings of Take and Drop for lists. Like Take and
Drop, they use standard Mathematica sequence specifications, so that, for example, negative numbers
count character positions from the end of a string. Note that the first character of a string is taken to
have position 1.

Here is a sample string. In[4]:= alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Out[4]= ABCDEFGHIJKLMNOPQRSTUVWXYZ

This takes the first five characters from
alpha.

In[5]:= StringTake[alpha, 5]

Out[5]= ABCDE

Here is the fifth character in alpha. In[6]:= StringTake[alpha, {5}]

Out[6]= E

This drops the characters 10 through 2,
counting from the end of the string.

In[7]:= StringDrop[alpha, {-10, -2}]

Out[7]= ABCDEFGHIJKLMNOPZ

StringInsert[s, snew, n] insert the string snew at position n in s

StringInsert[s, snew, {n�, n�, . . . }]
insert several copies of snew into s

Inserting into a string.

StringInsert[s, snew, n] is set up to produce a string whose nth character is the first character
of snew.

This produces a new string whose
fourth character is the first character of
the string "XX".

In[8]:= StringInsert["abcdefgh", "XX", 4]

Out[8]= abcXXdefgh

Negative positions are counted from
the end of the string.

In[9]:= StringInsert["abcdefgh", "XXX", -1]

Out[9]= abcdefghXXX

Each copy of "XXX" is inserted at the
specified position in the original string.

In[10]:= StringInsert["abcdefgh", "XXX", {2, 4, -1}]

Out[10]= aXXXbcXXXdefghXXX



2.8.2 Operations on Strings 409

StringReplacePart[s, snew, {m, n}]
replace the characters at positions m through n in s by the
string snew

StringReplacePart[s, snew, {{m�, n�}, {m�, n�}, . . . }]
replace several substrings in s by snew

StringReplacePart[s, {snew�, snew�, . . . }, {{m�, n�}, {m�, n�}, . . . }]
replace substrings in s by the corresponding snewi

Replacing parts of a string.

This replaces characters 2 through 6 by
the string "XXX".

In[11]:= StringReplacePart["abcdefgh", "XXX", {2, 6}]

Out[11]= aXXXgh

This replaces two runs of characters by
the string "XXX".

In[12]:= StringReplacePart["abcdefgh", "XXX", {{2, 3}, {5, -1}}]

Out[12]= aXXXdXXX

Now the two runs of characters are
replaced by different strings.

In[13]:= StringReplacePart["abcdefgh", {"XXX", "YYYY"},
{{2, 3}, {5, -1}}]

Out[13]= aXXXdYYYY

StringPosition[s, sub] give a list of the starting and ending positions at which sub
appears as a substring of s

StringPosition[s, sub, k] include only the first k occurrences of sub in s

StringPosition[s, {sub�, sub�, . . . }]
include occurrences of any of the subi

Finding positions of substrings.

You can use StringPosition to find where a particular substring appears within a given string.
StringPosition returns a list, each of whose elements corresponds to an occurrence of the sub-
string. The elements consist of lists giving the starting and ending character positions for the sub-
string. These lists are in the form used as sequence specifications in StringTake, StringDrop and
StringReplacePart.

This gives a list of the positions of the
substring "abc".

In[14]:= StringPosition["abcdabcdaabcabcd", "abc"]

Out[14]= ��1, 3�, �5, 7�, �10, 12�, �13, 15��
This gives only the first occurrence of
"abc".

In[15]:= StringPosition["abcdabcdaabcabcd", "abc", 1]

Out[15]= ��1, 3��



410 2. Principles of Mathematica � 2.8 Strings and Characters

This shows where both "abc" and
"cd" appear. Overlaps between these
strings are taken into account.

In[16]:= StringPosition["abcdabcdaabcabcd", {"abc", "cd"}]

Out[16]= ��1, 3�, �3, 4�, �5, 7�,�7, 8�, �10, 12�, �13, 15�, �15, 16��

StringReplace[s, {s� -> sp�, s� -> sp�, . . . }]
replace the si by the corresponding spi whenever they
appear as substrings of s

Replacing substrings according to rules.

StringReplace allows you to perform replacements for substrings within a string. StringReplace
sequentially goes through a string, testing substrings that start at each successive character position.
To each substring, it tries in turn each of the transformation rules you have specified. If any of the
rules apply, it replaces the substring, then continues to go through the string, starting at the character
position after the end of the substring.

This replaces all occurrences of the
character a by the string XX.

In[17]:= StringReplace["abcdabcdaabcabcd", "a" -> "XX"]

Out[17]= XXbcdXXbcdXXXXbcXXbcd

This replaces abc by Y, and d by XXX. In[18]:= StringReplace["abcdabcdaabcabcd",
{"abc" -> "Y", "d" -> "XXX"}]

Out[18]= YXXXYXXXaYYXXX

The first occurrence of cde is not
replaced because it overlaps with abc.

In[19]:= StringReplace["abcde abacde",
{"abc" -> "X", "cde" -> "Y"}]

Out[19]= Xde abaY

StringPosition[s, sub, IgnoreCase -> True]
find where sub occurs in s, treating lower- and upper-case
letters as equivalent

StringReplace[s, {s� -> sp�, . . . }, IgnoreCase -> True]
replace si by spi in s, treating lower- and upper-case letters
as equivalent

Case-independent operations.

This replaces all occurrences of "the",
independent of case.

In[20]:= StringReplace["The cat in the hat.", "the" -> "a",
IgnoreCase -> True]

Out[20]= a cat in a hat.



2.8.3 String Patterns 411

Sort[{s�, s�, s, . . . }] sort a list of strings

Sorting strings.

Sort sorts strings into standard
dictionary order.

In[21]:= Sort[{"cat", "fish", "catfish", "Cat"}]

Out[21]= �cat, Cat, catfish, fish�

2.8.3 String Patterns

You can use the standard Mathematica equality test s� == s� to test whether two strings are identical.
Sometimes, however, you may want to find out whether a particular string matches a certain string
pattern.

Mathematica allows you to define string patterns which consist of ordinary strings in which certain
characters are interpreted as special “metacharacters”. You can then use the function StringMatchQ
to find out whether a particular string matches a string pattern you have defined. You should realize
however that string patterns have nothing to do with the ordinary Mathematica patterns for expressions
that were discussed in Section 2.3.

"string�" == "string�" test whether two strings are identical

StringMatchQ["string", "pattern"] test whether a string matches a particular string pattern

Matching strings.

The character * can be used in a string pattern as a metacharacter to stand for any sequence of
alphanumeric characters. Thus, for example, the string pattern "a*b" would match any string which
begins with an a, ends with a b, and has any number of alphanumeric characters in between. Similarly,
"a*b*" would match any string that starts with a, and has any number of other characters, including
at least one b.

The string matches the string pattern
you have given.

In[1]:= StringMatchQ["aaaaabbbbcccbbb", "a*b*"]

Out[1]= True

The way * is used in Mathematica string patterns is analogous to the way it is used for file-
name patterns in many operating systems. Mathematica however provides some other string pattern
metacharacters that are tailored to matching different classes of Mathematica symbol names.



412 2. Principles of Mathematica � 2.8 Strings and Characters

* zero or more characters

@ one or more characters which are not upper-case letters

\* etc. literal * etc.

Metacharacters used in string patterns.

In Mathematica there is a general convention that only built-in names should contain upper-case
characters. Assuming that you follow this convention, you can use @ as a metacharacter to set up
string patterns which match names you have defined, but avoid matching built-in names.

StringMatchQ["string", "pattern", SpellingCorrection -> True]
test whether pattern matches string, allowing a small fraction
of characters to differ

StringMatchQ["string", "pattern", IgnoreCase -> True]
test whether pattern matches string, treating lower- and
upper-case letters as equivalent

Options for matching strings.

These strings do not match. In[2]:= StringMatchQ["platypus", "paltypus"]

Out[2]= False

Allowing for spelling correction, these
strings are considered to match.

In[3]:= StringMatchQ["platypus", "paltypus",
SpellingCorrection -> True]

Out[3]= True

These strings match when lower- and
upper-case letters are treated as
equivalent.

In[4]:= StringMatchQ["AAaaBBbb", "a*b*", IgnoreCase -> True]

Out[4]= True

2.8.4 Characters in Strings

Characters["string"] convert a string to a list of characters

StringJoin[{"c�", "c�", . . . }] convert a list of characters to a string

Converting between strings and lists of characters.

This gives a list of the characters in the
string.

In[1]:= Characters["A string."]

Out[1]= �A, , s, t, r, i, n, g, .�



2.8.4 Characters in Strings 413

You can apply standard list
manipulation operations to this list.

In[2]:= RotateLeft[%, 3]

Out[2]= �t, r, i, n, g, ., A, , s�
StringJoin converts the list of
characters back to a single string.

In[3]:= StringJoin[%]

Out[3]= tring.A s

DigitQ[string] test whether all characters in a string are digits

LetterQ[string] test whether all characters in a string are letters

UpperCaseQ[string] test whether all characters in a string are upper-case letters

LowerCaseQ[string] test whether all characters in a string are lower-case letters

Testing characters in a string.

All characters in the string given are
letters.

In[4]:= LetterQ["Mixed"]

Out[4]= True

Not all the letters are upper case, so
the result is False.

In[5]:= UpperCaseQ["Mixed"]

Out[5]= False

ToUpperCase[string] generate a string in which all letters are upper case

ToLowerCase[string] generate a string in which all letters are lower case

Converting between upper and lower case.

This converts all letters to upper case. In[6]:= ToUpperCase["Mixed Form"]

Out[6]= MIXED FORM

CharacterRange["c�", "c�"] generate a list of all characters from c� and c�

Generating ranges of characters.

This generates a list of lower-case
letters in alphabetical order.

In[7]:= CharacterRange["a", "h"]

Out[7]= �a, b, c, d, e, f, g, h�
Here is a list of upper-case letters. In[8]:= CharacterRange["T", "Z"]

Out[8]= �T, U, V, W, X, Y, Z�
Here are some digits. In[9]:= CharacterRange["0", "7"]

Out[9]= �0, 1, 2, 3, 4, 5, 6, 7�



414 2. Principles of Mathematica � 2.8 Strings and Characters

CharacterRange will usually give meaningful results for any range of characters that have a natural
ordering. The way CharacterRange works is by using the character codes that Mathematica internally
assigns to every character.

This shows the ordering defined by the
internal character codes used by
Mathematica.

In[10]:= CharacterRange["T", "e"]

Out[10]= �T, U, V, W, X, Y, Z, , \, �, ^, _, `, a, b, c, d, e�

2.8.5 Special Characters

In addition to the ordinary characters that appear on a standard keyboard, you can include in
Mathematica strings any of the special characters that are supported by Mathematica.

Here is a string containing special
characters.

In[1]:= "Α�Β��"

Out[1]= ΑOΒO…

You can manipulate this string just as
you would any other.

In[2]:= StringReplace[%, "�" -> " �� "]

Out[2]= Α �� Β �� …

Here is the list of the characters in the
string.

In[3]:= Characters[%]

Out[3]= �Α, , �, �, , Β, , �, �, , …�
In a Mathematica notebook, a special character such as Α can always be displayed directly. But if

you use a text-based interface, then typically the only characters that can readily be displayed are the
ones that appear on your keyboard.

As a result, what Mathematica does in such situations is to try to approximate special characters
by similar-looking sequences of ordinary characters. And when this is not practical, Mathematica just
gives the full name of the special character.

In a Mathematica notebook using
StandardForm, special characters can
be displayed directly.

In[4]:= "Lamé � ΑΒ+"

Out[4]= Lamé T ΑΒ�

In OutputForm, however, the special
characters are approximated when
possible by sequences of ordinary ones.

In[5]:= % // OutputForm

Out[5]//OutputForm= Lame' ---> \[Alpha]\[Beta]+

Mathematica always uses full names for special characters in InputForm. This means that when
special characters are written out to files or external programs, they are by default represented purely
as sequences of ordinary characters.

This uniform representation is crucial in allowing special characters in Mathematica to be used in a
way that does not depend on the details of particular computer systems.

In InputForm the full names of all
special characters are always written
out explicitly.

In[6]:= "Lamé � ΑΒ+" // InputForm

Out[6]//InputForm= "Lamé \[LongRightArrow] \[Alpha]\[Beta]+"



2.8.6 Advanced Topic: Newlines and Tabs in Strings 415

a a literal character

\[Name] a character specified using its full name

\" a " to be included in a string

\\ a \ to be included in a string

Ways to enter characters in a string.

You have to use \ to “escape” any " or
\ characters in strings that you enter.

In[7]:= "Strings can contain \"quotes\" and \\ characters."

Out[7]= Strings can contain "quotes" and \ characters.

\\ produces a literal \ rather than
forming part of the specification of Α.

In[8]:= "\\[Alpha] is \[Alpha]."

Out[8]= \[Alpha] is Α.

This breaks the string into a list of
individual characters.

In[9]:= Characters[%]

Out[9]= �\, , A, l, p, h, a, �, , i, s, , Α, .�
This creates a list of the characters in
the full name of Α.

In[10]:= Characters[ ToString[InputForm["Α"]] ]

Out[10]= {", \, [, A, l, p, h, a, ], "}

And this produces a string consisting
of an actual Α from its full name.

In[11]:= ToExpression[ "\"\\[" <> "Alpha" <> "]\""]

Out[11]= Α

2.8.6 Advanced Topic: Newlines and Tabs in Strings

\n a newline (line feed) to be included in a string

\t a tab to be included in a string

Explicit representations of newlines and tabs in strings.

This prints on two lines. In[1]:= "First line.\nSecond line."

Out[1]= First line.
Second line.

In InputForm there is an explicit \n to
represent the newline.

In[2]:= InputForm[%]

Out[2]//InputForm= "First line.\nSecond line."

When you enter a long string in Mathematica, it is often convenient to break your input across several
lines. Mathematica will by default ignore such breaks, so that if you subsequently output the string, it
can then be broken in whatever way is appropriate.



416 2. Principles of Mathematica � 2.8 Strings and Characters

Mathematica ignores the line break and
any tabs that follow it.

In[3]:= "A string on
two lines."

Out[3]= A string on two lines.

There is no newline in the string. In[4]:= InputForm[%]

Out[4]//InputForm= "A string on two lines."

"text" line breaks in text are ignored

"\<text\>" line breaks in text are stored explicitly as \n

Input forms for strings.

Now Mathematica keeps the newline. In[5]:= "\<A string on
two lines.\>"

Out[5]= A string on
two lines.

In InputForm, the newline is shown as
an explicit \n.

In[6]:= InputForm[%]

Out[6]//InputForm= "A string on\ntwo lines."

You should realize that even though it is possible to achieve some formatting of Mathematica output
by creating strings which contain raw tabs and newlines, this is rarely a good idea. Typically a much
better approach is to use the higher-level Mathematica formatting primitives to be discussed in the next
two sections. These primitives will always yield consistent output, independent of such issues as the
positions of tab settings on a particular device.

In strings with newlines, text is always
aligned on the left.

In[7]:= {"Here is\na string\non several lines.",
"Here is\nanother"}

Out[7]= �Here is
a string
on several lines., Here is
another�

The ColumnForm formatting primitive
gives more control. Here text is
aligned on the right.

In[8]:= ColumnForm[{"First line", "Second", "Third"}, Right]

Out[8]= First line

Second

Third

And here the text is centered. In[9]:= ColumnForm[{"First line", "Second", "Third"}, Center]

Out[9]= First line

Second

Third



2.8.7 Advanced Topic: Character Codes 417

Within Mathematica you can use formatting primitives to avoid raw tabs and newlines. But if you
intend to send your output in textual form to external programs, then these programs will often expect
to get raw tabs and newlines.

Note that you must either use WriteString or give your output in OutputForm in order for the
raw tabs and newlines to show up. In InputForm , they will just be given as \t and \n.

This outputs a string to a file. In[10]:= "First line.\nSecond line." >> test

Here are the contents of the file. By
default, >> generates output in
InputForm.

In[11]:= !!test

"First line.\nSecond line."

This explicitly tells Mathematica to use
OutputForm for the output.

In[12]:= OutputForm["First line.\nSecond line."] >> test

Now there is a raw newline in the file. In[13]:= !!test

First line.
Second line.

2.8.7 Advanced Topic: Character Codes

ToCharacterCode["string"] give a list of the character codes for the characters in a
string

FromCharacterCode[n] construct a character from its character code

FromCharacterCode[{n�, n�, . . . }] construct a string of characters from a list of character
codes

Converting to and from character codes.

Mathematica assigns every character that can appear in a string a unique character code. This code is
used internally as a way to represent the character.

This gives the character codes for the
characters in the string.

In[1]:= ToCharacterCode["ABCD abcd"]

Out[1]= �65, 66, 67, 68, 32, 97, 98, 99, 100�
FromCharacterCode reconstructs the
original string.

In[2]:= FromCharacterCode[%]

Out[2]= ABCD abcd

Special characters also have character
codes.

In[3]:= ToCharacterCode["Α����"]

Out[3]= �945, 8853, 915, 8854, 8709�

CharacterRange["c�", "c�"] generate a list of characters with successive character
codes

Generating sequences of characters.



418 2. Principles of Mathematica � 2.8 Strings and Characters

This gives part of the English alphabet. In[4]:= CharacterRange["a", "k"]

Out[4]= �a, b, c, d, e, f, g, h, i, j, k�
Here is the Greek alphabet. In[5]:= CharacterRange["Α", "Ω"]

Out[5]= �Α, Β, Γ, ∆, �, Ζ, Η, Θ, Ι, Κ, Λ,
Μ, Ν, Ξ, Ο, Π, Ρ, W, Σ, Τ, Υ, +, Χ, Ψ, Ω�

Mathematica assigns names such as \[Alpha] to a large number of special characters. This means
that you can always refer to such characters just by giving their names, without ever having to know
their character codes.

This generates a string of special
characters from their character codes.

In[6]:= FromCharacterCode[{8706, 8709, 8711, 8712}]

Out[6]= 8QY�

You can always refer to these
characters by their names, without
knowing their character codes.

In[7]:= InputForm[%]

Out[7]//InputForm= "\[PartialD]\[EmptySet]\[Del]\[Element]"

Mathematica has names for all the common characters that are used in mathematical notation and
in standard European languages. But for a language such as Japanese, there are more than 3,000
additional characters, and Mathematica does not assign an explicit name to each of them. Instead, it
refers to such characters by standardized character codes.

Here is a string containing Japanese
characters.

In[8]:= "�Q"

Out[8]= �Q

In InputForm, these characters are
referred to by standardized character
codes. The character codes are given
in hexadecimal.

In[9]:= InputForm[%]

Out[9]//InputForm= "\:6570\:5b66"

The notebook front end for Mathematica is typically set up so that when you enter a character in a
particular font, Mathematica will automatically work out the character code for that character.

Sometimes, however, you may find it convenient to be able to enter characters directly using
character codes.

\0 null byte (code 0)

\nnn a character with octal code nnn

\.nn a character with hexadecimal code nn

\:nnnn a character with hexadecimal code nnnn

Ways to enter characters directly in terms of character codes.



2.8.7 Advanced Topic: Character Codes 419

For characters with character codes below 256, you can use \nnn or \.nn. For characters with
character codes above 256, you must use \:nnnn. Note that in all cases you must give a fixed number
of octal or hexadecimal digits, padding with leading 0s if necessary.

This gives character codes in
hexadecimal for a few characters.

In[10]:= BaseForm[ToCharacterCode["AàΑ�"], 16]

Out[10]//BaseForm= �4116, e016, 3b116, 213516�
This enters the characters using their
character codes. Note the leading 0
inserted in the character code for Α.

In[11]:= "\.41\.e0\:03b1\:2135"

Out[11]= AàΑZ

In assigning codes to characters, Mathematica follows three compatible standards: ASCII, ISO Latin-
1, and Unicode. ASCII covers the characters on a normal American English keyboard. ISO Latin-1
covers characters in many European languages. Unicode is a more general standard which defines
character codes for several tens of thousands of characters used in languages and notations around
the world.

0 – 127 (\000 – \177) ASCII characters

1 – 31 (\001 – \037) ASCII control characters

32 – 126 (\040 – \176) printable ASCII characters

97 – 122 (\141 – \172) lower-case English letters

129 – 255 (\201 – \377) ISO Latin-1 characters

192 – 255 (\240 – \377) letters in European languages

0 – 59391 (\:0000 – \:e7ff) Unicode standard public characters

913 – 1009 (\:0391 – \:03f1) Greek letters

12288 – 35839 (\:3000 – \:8bff) Chinese, Japanese and Korean characters

8450 – 8504 (\:2102 – \:2138) modified letters used in mathematical notation

8592 – 8677 (\:2190 – \:21e5) arrows

8704 – 8945 (\:2200 – \:22f1) mathematical symbols and operators

64256 – 64300 (\:fb00 – \:fb2c) Unicode private characters defined specially by
Mathematica

A few ranges of character codes used by Mathematica.



420 2. Principles of Mathematica � 2.8 Strings and Characters

Here are all the printable ASCII
characters.

In[12]:= FromCharacterCode[Range[32, 126]]

Out[12]= 9"#$%&'��[�,�.�0123456789:;?=>
?SABCDEFGHIJKLMNOPQRSTUVWXYZ\�^
_`abcdefghijklmnopqrstuvwxyz���M

Here are some ISO Latin-1 letters. In[13]:= FromCharacterCode[Range[192, 255]]

Out[13]= ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏ	ÑÒÓÔÕÖ�
ØÙÚÛÜ
�ßàáâãäåæçèéêëìíîïÐñòóôõö
øùúûü�Þÿ

Here are some special characters used
in mathematical notation. The black
blobs correspond to characters not
available in the current font.

In[14]:= FromCharacterCode[Range[8704, 8750]]

Out[14]= \ 8]Ø Y�^ ��_ *1) � /\ � 2 `
	�R��3�4��� � 5

Here are a few Japanese characters. In[15]:= FromCharacterCode[Range[30000, 30030]]

Out[15]=

- 2.8.8 Advanced Topic: Raw Character Encodings

Mathematica always allows you to refer to special characters by using names such as \[Alpha] or
explicit hexadecimal codes such as \:03b1. And when Mathematica writes out files, it by default uses
these names or hexadecimal codes.

But sometimes you may find it convenient to use raw encodings for at least some special characters.
What this means is that rather than representing special characters by names or explicit hexadecimal
codes, you instead represent them by raw bit patterns appropriate for a particular computer system
or particular font.

$CharacterEncoding = None use printable ASCII names for all special characters

$CharacterEncoding = "name" use the raw character encoding specified by name

$SystemCharacterEncoding the default raw character encoding for your particular
computer system

Setting up raw character encodings.

When you press a key or combination of keys on your keyboard, the operating system of your
computer sends a certain bit pattern to Mathematica. How this bit pattern is interpreted as a character
within Mathematica will depend on the character encoding that has been set up.

The notebook front end for Mathematica typically takes care of setting up the appropriate character
encoding automatically for whatever font you are using. But if you use Mathematica with a text-based
interface or via files or pipes, then you may need to set $CharacterEncoding explicitly.



2.8.8 Advanced Topic: Raw Character Encodings 421

By specifying an appropriate value for $CharacterEncoding you will typically be able to get Mathe-
matica to handle raw text generated by whatever language-specific text editor or operating system you
use.

You should realize, however, that while the standard representation of special characters used in
Mathematica is completely portable across different computer systems, any representation that involves
raw character encodings will inevitably not be.

"PrintableASCII" printable ASCII characters only (default)

"ASCII" all ASCII including control characters

"ISOLatin1" characters for common western European languages

"ISOLatin2" characters for central and eastern European languages

"ISOLatin3" characters for additional European languages (e.g. Catalan,
Turkish)

"ISOLatin4" characters for other additional European languages (e.g.
Estonian, Lappish)

"ISOLatinCyrillic" English and Cyrillic characters

"AdobeStandard" Adobe standard PostScript font encoding

"MacintoshRoman" Macintosh roman font encoding

"WindowsANSI" Windows standard font encoding

"Symbol" symbol font encoding

"ZapfDingbats" Zapf dingbats font encoding

"ShiftJIS" shift-JIS for Japanese (mixture of 8- and 16-bit)

"EUC" extended Unix code for Japanese (mixture of 8- and 16-bit)

, "UTF8" Unicode transformation format encoding

"Unicode" raw 16-bit Unicode bit patterns

Some raw character encodings supported by Mathematica.

Mathematica knows about various raw character encodings, appropriate for different computer
systems and different languages.



422 2. Principles of Mathematica � 2.8 Strings and Characters

Any character that is included in a particular raw encoding will be written out in raw form by
Mathematica if you specify that encoding. But characters which are not included in the encoding will
still be written out using standard Mathematica full names or hexadecimal codes.

In addition, any character included in a particular encoding can be given in raw form as input to
Mathematica if you specify that encoding. Mathematica will automatically translate the character to its
own standard internal form.

This writes a string to the file tmp. In[1]:= "a b c \[EAcute] \[Alpha] \[Pi] \:2766" >> tmp

Special characters are by default
written out using full names or explicit
hexadecimal codes.

In[2]:= !!tmp

"a b c \[EAcute] \[Alpha] \[Pi] \:2766"

This tells Mathematica to use a raw
character encoding appropriate for
Macintosh roman fonts.

In[3]:= $CharacterEncoding = "MacintoshRoman"

Out[3]= MacintoshRoman

Now those special characters that can
will be written out in raw form.

In[4]:= "a b c \[EAcute] \[Alpha] \[Pi] \:2766" >> tmp

You can only read the raw characters if
you have a system that uses the
Macintosh roman encoding.

In[5]:= !!tmp

"a b c \[EAcute] \[Alpha] \[Pi] \:2766"

This tells Mathematica to use no raw
encoding by default.

In[6]:= $CharacterEncoding = None

Out[6]= None

You can still explicitly request raw
encodings to be used in certain
functions.

In[7]:= Get["tmp", CharacterEncoding->"MacintoshRoman"]

Out[7]= a b c é Α Π

Mathematica supports both 8- and 16-bit raw character encodings. In an encoding such as
"ISOLatin1", all characters are represented by bit patterns containing 8 bits. But in an encoding such
as "ShiftJIS" some characters instead involve bit patterns containing 16 bits.

Most of the raw character encodings supported by Mathematica include basic ASCII as a subset.
This means that even when you are using such encodings, you can still give ordinary Mathematica
input in the usual way, and you can specify special characters using \[ and \: sequences.

Some raw character encodings, however, do not include basic ASCII as a subset. An example is
the "Symbol" encoding, in which the character codes normally used for a and b are instead used for
Α and Β.

This gives the usual ASCII character
codes for a few English letters.

In[8]:= ToCharacterCode["abcdefgh"]

Out[8]= �97, 98, 99, 100, 101, 102, 103, 104�
In the "Symbol" encoding, these
character codes are used for Greek
letters.

In[9]:= FromCharacterCode[%, "Symbol"]

Out[9]= ΑΒΧ∆ΕΦΓΗ



2.8.8 Advanced Topic: Raw Character Encodings 423

ToCharacterCode["string"] generate codes for characters using the standard Mathematica
encoding

ToCharacterCode["string", "encoding"]
generate codes for characters using the specified encoding

FromCharacterCode[{n�, n�, . . . }]
generate characters from codes using the standard
Mathematica encoding

FromCharacterCode[{n�, n�, . . . }, "encoding"]
generate characters from codes using the specified encoding

Handling character codes with different encodings.

This gives the codes assigned to
various characters by Mathematica.

In[10]:= ToCharacterCode["abc\[EAcute]\[Pi]"]

Out[10]= �97, 98, 99, 233, 960�
Here are the codes assigned to the
same characters in the Macintosh
roman encoding.

In[11]:= ToCharacterCode["abc\[EAcute]\[Pi]", "MacintoshRoman"]

Out[11]= �97, 98, 99, 142, 185�
Here are the codes in the Windows
standard encoding. There is no code
for \[Pi] in that encoding.

In[12]:= ToCharacterCode["abc\[EAcute]\[Pi]", "WindowsANSI"]

Out[12]= �97, 98, 99, 233, None�
The character codes used internally by Mathematica are based on Unicode. But externally Mathematica

by default always uses plain ASCII sequences such as \[Name] or \:xxxx to refer to special characters.
By telling it to use the raw "Unicode" character encoding, however, you can get Mathematica to read
and write characters in raw 16-bit Unicode form.



424 2. Principles of Mathematica � 2.9 Textual Input and Output

2.9 Textual Input and Output

- 2.9.1 Forms of Input and Output

Here is one way to enter a particular
expression.

In[1]:= x^2 + Sqrt[y]

Out[1]= x2 �����
y

Here is another way to enter the same
expression.

In[2]:= Plus[Power[x, 2], Sqrt[y]]

Out[2]= x2 �����
y

With a notebook front end, you can
also enter the expression directly in
this way.

In[3]:= x2 �	



y

Out[3]= x2 �����
y

Mathematica allows you to output expressions in many different ways.

In Mathematica notebooks, expressions
are by default output in StandardForm.

In[4]:= x^2 + Sqrt[y]

Out[4]= x2 �����
y

OutputForm uses only ordinary
keyboard characters and is the default
for text-based interfaces to Mathematica.

In[5]:= OutputForm[ x^2 + Sqrt[y] ]

Out[5]//OutputForm=
2

x + Sqrt[y]

InputForm yields a form that can be
typed directly on a keyboard.

In[6]:= InputForm[ x^2 + Sqrt[y] ]

Out[6]//InputForm= x^2 + Sqrt[y]

FullForm shows the internal form of
an expression in explicit functional
notation.

In[7]:= FullForm[ x^2 + Sqrt[y] ]

Out[7]//FullForm= PlusPowerx, 2�, Powery, Rational1, 2���

FullForm[expr] the internal form of an expression

InputForm[expr] a form suitable for direct keyboard input

OutputForm[expr] a two-dimensional form using only keyboard characters

StandardForm[expr] the default form used in Mathematica notebooks

Some output forms for expressions.

Output forms provide textual representations of Mathematica expressions. In some cases these tex-
tual representations are also suitable for input to Mathematica. But in other cases they are intended just
to be looked at, or to be exported to other programs, rather than to be used as input to Mathematica.



2.9.1 Forms of Input and Output 425

TraditionalForm uses a large
collection of ad hoc rules to produce
an approximation to traditional
mathematical notation.

In[8]:= TraditionalForm[ x^2 + Sqrt[y] + Gamma[z] EllipticK[z] ]

Out[8]//TraditionalForm= x2 �K�z� ��z� ��
y

TeXForm yields output suitable for
export to TEX.

In[9]:= TeXForm[ x^2 + Sqrt[y] ]

Out[9]//TeXForm= x^2 + {\sqrt{y}}

CForm yields output that can be
included in a C program. Macros for
objects like Power are included in the
header file mdefs.h.

In[10]:= CForm[ x^2 + Sqrt[y] ]

Out[10]//CForm= Power(x,2) + Sqrt(y)

FortranForm yields output suitable for
export to Fortran.

In[11]:= FortranForm[ x^2 + Sqrt[y] ]

Out[11]//FortranForm= x**2 + Sqrt(y)

TraditionalForm[expr] traditional mathematical notation

TeXForm[expr] output suitable for export to TEX

, MathMLForm[expr] output suitable for use with MathML on the web

CForm[expr] output suitable for export to C

FortranForm[expr] output suitable for export to Fortran

Output forms not normally used for Mathematica input.

Section 2.9.17 will discuss how you can create your own output forms. You should realize however
that in communicating with external programs it is often better to use MathLink to send expressions
directly than to generate a textual representation for these expressions.

Exchange textual representations of expressions.

Exchange expressions directly via MathLink.

Two ways to communicate between Mathematica and other programs.



426 2. Principles of Mathematica � 2.9 Textual Input and Output

2.9.2 How Input and Output Work

Input convert from a textual form to an expression

Processing do computations on the expression

Output convert the resulting expression to textual form

Steps in the operation of Mathematica.

When you type something like x^2 what Mathematica at first sees is just the string of characters x, ^,
2. But with the usual way that Mathematica is set up, it immediately knows to convert this string of
characters into the expression Power[x, 2].

Then, after whatever processing is possible has been done, Mathematica takes the expression
Power[x, 2] and converts it into some kind of textual representation for output.

Mathematica reads the string of
characters x, ^, 2 and converts it to the
expression Power[x, 2].

In[1]:= x ^ 2

Out[1]= x2

This shows the expression in Fortran
form.

In[2]:= FortranForm[%]

Out[2]//FortranForm= x**2

FortranForm is just a “wrapper”: the
value of Out[2] is still the expression
Power[x, 2].

In[3]:= %

Out[3]= x2

It is important to understand that in a typical Mathematica session In[n] and Out[n] record only
the underlying expressions that are processed, not the textual representations that happen to be used
for their input or output.

If you explicitly request a particular kind of output, say by using TraditionalForm[expr], then
what you get will be labeled with Out[n]//TraditionalForm . This indicates that what you are
seeing is expr//TraditionalForm , even though the value of Out[n] itself is just expr.

Mathematica also allows you to specify globally that you want output to be displayed in a particular
form. And if you do this, then the form will no longer be indicated explicitly in the label for each
line. But it is still the case that In[n] and Out[n] will record only underlying expressions, not the
textual representations used for their input and output.

This sets t to be an expression with
FortranForm explicitly wrapped
around it.

In[4]:= t = FortranForm[x^2 + y^2]

Out[4]//FortranForm= x**2 + y**2

The result on the previous line is just
the expression.

In[5]:= %

Out[5]= x2 � y2



2.9.3 The Representation of Textual Forms 427

But t contains the FortranForm
wrapper, and so is displayed in
FortranForm.

In[6]:= t

Out[6]//FortranForm= x**2 + y**2

Wherever t appears, it is formatted in
FortranForm.

In[7]:= {t^2, 1/t}

Out[7]= 	x [[ 2 � y [[ 22,
1

������������������������������������������������������������
x [[ 2 � y [[ 2




2.9.3 The Representation of Textual Forms

Like everything else in Mathematica the textual forms of expressions can themselves be represented as
expressions. Textual forms that consist of one-dimensional sequences of characters can be represented
directly as ordinary Mathematica strings. Textual forms that involve subscripts, superscripts and other
two-dimensional constructs, however, can be represented by nested collections of two-dimensional
boxes.

One-dimensional strings InputForm , FullForm , etc.

Two-dimensional boxes StandardForm , TraditionalForm , etc.

Typical representations of textual forms.

This generates the string corresponding
to the textual representation of the
expression in InputForm.

In[1]:= ToString[x^2 + y^3, InputForm]

Out[1]= x^2 � y^3

FullForm shows the string explicitly. In[2]:= FullForm[%]

Out[2]//FullForm= "x^2 � y^3"

Here are the individual characters in
the string.

In[3]:= Characters[%]

Out[3]= �x, ^, 2, , �, , y, ^, 3�
Here is the box structure corresponding
to the expression in StandardForm.

In[4]:= ToBoxes[x^2 + y^3, StandardForm]

Out[4]= RowBox�SuperscriptBoxx, 2�, �, SuperscriptBoxy, 3���
Here is the InputForm of the box
structure. In this form the structure is
effectively represented by an ordinary
string.

In[5]:= ToBoxes[x^2 + y^3, StandardForm] // InputForm

Out[5]//InputForm= \(x\^2 + y\^3\)

If you use the notebook front end for Mathematica, then you can see the expression that corresponds
to the textual form of each cell by using the Show Expression menu item.

Here is a cell containing an expression
in StandardForm. 1

�����������������������������������������
2 �1 � x2� � Logx� � Log1 � x2�

������������������������������������������������
2



428 2. Principles of Mathematica � 2.9 Textual Input and Output

Here is the underlying representation
of that expression in terms of boxes,
displayed using the Show Expression
menu item.

Cell[BoxData[
  RowBox[{
    FractionBox["1",
      RowBox[{"2", " ",
        RowBox[{"(",
          RowBox[{"1", "+",
            SuperscriptBox["x", "2"]}], ")"}]}]], "+",
    RowBox[{"Log", "[", "x", "]"}], "−",
    FractionBox[
      RowBox[{"Log", "[",
        RowBox[{"1", "+",
          SuperscriptBox["x", "2"]}], "]"}], "2"]}]], "Output"]

ToString[expr, form] create a string representing the specified textual form of expr

ToBoxes[expr, form] create a box structure representing the specified textual form
of expr

Creating strings and boxes from expressions.

2.9.4 The Interpretation of Textual Forms

ToExpression[input] create an expression by interpreting strings or boxes

Converting from strings or boxes to expressions.

This takes a string and interprets it as
an expression.

In[1]:= ToExpression["2 + 3 + x/y"]

Out[1]= 5 �
x
�������
y

Here is the box structure corresponding
to the textual form of an expression in
StandardForm.

In[2]:= ToBoxes[2 + x^2, StandardForm]

Out[2]= RowBox�2, �, SuperscriptBoxx, 2���
ToExpression interprets this box
structure and yields the original
expression again.

In[3]:= ToExpression[%]

Out[3]= 2 � x2

In any Mathematica session, Mathematica is always effectively using ToExpression to interpret the
textual form of your input as an actual expression to evaluate.

If you use the notebook front end for Mathematica, then the interpretation only takes place when the
contents of a cell are sent to the kernel, say for evaluation. This means that within a notebook there
is no need for the textual forms you set up to correspond to meaningful Mathematica expressions; this
is only necessary if you want to send these forms to the kernel.



2.9.4 The Interpretation of Textual Forms 429

FullForm explicit functional notation

InputForm one-dimensional notation

StandardForm two-dimensional notation

The hierarchy of forms for standard Mathematica input.

Here is an expression entered in
FullForm.

In[4]:= Plus[1, Power[x, 2]]

Out[4]= 1 � x2

Here is the same expression entered in
InputForm.

In[5]:= 1 + x^2

Out[5]= 1 � x2

And here is the expression entered in
StandardForm.

In[6]:= 1 � x2

Out[6]= 1 � x2

Built into Mathematica is a collection of standard rules for use by ToExpression in converting
textual forms to expressions.

These rules define the grammar of Mathematica. They state, for example, that x + y should be in-
terpreted as Plus[x, y], and that xy should be interpreted as Power[x, y]. If the input you give
is in FullForm, then the rules for interpretation are very straightforward: every expression consists
just of a head followed by a sequence of elements enclosed in brackets. The rules for InputForm are
slightly more sophisticated: they allow operators such as +, =, and ->, and understand the meaning
of expressions where these operators appear between operands. StandardForm involves still more
sophisticated rules, which allow operators and operands to be arranged not just in a one-dimensional
sequence, but in a full two-dimensional structure.

Mathematica is set up so that FullForm , InputForm and StandardForm form a strict hierarchy:
anything you can enter in FullForm will also work in InputForm , and anything you can enter in
InputForm will also work in StandardForm .

If you use a notebook front end for Mathematica, then you will typically want to use all the features
of StandardForm . If you use a text-based interface, however, then you will typically be able to use
only features of InputForm .

x^2 ordinary InputForm

\!\(x\^2\) one-dimensional representation of StandardForm

Two versions of InputForm.

When you use StandardForm in a Mathematica notebook, you can enter directly two-dimensional
forms such as x2. But InputForm allows only one-dimensional forms. Nevertheless, even though the



430 2. Principles of Mathematica � 2.9 Textual Input and Output

actual text you give in InputForm must be one-dimensional, it is still possible to make it represent a
two-dimensional form. Thus, for example, \!\(x\^2\) represents the two-dimensional form x2, and
is interpreted by Mathematica as Power[x, 2].

Here is ordinary one-dimensional
input.

In[7]:= x^2 + 1/y

Out[7]= x2 �
1
�������
y

Here is input that represents a
two-dimensional form.

In[8]:= \!\( x\^2 + 1\/y \)

Out[8]= x2 �
1
�������
y

Even though the input is given
differently, the expressions obtained on
the last two lines are exactly the same.

In[9]:= % == %%

Out[9]= True

If you copy a two-dimensional form out of Mathematica, it is normally given in \!\( . . . \) form.
When you paste this one-dimensional form back into a Mathematica notebook, it will automatically
“snap” into two-dimensional form. If you simply type a \!\( . . . \) form into a notebook, you can
get it to snap into two-dimensional form using the Make 2D menu item.

ToExpression[input, form] attempt to create an expression assuming that input is given
in the specified textual form

Importing from other textual forms.

StandardForm and its subsets FullForm and InputForm provide precise ways to represent any
Mathematica expression in textual form. And given such a textual form, it is always possible to
convert it unambiguously to the expression it represents.

TraditionalForm is an example of a textual form intended primarily for output. It is possible to
take any Mathematica expression and display it in TraditionalForm . But TraditionalForm does not
have the precision of StandardForm , and as a result there is in general no unambiguous way to go
back from a TraditionalForm representation and get the expression it represents.

Nevertheless, ToExpression[input, TraditionalForm] takes text in TraditionalForm and at-
tempts to interpret it as an expression.

This takes a string and interprets it as
TraditionalForm input.

In[10]:= ToExpression["f(6)", TraditionalForm]

Out[10]= f6�
In StandardForm the same string
would mean a product of terms.

In[11]:= ToExpression["f(6)", StandardForm]

Out[11]= 6 f



2.9.5 Short and Shallow Output 431

When TraditionalForm output is generated as the result of a computation, the actual collection
of boxes that represent the output typically contains special InterpretationBox and TagBox objects
which specify how an expression can be reconstructed from the TraditionalForm output.

The same is true of TraditionalForm that is obtained by explicit conversion from StandardForm .
But if you edit TraditionalForm extensively, or enter it from scratch, then Mathematica will have to
try to interpret it without the benefit of any additional embedded information.

2.9.5 Short and Shallow Output

When you generate a very large output expression in Mathematica, you often do not want to see the
whole expression at once. Rather, you would first like to get an idea of the general structure of the
expression, and then, perhaps, go in and look at particular parts in more detail.

The functions Short and Shallow allow you to see “outlines” of large Mathematica expressions.

Short[expr] show a one-line outline of expr

Short[expr, n] show an n-line outline of expr

Shallow[expr] show the “top parts” of expr

Shallow[expr, {depth, length}] show the parts of expr to the specified depth and length

Showing outlines of expressions.

This generates a long expression. If the
whole expression were printed out
here, it would go on for 23 lines.

In[1]:= t = Expand[(1 + x + y)^12] ;

This gives a one-line “outline” of t.
The <<87>> indicates that 87 terms are
omitted.

In[2]:= Short[t]

Out[2]//Short= 1 � 12 x �:87;� 12 x y11 � y12

When Mathematica generates output, it first effectively writes the output in one long row. Then it
looks at the width of text you have asked for, and it chops the row of output into a sequence of
separate “lines”. Each of the “lines” may of course contain superscripts and built-up fractions, and so
may take up more than one actual line on your output device. When you specify a particular number
of lines in Short, Mathematica takes this to be the number of “logical lines” that you want, not the
number of actual physical lines on your particular output device.

Here is a four-line version of t. More
terms are shown in this case.

In[3]:= Short[t, 4]

Out[3]//Short= 1 � 12 x � 66 x2 � 220 x3 � 495 x4 � 792 x5 � 924 x6 �
792 x7 � 495 x8 � 220 x9 � 66 x10 � 12 x11 �:68;�
495 x4 y8 � 220 y9 � 660 x y9 � 660 x2 y9 � 220 x3 y9 �
66 y10 � 132 x y10 � 66 x2 y10 � 12 y11 � 12 x y11 � y12



432 2. Principles of Mathematica � 2.9 Textual Input and Output

You can use Short with other output
forms, such as InputForm.

In[4]:= Short[InputForm[t]]

Out[4]//Short= 1 � 12[x � 66[x^2 � 220[x^3 � ??85>> � 12[x[y^11 � y^12

Short works by removing a sequence of parts from an expression until the output form of the
result fits on the number of lines you specify. Sometimes, however, you may find it better to
specify not how many final output lines you want, but which parts of the expression to drop.
Shallow[expr, {depth, length}] includes only length arguments to any function, and drops all subex-
pressions that are below the specified depth.

Shallow shows a different outline of t. In[5]:= Shallow[t]

Out[5]//Shallow= 1 � 12 x � 66 Power:2;� � 220 Power:2;� �
495 Power:2;� � 792 Power:2;� �
924 Power:2;� � 792 Power:2;� �
495 Power:2;� � 220 Power:2;� �:81;

This includes only 10 arguments to
each function, but allows any depth.

In[6]:= Shallow[t, {Infinity, 10}]

Out[6]//Shallow= 1 � 12 x � 66 x2 � 220 x3 � 495 x4 � 792 x5 �
924 x6 � 792 x7 � 495 x8 � 220 x9 �:81;

Shallow is particularly useful when you want to drop parts in a uniform way throughout a highly
nested expression, such as a large list structure returned by Trace.

Here is the recursive definition of the
Fibonacci function.

In[7]:= fib[n_] := fib[n-1] + fib[n-2] ; fib[0] = fib[1] = 1

Out[7]= 1

This generates a large list structure. In[8]:= tr = Trace[fib[8]] ;

You can use Shallow to see an outline
of the structure.

In[9]:= Shallow[tr]

Out[9]//Shallow= �fib:1;�, Plus:2;�, ��:2;�, :1;,
:1;, �:7;�, �:7;�, :1;, :1;�,��:2;�, :1;, :1;, �:7;�, �:7;�,
:1;, :1;�, Plus:2;�, 34�

Short gives you a less uniform outline,
which can be more difficult to
understand.

In[10]:= Short[tr, 4]

Out[10]//Short= �fib8�, fib8 � 1� � fib8 � 2�,��8 � 1, 7�, fib7�, :3;, 13 � 8, 21�,�:1;�, 21 � 13, 34�

2.9.6 String-Oriented Output Formats

"text" a string containing arbitrary text

Text strings.

The quotes are not included in
standard Mathematica output form.

In[1]:= "This is a string."

Out[1]= This is a string.



2.9.6 String-Oriented Output Formats 433

In input form, the quotes are included. In[2]:= InputForm[%]

Out[2]//InputForm= "This is a string."

You can put any kind of text into a Mathematica string. This includes non-English characters, as well
as newlines and other control information. Section 2.8 discusses in more detail how strings work.

StringForm["cccc``cccc", x�, x�, . . . ]
output a string in which successive `` are replaced by
successive xi

StringForm["cccc`i`cccc", x�, x�, . . . ]
output a string in which each `i` is replaced by the
corresponding xi

Using format strings.

In many situations, you may want to generate output using a string as a “template”, but “splicing”
in various Mathematica expressions. You can do this using StringForm .

This generates output with each
successive `` replaced by an
expression.

In[3]:= StringForm["x = ``, y = ``", 3, (1 + u)^2]

Out[3]= x = 3, y = �1 � u�2

You can use numbers to pick out
expressions in any order.

In[4]:= StringForm["{`1`, `2`, `1`}", a, b]

Out[4]= �a, b, a�
The string in StringForm acts somewhat like a “format directive” in the formatted output state-

ments of languages such as C and Fortran. You can determine how the expressions in StringForm
will be formatted by wrapping them with standard output format functions.

You can specify how the expressions in
StringForm are formatted using
standard output format functions.

In[5]:= StringForm["The `` of `` is ``.",
TeXForm, a/b, TeXForm[a/b]]

Out[5]= The TeXForm of
a
�������
b

is \ frac��a���b�.

You should realize that StringForm is only an output format. It does not evaluate in any way. You
can use the function ToString to create an ordinary string from a StringForm object.

StringForm generates formatted output
in standard Mathematica output form.

In[6]:= StringForm["Q: `` -> ``", a, b]

Out[6]= Q: a �> b

In input form, you can see the actual
StringForm object.

In[7]:= InputForm[%]

Out[7]//InputForm= StringForm["Q: `` -> ``", a, b]

This creates an ordinary string from
the StringForm object.

In[8]:= InputForm[ToString[%]]

Out[8]//InputForm= "Q: a -> b"



434 2. Principles of Mathematica � 2.9 Textual Input and Output

StringForm allows you to specify a “template string”, then fill in various expressions. Sometimes
all you want to do is to concatenate together the output forms for a sequence of expressions. You can
do this using SequenceForm .

SequenceForm[expr�, expr�, . . . ] give the output forms of the expri concatenated together

Output of sequences of expressions.

SequenceForm prints as a sequence of
expressions concatenated together.

In[9]:= SequenceForm["[x = ", 56, "]"]

Out[9]= x = 56�

ColumnForm[{expr�, expr�, . . . }] a left-aligned column of objects

ColumnForm[list, h, v] a column with horizontal alignment h (Left, Center or
Right), and vertical alignment v (Below, Center or Above)

Output of columns of expressions.

This arranges the two expressions in a
column.

In[10]:= ColumnForm[{a + b, x^2}]

Out[10]= a � b

x2

HoldForm[expr] give the output form of expr, with expr maintained
unevaluated

Output of unevaluated expressions.

Using text strings and functions like StringForm , you can generate pieces of output that do not
necessarily correspond to valid Mathematica expressions. Sometimes, however, you want to generate
output that corresponds to a valid Mathematica expression, but only so long as the expression is not
evaluated. The function HoldForm maintains its argument unevaluated, but allows it to be formatted
in the standard Mathematica output form.

HoldForm maintains 1 + 1 unevaluated. In[11]:= HoldForm[1 + 1]

Out[11]= 1 � 1

The HoldForm prevents the actual
assignment from being done.

In[12]:= HoldForm[x = 3]

Out[12]= x = 3



2.9.7 Output Formats for Numbers 435

If it was not for the HoldForm, the
power would be evaluated.

In[13]:= HoldForm[34^78]

Out[13]= 3478

2.9.7 Output Formats for Numbers

ScientificForm[expr] print all numbers in scientific notation

EngineeringForm[expr] print all numbers in engineering notation (exponents
divisible by 3)

AccountingForm[expr] print all numbers in standard accounting format

Output formats for numbers.

These numbers are given in the default
output format. Large numbers are
given in scientific notation.

In[1]:= {6.7^-4, 6.7^6, 6.7^8}

Out[1]=  0.00049625, 90458.4, 4.06068�106!
This gives all numbers in scientific
notation.

In[2]:= ScientificForm[%]

Out[2]//ScientificForm=  4.9625�10�4, 9.04584�104, 4.06068�106!
This gives the numbers in engineering
notation, with exponents arranged to
be multiples of three.

In[3]:= EngineeringForm[%]

Out[3]//EngineeringForm=  496.25�10�6, 90.4584�103, 4.06068�106!
In accounting form, negative numbers
are given in parentheses, and scientific
notation is never used.

In[4]:= AccountingForm[{5.6, -6.7, 10.^7}]

Out[4]//AccountingForm= �5.6, �6.7�, 10000000.�

NumberForm[expr, tot] print at most tot digits of all approximate real numbers in
expr

ScientificForm[expr, tot] use scientific notation with at most tot digits

EngineeringForm[expr, tot] use engineering notation with at most tot digits

Controlling the printed precision of real numbers.

Here is Π� to 30 decimal places. In[5]:= N[Pi^9, 30]

Out[5]= 29809.0993334462116665094024012

This prints just 10 digits of Π�. In[6]:= NumberForm[%, 10]

Out[6]//NumberForm= 29809.09933



436 2. Principles of Mathematica � 2.9 Textual Input and Output

This gives 12 digits, in engineering
notation.

In[7]:= EngineeringForm[%, 12]

Out[7]//EngineeringForm= 29.8090993334�103

option name default value

DigitBlock Infinity maximum length of blocks of digits between
breaks

NumberSeparator {",", " "} strings to insert at breaks between blocks of
digits to the left and right of a decimal point

NumberPoint "." string to use for a decimal point

NumberMultiplier "\[Times]" string to use for the multiplication sign in
scientific notation

NumberSigns {"-", ""} strings to use for signs of negative and
positive numbers

NumberPadding {"", ""} strings to use for padding on the left and
right

SignPadding False whether to insert padding after the sign

NumberFormat Automatic function to generate final format of number

ExponentFunction Automatic function to determine the exponent to use

Options for number formatting.

All the options in the table except the last one apply to both integers and approximate real numbers.

All the options can be used in any of the functions NumberForm , ScientificForm ,
EngineeringForm and AccountingForm . In fact, you can in principle reproduce the behavior of any
one of these functions simply by giving appropriate option settings in one of the others. The default
option settings listed in the table are those for NumberForm .

Setting DigitBlock->n breaks digits
into blocks of length n.

In[8]:= NumberForm[30!, DigitBlock->3]

Out[8]//NumberForm= 265,252,859,812,191,058,636,308,480,000,000

You can specify any string to use as a
separator between blocks of digits.

In[9]:= NumberForm[30!, DigitBlock->5, NumberSeparator->" "]

Out[9]//NumberForm= 265 25285 98121 91058 63630 84800 00000

This gives an explicit plus sign for
positive numbers, and uses | in place
of a decimal point.

In[10]:= NumberForm[{4.5, -6.8}, NumberSigns->{"-", "+"},
NumberPoint->"|"]

Out[10]//NumberForm= {+4|5, -6|8}



2.9.7 Output Formats for Numbers 437

When Mathematica prints an approximate real number, it has to choose whether scientific notation
should be used, and if so, how many digits should appear to the left of the decimal point. What
Mathematica does is first to find out what the exponent would be if scientific notation were used, and
one digit were given to the left of the decimal point. Then it takes this exponent, and applies any
function given as the setting for the option ExponentFunction. This function should return the actual
exponent to be used, or Null if scientific notation should not be used.

The default is to use scientific notation
for all numbers with exponents outside
the range �� to 5.

In[11]:= {8.^5, 11.^7, 13.^9}

Out[11]=  32768., 1.94872�107, 1.06045�1010!
This uses scientific notation only for
numbers with exponents of 10 or more.

In[12]:= NumberForm[%,
ExponentFunction -> (If[-10 < # < 10, Null, #]&)]

Out[12]//NumberForm=  32768., 19487171., 1.06045�1010!
This forces all exponents to be
multiples of 3.

In[13]:= NumberForm[%, ExponentFunction -> (3 Quotient[#, 3]&)]

Out[13]//NumberForm=  32.768�103, 19.4872�106, 10.6045�109!
Having determined what the mantissa and exponent for a number should be, the final step is to

assemble these into the object to print. The option NumberFormat allows you to give an arbitrary
function which specifies the print form for the number. The function takes as arguments three strings:
the mantissa, the base, and the exponent for the number. If there is no exponent, it is given as "".

This gives the exponents in Fortran-like
“e” format.

In[14]:= NumberForm[{5.6^10, 7.8^20},
NumberFormat -> (SequenceForm[#1, "e", #3]&) ]

Out[14]//NumberForm= �3.03305e7, 6.94852e17�
You can use FortranForm to print
individual numbers in Fortran format.

In[15]:= FortranForm[7.8^20]

Out[15]//FortranForm= 6.948515870862152e17

PaddedForm[expr, tot] print with all numbers having room for tot digits, padding
with leading spaces if necessary

PaddedForm[expr, {tot, frac}] print with all numbers having room for tot digits, with
exactly frac digits to the right of the decimal point

NumberForm[expr, {tot, frac}] print with all numbers having at most tot digits, exactly
frac of them to the right of the decimal point

ColumnForm[{expr�, expr�, . . . }] print with the expri left aligned in a column

Controlling the alignment of numbers in output.

Whenever you print a collection of numbers in a column or some other definite arrangement, you
typically need to be able to align the numbers in a definite way. Usually you want all the numbers



438 2. Principles of Mathematica � 2.9 Textual Input and Output

to be set up so that the digit corresponding to a particular power of 10 always appears at the same
position within the region used to print a number.

You can change the positions of digits in the printed form of a number by “padding” it in various
ways. You can pad on the right, typically adding zeros somewhere after the decimal. Or you can pad
on the left, typically inserting spaces in place of leading zeros.

This pads with spaces to make room
for up to 7 digits in each integer.

In[16]:= PaddedForm[{456, 12345, 12}, 7]

Out[16]//PaddedForm= � 456, 12345, 12�
This creates a column of integers. In[17]:= PaddedForm[ColumnForm[{456, 12345, 12}], 7]

Out[17]//PaddedForm= 456

12345

12

This prints each number with room for
a total of 7 digits, and with 4 digits to
the right of the decimal point.

In[18]:= PaddedForm[{-6.7, 6.888, 6.99999}, {7, 4}]

Out[18]//PaddedForm= � �6.7000, 6.8880, 7.0000�
In NumberForm, the 7 specifies the
maximum precision, but does not make
Mathematica pad with spaces.

In[19]:= NumberForm[{-6.7, 6.888, 6.99999}, {7, 4}]

Out[19]//NumberForm= ��6.7, 6.888, 7.�
If you set the option SignPadding->
True, Mathematica will insert leading
spaces after the sign.

In[20]:= PaddedForm[{-6.7, 6.888, 6.99999}, {7, 4},
SignPadding->True]

Out[20]//PaddedForm= �� 6.7000, 6.8880, 7.0000�
Only the mantissa portion is aligned
when scientific notation is used.

In[21]:= PaddedForm[
ColumnForm[{6.7 10^8, 48.7, -2.3 10^-16}], {4, 2}]

Out[21]//PaddedForm= 6.70�108

48.70

�2.30�10�16

With the default setting for the option NumberPadding, both NumberForm and PaddedForm insert
trailing zeros when they pad a number on the right. You can use spaces for padding on both the left
and the right by setting NumberPadding -> {" ", " "}.

This uses spaces instead of zeros for
padding on the right.

In[22]:= PaddedForm[{-6.7, 6.888, 6.99999}, {7, 4},
NumberPadding -> {" ", " "}]

Out[22]//PaddedForm= � �6.7 , 6.888 , 7. �

BaseForm[expr, b] print with all numbers given in base b

Printing numbers in other bases.



2.9.8 Tables and Matrices 439

This prints a number in base 2. In[23]:= BaseForm[2342424, 2]

Out[23]//BaseForm= 10001110111110000110002

In bases higher than 10, letters are
used for the extra digits.

In[24]:= BaseForm[242345341, 16]

Out[24]//BaseForm= e71e57d16

BaseForm also works with approximate
real numbers.

In[25]:= BaseForm[2.3, 2]

Out[25]//BaseForm= 10.0100110011001100112

You can even use BaseForm for
numbers printed in scientific notation.

In[26]:= BaseForm[2.3 10^8, 2]

Out[26]//BaseForm= 1.10110110101100001012 �227

Section 3.1.3 discusses how to enter numbers in arbitrary bases, and also how to get lists of the
digits in a number.

2.9.8 Tables and Matrices

TableForm[list] print in tabular form

MatrixForm[list] print in matrix form

Formatting lists as tables and matrices.

Here is a list. In[1]:= Table[(i + 45)^j, {i, 3}, {j, 3}]

Out[1]= ��46, 2116, 97336�,�47, 2209, 103823�, �48, 2304, 110592��
TableForm displays the list in a tabular
format.

In[2]:= TableForm[%]

Out[2]//TableForm=

46 2116 97336

47 2209 103823

48 2304 110592

MatrixForm displays the list as a
matrix.

In[3]:= MatrixForm[%]

Out[3]//MatrixForm=
"
#
$$$$$$$

46 2116 97336

47 2209 103823

48 2304 110592

%
&
'''''''



440 2. Principles of Mathematica � 2.9 Textual Input and Output

This displays an array of algebraic
expressions as a matrix.

In[4]:= MatrixForm[ Table[x^i - y^j, {i, 3}, {j, 3}] ]

Out[4]//MatrixForm=
"
#
$$$$$$$$

x � y x � y2 x � y3

x2 � y x2 � y2 x2 � y3

x3 � y x3 � y2 x3 � y3

%
&
''''''''

PaddedForm[TableForm[list], tot] print a table with all numbers padded to have
room for tot digits

PaddedForm[TableForm[list], {tot, frac}] put frac digits to the right of the decimal point in
all approximate real numbers

Printing tables of numbers.

Here is a list of numbers. In[5]:= fac = {10!, 15!, 20!}

Out[5]= �3628800, 1307674368000, 2432902008176640000�
TableForm displays the list in a
column.

In[6]:= TableForm[fac]

Out[6]//TableForm=

3628800

1307674368000

2432902008176640000

This aligns the numbers by padding
each one to leave room for up to 20
digits.

In[7]:= PaddedForm[TableForm[fac], 20]

Out[7]//PaddedForm=

3628800

1307674368000

2432902008176640000

In this particular case, you could also
align the numbers using the
TableAlignments option.

In[8]:= TableForm[fac, TableAlignments -> {Right}]

Out[8]//TableForm=

3628800

1307674368000

2432902008176640000

This lines up the numbers, padding
each one to have room for 8 digits,
with 5 digits to the right of the
decimal point.

In[9]:= PaddedForm[TableForm[{6.7, 6.888, 6.99999}], {8, 5}]

Out[9]//PaddedForm=

6.70000

6.88800

6.99999

You can use TableForm and MatrixForm to format lists that are nested to any depth, corresponding
to arrays with any number of dimensions.

Here is the format for a � � � array of
elements a[i, j].

In[10]:= TableForm[ Array[a, {2, 2}] ]

Out[10]//TableForm=
a1, 1� a1, 2�
a2, 1� a2, 2�



2.9.8 Tables and Matrices 441

Here is a � � � � � array. In[11]:= TableForm[ { Array[a, {2, 2}], Array[b, {2, 2}] } ]

Out[11]//TableForm=

a1, 1�
a1, 2� a2, 1�

a2, 2�
b1, 1�
b1, 2� b2, 1�

b2, 2�
And here is a � � � � � � � array. In[12]:= TableForm[ { {Array[a, {2, 2}], Array[b, {2, 2}]},

{Array[c, {2, 2}], Array[d, {2, 2}]} } ]

Out[12]//TableForm=

a1, 1� a1, 2�
a2, 1� a2, 2� b1, 1� b1, 2�

b2, 1� b2, 2�
c1, 1� c1, 2�
c2, 1� c2, 2� d1, 1� d1, 2�

d2, 1� d2, 2�
In general, when you print an n-dimensional table, successive dimensions are alternately given as

columns and rows. By setting the option TableDirections -> {dir�, dir�, . . . }, where the diri are
Column or Row, you can specify explicitly which way each dimension should be given. By default, the
option is effectively set to {Column, Row, Column, Row, . . . }.

The option TableDirections allows
you to specify explicitly how each
dimension in a multidimensional table
should be given.

In[13]:= TableForm[ { Array[a, {2, 2}], Array[b, {2, 2}] },
TableDirections -> {Row, Row, Column} ]

Out[13]//TableForm=
a1, 1�
a1, 2� a2, 1�

a2, 2� b1, 1�
b1, 2� b2, 1�

b2, 2�
Whenever you make a table from a nested list such as {list�, list�, . . . }, there is a question of

whether it should be the listi or their elements which appear as the basic entries in the table. The
default behavior is slightly different for MatrixForm and TableForm .

MatrixForm handles only arrays that are “rectangular”. Thus, for example, to consider an array as
two-dimensional, all the rows must have the same length. If they do not, MatrixForm treats the array
as one-dimensional, with elements that are lists.

MatrixForm treats this as a
one-dimensional array, since the rows
are of differing lengths.

In[14]:= MatrixForm[{{a, a, a}, {b, b}}]

Out[14]//MatrixForm= � �a, a, a��b, b� �
While MatrixForm can handle only “rectangular arrays”, TableForm can handle arbitrary “ragged”

arrays. It leaves blanks wherever there are no elements supplied.

TableForm can handle “ragged” arrays. In[15]:= TableForm[{{a, a, a}, {b, b}}]

Out[15]//TableForm=
a a a

b b

You can include objects that behave as
“subtables”.

In[16]:= TableForm[{{a, {{p, q}, {r, s}}, a, a},
{{x, y}, b, b}}]

Out[16]//TableForm=
a

p q
r s a a

x
y b b



442 2. Principles of Mathematica � 2.9 Textual Input and Output

You can control the number of levels in a nested list to which both TableForm and MatrixForm go
by setting the option TableDepth.

This tells TableForm only to go down
to depth 2. As a result {x, y} is
treated as a single table entry.

In[17]:= TableForm[{{a, {x, y}}, {c, d}}, TableDepth -> 2]

Out[17]//TableForm=
a �x, y�
c d

option name default value

TableDepth Infinity maximum number of levels to include in the
table

TableDirections {Column, Row, Column, . . . }
whether to arrange dimensions as rows or
columns

TableAlignments {Left, Bottom, Left, . . . }
how to align the entries in each dimension

TableSpacing {1, 3, 0, 1, 0, . . . }
how many spaces to put between entries in
each dimension

TableHeadings {None, None, . . . } how to label the entries in each dimension

Options for TableForm.

With the option TableAlignments, you can specify how each entry in the table should be aligned
with its row or column. For columns, you can specify Left, Center or Right. For rows, you can spec-
ify Bottom, Center or Top. If you set TableAlignments -> Center, all entries will be centered both
horizontally and vertically. TableAlignments -> Automatic uses the default choice of alignments.

Entries in columns are by default
aligned on the left.

In[18]:= TableForm[{a, bbbb, cccccccc}]

Out[18]//TableForm=

a

bbbb

cccccccc

This centers all entries. In[19]:= TableForm[{a, bbbb, cccccccc},
TableAlignments -> Center]

Out[19]//TableForm=

a

bbbb

cccccccc

You can use the option TableSpacing to specify how much horizontal space there should be
between successive columns, or how much vertical space there should be between successive rows. A
setting of 0 specifies that successive objects should abut.



2.9.9 Styles and Fonts in Output 443

This leaves 6 spaces between the
entries in each row, and no space
between successive rows.

In[20]:= TableForm[{{a, b}, {ccc, d}}, TableSpacing -> {0, 6}]

Out[20]//TableForm=
a b
ccc d

None no labels in any dimension

Automatic successive integer labels in each dimension

{{lab��, lab��, . . . }, . . . } explicit labels

Settings for the option TableHeadings.

This puts integer labels in a � � � � �
array.

In[21]:= TableForm[Array[a, {2, 2, 2}],
TableHeadings -> Automatic]

Out[21]//TableForm= 1 2

1 a[1, 1, 1] a[1, 2, 1]
1 2 a[1, 1, 2] a[1, 2, 2]

1 a[2, 1, 1] a[2, 2, 1]
2 2 a[2, 1, 2] a[2, 2, 2]

This gives a table in which the rows
are labeled by integers, and the
columns by a list of strings.

In[22]:= TableForm[{{a, b, c}, {ap, bp, cp}},
TableHeadings ->

{Automatic, {"first", "middle", "last"}}]

Out[22]//TableForm=

first middle last

1 a b c

2 ap bp cp

This labels the rows but not the
columns. TableForm automatically
inserts a blank row to go with the
third label.

In[23]:= TableForm[{{2, 3, 4}, {5, 6, 1}},
TableHeadings ->

{{"row a", "row b", "row c"}, None}]

Out[23]//TableForm=

row a 2 3 4

row b 5 6 1

row c

2.9.9 Styles and Fonts in Output

StyleForm[expr, options] print with the specified style options

StyleForm[expr, "style"] print with the specified cell style

Specifying output styles.

The second x� is here shown in
boldface.

In[1]:= {x^2, StyleForm[x^2, FontWeight->"Bold"]}

Out[1]= �x2, x2�



444 2. Principles of Mathematica � 2.9 Textual Input and Output

This shows the word text in font sizes
from 10 to 20 points.

In[2]:= Table[StyleForm["text", FontSize->s], {s, 10, 20}]

Out[2]= 	text, text, text, text,

text, text, text, text,

text, text, text

This shows the text in the Tekton font. In[3]:= StyleForm["some text", FontFamily->"Tekton"]

Out[3]//StyleForm= some text

option typical setting(s)

FontSize 12 size of characters in printer’s points

FontWeight "Plain" or "Bold" weight of characters

FontSlant "Plain" or "Italic" slant of characters

FontFamily "Courier", "Times", "Helvetica"
font family

FontColor GrayLevel[0] color of characters

Background GrayLevel[1] background color for characters

A few options that can be used in StyleForm.

If you use the notebook front end for Mathematica, then each piece of output that is generated will by
default be in the style of the cell in which the output appears. By using StyleForm[expr, "style"],
however, you can tell Mathematica to output a particular expression in a different style.

Here is an expression output in the
style normally used for section
headings.

In[4]:= StyleForm[x^2 + y^2, "Section"]

Out[4]//StyleForm= x2 � y2

Page 572 describes in more detail how cell styles work. By using StyleForm[expr, "style", options]
you can generate output that is in a particular style, but with certain options modified.

2.9.10 Representing Textual Forms by Boxes

All textual forms in Mathematica are ultimately represented in terms of nested collections of boxes.
Typically the elements of these boxes correspond to objects that are to be placed at definite relative
positions in two dimensions.

Here are the boxes corresponding to
the expression a + b.

In[1]:= ToBoxes[a + b]

Out[1]= RowBox�a, �, b��



2.9.10 Representing Textual Forms by Boxes 445

DisplayForm shows how these boxes
would be displayed.

In[2]:= DisplayForm[%]

Out[2]//DisplayForm= a � b

DisplayForm[boxes] show boxes as they would be displayed

Showing the displayed form of boxes.

This displays three strings in a row. In[3]:= RowBox[{"a", "+", "b"}] // DisplayForm

Out[3]//DisplayForm= a � b

This displays one string as a subscript
of another.

In[4]:= SubscriptBox["a", "i"] // DisplayForm

Out[4]//DisplayForm= ai

This puts two subscript boxes in a row. In[5]:= RowBox[{SubscriptBox["a", "1"], SubscriptBox["b", "2"]}] //
DisplayForm

Out[5]//DisplayForm= a1 �b2

"text" literal text

RowBox[{a, b, . . . }] a row of boxes or strings a b . . .

GridBox[{{a�, b�, . . . }, {a�, b�, . . . }, . . . }] a grid of boxes

a1 b1 …

a2 b2 …

� �
SubscriptBox[a, b] subscript ab

SuperscriptBox[a, b] superscript ab

SubsuperscriptBox[a, b, c] subscript and superscript ab
c

UnderscriptBox[a, b] underscript a
b

OverscriptBox[a, b] overscript a
b

UnderoverscriptBox[a, b, c] underscript and overscript a
b

c

FractionBox[a, b] fraction
a
�������
b

SqrtBox[a] square root ����a
RadicalBox[a, b] bth root ����ab

Some basic box types.



446 2. Principles of Mathematica � 2.9 Textual Input and Output

This nests a fraction inside a radical. In[6]:= RadicalBox[FractionBox[x, y], n] // DisplayForm

Out[6]//DisplayForm= ������x
�������
y

n

This puts a superscript on a
subscripted object.

In[7]:= SuperscriptBox[SubscriptBox[a, b], c] // DisplayForm

Out[7]//DisplayForm= ab
c

This puts both a subscript and a
superscript on the same object.

In[8]:= SubsuperscriptBox[a, b, c] // DisplayForm

Out[8]//DisplayForm= ab
c

FrameBox[box] render box with a frame drawn around it

GridBox[list, RowLines->True] put lines between rows in a GridBox

GridBox[list, ColumnLines->True] put lines between columns in a GridBox

GridBox[list, RowLines->{True, False}]
put a line below the first row, but not subsequent ones

Inserting frames and grid lines.

This shows a fraction with a frame
drawn around it.

In[9]:= FrameBox[FractionBox["x", "y"]] // DisplayForm

Out[9]//DisplayForm=
x
�������
y

This puts lines between rows and
columns of an array.

In[10]:= GridBox[Table[i+j, {i, 3}, {j, 3}], RowLines->True,
ColumnLines->True] // DisplayForm

Out[10]//DisplayForm=

2 3 4

3 4 5

4 5 6

And this also puts a frame around the
outside.

In[11]:= FrameBox[%] // DisplayForm

Out[11]//DisplayForm=

2 3 4

3 4 5

4 5 6

StyleBox[boxes, options] render boxes with the specified option settings

StyleBox[boxes, "style"] render boxes in the specified style

Modifying the appearance of boxes.



2.9.10 Representing Textual Forms by Boxes 447

StyleBox takes the same options as StyleForm. The difference is that StyleForm acts as a “wrap-
per” for any expression, while StyleBox represents underlying box structure.

This shows the string "name" in italics. In[12]:= StyleBox["name", FontSlant->"Italic"] // DisplayForm

Out[12]//DisplayForm= name

This shows "name" in the style used
for section headings in your current
notebook.

In[13]:= StyleBox["name", "Section"] // DisplayForm

Out[13]//DisplayForm= name

This uses section heading style, but
with characters shown in gray.

In[14]:= StyleBox["name", "Section", FontColor->GrayLevel[0.5]] //
DisplayForm

Out[14]//DisplayForm= name
If you use a notebook front end for Mathematica, then you will be able to change the style and

appearance of what you see on the screen directly by using menu items. Internally, however, these
changes will still be recorded by the insertion of appropriate StyleBox objects.

FormBox[boxes, form] interpret boxes using rules associated with the specified
form

InterpretationBox[boxes, expr] interpret boxes as representing the expression expr

TagBox[boxes, tag] use tag to guide the interpretation of boxes

ErrorBox[boxes] indicate an error and do not attempt further interpretation
of boxes

Controlling the interpretation of boxes.

This prints as x with a superscript. In[15]:= SuperscriptBox["x", "2"] // DisplayForm

Out[15]//DisplayForm= x2

It is normally interpreted as a power. In[16]:= ToExpression[%] // InputForm

Out[16]//InputForm= x^2

This again prints as x with a
superscript.

In[17]:= InterpretationBox[SuperscriptBox["x", "2"],
vec[x, 2]] // DisplayForm

Out[17]//DisplayForm= x2

But now it is interpreted as vec[x, 2],
following the specification given in the
InterpretationBox .

In[18]:= ToExpression[%] // InputForm

Out[18]//InputForm= vec[x, 2]

If you edit the boxes given in an InterpretationBox, then there is no guarantee that the inter-
pretation specified by the interpretation box will still be correct. As a result, Mathematica provides
various options that allow you to control the selection and editing of InterpretationBox objects.



448 2. Principles of Mathematica � 2.9 Textual Input and Output

option default value

Editable False whether to allow the contents to be edited

Selectable True whether to allow the contents to be selected

Deletable True whether to allow the box to be deleted

DeletionWarning False whether to issue a warning if the box is deleted

BoxAutoDelete False whether to strip the box if its contents are modified

StripWrapperBoxes False whether to remove StyleBox etc. from within boxes in
TagBox[boxes, . . . ]

Options for InterpretationBox and related boxes.

TagBox objects are used to store information that will not be displayed but which can nevertheless
be used by the rules that interpret boxes. Typically the tag in TagBox[boxes, tag] is a symbol which
gives the head of the expression corresponding to boxes. If you edit only the arguments of this
expression then there is a good chance that the interpretation specified by the TagBox will still be
appropriate. As a result, Editable->True is the default setting for a TagBox.

The rules that Mathematica uses for interpreting boxes are in general set up to ignore details of
formatting, such as those defined by StyleBox objects. Thus, unless StripWrapperBoxes->False, a
red x, for example, will normally not be distinguished from an ordinary black x.

A red x is usually treated as identical
to an ordinary one.

In[19]:= ToExpression[
StyleBox[x, FontColor->RGBColor[1,0,0]]] == x

Out[19]= True

ButtonBox[boxes] display like boxes but perform an action whenever boxes are
clicked on

Setting up active elements.

In a Mathematica notebook it is possible to set up elements which perform an action whenever you
click on them. These elements are represented internally by ButtonBox objects. When you create an
expression containing a ButtonBox, you will be able to edit the contents of the ButtonBox directly
so long as the Active option is False for the cell containing the expression. As soon as you set
Active->True, the ButtonBox will perform its action whenever you click on it.

Section 2.11.6 discusses how to set up actions for ButtonBox objects.



2.9.11 Adjusting Details of Formatting 449

2.9.11 Adjusting Details of Formatting

Mathematica provides a large number of options for adjusting the details of how expressions are
formatted. In most cases, the default settings for these options will be quite adequate. But sometimes
special features in the expressions you are dealing with may require you to change the options.

option default value

ColumnAlignments Center how to align columns

RowAlignments Baseline how to align rows

ColumnSpacings 0.8 spacings between columns in ems

RowSpacings 1.0 spacings between rows in x-heights

ColumnsEqual False whether to make all columns equal width

RowsEqual False whether to make all rows equal total height

ColumnWidths Automatic the actual width of each column in ems

RowMinHeight 1 the minimum total height in units of font
size assigned to each row

GridBaseline Axis with what part of the whole grid the
baselines of boxes around it should be
aligned

ColumnLines False whether to draw lines between columns

RowLines False whether to draw lines between rows

GridDefaultElement "�" what to insert when a new element is
interactively created

Options to GridBox.

This sets up an array of numbers. In[1]:= t = Table[{i, (2i)!, (3i)!}, {i, 4}] ;

Here is how the array is displayed
with the default settings for all
GridBox options.

In[2]:= GridBox[t] // DisplayForm

Out[2]//DisplayForm=

1 2 6

2 24 720

3 720 362880

4 40320 479001600



450 2. Principles of Mathematica � 2.9 Textual Input and Output

This right justifies all the columns. In[3]:= GridBox[t, ColumnAlignments->Right] // DisplayForm

Out[3]//DisplayForm=

1 2 6

2 24 720

3 720 362880

4 40320 479001600

This left justifies the first two columns
and right justifies the last one.

In[4]:= GridBox[t,
ColumnAlignments->{Left, Left, Right}] // DisplayForm

Out[4]//DisplayForm=

1 2 6

2 24 720

3 720 362880

4 40320 479001600

This sets the gutters between columns. In[5]:= GridBox[t, ColumnSpacings->{5, 10}] // DisplayForm

Out[5]//DisplayForm=

1 2 6

2 24 720

3 720 362880

4 40320 479001600

This forces all columns to be the same
width.

In[6]:= GridBox[t, ColumnsEqual->True] // DisplayForm

Out[6]//DisplayForm=

1 2 6

2 24 720

3 720 362880

4 40320 479001600

Usually a GridBox leaves room for any
character in the current font to appear
in each row. But with
RowMinHeight->0 it packs rows in
more tightly.

In[7]:= {GridBox[{{x, x}, {x, x}}],
GridBox[{{x, x}, {x, x}}, RowMinHeight->0]} // DisplayForm

Out[7]//DisplayForm= 	 x x

x x
, x x

x x


Center centered (default)

Left left justified (aligned on left edge)

Right right justified (aligned on right edge)

"." aligned at decimal points

"c" aligned at the first occurrence of the specified character

{pos�, pos�, . . . } separate specifications for each column in the grid

Settings for the ColumnAlignments option.



2.9.11 Adjusting Details of Formatting 451

In formatting complicated tables, it is often important to be able to control in detail the alignment
of table entries. By setting ColumnAlignments->"c" you tell Mathematica to arrange the elements in
each column so that the first occurrence of the character "c" in each entry is aligned.

Choosing ColumnAlignments->"." will therefore align numbers according to the positions of their
decimal points. Mathematica also provides a special \[AlignmentMarker] character, which can be
entered as , am ,. This character does not display explicitly, but can be inserted in entries in a table to
mark which point in these entries should be lined up.

Center centered

Top tops aligned

Bottom bottoms aligned

Baseline baselines aligned (default)

Axis axes aligned

{pos�, pos�, . . . } separate specifications for each row in the grid

Settings for the RowAlignments option.

This is the default alignment of
elements in a row of a GridBox.

In[8]:= GridBox[{{SuperscriptBox[x, 2], FractionBox[y, z]}}] //
DisplayForm

Out[8]//DisplayForm= x2 y������z

Here is what happens if the bottom of
each element is aligned.

In[9]:= GridBox[{{SuperscriptBox[x, 2], FractionBox[y, z]}},
RowAlignments->Bottom] // DisplayForm

Out[9]//DisplayForm= x2
y������z

In a piece of ordinary text, successive characters are normally positioned so that their baselines are
aligned. For many characters, such as m and x, the baseline coincides with the bottom of the character.
But in general the baseline is the bottom of the main part of the character, and for example, in most
fonts g and y have “descenders” that extend below the baseline.

This shows the alignment of characters
with the default setting
RowAlignments->Baseline .

In[10]:= GridBox[{{"x", "m", "g", "y"}}] // DisplayForm

Out[10]//DisplayForm= x m g y

This is what happens if instead the
bottom of each character is aligned.

In[11]:= GridBox[{{"x", "m", "g", "y"}}, RowAlignments->Bottom] //
DisplayForm

Out[11]//DisplayForm= x m g y

Like characters in ordinary text, Mathematica will normally position sequences of boxes so that their
baselines are aligned. For many kinds of boxes the baseline is simply taken to be the baseline of the



452 2. Principles of Mathematica � 2.9 Textual Input and Output

main element of the box. Thus, for example, the baseline of a SuperScript box xy is taken to be the
baseline of x.

For a FractionBox
x
�������
y

, the fraction bar defines the axis of the box. In text in a particular font, one

can also define an axis—a line going through the centers of symmetrical characters such as + and (.
The baseline for a FractionBox is then taken to be the same distance below its axis as the baseline
for text in the current font is below its axis.

For a GridBox, you can use the option GridBaseline to specify where the baseline should be taken
to lie. The possible settings are the same as the ones for RowAlignments. The default is Axis, which
makes the center of the GridBox be aligned with the axis of text around it.

The GridBaseline option specifies
where the baseline of the GridBox
should be assumed to be.

In[12]:= {GridBox[{{x,x},{x,x}}, GridBaseline->Top],
GridBox[{{x,x},{x,x}}, GridBaseline->Bottom]} //

DisplayForm

Out[12]//DisplayForm=  
x x

x x

,

x x

x x!

option default value

Background GrayLevel[0.8] button background color

ButtonFrame "Palette" the type of frame for the button

ButtonExpandable True whether a button should expand to fill a
position in a GridBox

ButtonMargins 3 the margin in printer’s points around the
contents of a button

ButtonMinHeight 1 the minimum total height of a button in units
of font size

ButtonStyle "Paste" the style from which properties of the button
not explicitly specified should be inherited

Formatting options for ButtonBox objects.

This makes a button that looks like an
element of a dialog box.

In[13]:= ButtonBox["abcd",
ButtonFrame->"DialogBox"] // DisplayForm

Out[13]//DisplayForm= abcd



2.9.11 Adjusting Details of Formatting 453

Palettes are typically constructed using
grids of ButtonBox objects with zero
row and column spacing.

In[14]:= GridBox[{{ButtonBox["abc"], ButtonBox["xyz"]}},
ColumnSpacings->0] // DisplayForm

Out[14]//DisplayForm= abc xyz

Buttons usually expand to be aligned
in a GridBox.

In[15]:= GridBox[{{ButtonBox["abcd"]},
{ButtonBox["x"]}}] // DisplayForm

Out[15]//DisplayForm=

abcd

x

Here the lower button is made not to
expand.

In[16]:= GridBox[{{ButtonBox["abcd"]}, {ButtonBox["x",
ButtonExpandable->False]}}] // DisplayForm

Out[16]//DisplayForm=

abcd

x

Section 2.11.6 will discuss how to set up actions for ButtonBox objects.

printer’s point approximately 1/72 inch (or sometimes the size of a pixel on
a display)

pica 12 printer’s points, or 1/6 inch

font point size the maximum distance in printer’s points between the top
and bottom of any character in a particular font

em a width equal to the point font size—approximately the
width of an “M”

en half an em

x-height the height of an “x” character in the current font

Units of distance.



454 2. Principles of Mathematica � 2.9 Textual Input and Output

full name alias

\[InvisibleSpace] , is , zero-width space

\[VeryThinSpace] , � , 1/18 em (xx)

\[ThinSpace] , �� , 3/18 em (x x)

\[MediumSpace] , ��� , 4/18 em (x x)

\[ThickSpace] , ���� , 5/18 em (x x)

\[NegativeVeryThinSpace] , -� , ����� em (xx)

\[NegativeThinSpace] , -�� , ���� em (xx)

\[NegativeMediumSpace] , -��� , �
��� em (xx)

\[NegativeThickSpace] , -���� , ����� em (xx)

\[RawSpace] � keyboard space character

\[SpaceIndicator] , space , the _ character indicating a space

Spacing characters of various widths. � indicates the space key on your keyboard.

When you enter input such as x+y, Mathematica will automatically convert this to
RowBox[{"x","+","y"}] . When the RowBox is output, Mathematica will then try to insert appropriate
space between each element. Typically, it will put more space around characters such as + that are
usually used as operators, and less space around characters such as x that are not. You can however
always modify spacing by inserting explicit spacing characters. Positive spacing characters will move
successive elements further apart, while negative ones will bring them closer together.

Mathematica by default leaves more
space around characters such as + and
- that are usually used as operators.

In[17]:= RowBox[{"a", "b", "+", "c", "-", "+"}] // DisplayForm

Out[17]//DisplayForm= a�b � c � �

You can explicitly insert positive and
negative spacing characters to change
spacing.

In[18]:= RowBox[{"a", "\[ThickSpace]", "b", "+",
"\[NegativeMediumSpace]", "c", "-", "+"}] // DisplayForm

Out[18]//DisplayForm= a b �c � �

StyleBox[boxes, AutoSpacing->False]
leave the same space around every character in boxes

Inhibiting automatic spacing in Mathematica.



2.9.11 Adjusting Details of Formatting 455

This makes Mathematica leave the same
space between successive characters.

In[19]:= StyleBox[RowBox[{"a", "b", "+", "c", "-", "+"}],
AutoSpacing->False] // DisplayForm

Out[19]//DisplayForm= a�b�c��

When you have an expression displayed on the screen, the notebook front end allows you inter-
actively to make detailed adjustments to the positions of elements. Typically ��a� , ���� , ��b� ,
��c� “nudge” whatever you have selected by one pixel at your current screen magnification. Such
adjustments are represented within Mathematica using AdjustmentBox objects.

AdjustmentBox[box, BoxMargins->{{left, right}, {bottom, top}}]
draw margins of the specified widths around box

AdjustmentBox[box, BoxBaselineShift->up]
shift the height at which baselines of boxes around box
should be aligned

Adjusting the position of a box.

This adds space to the left of the B and
removes space to its right.

In[20]:= RowBox[{"A", AdjustmentBox["B", BoxMargins->
{{1, -0.3}, {0, 0}}], "C", "D"}] // DisplayForm

Out[20]//DisplayForm= A� B �C�D

By careful adjustment, you can set
things up to put two characters on top
of each other.

In[21]:= RowBox[{"C", AdjustmentBox["/",
BoxMargins->{{-.8, .8}, {0, 0}}]}] // DisplayForm

Out[21]//DisplayForm= C�
The left and right margins in an AdjustmentBox are given in ems; the bottom and top ones in

x-heights. By giving positive values for margins you can force there to be space around a box. By
giving negative values you can effectively trim space away, and force other boxes to be closer. Note
that in a RowBox, vertical alignment is determined by the position of the baseline; in a FractionBox
or an OverscriptBox, for example, it is instead determined by top and bottom margins.

StyleBox[boxes, ShowContents->False]
leave space for boxes but do not display them

Leaving space for boxes without displaying them.

If you are trying to line up different elements of your output, you can use ShowContents->False
in StyleBox to leave space for boxes without actually displaying them.

This leaves space for the Y, but does
not display it.

In[22]:= RowBox[{"X", StyleBox["Y", ShowContents->False], "Z"}] //
DisplayForm

Out[22]//DisplayForm= X� Z



456 2. Principles of Mathematica � 2.9 Textual Input and Output

The sizes of most characters are determined solely by what font they are in, as specified for example
by the FontSize option in StyleBox. But there are some special expandable characters whose size
can change even within a particular font. Examples are parentheses, which by default are taken to
expand so as to span any expression they contain.

Parentheses by default expand to span
whatever expressions they contain.

In[23]:= {RowBox[{"(", "X", ")"}],
RowBox[{"(", FractionBox["X", "Y"], ")"}]} // DisplayForm

Out[23]//DisplayForm= 	�X�, � X
�������
Y
�


option default value

SpanMinSize Automatic minimum size of expandable characters in
units of font size

SpanMaxSize Automatic maximum size of expandable characters in
units of font size

SpanSymmetric True whether vertically expandable characters
should be symmetric about the axis of the
box they are in

SpanLineThickness Automatic thickness in printer’s points of fraction lines
etc.

StyleBox options for controlling expandable characters.

Parentheses within a single RowBox by
default grow to span whatever other
objects appear in the RowBox.

In[24]:= RowBox[{"(", "(", GridBox[{{X},{Y},{Z}}]}] // DisplayForm

Out[24]//DisplayForm=
"
#
$$$$$$$
"
#
$$$$$$$

X

Y

Z

Some expandable characters, however,
grow by default only to a limited
extent.

In[25]:= RowBox[{"{", "[", "(",
GridBox[{{X},{Y},{Z}}]}] // DisplayForm

Out[25]//DisplayForm= 	�"
#
$$$$$$$

X

Y

Z

This specifies that all characters inside
the StyleBox should be allowed to
grow as large as they need.

In[26]:= StyleBox[%, SpanMaxSize->Infinity] // DisplayForm

Out[26]//DisplayForm=

67777778
9777777
:
;
<<<<<<<<<<<<<<<<<<<<<<<<<
"
#
$$$$$$$

X

Y

Z



2.9.11 Adjusting Details of Formatting 457

By default, expandable characters grow
symmetrically.

In[27]:= RowBox[{"(", GridBox[{{X},{Y}},
GridBaseline->Bottom], ")"}] // DisplayForm

Out[27]//DisplayForm=
"
#
$$$$$$$$

X

Y
%
&
''''''''

Setting SpanSymmetric->False allows
expandable characters to grow
asymmetrically.

In[28]:= {X, StyleBox[%, SpanSymmetric->False]} // DisplayForm

Out[28]//DisplayForm= 	X, � X

Y �

The notebook front end typically provides a Spanning Characters menu which allows you to change

the spanning characteristics of all characters within your current selection.

parentheses, arrows, bracketing bars grow without bound

brackets, braces, slash grow to limited size

Default characteristics of expandable characters.

The top bracket by default grows to
span the OverscriptBox.

In[29]:= OverscriptBox["xxxxxx", "\[OverBracket]"] // DisplayForm

Out[29]//DisplayForm= xxxxxx� �����������

The right arrow by default grows
horizontally to span the column it is
in.

In[30]:= GridBox[{{"a", "xxxxxxx", "b"},
{"a", "\[RightArrow]", "b"}}] // DisplayForm

Out[30]//DisplayForm=
a xxxxxxx b

a �dddddddddd b

The up arrow similarly grows vertically
to span the row it is in.

In[31]:= GridBox[{{FractionBox[X, Y],
"\[UpArrow]"}}] // DisplayForm

Out[31]//DisplayForm= X������Y beee

option default value

ScriptSizeMultipliers 0.71 how much smaller to make each level
of subscripts, etc.

ScriptMinSize 4 the minimum point size to use for
subscripts, etc.

ScriptBaselineShifts {Automatic, Automatic} the distance in x-heights to shift
subscripts and superscripts

StyleBox options for controlling the size and positioning of subscripts, etc.



458 2. Principles of Mathematica � 2.9 Textual Input and Output

This sets up a collection of nested
SuperscriptBox objects.

In[32]:= b = ToBoxes[X^X^X^X^X]

Out[32]= SuperscriptBoxX, SuperscriptBoxX,
SuperscriptBoxX, SuperscriptBoxX, X����

By default, successive superscripts get
progressively smaller.

In[33]:= b // DisplayForm

Out[33]//DisplayForm= XXXXX

This tells Mathematica to make all levels
of superscripts the same size.

In[34]:= StyleBox[b, ScriptSizeMultipliers->1] // DisplayForm

Out[34]//DisplayForm= XXXXX

Here successive levels of superscripts
are smaller, but only down to 5-point
size.

In[35]:= StyleBox[b, ScriptMinSize->5] // DisplayForm

Out[35]//DisplayForm= XXXXX

Mathematica will usually optimize the position of subscripts and superscripts in a way that depends
on their environment. If you want to line up several different subscripts or superscripts you therefore
typically have to use the option ScriptBaselineShifts to specify an explicit distance to shift each
one.

The second subscript is by default
shifted down slightly more than the
first.

In[36]:= RowBox[{SubscriptBox["x", "0"], "+",
SubsuperscriptBox["x", "0", "2"]}] // DisplayForm

Out[36]//DisplayForm= x0 � x0
2

This tells Mathematica to apply exactly
the same shift to both subscripts.

In[37]:= StyleBox[%, ScriptBaselineShifts->{1, Automatic}] //
DisplayForm

Out[37]//DisplayForm= x
0
� x

0
2

option default value

LimitsPositioning Automatic whether to change positioning in the way
conventional for limits

An option to UnderoverscriptBox and related boxes.

The limits of a sum are usually
displayed as underscripts and
overscripts.

In[38]:= Sum[f[i], {i, 0, n}]

Out[38]= �
i=0

n

fi�
When the sum is shown smaller,
however, it is conventional for the
limits to be displayed as subscripts and
superscripts.

In[39]:= 1/%

Out[39]=
1

�����������������������������������������)i=0
n

fi�



2.9.11 Adjusting Details of Formatting 459

Here low and high still display
directly above and below XX.

In[40]:= UnderoverscriptBox["XX", "low", "high",
LimitsPositioning->True] // DisplayForm

Out[40]//DisplayForm= XX
low

high

But now low and high are moved to
subscript and superscript positions.

In[41]:= FractionBox["a", %] // DisplayForm

Out[41]//DisplayForm=
a

���������������������������
XXlow

high

LimitsPositioning->Automatic will act as if LimitsPositioning->True when the first argument
of the box is an object such as \[Sum] or \[Product]. You can specify the list of such characters by
setting the option LimitsPositioningTokens .

option default value

MultilineFunction Automatic what to do when a box breaks across several lines

Line breaking option for boxes.

When you are dealing with long expressions it is inevitable that they will continue beyond the
length of a single line. Many kinds of boxes change their display characteristics when they break
across several lines.

This displays as a built-up fraction on
a single line.

In[42]:= Expand[(1 + x)^5]/Expand[(1 + y)^5]

Out[42]=
1 � 5 x � 10 x2 � 10 x3 � 5 x4 � x5

������������������������������������������������������������������������������������������������������������������������������
1 � 5 y � 10 y2 � 10 y3 � 5 y4 � y5

This breaks across several lines. In[43]:= Expand[(1 + x)^10]/Expand[(1 + y)^5]

Out[43]= �1 � 10 x � 45 x2 � 120 x3 � 210 x4 �
252 x5 � 210 x6 � 120 x7 � 45 x8 � 10 x9 � x10���1 � 5 y � 10 y2 � 10 y3 � 5 y4 � y5�

You can use the option MultilineFunction to specify how a particular box should be displayed if
it breaks across several lines. The setting MultilineFunction->None prevents the box from breaking
at all.

You can to some extent control where expressions break across lines by inserting \[NoBreak] and
\[NonBreakingSpace] characters. Mathematica will try to avoid ever breaking an expression at the
position of such characters.

You can force Mathematica to break a line by explicitly inserting a \[NewLine] character, obtained
in the standard notebook front end simply by typing RETURN. With default settings for options, Mathe-
matica will automatically indent the next line after you type a RETURN. However, the level of indenting
used will be fixed as soon as the line is started, and will not change when you edit around it. By



460 2. Principles of Mathematica � 2.9 Textual Input and Output

inserting an \[IndentingNewLine] character, you can tell Mathematica always to maintain the correct
level of indenting based on the actual environment in which a line occurs.

full name alias

\[NoBreak] , nb , inhibit a line break

\[NonBreakingSpace] , nbs , insert a space, inhibiting a line break on
either side of it

\[NewLine] ` insert a line break, setting the indenting level
at the time the new line is started

\[IndentingNewLine] , nl , insert a line break, always maintaining the
correct indenting level

Characters for controlling line breaking.

When Mathematica breaks an expression across several lines, it indents intermediate lines by an
amount proportional to the nesting level in the expression at which the break occurred.

The line breaks here occur only at
level 1.

In[44]:= Range[30]

Out[44]= �1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30�

But here the break is at a much deeper
level.

In[45]:= Nest[List, x+y, 30]

Out[45]= ������������������������������x +
y������������������������������

2.9.12 String Representation of Boxes

Mathematica provides a compact way of representing boxes in terms of strings. This is particularly
convenient when you want to import or export specifications of boxes as ordinary text.

This generates an InputForm string
that represents the SuperscriptBox.

In[1]:= ToString[SuperscriptBox["x", "2"], InputForm]

Out[1]= \�x\^2\�
This creates the SuperscriptBox. In[2]:= \( x \^ 2 \)

Out[2]= SuperscriptBoxx, 2�
ToExpression interprets the
SuperscriptBox as a power.

In[3]:= ToExpression[%] // FullForm

Out[3]//FullForm= Powerx, 2�
It is important to distinguish between forms that represent just raw boxes, and forms that represent

the meaning of the boxes.



2.9.12 String Representation of Boxes 461

This corresponds to a raw
SuperscriptBox.

In[4]:= \( x \^ 2 \)

Out[4]= SuperscriptBoxx, 2�
This corresponds to the power that the
SuperscriptBox represents.

In[5]:= \!\( x \^ 2 \)

Out[5]= x2

The expression generated here is a
power.

In[6]:= FullForm[ \!\( x \^ 2 \) ]

Out[6]//FullForm= Powerx, 2�

\(input\) raw boxes

\!\(input\) the meaning of the boxes

Distinguishing raw boxes from the expressions they represent.

If you copy the contents of a StandardForm cell into another program, such as a text editor, Mathe-
matica will automatically generate a \!\( . . . \) form. This is done so that if you subsequently paste
the form back into Mathematica, the original contents of the StandardForm cell will automatically be
re-created. Without the \!, only the raw boxes corresponding to these contents would be obtained.

With default settings for options, \!\( . . . \) forms pasted into Mathematica notebooks are automat-
ically displayed in two-dimensional form. \!\( . . . \) forms entered directly from the keyboard can
be displayed in two-dimensional form using the Make 2D item in the Edit menu.

"\(input\)" a raw character string

"\!\(input\)" a string containing boxes

Embedding two-dimensional box structures in strings.

Mathematica will usually treat a \( . . . \) form that appears within a string just like any other
sequence of characters. But by inserting a \! you can tell Mathematica instead to treat this form like
the boxes it represents. In this way you can therefore embed box structures within ordinary character
strings.

Mathematica treats this as an ordinary
character string.

In[7]:= "\( x \^ 2 \)"

Out[7]= \� x \^ 2 \�
The \! tells Mathematica that this string
contains boxes.

In[8]:= "\!\( x \^ 2 \)"

Out[8]= x2

You can mix boxes with ordinary text. In[9]:= "box 1: \!\(x\^2\); box 2: \!\(y\^3\)"

Out[9]= box 1: x2; box 2: y3



462 2. Principles of Mathematica � 2.9 Textual Input and Output

\(box�, box�, . . . \) RowBox[box�, box�, . . . ]

box� \^ box� SuperscriptBox[box�, box�]

box� \_ box� SubscriptBox[box�, box�]

box� \_ box� \% box SubsuperscriptBox[box�, box�, box]

box� \& box� OverscriptBox[box�, box�]

box� \+ box� UnderscriptBox[box�, box�]

box� \+ box� \% box UnderoverscriptBox[box�, box�, box]

box� \/ box� FractionBox[box�, box�]

\@ box SqrtBox[box]

\@ box� \% box� RadicalBox[box�, box�]

form \` box FormBox[box, form]

\* input construct boxes from input

Input forms for boxes.

Mathematica requires that any input forms you give for boxes be enclosed within \( and \). But
within these outermost \( and \) you can use additional \( and \) to specify grouping.

Here ordinary parentheses are used to
indicate grouping.

In[10]:= \( x \/ (y + z) \) // DisplayForm

Out[10]//DisplayForm=
x

�������������������������������y � z�
Without the parentheses, the grouping
would be different.

In[11]:= \( x \/ y + z \) // DisplayForm

Out[11]//DisplayForm=
x
�������
y
� z

\( and \) specify grouping, but are
not displayed as explicit parentheses.

In[12]:= \( x \/ \(y + z\) \) // DisplayForm

Out[12]//DisplayForm=
x

���������������������
y � z

The inner \( and \) lead to the
construction of a RowBox.

In[13]:= \( x \/ \(y + z\) \)

Out[13]= FractionBoxx, RowBox�y, �, z���
When you type aa+bb as input to Mathematica, the first thing that happens is that aa, + and bb

are recognized as being separate “tokens”. The same separation into tokens is done when boxes are
constructed from input enclosed in \( . . . \). However, inside the boxes each token is given as a
string, rather than in its raw form.

The RowBox has aa, + and bb broken
into separate strings.

In[14]:= \( aa+bb \) // FullForm

Out[14]//FullForm= RowBoxList"aa", "�", "bb"��



2.9.12 String Representation of Boxes 463

The spaces around the + are by default
discarded.

In[15]:= \( aa + bb \) // FullForm

Out[15]//FullForm= RowBoxList"aa", "�", "bb"��
Backslash-space inserts a literal space. In[16]:= \( aa \ + \ bb \) // FullForm

Out[16]//FullForm= RowBoxList"aa", " ", "�", " ", "bb"��
Here two nested RowBox objects are
formed.

In[17]:= \( aa+bb/cc \) // FullForm

Out[17]//FullForm= RowBox
List"aa", "�", RowBoxList"bb", "�", "cc"����

The same box structure is formed even
when the string given does not
correspond to a complete Mathematica
expression.

In[18]:= \( aa+bb/ \) // FullForm

Out[18]//FullForm= RowBoxList"aa", "�", RowBoxList"bb", "�"����

Within \( . . . \) sequences, you can set up certain kinds of boxes by using backslash notations such
as \^ and \@. But for other kinds of boxes, you need to give ordinary Mathematica input, prefaced
by \*.

This constructs a GridBox. In[19]:= \( \*GridBox[{{"a", "b"}, {"c", "d"}}] \) // DisplayForm

Out[19]//DisplayForm=
a b

c d

This constructs a StyleBox. In[20]:= \( \*StyleBox["text", FontWeight->"Bold"] \) // DisplayForm

Out[20]//DisplayForm= text

\* in effect acts like an escape: it allows you to enter ordinary Mathematica syntax even within
a \( . . . \) sequence. Note that the input you give after a \* can itself in turn contain \( . . . \)
sequences.

You can alternate nested \* and
\( . . . \). Explicit quotes are needed
outside of \( . . . \).

In[21]:= \( x + \*GridBox[{{"a", "b"}, {\(c \^ 2\), \(d \/
\*GridBox[{{"x","y"},{"x","y"}}] \)}}] \) // DisplayForm

Out[21]//DisplayForm= x �

a b

c2 d����������������x y

x y

In the notebook front end, you can typically use ��*� or ��8� to get a dialog box in which you
can enter raw boxes—just as you do after \*.

\!\(input\) interpret input in the current form

\!\(form \` input\) interpret input using the specified form

Controlling the way input is interpreted.



464 2. Principles of Mathematica � 2.9 Textual Input and Output

In a StandardForm cell, this will be
interpreted in StandardForm, yielding
a product.

In[22]:= \!\( c(1+x) \)

Out[22]= c �1 � x�
The backslash backquote sequence tells
Mathematica to interpret this in
TraditionalForm.

In[23]:= \!\(TraditionalForm\` c(1+x) \)

Out[23]= c1 � x�
When you copy the contents of a cell from a notebook into a program such as a text editor, no

explicit backslash backquote sequence is usually included. But if you expect to paste what you get
back into a cell of a different type from the one it came from, then you will typically need to include
a backslash backquote sequence in order to ensure that everything is interpreted correctly.

2.9.13 Converting between Strings, Boxes and Expressions

ToString[expr, form] create a string representing the specified textual form of expr

ToBoxes[expr, form] create boxes representing the specified textual form of expr

ToExpression[input, form] create an expression by interpreting a string or boxes as
input in the specified textual form

ToString[expr] create a string using OutputForm

ToBoxes[expr] create boxes using StandardForm

ToExpression[input] create an expression using StandardForm

Converting between strings, boxes and expressions.

Here is a simple expression. In[1]:= x^2 + y^2

Out[1]= x2 � y2

This gives the InputForm of the
expression as a string.

In[2]:= ToString[x^2 + y^2, InputForm]

Out[2]= x^2 � y^2

In FullForm explicit quotes are shown
around the string.

In[3]:= FullForm[%]

Out[3]//FullForm= "x^2 � y^2"

This gives a string representation for
the StandardForm boxes that
correspond to the expression.

In[4]:= ToString[x^2 + y^2, StandardForm] // FullForm

Out[4]//FullForm= "\9\�x\^2 � y\^2\�"

ToBoxes yields the boxes themselves. In[5]:= ToBoxes[x^2 + y^2, StandardForm]

Out[5]= RowBox�SuperscriptBoxx, 2�, �, SuperscriptBoxy, 2���



2.9.13 Converting between Strings, Boxes and Expressions 465

In generating data for files and external programs, it is sometimes necessary to produce two-
dimensional forms which use only ordinary keyboard characters. You can do this using OutputForm .

This produces a string which gives a
two-dimensional rendering of the
expression, using only ordinary
keyboard characters.

In[6]:= ToString[x^2 + y^2, OutputForm]

Out[6]= 2 2
x + y

The string consists of two lines,
separated by an explicit \n newline.

In[7]:= FullForm[%]

Out[7]//FullForm= " 2 2\nx + y"

The string looks right only in a
monospaced font.

In[8]:= StyleBox[%, FontFamily->"Times"] // DisplayForm

Out[8]//DisplayForm= 2 2
x � y

If you operate only with one-dimensional structures, you can effectively use ToString to do string
manipulation with formatting functions.

This generates a string corresponding
to the OutputForm of StringForm.

In[9]:= ToString[StringForm["``^10 = ``", 4, 4^10]] // InputForm

Out[9]//InputForm= "4^10 = 1048576"

InputForm strings corresponding to keyboard input

StandardForm strings or boxes corresponding to standard two-dimensional
input (default)

TraditionalForm strings or boxes mimicking traditional mathematical notation

Some forms handled by ToExpression.

This creates an expression from an
InputForm string.

In[10]:= ToExpression["x^2 + y^2"]

Out[10]= x2 � y2

This creates the same expression from
StandardForm boxes.

In[11]:= ToExpression[RowBox[{SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}]]

Out[11]= x2 � y2

Here the boxes are represented in
InputForm.

In[12]:= ToExpression[\(x\^2 + y\^2\)]

Out[12]= x2 � y2

This returns raw boxes. In[13]:= ToExpression["\(x\^2 + y\^2\)"]

Out[13]= RowBox�SuperscriptBoxx, 2�, �, SuperscriptBoxy, 2���
This interprets the boxes. In[14]:= ToExpression["\!\(x\^2 + y\^2\)"]

Out[14]= x2 � y2



466 2. Principles of Mathematica � 2.9 Textual Input and Output

In TraditionalForm these are
interpreted as functions.

In[15]:= ToExpression["c(1 + x) + log(x)", TraditionalForm]

Out[15]= c1 � x� � Logx�

ToExpression[input, form, h] create an expression, then wrap it with head h

Creating expressions wrapped with special heads.

This creates an expression, then
immediately evaluates it.

In[16]:= ToExpression["1 + 1"]

Out[16]= 2

This creates an expression using
StandardForm rules, then wraps it in
Hold.

In[17]:= ToExpression["1 + 1", StandardForm, Hold]

Out[17]= Hold1 � 1�
You can get rid of the Hold using
ReleaseHold.

In[18]:= ReleaseHold[%]

Out[18]= 2

SyntaxQ["string"] determine whether a string represents syntactically correct
Mathematica input

SyntaxLength["string"] find out how long a sequence of characters starting at the
beginning of a string is syntactically correct

Testing correctness of strings as input.

ToExpression will attempt to interpret any string as Mathematica input. But if you give it a string
that does not correspond to syntactically correct input, then it will print a message, and return
$Failed.

This is not syntactically correct input,
so ToExpression does not convert it to
an expression.

In[19]:= ToExpression["1 +/+ 2"]

ToExpression::sntx: Syntax error in or before "1 +/+ 2".
^

Out[19]= $Failed

ToExpression requires that the string
correspond to a complete Mathematica
expression.

In[20]:= ToExpression["1 + 2 + "]

ToExpression::sntxi:
Incomplete expression; more input is needed.

Out[20]= $Failed

You can use the function SyntaxQ to test whether a particular string corresponds to syntactically
correct Mathematica input. If SyntaxQ returns False, you can find out where the error occurred using
SyntaxLength . SyntaxLength returns the number of characters which were successfully processed
before a syntax error was detected.



2.9.14 The Syntax of the Mathematica Language 467

SyntaxQ shows that this string does
not correspond to syntactically correct
Mathematica input.

In[21]:= SyntaxQ["1 +/+ 2"]

Out[21]= False

SyntaxLength reveals that an error
was detected after the third character
in the string.

In[22]:= SyntaxLength["1 +/+ 2"]

Out[22]= 3

Here SyntaxLength returns a value
greater than the length of the string,
indicating that the input was correct so
far as it went, but needs to be
continued.

In[23]:= SyntaxLength["1 + 2 + "]

Out[23]= 10

2.9.14 The Syntax of the Mathematica Language

Mathematica uses various syntactic rules to interpret input that you give, and to convert strings and
boxes into expressions. The version of these rules that is used for StandardForm and InputForm in ef-
fect defines the basic Mathematica language. The rules used for other forms, such as TraditionalForm,
follow the same overall principles, but differ in many details.

a, xyz, ΑΒΓ symbols

"some text", "Α + Β" strings

123.456, 3*^45 numbers

+, ->, � operators

(* comment *) input to be ignored

Types of tokens in the Mathematica language.

When you give text as input to Mathematica, the first thing that Mathematica does is to break the
text into a sequence of tokens, with each token representing a separate syntactic unit.

Thus, for example, if you give the input xx+yy-zzzz, Mathematica will break this into the sequence
of tokens xx, +, yy, - and zzzz. Here xx, yy and zzzz are tokens that correspond to symbols, while
+ and - are operators.

Operators are ultimately what determine the structure of the expression formed from a particular
piece of input. The Mathematica language involves several general classes of operators, distinguished
by the different positions in which they appear with respect to their operands.



468 2. Principles of Mathematica � 2.9 Textual Input and Output

prefix !x Not[x]

postfix x! Factorial[x]

infix x + y + z Plus[x, y, z]

matchfix {x, y, z} List[x, y, z]

compound x /: y = z TagSet[x, y, z]

overfix xf OverHat[x]

Examples of classes of operators in the Mathematica language.

Operators typically work by picking up operands from definite positions around them. But when
a string contains more than one operator, the result can in general depend on which operator picks
up its operands first.

Thus, for example, a*b+c could potentially be interpreted either as (a*b)+c or as a*(b+c) depend-
ing on whether * or + picks up its operands first.

To avoid such ambiguities, Mathematica assigns a precedence to each operator that can appear.
Operators with higher precedence are then taken to pick up their operands first.

Thus, for example, the multiplication operator * is assigned higher precedence than +, so that it
picks up its operands first, and a*b+c is interpreted as (a*b)+c rather than a*(b+c).

The * operator has higher precedence
than +, so in both cases Times is the
innermost function.

In[1]:= {FullForm[a * b + c], FullForm[a + b * c]}

Out[1]= �PlusTimesa, b�, c�, Plusa, Timesb, c���
The // operator has rather low
precedence.

In[2]:= a * b + c // f

Out[2]= fa b � c�
The @ operator has high precedence. In[3]:= f @ a * b + c

Out[3]= c � b fa�
Whatever the precedence of the operators you are using, you can always specify the structure of

the expressions you want to form by explicitly inserting appropriate parentheses.

Inserting parentheses makes Plus
rather than Times the innermost
function.

In[4]:= FullForm[a * (b + c)]

Out[4]//FullForm= Timesa, Plusb, c��



2.9.14 The Syntax of the Mathematica Language 469

Extensions of symbol names x_, #2, e::s, etc.

Function application variants e[e], e @@ e, etc.

Power-related operators 2e, e^e, etc.

Multiplication-related operators Ye, e/e, ege, e e, etc.

Addition-related operators e O e, e + e, e � e, etc.

Relational operators e == e, e M e, e � e, e � e, e � e, etc.

Arrow and vector operators e T e, e 	 e, e 
 e, e � e, etc.

Logic operators \e e , e && e, e � e, e � e, etc.

Pattern and rule operators e.., e | e, e -> e, e /. e, etc.

Pure function operator e &

Assignment operators e = e, e := e, etc.

Compound expression e; e

Outline of operators in order of decreasing precedence.

The table on pages 1024–1029 gives the complete ordering by precedence of all operators in
Mathematica. Much of this ordering, as in the case of * and +, is determined directly by standard
mathematical usage. But in general the ordering is simply set up to make it less likely for explicit
parentheses to have to be inserted in typical pieces of input.

Operator precedences are such that this
requires no parentheses.

In[5]:= �x �y x�y � y� m  0 ! n � m

Out[5]= Implies\x �]y xgy � y� && m � 0, n � m�
FullForm shows the structure of the
expression that was constructed.

In[6]:= FullForm[%]

Out[6]//FullForm= ImpliesAndForAllx,
Existsy, SucceedsCircleTimesx, y�, y���,

Unequalm, 0��, NotRightTriangleBarn, m��
Note that the first and second forms
here are identical; the third requires
explicit parentheses.

In[7]:= {x -> #^2 &, (x -> #^2)&, x -> (#^2 &)}

Out[7]=  x � #12 &, x � #12 &, x � �#12 &�!

flat x + y + z x + y + z

left grouping x / y / z (x / y) / z

right grouping x ^ y ^ z x ^ (y ^ z)

Types of grouping for infix operators.



470 2. Principles of Mathematica � 2.9 Textual Input and Output

Plus is a Flat function, so no
grouping is necessary here.

In[8]:= FullForm[a + b + c + d]

Out[8]//FullForm= Plusa, b, c, d�
Power is not Flat, so the operands
have to be grouped in pairs.

In[9]:= FullForm[a ^ b ^ c ^ d]

Out[9]//FullForm= Powera, Powerb, Powerc, d���
The syntax of the Mathematica language is defined not only for characters that you can type on a

typical keyboard, but also for all the various special characters that Mathematica supports.

Letters such as Γ, � and Y from any alphabet are treated just like ordinary English letters, and can
for example appear in the names of symbols. The same is true of letter-like forms such as �,  and [.

But many other special characters are treated as operators. Thus, for example, K and � are infix
operators, while a is a prefix operator, and � and � are matchfix operators.

K is an infix operator. In[10]:= a � b � c // FullForm

Out[10]//FullForm= CirclePlusa, b, c�
b is an infix operator which means the
same as *.

In[11]:= a " a " a " b " b " c

Out[11]= a3 b2 c

Some special characters form elements of fairly complicated compound operators. Thus, for exam-
ple, � f 7 x contains the compound operator with elements � and 7.

The � and 7 form parts of a
compound operator.

In[12]:= � k[x] �x // FullForm

Out[12]//FullForm= Integratekx�, x�
No parentheses are needed here: the
“inner precedence” of � . . . 7 is lower
than Times.

In[13]:= � a[x] b[x] �x + c[x]

Out[13]= cx� �� ax� bx��7x

Parentheses are needed here, however. In[14]:= � (a[x] + b[x]) �x + c[x]

Out[14]= cx� �� �ax� � bx���7x

Input to Mathematica can be given not only in the form of one-dimensional strings, but also in
the form of two-dimensional boxes. The syntax of the Mathematica language covers not only one-
dimensional constructs but also two-dimensional ones.

This superscript is interpreted as a
power.

In[15]:= xa�b

Out[15]= xa�b

8x f is a two-dimensional compound
operator.

In[16]:= �x xn

Out[16]= n x�1�n



2.9.15 Operators without Built-in Meanings 471

) is part of a more complicated
two-dimensional compound operator.

In[17]:= �
n�1

# 1
�������
ns

Out[17]= Zetas�
The ) operator has higher precedence
than +.

In[18]:= �
n�1

# 1
�������
ns

� n

Out[18]= n � Zetas�

2.9.15 Operators without Built-in Meanings

When you enter a piece of input such as 2 + 2, Mathematica first recognizes the + as an operator and
constructs the expression Plus[2, 2], then uses the built-in rules for Plus to evaluate the expression
and get the result 4.

But not all operators recognized by Mathematica are associated with functions that have built-
in meanings. Mathematica also supports several hundred additional operators that can be used in
constructing expressions, but for which no evaluation rules are initially defined.

You can use these operators as a way to build up your own notation within the Mathematica
language.

The O is recognized as an infix
operator, but has no predefined value.

In[1]:= 2�3 �� FullForm

Out[1]//FullForm= CirclePlus2, 3�
In StandardForm, O prints as an infix
operator.

In[2]:= 2�3

Out[2]= 2O3

You can define a value for O. In[3]:= x_ � y_ := Mod[x + y, 2]

Now O is not only recognized as an
operator, but can also be evaluated.

In[4]:= 2 � 3

Out[4]= 1

x O y CirclePlus[x, y]

x h y TildeTilde[x, y]

x i y Therefore[x, y]

x j y LeftRightArrow[x, y]

Y x Del[x]

� x Square[x]

/x,y, . . . 0 AngleBracket[x, y, . . . ]

A few Mathematica operators corresponding to functions without predefined values.



472 2. Principles of Mathematica � 2.9 Textual Input and Output

Mathematica follows the general convention that the function associated with a particular operator
should have the same name as the special character that represents that operator.

\[Congruent] is displayed as k. In[5]:= x \[Congruent] y

Out[5]= x k y

It corresponds to the function
Congruent.

In[6]:= FullForm[%]

Out[6]//FullForm= Congruentx, y�

x \[name] y name[x, y]

\[name] x name[x]

\[Leftname] x, y, . . .\[Rightname] name[x, y, . . . ]

The conventional correspondence in Mathematica between operator names and function names.

You should realize that even though the functions CirclePlus and CircleTimes do not have
built-in evaluation rules, the operators K and L do have built-in precedences. Pages 1024–1029 list all
the operators recognized by Mathematica, in order of their precedence.

The operators g and O have definite
precedences—with g higher than O.

In[7]:= x � y � z // FullForm

Out[7]//FullForm= ModPlusz, CircleTimesx, y��, 2�

xy Subscript[x, y]

x� SubPlus[x]

x� SubMinus[x]

x[ SubStar[x]

x� SuperPlus[x]

x� SuperMinus[x]

x[ SuperStar[x]

x† SuperDagger[x]

x
y

Overscript[x, y]

x
y

Underscript[x, y]

xN OverBar[x]

x= OverVector[x]

xK OverTilde[x]

xf OverHat[x]

xL OverDot[x]

xN UnderBar[x]

Some two-dimensional forms without built-in meanings.

Subscripts have no built-in meaning in
Mathematica.

In[8]:= x2 � y2 �� InputForm

Out[8]//InputForm= Subscript[x, 2] + Subscript[y, 2]

Most superscripts are however
interpreted as powers by default.

In[9]:= x2 � y2 �� InputForm

Out[9]//InputForm= x^2 + y^2



2.9.16 Defining Output Formats 473

A few special superscripts are not
interpreted as powers.

In[10]:= x† � y� �� InputForm

Out[10]//InputForm= SuperDagger[x] + SuperPlus[y]

Bar and hat are interpreted as OverBar
and OverHat.

In[11]:= x$ � y% �� InputForm

Out[11]//InputForm= OverBar[x] + OverHat[y]

2.9.16 Defining Output Formats

Just as Mathematica allows you to define how expressions should be evaluated, so also it allows you to
define how expressions should be formatted for output. The basic idea is that whenever Mathematica
is given an expression to format for output, it first calls Format[expr] to find out whether any special
rules for formatting the expression have been defined. By assigning a value to Format[expr] you can
therefore tell Mathematica that you want a particular kind of expression to be output in a special way.

This tells Mathematica to format bin
objects in a special way.

In[1]:= Format[bin[x_, y_]] := MatrixForm[{{x}, {y}}]

Now bin objects are output to look
like binomial coefficients.

In[2]:= bin[i + j, k]

Out[2]= � i � j

k
�

Internally, however, bin objects are still
exactly the same.

In[3]:= FullForm[%]

Out[3]//FullForm= binPlusi, j�, k�

Format[expr�] := expr� define expr� to be formatted like expr�

Format[expr�, form] := expr� give a definition only for a particular output form

Defining your own rules for formatting.

By making definitions for Format, you can tell Mathematica to format a particular expression so as
to look like another expression. You can also tell Mathematica to run a program to determine how a
particular expression should be formatted.

This specifies that Mathematica should
run a simple program to determine
how xrep objects should be formatted.

In[4]:= Format[xrep[n_]] := StringJoin[Table["x", {n}]]

The strings are created when each xrep
is formatted.

In[5]:= xrep[1] + xrep[4] + xrep[9]

Out[5]= x � xxxx � xxxxxxxxx

Internally however the expression still
contains xrep objects.

In[6]:= % /. xrep[n_] -> x^n

Out[6]= x � x4 � x9



474 2. Principles of Mathematica � 2.9 Textual Input and Output

Prefix[f[x], h] prefix form h x

Postfix[f[x], h] postfix form x h

Infix[f[x, y, . . . ], h] infix form x h y h . . .

Prefix[f[x]] standard prefix form f @ x

Postfix[f[x]] standard postfix form x // f

Infix[f[x, y, . . . ]] standard infix form x M f M y M f M . . .

PrecedenceForm[expr, n] an object to be parenthesized with a precedence level n

Output forms for operators.

This prints with f represented by the
“prefix operator” <>.

In[7]:= Prefix[f[x], "<>"]

Out[7]= ?> x

Here is output with the “infix
operator” ��.

In[8]:= s = Infix[{a, b, c}, "��"]

Out[8]= a����b����c

By default, the “infix operator” �� is
assumed to have “higher precedence”
than ^, so no parentheses are inserted.

In[9]:= s^2

Out[9]= �a����b����c�2

When you have an output form involving operators, the question arises of whether the argu-
ments of some of them should be parenthesized. As discussed in Section 2.1.3, this depends on the
“precedence” of the operators. When you set up output forms involving operators, you can use
PrecedenceForm to specify the precedence to assign to each operator. Mathematica uses integers from
1 to 1000 to represent “precedence levels”. The higher the precedence level for an operator, the less it
needs to be parenthesized.

Here �� is treated as an operator with
precedence 100. This precedence turns
out to be low enough that parentheses
are inserted.

In[10]:= PrecedenceForm[s, 100]^2

Out[10]= �a����b����c�2

When you make an assignment for Format[expr], you are defining the output format for expr in all
standard types of Mathematica output. By making definitions for Format[expr, form], you can specify
formats to be used in specific output forms.

This specifies the TeXForm for the
symbol x.

In[11]:= Format[x, TeXForm] := "{\\bf x}"

The output format for x that you
specified is now used whenever the
TEX form is needed.

In[12]:= TeXForm[1 + x^2]

Out[12]//TeXForm= 1 + {{\bf x}}^2



2.9.17 Advanced Topic: Low-Level Input and Output Rules 475

2.9.17 Advanced Topic: Low-Level Input and Output Rules

MakeBoxes[expr, form] construct boxes to represent expr in the specified form

MakeExpression[boxes, form] construct an expression corresponding to boxes

Low-level functions for converting between expressions and boxes.

MakeBoxes generates boxes without
evaluating its input.

In[1]:= MakeBoxes[2 + 2, StandardForm]

Out[1]= RowBox�2, �, 2��
MakeExpression interprets boxes but
uses HoldComplete to prevent the
resulting expression from being
evaluated.

In[2]:= MakeExpression[%, StandardForm]

Out[2]= HoldComplete2 � 2�

Built into Mathematica are a large number of rules for generating output and interpreting input. Par-
ticularly in StandardForm, these rules are carefully set up to be consistent, and to allow input and
output to be used interchangeably.

It is fairly rare that you will need to modify these rules. The main reason is that Mathematica
already has built-in rules for the input and output of many operators to which it does not itself assign
specific meanings.

Thus, if you want to add, for example, a generalized form of addition, you can usually just use an
operator like K for which Mathematica already has built-in input and output rules.

This outputs using the O operator. In[3]:= CirclePlus[u, v, w]

Out[3]= uOvOw

Mathematica understands O on input. In[4]:= u � v � w // FullForm

Out[4]//FullForm= CirclePlusu, v, w�
In dealing with output, you can make definitions for Format[expr] to change the way that a par-

ticular expression will be formatted. You should realize, however, that as soon as you do this, there
is no guarantee that the output form of your expression will be interpreted correctly if it is given as
Mathematica input.

If you want to, Mathematica allows you to redefine the basic rules that it uses for the input and
output of all expressions. You can do this by making definitions for MakeBoxes and MakeExpression .
You should realize, however, that unless you make such definitions with great care, you are likely to
end up with inconsistent results.

This defines how gplus objects should
be output in StandardForm.

In[5]:= gplus /: MakeBoxes[gplus[x_, y_, n_], StandardForm] :=
RowBox[ {MakeBoxes[x, StandardForm],
SubscriptBox["\[CirclePlus]", MakeBoxes[n, StandardForm]],

MakeBoxes[y, StandardForm]} ]



476 2. Principles of Mathematica � 2.9 Textual Input and Output

gplus is now output using a
subscripted O.

In[6]:= gplus[a, b, m+n]

Out[6]= aOm�n b

Mathematica cannot however interpret
this as input.

In[7]:= a�m�n b

Syntax::sntxi:
Incomplete expression; more input is needed.

This tells Mathematica to interpret a
subscripted O as a specific piece of
FullForm input.

In[7]:= MakeExpression[RowBox[{x_, SubscriptBox[
"\[CirclePlus]", n_], y_}], StandardForm] :=

MakeExpression[RowBox[
{"gplus", "[", x, ",", y, ",", n, "]"}], StandardForm]

Now the subscripted O is interpreted
as a gplus.

In[8]:= a�m�n b �� FullForm

Out[8]//FullForm= gplusa, b, Plusm, n��
When you give definitions for MakeBoxes, you can think of this as essentially a lower-level version

of giving definitions for Format. An important difference is that MakeBoxes does not evaluate its
argument, so you can define rules for formatting expressions without being concerned about how
these expressions would evaluate.

In addition, while Format is automatically called again on any results obtained by applying it, the
same is not true of MakeBoxes. This means that in giving definitions for MakeBoxes you explicitly
have to call MakeBoxes again on any subexpressions that still need to be formatted.

Break input into tokens.

Strip spacing characters.

Construct boxes using built-in operator precedences.

Strip StyleBox and other boxes not intended for interpretation.

Apply rules defined for MakeExpression .

Operations done on Mathematica input.

2.9.18 Generating Unstructured Output

The functions described so far in this section determine how expressions should be formatted when
they are printed, but they do not actually cause anything to be printed.

In the most common way of using Mathematica you never in fact explicitly have to issue a com-
mand to generate output. Usually, Mathematica automatically prints out the final result that it gets
from processing input you gave. Sometimes, however, you may want to get Mathematica to print out
expressions at intermediate stages in its operation. You can do this using the function Print.



2.9.19 Generating Styled Output in Notebooks 477

Print[expr�, expr�, . . . ] print the expri, with no spaces in between, but with a
newline (line feed) at the end

Printing expressions.

Print prints its arguments, with no
spaces in between, but with a newline
(line feed) at the end.

In[1]:= Print[a, b]; Print[c]

ab
c

This prints a table of the first five
integers and their squares.

In[2]:= Do[Print[i, " ", i^2], {i, 5}]

1 1
2 4
3 9
4 16
5 25

Print simply takes the arguments you give, and prints them out one after the other, with no spaces
in between. In many cases, you will need to print output in a more complicated format. You can do
this by giving an output form as an argument to Print.

This prints the matrix in the form of a
table.

In[3]:= Print[TableForm[{{1, 2}, {3, 4}}]]

1 2

3 4

Here the output format is specified
using StringForm.

In[4]:= Print[StringForm["x = ``, y = ``", a^2, b^2]]

2 2
x = a , y = b

The output generated by Print is usually given in the standard Mathematica output format. You
can however explicitly specify that some other output format should be used.

This prints output in Mathematica input
form.

In[5]:= Print[InputForm[a^2 + b^2]]

a^2 + b^2

You should realize that Print is only one of several mechanisms available in Mathematica for
generating output. Another is the function Message described in Section 2.9.21, used for generating
named messages. There are also a variety of lower-level functions described in Section 2.12.3 which
allow you to produce output in various formats both as part of an interactive session, and for files
and external programs.

2.9.19 Generating Styled Output in Notebooks

StylePrint[expr, "style"] create a new cell containing expr in the specified style

StylePrint[expr] use the default style for the notebook

Generating styled output in notebooks.



478 2. Principles of Mathematica � 2.9 Textual Input and Output

This generates a cell in section heading
style.

In[1]:= StylePrint["The heading", "Section"];

� The heading

This generates a cell in input style. In[2]:= StylePrint[x^2 + y^2, "Input"]

� The heading

x2 � y2

Mathematica provides many capabilities for manipulating the contents of notebooks, as discussed in
Section 2.11. StylePrint handles the simple case when all you want to do is to add a cell of a
particular style.

2.9.20 Requesting Input

Mathematica usually works by taking whatever input you give, and then processing it. Sometimes,
however, you may want to have a program you write explicitly request more input. You can do this
using Input and InputString.

Input[ ] read an expression as input

InputString[ ] read a string as input

Input["prompt"] issue a prompt, then read an expression

InputString["prompt"] issue a prompt then read a string

Interactive input.

Exactly how Input and InputString work depends on the computer system and Mathematica inter-
face you are using. With a text-based interface, they typically just wait for standard input, terminated
with a newline. With a notebook interface, however, they typically get the front end to put up a
“dialog box”, in which the user can enter input.

In general, Input is intended for reading complete Mathematica expressions. InputString, on the
other hand, is for reading arbitrary strings.



2.9.21 Messages 479

2.9.21 Messages

Mathematica has a general mechanism for handling messages generated during computations. Many
built-in Mathematica functions use this mechanism to produce error and warning messages. You can
also use the mechanism for messages associated with functions you write.

The basic idea is that every message has a definite name, of the form symbol::tag. You can use this
name to refer to the message. (The object symbol::tag has head MessageName.)

Off[s::tag] switch off a message, so it is not printed

On[s::tag] switch on a message

Controlling the printing of messages.

As discussed in Section 1.3.11, you can use On and Off to control the printing of particular mes-
sages. Most messages associated with built-in functions are switched on by default. You can use Off
to switch them off if you do not want to see them.

This prints a warning message. In[1]:= Log[a, b, c]

Log::argt: Log called with 3 arguments; 1 or 2
arguments are expected.

Out[1]= Loga, b, c�
You can switch off the message like
this.

In[2]:= Off[Log::argt]

Now no warning message is produced. In[3]:= Log[a, b, c]

Out[3]= Loga, b, c�
Although most messages associated with built-in functions are switched on by default, there are

some which are switched off by default, and which you will see only if you explicitly switch them
on. An example is the message General::newsym , discussed in Section 2.7.13, which tells you every
time a new symbol is created.

s::tag give the text of a message

s::tag = string set the text of a message

Messages[s] show all messages associated with s

Manipulating messages.

The text of a message with the name s::tag is stored simply as the value of s::tag, associated with
the symbol s. You can therefore see the text of a message simply by asking for s::tag. You can set
the text by assigning a value to s::tag.



480 2. Principles of Mathematica � 2.9 Textual Input and Output

If you give LinearSolve a singular
matrix, it prints a warning message.

In[4]:= LinearSolve[{{1, 1}, {2, 2}}, {3, 5}]

LinearSolve::nosol:
Linear equation encountered which has no solution.

Out[4]= LinearSolve��1, 1�, �2, 2��, �3, 5��
Here is the text of the message. In[5]:= LinearSolve::nosol

Out[5]= Linear equation encountered which has no solution.

This redefines the message. In[6]:= LinearSolve::nosol = "Matrix encountered is not invertible."

Out[6]= Matrix encountered is not invertible.

Now the new form will be used. In[7]:= LinearSolve[{{1, 1}, {2, 2}}, {3, 5}]

LinearSolve::nosol: Matrix encountered is not invertible.

Out[7]= LinearSolve��1, 1�, �2, 2��, �3, 5��
Messages are always stored as strings suitable for use with StringForm . When the message is

printed, the appropriate expressions are “spliced” into it. The expressions are wrapped with HoldForm
to prevent evaluation. In addition, any function that is assigned as the value of the global variable
$MessagePrePrint is applied to the resulting expressions before they are given to StringForm. The
default for $MessagePrePrint is Short.

Most messages are associated directly with the functions that generate them. There are, however,
some “general” messages, which can be produced by a variety of functions.

If you give the wrong number of arguments to a function F, Mathematica will warn you by printing
a message such as F::argx. If Mathematica cannot find a message named F::argx, it will use the
text of the “general” message General::argx instead. You can use Off[F::argx] to switch off the
argument count message specifically for the function F. You can also use Off[General::argx] to
switch off all messages that use the text of the general message.

Mathematica prints a message if you
give the wrong number of arguments
to a built-in function.

In[8]:= Sqrt[a, b]

Sqrt::argx:
Sqrt called with 2 arguments; 1 argument is expected.

Out[8]= Sqrta, b�
This argument count message is a
general one, used by many different
functions.

In[9]:= General::argx

Out[9]= `1` called with `2`
arguments; 1 argument is expected.

If something goes very wrong with a calculation you are doing, it is common to find that the same
warning message is generated over and over again. This is usually more confusing than useful. As a
result, Mathematica keeps track of all messages that are produced during a particular calculation, and
stops printing a particular message if it comes up more than three times. Whenever this happens,
Mathematica prints the message General::stop to let you know. If you really want to see all the
messages that Mathematica tries to print, you can do this by switching off General::stop.



2.9.21 Messages 481

$MessageList a list of the messages produced during a particular
computation

MessageList[n] a list of the messages produced during the processing of the
nth input line in a Mathematica session

Finding out what messages were produced during a computation.

In every computation you do, Mathematica maintains a list $MessageList of all the messages that
are produced. In a standard Mathematica session, this list is cleared after each line of output is gener-
ated. However, during a computation, you can access the list. In addition, when the nth output line
in a session is generated, the value of $MessageList is assigned to MessageList[n].

This returns $MessageList, which
gives a list of the messages produced.

In[10]:= Sqrt[a, b, c]; Exp[a, b]; $MessageList

Sqrt::argx:
Sqrt called with 3 arguments; 1 argument is expected.

Exp::argx: Exp called with 2
arguments; 1 argument is expected.

Out[10]= �Sqrt::argx, Exp::argx�
The message names are wrapped in
HoldForm to stop them from
evaluating.

In[11]:= InputForm[%]

Out[11]//InputForm= {HoldForm[Sqrt::argx], HoldForm[Exp::argx]}

In writing programs, it is often important to be able to check automatically whether any messages
were generated during a particular calculation. If messages were generated, say as a consequence of
producing indeterminate numerical results, then the result of the calculation may be meaningless.

Check[expr, failexpr] if no messages are generated during the evaluation of expr,
then return expr, otherwise return failexpr

Check[expr, failexpr, s�::t�, s�::t�, . . . ]
check only for the messages si::ti

Checking for warning messages.

Evaluating 1^0 produces no messages,
so the result of the evaluation is
returned.

In[12]:= Check[1^0, err]

Out[12]= 1

Evaluating 0^0 produces a message, so
the second argument of Check is
returned.

In[13]:= Check[0^0, err]

0
Power::indet: Indeterminate expression 0 encountered.

Out[13]= err



482 2. Principles of Mathematica � 2.9 Textual Input and Output

Check[expr, failexpr] tests for all messages that are actually printed out. It does not test for
messages whose output has been suppressed using Off.

In some cases you may want to test only for a specific set of messages, say ones associated with
numerical overflow. You can do this by explicitly telling Check the names of the messages you want
to look for.

The message generated by Sin[1, 2]
is ignored by Check, since it is not the
one specified.

In[14]:= Check[Sin[1, 2], err, General::ind]

Sin::argx: Sin called with 2
arguments; 1 argument is expected.

Out[14]= Sin1, 2�

Message[s::tag] print a message

Message[s::tag, expr�, . . . ] print a message, with the expri spliced into its string form

Generating messages.

By using the function Message, you can mimic all aspects of the way in which built-in Mathematica
functions generate messages. You can for example switch on and off messages using On and Off, and
Message will automatically look for General::tag if it does not find the specific message s::tag.

This defines the text of a message
associated with f.

In[15]:= f::overflow = "Factorial argument `1` too large."

Out[15]= Factorial argument `1` too large.

Here is the function f. In[16]:= f[x_] :=
If[x > 10,

(Message[f::overflow, x]; Infinity), x!]

When the argument of f is greater
than 10, the message is generated.

In[17]:= f[20]

f::overflow: Factorial argument 20 too large.

Out[17]= 	

This switches off the message. In[18]:= Off[f::overflow]

Now the message is no longer
generated.

In[19]:= f[20]

Out[19]= 	

When you call Message, it first tries to find a message with the explicit name you have specified.
If this fails, it tries to find a message with the appropriate tag associated with the symbol General. If
this too fails, then Mathematica takes any function you have defined as the value of the global variable
$NewMessage, and applies this function to the symbol and tag of the message you have requested.

By setting up the value of $NewMessage appropriately, you can, for example, get Mathematica to
read in the text of a message from a file when that message is first needed.



2.9.22 International Messages 483

2.9.22 International Messages

The standard set of messages for built-in Mathematica functions are written in American English. In
some versions of Mathematica, messages are also available in other languages. In addition, if you set
up messages yourself, you can give ones in other languages.

Languages in Mathematica are conventionally specified by strings. The languages are given in
English, in order to avoid the possibility of needing special characters. Thus, for example, the French
language is specified in Mathematica as "French".

$Language = "lang" set the language to use

$Language = {"lang�", "lang�", . . . } set a sequence of languages to try

Setting the language to use for messages.

This tells Mathematica to use
French-language versions of messages.

In[1]:= $Language = "French"

Out[1]= French

If your version of Mathematica has
French-language messages, the message
generated here will be in French.

In[2]:= Sqrt[a, b, c]

Sqrt::argx:
Sqrt est appelée avec 3 arguments; il faut y avoir 1.

Out[2]= Sqrta, b, c�

symbol::tag the default form of a message

symbol::tag::Language a message in a particular language

Messages in different languages.

When built-in Mathematica functions generate messages, they look first for messages of the form
s::t::Language, in the language specified by $Language. If they fail to find any such messages, then
they use instead the form s::t without an explicit language specification.

The procedure used by built-in functions will also be followed by functions you define if you call
Message with message names of the form s::t. If you give explicit languages in message names,
however, only those languages will be used.



484 2. Principles of Mathematica � 2.9 Textual Input and Output

2.9.23 Documentation Constructs

When you write programs in Mathematica, there are various ways to document your code. As always,
by far the best thing is to write clear code, and to name the objects you define as explicitly as possible.

Sometimes, however, you may want to add some “commentary text” to your code, to make it easier
to understand. You can add such text at any point in your code simply by enclosing it in matching
(* and *). Notice that in Mathematica, “comments” enclosed in (* and *) can be nested in any way.

You can use comments anywhere in
the Mathematica code you write.

In[1]:= If[a > b, (* then *) p, (* else *) q]

Out[1]= Ifa > b, p, q�

(* text *) a comment that can be inserted anywhere in Mathematica
code

Comments in Mathematica.

There is a convention in Mathematica that all functions intended for later use should be given a
definite “usage message”, which documents their basic usage. This message is defined as the value
of f::usage, and is retrieved when you type ?f.

f::usage = "text" define the usage message for a function

?f get information about a function

??f get more information about a function

Usage messages for functions.

Here is the definition of a function f. In[2]:= f[x_] := x^2

Here is a “usage message” for f. In[3]:= f::usage = "f[x] gives the square of x."

Out[3]= fx� gives the square of x.

This gives the usage message for f. In[4]:= ?f

f[x] gives the square of x.

??f gives all the information
Mathematica has about f, including the
actual definition.

In[5]:= ??f

f[x] gives the square of x.

f[x_] := x^2

When you define a function f, you can usually display its value using ?f. However, if you give a
usage message for f, then ?f just gives the usage message. Only when you type ??f do you get all the
details about f, including its actual definition.



2.9.23 Documentation Constructs 485

If you ask for information using ? about just one function, Mathematica will print out the complete
usage messages for the function. If you ask for information on several functions at the same time,
however, Mathematica will just give you the name of each function.

f::usage main usage message

f::notes notes about the function

f::usage::Language, etc. messages in a particular language

Some typical documentation messages.

In addition to the usage message, there are some messages such as notes and qv that are often
defined to document functions.

If you use Mathematica with a text-based interface, then messages and comments are the primary
mechanisms for documenting your definitions. However, if you use Mathematica with a notebook
interface, then you will be able to give much more extensive documentation in text cells in the
notebook.



486 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

2.10 The Structure of Graphics and Sound

2.10.1 The Structure of Graphics

Section 1.9 discussed how to use functions like Plot and ListPlot to plot graphs of functions and
data. In this section, we discuss how Mathematica represents such graphics, and how you can program
Mathematica to create more complicated images.

The basic idea is that Mathematica represents all graphics in terms of a collection of graphics primi-
tives. The primitives are objects like Point, Line and Polygon, that represent elements of a graphical
image, as well as directives such as RGBColor, Thickness and SurfaceColor.

This generates a plot of a list of points. In[1]:= ListPlot[ Table[Prime[n], {n, 20}] ]

5 10 15 20

10

20

30

40

50

60

70

InputForm shows how Mathematica
represents the graphics. Each point is
represented as a Point graphics
primitive. All the various graphics
options used in this case are also
given.

In[2]:= InputForm[%]

Out[2]//InputForm= Graphics[{Point[{1, 2}], Point[{2, 3}],
Point[{3, 5}], Point[{4, 7}], Point[{5, 11}],
Point[{6, 13}], Point[{7, 17}], Point[{8, 19}],
Point[{9, 23}], Point[{10, 29}], Point[{11, 31}],
Point[{12, 37}], Point[{13, 41}], Point[{14, 43}],
Point[{15, 47}], Point[{16, 53}], Point[{17, 59}],
Point[{18, 61}], Point[{19, 67}], Point[{20, 71}]},

{PlotRange -> Automatic,
AspectRatio -> GoldenRatio^(-1),
DisplayFunction :> $DisplayFunction,
ColorOutput -> Automatic, Axes -> Automatic,
AxesOrigin -> Automatic, PlotLabel -> None,
AxesLabel -> None, Ticks -> Automatic,
GridLines -> None, Prolog -> {}, Epilog -> {},
AxesStyle -> Automatic, Background -> Automatic,
DefaultColor -> Automatic,
DefaultFont :> $DefaultFont, RotateLabel -> True,
Frame -> False, FrameStyle -> Automatic,
FrameTicks -> Automatic, FrameLabel -> None,
PlotRegion -> Automatic, ImageSize -> Automatic,
TextStyle :> $TextStyle, FormatType :> $FormatType}]

Each complete piece of graphics in Mathematica is represented as a graphics object. There are several
different kinds of graphics object, corresponding to different types of graphics. Each kind of graphics
object has a definite head which identifies its type.



2.10.1 The Structure of Graphics 487

Graphics[list] general two-dimensional graphics

DensityGraphics[list] density plot

ContourGraphics[list] contour plot

SurfaceGraphics[list] three-dimensional surface

Graphics3D[list] general three-dimensional graphics

GraphicsArray[list] array of other graphics objects

Graphics objects in Mathematica.

The functions like Plot and ListPlot discussed in Section 1.9 all work by building up Mathematica
graphics objects, and then displaying them.

Graphics Plot, ListPlot, ParametricPlot

DensityGraphics DensityPlot, ListDensityPlot

ContourGraphics ContourPlot, ListContourPlot

SurfaceGraphics Plot3D, ListPlot3D

Graphics3D ParametricPlot3D

Generating graphics objects by plotting functions and data.

You can create other kinds of graphical images in Mathematica by building up your own graph-
ics objects. Since graphics objects in Mathematica are just symbolic expressions, you can use all the
standard Mathematica functions to manipulate them.

Once you have created a graphics object, you must then display it. The function Show allows you
to display any Mathematica graphics object.

Show[g] display a graphics object

Show[g�, g�, . . . ] display several graphics objects combined

Show[GraphicsArray[{{g��, g��, . . . }, . . . }]]
display an array of graphics objects

Displaying graphics objects.



488 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

This uses Table to generate a polygon
graphics primitive.

In[3]:= poly = Polygon[
Table[N[{Cos[n Pi/5], Sin[n Pi/5]}], {n, 0, 5}] ]

Out[3]= Polygon��1., 0.�, �0.809017, 0.587785�,�0.309017, 0.951057�, ��0.309017, 0.951057�,��0.809017, 0.587785�, ��1., 0.���
This creates a two-dimensional
graphics object that contains the
polygon graphics primitive. In
standard output format, the graphics
object is given simply as -Graphics-.

In[4]:= Graphics[ poly ]

Out[4]= A�Graphics�A

InputForm shows the complete
graphics object.

In[5]:= InputForm[%]

Out[5]//InputForm=
Graphics[Polygon[{{1., 0.},

{0.8090169943749475, 0.5877852522924731},
{0.30901699437494745, 0.9510565162951535},
{-0.30901699437494745, 0.9510565162951535},
{-0.8090169943749475, 0.5877852522924731}, {-1., 0.}}]]

This displays the graphics object you
have created.

In[6]:= Show[%]

Graphics directives Examples: RGBColor, Thickness, SurfaceColor

Graphics options Examples: PlotRange, Ticks, AspectRatio, ViewPoint

Local and global ways to modify graphics.

Given a particular list of graphics primitives, Mathematica provides two basic mechanisms for mod-
ifying the final form of graphics you get. First, you can insert into the list of graphics primitives
certain graphics directives, such as RGBColor, which modify the subsequent graphical elements in the
list. In this way, you can specify how a particular set of graphical elements should be rendered.

This takes the list of graphics
primitives created above, and adds the
graphics directive GrayLevel[0.3].

In[7]:= Graphics[ {GrayLevel[0.3], poly} ]

Out[7]= A�Graphics�A



2.10.1 The Structure of Graphics 489

Now the polygon is rendered in gray. In[8]:= Show[%]

By inserting graphics directives, you can specify how particular graphical elements should be ren-
dered. Often, however, you want to make global modifications to the way a whole graphics object is
rendered. You can do this using graphics options.

By adding the graphics option Frame
you can modify the overall appearance
of the graphics.

In[9]:= Show[%, Frame -> True]

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

Show returns a graphics object with the
options in it.

In[10]:= InputForm[%]

Out[10]//InputForm=
Graphics[{GrayLevel[0.3],

Polygon[{{1., 0.}, {0.8090169943749475,
0.5877852522924731},

{0.30901699437494745, 0.9510565162951535},
{-0.30901699437494745, 0.9510565162951535},
{-0.8090169943749475, 0.5877852522924731}, {-1., 0.}}

]}, {Frame -> True}]

You can specify graphics options in Show. As a result, it is straightforward to take a single graphics
object, and show it with many different choices of graphics options.

Notice however that Show always returns the graphics objects it has displayed. If you specify
graphics options in Show, then these options are automatically inserted into the graphics objects that
Show returns. As a result, if you call Show again on the same objects, the same graphics options will
be used, unless you explicitly specify other ones. Note that in all cases new options you specify will
overwrite ones already there.



490 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

Options[g] give a list of all graphics options for a graphics object

Options[g, opt] give the setting for a particular option

AbsoluteOptions[g, opt] give the absolute value used for a particular option, even if
the setting is Automatic

Finding the options for a graphics object.

Some graphics options work by requiring you to specify a particular value for a parameter related to
a piece of graphics. Other options allow you to give the setting Automatic, which makes Mathematica
use internal algorithms to choose appropriate values for parameters. In such cases, you can find out
the values that Mathematica actually used by applying the function AbsoluteOptions.

Here is a plot. In[11]:= zplot = Plot[Abs[Zeta[1/2 + I x]], {x, 0, 10}]

2 4 6 8 10

0.6

0.8

1.2

1.4

The option PlotRange is set to its
default value of Automatic, specifying
that Mathematica should use internal
algorithms to determine the actual plot
range.

In[12]:= Options[zplot, PlotRange]

Out[12]= �PlotRange � Automatic�

AbsoluteOptions gives the actual plot
range determined by Mathematica in
this case.

In[13]:= AbsoluteOptions[zplot, PlotRange]

Out[13]= �PlotRange � ���0.25, 10.25�, �0.500681, 1.57477���

FullGraphics[g] translate objects specified by graphics options into lists of
explicit graphics primitives

Finding the complete form of a piece of graphics.

When you use a graphics option such as Axes, Mathematica effectively has to construct a list of
graphics elements to represent the objects such as axes that you have requested. Usually Mathematica
does not explicitly return the list it constructs in this way. Sometimes, however, you may find it useful



2.10.1 The Structure of Graphics 491

to get this list. The function FullGraphics gives the complete list of graphics primitives needed to
generate a particular plot, without any options being used.

This plots a list of values. In[14]:= ListPlot[ Table[EulerPhi[n], {n, 10}] ]

4 6 8 10

2

3

4

5

6

FullGraphics yields a graphics object
that includes graphics primitives
representing axes and so on.

In[15]:= Short[ InputForm[ FullGraphics[%] ], 6]

Out[15]//Short= Graphics[{{Point[{1, 1}], Point[{2, 1}],

Point[{3, 2}], Point[{4, 2}],

Point[{5, 4}], Point[{6, 2}],

Point[{7, 6}], Point[{8, 4}],

Point[{9, 6}], Point[{10, 4}],

<<1>>}]

With their default option settings, functions like Plot and Show actually cause Mathematica to
generate graphical output. In general, the actual generation of graphical output is controlled by
the graphics option DisplayFunction. The default setting for this option is the value of the global
variable $DisplayFunction.

In most cases, $DisplayFunction and the DisplayFunction option are set to use the lower-level
rendering function Display to produce output, perhaps after some preprocessing. Sometimes, how-
ever, you may want to get a function like Plot to produce a graphics object, but you may not
immediately want that graphics object actually rendered as output. You can tell Mathematica to gener-
ate the object, but not render it, by setting the option DisplayFunction -> Identity. Section 2.10.14
will explain exactly how this works.

Plot[f, . . . , DisplayFunction -> Identity], etc.
generate a graphics object for a plot, but do not actually
display it

Show[g, DisplayFunction -> $DisplayFunction]
show a graphics object using the default display function

Generating and displaying graphics objects.



492 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

This generates a graphics object, but
does not actually display it.

In[16]:= Plot[BesselJ[0, x], {x, 0, 10},
DisplayFunction -> Identity]

Out[16]= A�Graphics�A

This modifies the graphics object, but
still does not actually display it.

In[17]:= Show[%, Frame -> True]

Out[17]= A�Graphics�A

To display the graphic, you explicitly
have to tell Mathematica to use the
default display function.

In[18]:= Show[%, DisplayFunction -> $DisplayFunction]

0 2 4 6 8 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2.10.2 Two-Dimensional Graphics Elements

Point[{x, y}] point at position x, y

Line[{{x�, y�}, {x�, y�}, . . . }] line through the points {x�, y�}, {x�, y�}, . . .

Rectangle[{xmin, ymin}, {xmax, ymax}] filled rectangle

Polygon[{{x�, y�}, {x�, y�}, . . . }] filled polygon with the specified list of corners

Circle[{x, y}, r] circle with radius r centered at x, y

Disk[{x, y}, r] filled disk with radius r centered at x, y

Raster[{{a��, a��, . . . }, {a��, . . . }, . . . }] rectangular array of gray levels between 0 and 1

Text[expr, {x, y}] the text of expr, centered at x, y (see
Section 2.10.16)

Basic two-dimensional graphics elements.

Here is a line primitive. In[1]:= sawline = Line[Table[{n, (-1)^n}, {n, 6}]]

Out[1]= Line��1, �1�, �2, 1�, �3, �1�, �4, 1�, �5, �1�, �6, 1���



2.10.2 Two-Dimensional Graphics Elements 493

This shows the line as a
two-dimensional graphics object.

In[2]:= sawgraph = Show[ Graphics[sawline] ]

This redisplays the line, with axes
added.

In[3]:= Show[ %, Axes -> True ]

2 3 4 5 6

-1

-0.5

0.5

1

You can combine graphics objects that you have created explicitly from graphics primitives with ones
that are produced by functions like Plot.

This produces an ordinary Mathematica
plot.

In[4]:= Plot[Sin[Pi x], {x, 0, 6}]

1 2 3 4 5 6

-1

-0.5

0.5

1



494 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

This combines the plot with the
sawtooth picture made above.

In[5]:= Show[%, sawgraph]

1 2 3 4 5 6

-1

-0.5

0.5

1

You can combine different graphical elements simply by giving them in a list. In two-dimensional
graphics, Mathematica will render the elements in exactly the order you give them. Later elements are
therefore effectively drawn on top of earlier ones.

Here is a list of two Rectangle
graphics elements.

In[6]:= {Rectangle[{1, -1}, {2, -0.6}],
Rectangle[{4, .3}, {5, .8}]}

Out[6]= �Rectangle�1, �1�, �2, �0.6��,
Rectangle�4, 0.3�, �5, 0.8���

This draws the rectangles on top of the
line that was defined above.

In[7]:= Show[ Graphics[ {sawline, %} ]]

The Polygon graphics primitive takes a list of x, y coordinates, corresponding to the corners of a
polygon. Mathematica joins the last corner with the first one, and then fills the resulting area.

Here are the coordinates of the corners
of a regular pentagon.

In[8]:= pentagon = Table[{Sin[2 Pi n/5], Cos[2 Pi n/5]}, {n, 5}]

Out[8]= 		 1
�������
2
�����������������������1

�������
2
�5 �����

5 � ,
1
�������
4
��1 �����

5 �
,

	 1
�������
2
�����������������������1

�������
2
�5 �����

5 � , �
1
�������
4
�1 �����

5 �
,

	� 1
�������
2
�����������������������1

�������
2
�5 �����

5 � , �
1
�������
4
�1 �����

5 �
,

	� 1
�������
2
�����������������������1

�������
2
�5 �����

5 � ,
1
�������
4
��1 �����

5 �
, �0, 1�




2.10.2 Two-Dimensional Graphics Elements 495

This displays the pentagon. With the
default choice of aspect ratio, the
pentagon looks somewhat squashed.

In[9]:= Show[ Graphics[ Polygon[pentagon] ] ]

This chooses the aspect ratio so that the
shape of the pentagon is preserved.

In[10]:= Show[%, AspectRatio -> Automatic]

Mathematica can handle polygons which
fold over themselves.

In[11]:= Show[Graphics[
Polygon[ {{-1, -1}, {1, 1}, {1, -1}, {-1, 1}} ] ]]



496 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

Circle[{x, y}, r] a circle with radius r centered at the point {x, y}

Circle[{x, y}, {rx, ry}] an ellipse with semi-axes rx and ry

Circle[{x, y}, r, {theta�, theta�}] a circular arc

Circle[{x, y}, {rx, ry}, {theta�, theta�}] an elliptical arc

Disk[{x, y}, r], etc. filled disks

Circles and disks.

This shows two circles with radius 2.
Setting the option AspectRatio ->
Automatic makes the circles come out
with their natural aspect ratio.

In[12]:= Show[ Graphics[
{Circle[{0, 0}, 2], Circle[{1, 1}, 2]} ],

AspectRatio -> Automatic ]

This shows a sequence of disks with
progressively larger semi-axes in the x
direction, and progressively smaller
ones in the y direction.

In[13]:= Show[ Graphics[
Table[Disk[{3n, 0}, {n/4, 2-n/4}], {n, 4}] ],

AspectRatio -> Automatic ]

Mathematica allows you to generate arcs of circles, and segments of ellipses. In both cases, the
objects are specified by starting and finishing angles. The angles are measured counterclockwise in
radians with zero corresponding to the positive x direction.



2.10.2 Two-Dimensional Graphics Elements 497

This draws a �
�� wedge centered at
the origin.

In[14]:= Show[ Graphics[ Disk[{0, 0}, 1, {0, 140 Degree}] ],
AspectRatio -> Automatic ]

Raster[{{a��, a��, . . . }, {a��, . . . }, . . . }]
array of gray levels between 0 and 1

Raster[array, {{xmin, ymin}, {xmax, ymax}}, {zmin, zmax}]
array of gray levels between zmin and zmax drawn in the
rectangle defined by {xmin, ymin} and {xmax, ymax}

RasterArray[{{g��, g��, . . . }, {g��, . . . }, . . . }]
rectangular array of cells colored according to the graphics
directives gij

Raster-based graphics elements.

Here is a 
 � 
 array of values between
0 and 1.

In[15]:= modtab = Table[Mod[i, j]/3, {i, 4}, {j, 4}] // N

Out[15]= ��0., 0.333333, 0.333333, 0.333333�,�0., 0., 0.666667, 0.666667�,�0., 0.333333, 0., 1.�, �0., 0., 0.333333, 0.��



498 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

This uses the array of values as gray
levels in a raster.

In[16]:= Show[ Graphics[ Raster[%] ] ]

This shows two overlapping copies of
the raster.

In[17]:= Show[ Graphics[ {Raster[modtab, {{0, 0}, {2, 2}}],
Raster[modtab, {{1.5, 1.5}, {3, 2}}]} ] ]

In the default case, Raster always generates an array of gray cells. As described on page 517, you
can use the option ColorFunction to apply a “coloring function” to all the cells.

You can also use the graphics primitive RasterArray. While Raster takes an array of values,
RasterArray takes an array of Mathematica graphics directives. The directives associated with each
cell are taken to determine the color of that cell. Typically the directives are chosen from the set
GrayLevel, RGBColor or Hue. By using RGBColor and Hue directives, you can create color rasters
using RasterArray.



2.10.3 Graphics Directives and Options 499

2.10.3 Graphics Directives and Options

When you set up a graphics object in Mathematica, you typically give a list of graphical elements. You
can include in that list graphics directives which specify how subsequent elements in the list should be
rendered.

In general, the graphical elements in a particular graphics object can be given in a collection of
nested lists. When you insert graphics directives in this kind of structure, the rule is that a particular
graphics directive affects all subsequent elements of the list it is in, together with all elements of
sublists that may occur. The graphics directive does not, however, have any effect outside the list it is
in.

The first sublist contains the graphics
directive GrayLevel.

In[1]:= {{GrayLevel[0.5], Rectangle[{0, 0}, {1, 1}]},
Rectangle[{1, 1}, {2, 2}]}

Out[1]= ��GrayLevel0.5�, Rectangle�0, 0�, �1, 1���,
Rectangle�1, 1�, �2, 2���

Only the rectangle in the first sublist is
affected by the GrayLevel directive.

In[2]:= Show[Graphics[ % ]]

Mathematica provides various kinds of graphics directives. One important set is those for specifying
the colors of graphical elements. Even if you have a black-and-white display device, you can still give
color graphics directives. The colors you specify will be converted to gray levels at the last step in
the graphics rendering process. Note that you can get gray-level display even on a color device by
setting the option ColorOutput -> GrayLevel.

GrayLevel[i] gray level between 0 (black) and 1 (white)

RGBColor[r, g, b] color with specified red, green and blue components, each
between 0 and 1

Hue[h] color with hue h between 0 and 1

Hue[h, s, b] color with specified hue, saturation and brightness, each
between 0 and 1

Basic Mathematica color specifications.



500 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

On a color display, the two curves are
shown in color. In black and white
they are shown in gray.

In[3]:= Plot[{BesselI[1, x], BesselI[2, x]}, {x, 0, 5},
PlotStyle ->

{{RGBColor[1, 0, 0]}, {RGBColor[0, 1, 0]}}]

1 2 3 4 5

5

10

15

20

The function Hue[h] provides a convenient way to specify a range of colors using just one param-
eter. As h varies from 0 to 1, Hue[h] runs through red, yellow, green, cyan, blue, magenta, and back
to red again. Hue[h, s, b] allows you to specify not only the “hue”, but also the “saturation” and
“brightness” of a color. Taking the saturation to be equal to one gives the deepest colors; decreasing
the saturation toward zero leads to progressively more “washed out” colors.

For most purposes, you will be able to specify the colors you need simply by giving appropriate
RGBColor or Hue directives. However, if you need very precise or repeatable colors, particularly for
color printing, there are a number of subtleties which arise, as discussed in Section 2.10.17.

When you give a graphics directive such as RGBColor, it affects all subsequent graphical elements
that appear in a particular list. Mathematica also supports various graphics directives which affect only
specific types of graphical elements.

The graphics directive PointSize[d] specifies that all Point elements which appear in a graphics
object should be drawn as circles with diameter d. In PointSize, the diameter d is measured as a
fraction of the width of your whole plot.

Mathematica also provides the graphics directive AbsolutePointSize[d], which allows you to
specify the “absolute” diameter of points, measured in fixed units. The units are ��� of an inch,
approximately printer’s points.

PointSize[d] give all points a diameter d as a fraction of the width of the
whole plot

AbsolutePointSize[d] give all points a diameter d measured in absolute units

Graphics directives for points.

Here is a list of points. In[4]:= Table[Point[{n, Prime[n]}], {n, 6}]

Out[4]= �Point�1, 2��, Point�2, 3��, Point�3, 5��,
Point�4, 7��, Point�5, 11��, Point�6, 13���



2.10.3 Graphics Directives and Options 501

This makes each point have a diameter
equal to one-tenth of the width of the
plot.

In[5]:= Show[Graphics[{PointSize[0.1], %}], PlotRange -> All]

Here each point has size 3 in absolute
units.

In[6]:= ListPlot[Table[Prime[n], {n, 20}],
Prolog -> AbsolutePointSize[3]]

5 10 15 20

10

20

30

40

50

60

70

Thickness[w] give all lines a thickness w as a fraction of the width of
the whole plot

AbsoluteThickness[w] give all lines a thickness w measured in absolute units

Dashing[{w�, w�, . . . }] show all lines as a sequence of dashed segments, with
lengths w�, w�, . . .

AbsoluteDashing[{w�, w�, . . . }] use absolute units to measure dashed segments

Graphics directives for lines.



502 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

This generates a list of lines with
different absolute thicknesses.

In[7]:= Table[
{AbsoluteThickness[n], Line[{{0, 0}, {n, 1}}]}, {n, 4}]

Out[7]= ��AbsoluteThickness1�, Line��0, 0�, �1, 1����,�AbsoluteThickness2�, Line��0, 0�, �2, 1����,�AbsoluteThickness3�, Line��0, 0�, �3, 1����,�AbsoluteThickness4�, Line��0, 0�, �4, 1�����
Here is a picture of the lines. In[8]:= Show[Graphics[%]]

The Dashing graphics directive allows you to create lines with various kinds of dashing. The
basic idea is to break lines into segments which are alternately drawn and omitted. By changing the
lengths of the segments, you can get different line styles. Dashing allows you to specify a sequence
of segment lengths. This sequence is repeated as many times as necessary in drawing the whole line.

This gives a dashed line with a
succession of equal-length segments.

In[9]:= Show[Graphics[ {Dashing[{0.05, 0.05}],
Line[{{-1, -1}, {1, 1}}]} ]]



2.10.3 Graphics Directives and Options 503

This gives a dot-dashed line. In[10]:= Show[Graphics[{Dashing[{0.01, 0.05, 0.05, 0.05}],
Line[{{-1, -1}, {1, 1}}]}]]

One way to use Mathematica graphics directives is to insert them directly into the lists of graphics
primitives used by graphics objects. Sometimes, however, you want the graphics directives to be
applied more globally, and for example to determine the overall “style” with which a particular type
of graphical element should be rendered. There are typically graphics options which can be set to
specify such styles in terms of lists of graphics directives.

PlotStyle -> style specify a style to be used for all curves in Plot

PlotStyle -> {{style�}, {style�}, . . . } specify styles to be used (cyclically) for a sequence of
curves in Plot

MeshStyle -> style specify a style to be used for a mesh in density and
surface graphics

BoxStyle -> style specify a style to be used for the bounding box in
three-dimensional graphics

Some graphics options for specifying styles.

This generates a plot in which the
curve is given in a style specified by
graphics directives.

In[11]:= Plot[BesselJ[2, x], {x, 0, 10},
PlotStyle -> {{Thickness[0.02], GrayLevel[0.5]}}]

2 4 6 8 10

-0.2

0.2

0.4



504 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

GrayLevel[0.5] gray

RGBColor[1, 0, 0], etc. red, etc.

Thickness[0.05] thick

Dashing[{0.05, 0.05}] dashed

Dashing[{0.01, 0.05, 0.05, 0.05}] dot-dashed

Some typical styles.

The various “style options” allow you to specify how particular graphical elements in a plot should
be rendered. Mathematica also provides options that affect the rendering of the whole plot.

Background -> color specify the background color for a plot

DefaultColor -> color specify the default color for a plot

Prolog -> g give graphics to render before a plot is started

Epilog -> g give graphics to render after a plot is finished

Graphics options that affect whole plots.

This draws the whole plot on a gray
background.

In[12]:= Plot[Sin[Sin[x]], {x, 0, 10},
Background -> GrayLevel[0.6]]

2 4 6 8 10

-0.75

-0.5

-0.25

0.25

0.5

0.75



2.10.4 Coordinate Systems for Two-Dimensional Graphics 505

This makes the default color white. In[13]:= Show[%, DefaultColor -> GrayLevel[1]]

2 4 6 8 10

-0.75

-0.5

-0.25

0.25

0.5

0.75

2.10.4 Coordinate Systems for Two-Dimensional Graphics

When you set up a graphics object in Mathematica, you give coordinates for the various graphical
elements that appear. When Mathematica renders the graphics object, it has to translate the original
coordinates you gave into “display coordinates” which specify where each element should be placed
in the final display area.

Sometimes, you may find it convenient to specify the display coordinates for a graphical element
directly. You can do this by using “scaled coordinates” Scaled[{sx, sy}] rather than {x, y}. The
scaled coordinates are defined to run from 0 to 1 in x and y, with the origin taken to be at the
lower-left corner of the display area.

{x, y} original coordinates

Scaled[{sx, sy}] scaled coordinates

Coordinate systems for two-dimensional graphics.

The rectangle is drawn at a fixed
position relative to the display area,
independent of the original coordinates
used for the plot.

In[1]:= Plot[Tan[x], {x, 0, 2Pi},
Prolog ->

Rectangle[Scaled[{0.7, 0.7}], Scaled[{1, 1}]]]

1 2 3 4 5 6

-40

-20

20

40



506 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

When you use {x, y} or Scaled[{sx, sy}], you are specifying position either completely in orig-
inal coordinates, or completely in scaled coordinates. Sometimes, however, you may need to use a
combination of these coordinate systems. For example, if you want to draw a line at a particular point
whose length is a definite fraction of the width of the plot, you will have to use original coordinates
to specify the basic position of the line, and scaled coordinates to specify its length.

You can use Scaled[{dsx, dsy}, {x, y}] to specify a position using a mixture of original and
scaled coordinates. In this case, {x, y} gives a position in original coordinates, and {dsx, dsy} gives
the offset from the position in scaled coordinates.

Note that you can use Scaled with either one or two arguments to specify radii in Disk and
Circle graphics elements.

Scaled[{sdx, sdy}, {x, y}] scaled offset from original coordinates

Offset[{adx, ady}, {x, y}] absolute offset from original coordinates

Offset[{adx, ady}, Scaled[{sx, sy}]]
absolute offset from scaled coordinates

Positions specified as offsets.

Each line drawn here has an absolute
length of 6 printer’s points.

In[2]:= Show[Graphics[Table[
Line[{{x, x^2}, Offset[{0, 6}, {x, x^2}]}],

{x, 10}], Frame->True]]

0 2 4 6 8 10
0

20

40

60

80

100



2.10.4 Coordinate Systems for Two-Dimensional Graphics 507

You can also use Offset inside Circle
with just one argument to create a
circle with a certain absolute radius.

In[3]:= Show[Graphics[Table[
Circle[{x, x^2}, Offset[{2, 2}]],

{x, 10}], Frame->True]]

0 2 4 6 8 10
0

20

40

60

80

100

In most kinds of graphics, you typically want the relative positions of different objects to adjust
automatically when you change the coordinates or the overall size of your plot. But sometimes you
may instead want the offset from one object to another to be constrained to remain fixed. This can be
the case, for example, when you are making a collection of plots in which you want certain features
to remain consistent, even though the different plots have different forms.

Offset[{adx, ady}, position] allows you to specify the position of an object by giving an absolute
offset from a position that is specified in original or scaled coordinates. The units for the offset are
printer’s points, equal to ��� of an inch.

When you give text in a plot, the size of the font that is used is also specified in printer’s points.
A 10-point font, for example, therefore has letters whose basic height is 10 printer’s points. You can
use Offset to move text around in a plot, and to create plotting symbols or icons which match the
size of text.

PlotRange -> {{xmin, xmax}, {ymin, ymax}}
the range of original coordinates to include in the plot

PlotRegion -> {{sxmin, sxmax}, {symin, symax}}
the region of the display specified in scaled coordinates
which the plot fills

Options which determine translation from original to display coordinates.

When Mathematica renders a graphics object, one of the first things it has to do is to work out
what range of original x and y coordinates it should actually display. Any graphical elements that are
outside this range will be “clipped”, and not shown.

The option PlotRange specifies the range of original coordinates to include. As discussed on
page 136, the default setting is PlotRange -> Automatic, which makes Mathematica try to choose
a range which includes all “interesting” parts of a plot, while dropping “outliers”. By setting



508 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

PlotRange -> All, you can tell Mathematica to include everything. You can also give explicit ranges
of coordinates to include.

This sets up a polygonal object whose
corners have coordinates between
roughly M�.

In[4]:= obj = Polygon[
Table[{Sin[n Pi/10], Cos[n Pi/10]} + 0.05 (-1)^n,

{n, 20}]] ;

In this case, the polygonal object fills
almost the whole display area.

In[5]:= Show[Graphics[obj]]

With the default PlotRange ->
Automatic, the outlying point is not
included, but does affect the range of
coordinates chosen.

In[6]:= Show[ Graphics[{obj, Point[{20, 20}]}] ]

With PlotRange -> All, the outlying
point is included, and the coordinate
system is correspondingly modified.

In[7]:= Show[%, PlotRange -> All]

The option PlotRange allows you to specify a rectangular region in the original coordinate system,
and to drop any graphical elements that lie outside this region. In order to render the remaining
elements, however, Mathematica then has to determine how to position this rectangular region with
respect to the final display area.



2.10.4 Coordinate Systems for Two-Dimensional Graphics 509

The option PlotRegion allows you to specify where the corners of the rectangular region lie within
the final display area. The positions of the corners are specified in scaled coordinates, which are
defined to run from 0 to 1 across the display area. The default is PlotRegion -> {{0, 1}, {0, 1}},
which specifies that the rectangular region should fill the whole display area.

By specifying PlotRegion, you can
effectively add “margins” around your
plot.

In[8]:= Plot[ArcTan[x], {x, 0, 10},
PlotRegion -> {{0.2, 0.8}, {0.3, 0.7}}]

2 4 6 8 10
0.2
0.4
0.6
0.8

1
1.2
1.4

AspectRatio -> r make the ratio of height to width for the display area equal
to r

AspectRatio -> Automatic determine the shape of the display area from the original
coordinate system

Specifying the shape of the display area.

What we have discussed so far is how Mathematica translates the original coordinates you specify
into positions in the final display area. What remains to discuss, however, is what the final display
area is like.

On most computer systems, there is a certain fixed region of screen or paper into which the Mathe-
matica display area must fit. How it fits into this region is determined by its “shape” or aspect ratio.
In general, the option AspectRatio specifies the ratio of height to width for the final display area.

It is important to note that the setting of AspectRatio does not affect the meaning of the scaled
or display coordinates. These coordinates always run from 0 to 1 across the display area. What
AspectRatio does is to change the shape of this display area.

This generates a graphic object
corresponding to a hexagon.

In[9]:= hex = Graphics[Polygon[
Table[{Sin[n Pi/3], Cos[n Pi/3]}, {n, 6}] ]] ;



510 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

This renders the hexagon in a display
area whose height is three times its
width.

In[10]:= Show[hex, AspectRatio -> 3]

For two-dimensional graphics, AspectRatio is set by default to the fixed value of 1/GoldenRatio.
Sometimes, however, you may want to determine the aspect ratio for a plot from the original co-
ordinate system used in the plot. Typically what you want is for one unit in the x direction in the
original coordinate system to correspond to the same distance in the final display as one unit in the
y direction. In this way, objects that you define in the original coordinate system are displayed with
their “natural shape”. You can make this happen by setting the option AspectRatio -> Automatic.

With AspectRatio -> Automatic, the
aspect ratio of the final display area is
determined from the original
coordinate system, and the hexagon is
shown with its “natural shape”.

In[11]:= Show[hex, AspectRatio -> Automatic]

Using scaled coordinates, you can specify the sizes of graphical elements as fractions of the size of
the display area. You cannot, however, tell Mathematica the actual physical size at which a particular
graphical element should be rendered. Of course, this size ultimately depends on the details of your
graphics output device, and cannot be determined for certain within Mathematica. Nevertheless, graph-
ics directives such as AbsoluteThickness discussed on page 501 do allow you to indicate “absolute
sizes” to use for particular graphical elements. The sizes you request in this way will be respected by
most, but not all, output devices. (For example, if you optically project an image, it is neither possible
nor desirable to maintain the same absolute size for a graphical element within it.)



2.10.5 Labeling Two-Dimensional Graphics 511

2.10.5 Labeling Two-Dimensional Graphics

Axes -> True give a pair of axes

GridLines -> Automatic draw grid lines on the plot

Frame -> True put axes on a frame around the plot

PlotLabel -> "text" give an overall label for the plot

Ways to label two-dimensional plots.

Here is a plot, using the default
Axes -> True.

In[1]:= bp = Plot[BesselJ[2, x], {x, 0, 10}]

2 4 6 8 10

-0.2

0.2

0.4

Setting Frame -> True generates a
frame with axes, and removes tick
marks from the ordinary axes.

In[2]:= Show[bp, Frame -> True]

0 2 4 6 8 10

-0.2

0

0.2

0.4

This includes grid lines, which are
shown in light blue on color displays.

In[3]:= Show[%, GridLines -> Automatic]

0 2 4 6 8 10

-0.2

0

0.2

0.4



512 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

Axes -> False draw no axes

Axes -> True draw both x and y axes

Axes -> {False, True} draw a y axis but no x axis

AxesOrigin -> Automatic choose the crossing point for the axes automatically

AxesOrigin -> {x, y} specify the crossing point

AxesStyle -> style specify the style for axes

AxesStyle -> {{xstyle}, {ystyle}} specify individual styles for axes

AxesLabel -> None give no axis labels

AxesLabel -> ylabel put a label on the y axis

AxesLabel -> {xlabel, ylabel} put labels on both x and y axes

Options for axes.

This makes the axes cross at the point
{5, 0}, and puts a label on each axis.

In[4]:= Show[bp, AxesOrigin->{5, 0}, AxesLabel->{"x", "y"}]

0 2 4 6 8 10
x

-0.2

0.2

0.4

y

Ticks -> None draw no tick marks

Ticks -> Automatic place tick marks automatically

Ticks -> {xticks, yticks} tick mark specifications for each axis

Settings for the Ticks option.

With the default setting Ticks -> Automatic, Mathematica creates a certain number of major and
minor tick marks, and places them on axes at positions which yield the minimum number of decimal
digits in the tick labels. In some cases, however, you may want to specify the positions and properties
of tick marks explicitly. You will need to do this, for example, if you want to have tick marks at
multiples of Π, or if you want to put a nonlinear scale on an axis.



2.10.5 Labeling Two-Dimensional Graphics 513

None draw no tick marks

Automatic place tick marks automatically

{x�, x�, . . . } draw tick marks at the specified positions

{{x�, label�}, {x�, label�}, . . . } draw tick marks with the specified labels

{{x�, label�, len�}, . . . } draw tick marks with the specified scaled lengths

{{x�, label�, {plen�, mlen�}}, . . . } draw tick marks with the specified lengths in the positive
and negative directions

{{x�, label�, len�, style�}, . . . } draw tick marks with the specified styles

func a function to be applied to xmin, xmax to get the tick
mark option

Tick mark options for each axis.

This gives tick marks at specified
positions on the x axis, and chooses
the tick marks automatically on the y
axis.

In[5]:= Show[bp, Ticks -> {{0, Pi, 2Pi, 3Pi}, Automatic}]

Pi 2 Pi 3 Pi

-0.2

0.2

0.4

This adds tick marks with no labels at
multiples of Π��.

In[6]:= Show[bp,
Ticks -> {{0, {Pi/2, ""}, Pi, {3Pi/2, ""},

2Pi, {5Pi/2, ""}, 3Pi}, Automatic}]

Pi 2 Pi 3 Pi

-0.2

0.2

0.4



514 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

Particularly when you want to create complicated tick mark specifications, it is often convenient to
define a “tick mark function” which creates the appropriate tick mark specification given the minimum
and maximum values on a particular axis.

This defines a function which gives a
list of tick mark positions with a
spacing of 1.

In[7]:= units[xmin_, xmax_] :=
Range[Floor[xmin], Floor[xmax], 1]

This uses the units function to specify
tick marks for the x axis.

In[8]:= Show[bp, Ticks -> {units, Automatic}]

1 2 3 4 5 6 7 8 9 10

-0.2

0.2

0.4

Sometimes you may want to generate tick marks which differ only slightly from those produced
automatically with the setting Ticks -> Automatic. You can get the complete specification for tick
marks that were generated automatically in a particular plot by using AbsoluteOptions[g, Ticks],
as discussed on page 490.

Frame -> False draw no frame

Frame -> True draw a frame around the plot

FrameStyle -> style specify a style for the frame

FrameStyle -> {{xmstyle}, {ymstyle}, . . . }
specify styles for each edge of the frame

FrameLabel -> None give no frame labels

FrameLabel -> {xmlabel, ymlabel, . . . }
put labels on edges of the frame

RotateLabel -> False do not rotate text in labels

FrameTicks -> None draw no tick marks on frame edges

FrameTicks -> Automatic position tick marks automatically

FrameTicks -> {{xmticks, ymticks, . . . }}
specify tick marks for frame edges

Options for frame axes.



2.10.5 Labeling Two-Dimensional Graphics 515

The Axes option allows you to draw a single pair of axes in a plot. Sometimes, however, you may
instead want to show the scales for a plot on a frame, typically drawn around the whole plot. The
option Frame allows you effectively to draw four axes, corresponding to the four edges of the frame
around a plot. These four axes are ordered clockwise, starting from the one at the bottom.

This draws frame axes, and labels each
of them.

In[9]:= Show[bp, Frame -> True,
FrameLabel -> {"label 1", "label 2",

"label 3", "label 4"}]

0 2 4 6 8 10
label 1

-0.2

0

0.2

0.4

l
a
b
e
l
 2

label 3

l
a
b
e
l
 4

GridLines -> None draw no grid lines

GridLines -> Automatic position grid lines automatically

GridLines -> {xgrid, ygrid} specify grid lines in analogy with tick marks

Options for grid lines.

Grid lines in Mathematica work very much like tick marks. As with tick marks, you can specify
explicit positions for grid lines. There is no label or length to specify for grid lines. However, you
can specify a style.

This generates x but not y grid lines. In[10]:= Show[bp, GridLines -> {Automatic, None}]

2 4 6 8 10

-0.2

0.2

0.4



516 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

2.10.6 Making Plots within Plots

Section 1.9.3 described how you can make regular arrays of plots using GraphicsArray. Using the
Rectangle graphics primitive, however, you can combine and superimpose plots in any way.

Rectangle[{xmin, ymin}, {xmax, ymax}, graphics]
render a graphics object within the specified rectangle

Creating a subplot.

Here is a three-dimensional plot. In[1]:= p3 = Plot3D[Sin[x] Exp[y], {x, -5, 5}, {y, -2, 2}]

-4

-2

0

2

4 -2

-1

0

1

2

-4

-2

0

2

4

-4

-2

0

2

4

This creates a two-dimensional
graphics object which contains two
copies of the three-dimensional plot.

In[2]:= Show[Graphics[ {Rectangle[{0, 0}, {1, 1}, p3],
Rectangle[{0.8, 0.8}, {1.2, 1.4}, p3]} ]]

-4
-2

0
2

4 -2

-1

0

1

2

-4
-2
0
2
4

-4
-2

0
2

4

-4
-2

0
2

4 -2

-1
0

1
2

-4
-2
0
2
4

-4
-2

0
2

4



2.10.7 Density and Contour Plots 517

Mathematica can render any graphics object within a Rectangle. In all cases, what it puts in the
rectangle is a scaled down version of what would be obtained if you displayed the graphics object on
its own. Notice that in general the display area for the graphics object will be sized so as to touch at
least one pair of edges of the rectangle.

2.10.7 Density and Contour Plots

DensityGraphics[array] density plot

ContourGraphics[array] contour plot

Graphics objects that represent density and contour plots.

The functions DensityPlot and ContourPlot discussed in Section 1.9.5 work by creating
ContourGraphics and DensityGraphics objects containing arrays of values.

Most of the options for density and contour plots are the same as those for ordinary two-dimensional
plots. There are, however, a few additional options.

option name default value

ColorFunction Automatic how to assign colors to each cell

ColorFunctionScaling True whether to scale values before applying a
color function

Mesh True whether to draw a mesh

MeshStyle Automatic a style for the mesh

Additional options for density plots.

In a density plot, the color of each cell represents its value. By default, each cell is assigned a
gray level, running from black to white as the value of the cell increases. In general, however, you
can specify other “color maps” for the relation between the value of a cell and its color. The option
ColorFunction allows you to specify a function which is applied to each cell value to find the color
of the cell. With ColorFunctionScaling->True the cell values are scaled so as to run between 0 and
1 in a particular density plot; with ColorFunctionScaling->False no such scaling is performed. The
function you give as the setting for ColorFunction may return any Mathematica color directive, such
as GrayLevel, Hue or RGBColor. A common setting to use is ColorFunction -> Hue.



518 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

Here is a density plot with the default
ColorFunction.

In[1]:= DensityPlot[Sin[x y], {x, -1, 1}, {y, -1, 1}]

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

This gives a density plot with a
different “color map”.

In[2]:= Show[%, ColorFunction -> (GrayLevel[#^3]&)]

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1



2.10.7 Density and Contour Plots 519

option name default value

Contours 10 what contours to use

ContourLines True whether to draw contour lines

ContourStyle Automatic style to use for contour lines

ContourShading True whether to shade regions in the plot

ColorFunction Automatic how to assign colors to contour levels

ColorFunctionScaling True whether to scale values before applying a
color function

Options for contour plots.

In constructing a contour plot, the first issue is what contours to use. With the default setting
Contours -> 10, Mathematica uses a sequence of 10 contour levels equally spaced between the mini-
mum and maximum values defined by the PlotRange option.

Contours -> n use a sequence of n equally spaced contours

Contours -> {z�, z�, . . . } use contours with values z�, z�, . . .

Specifying contours.

This creates a contour plot with two
contours.

In[3]:= ContourPlot[Sin[x y], {x, -1, 1}, {y, -1, 1},
Contours -> {-.5, .5}]

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1



520 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

There are some slight subtleties associated with labeling density and contour plots. Both the Axes
and Frame options from ordinary two-dimensional graphics can be used. But setting
AxesOrigin -> Automatic keeps the axes outside the plot in both cases.

2.10.8 Three-Dimensional Graphics Primitives

One of the most powerful aspects of graphics in Mathematica is the availability of three-dimensional
as well as two-dimensional graphics primitives. By combining three-dimensional graphics primitives,
you can represent and render three-dimensional objects in Mathematica.

Point[{x, y, z}] point with coordinates x, y, z

Line[{{x�, y�, z�}, {x�, y�, z�}, . . . }] line through the points {x�, y�, z�},
{x�, y�, z�}, . . .

Polygon[{{x�, y�, z�}, {x�, y�, z�}, . . . }] filled polygon with the specified list of
corners

Cuboid[{xmin, ymin, zmin}, {xmax, ymax, zmax}] cuboid

Text[expr, {x, y, z}] text at position {x, y, z} (see Section
2.10.16)

Three-dimensional graphics elements.

Every time you evaluate rcoord, it
generates a random coordinate in three
dimensions.

In[1]:= rcoord := {Random[ ], Random[ ], Random[ ]}

This generates a list of 20 random
points in three-dimensional space.

In[2]:= pts = Table[Point[rcoord], {20}] ;



2.10.8 Three-Dimensional Graphics Primitives 521

Here is a plot of the points. In[3]:= Show[ Graphics3D[ pts ] ]

This gives a plot showing a line
through 10 random points in three
dimensions.

In[4]:= Show[ Graphics3D[ Line[ Table[rcoord, {10}] ] ] ]

If you give a list of graphics elements in two dimensions, Mathematica simply draws each element
in turn, with later elements obscuring earlier ones. In three dimensions, however, Mathematica collects
together all the graphics elements you specify, then displays them as three-dimensional objects, with
the ones in front in three-dimensional space obscuring those behind.

Every time you evaluate rantri, it
generates a random triangle in
three-dimensional space.

In[5]:= rantri := Polygon[ Table[ rcoord, {3} ] ]



522 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

This draws a single random triangle. In[6]:= Show[ Graphics3D[ rantri ] ]

This draws a collection of 5 random
triangles. The triangles in front obscure
those behind.

In[7]:= Show[ Graphics3D[ Table[rantri, {5}] ] ]

By creating an appropriate list of polygons, you can build up any three-dimensional object in Mathe-
matica. Thus, for example, all the surfaces produced by ParametricPlot3D are represented simply as
lists of polygons.

The package Graphics`Polyhedra` contains examples of lists of polygons which correspond to
polyhedra in three dimensions.

This loads a package which defines
various polyhedra.

In[8]:= <<Graphics`Polyhedra`



2.10.8 Three-Dimensional Graphics Primitives 523

Here is the list of polygons
corresponding to a tetrahedron
centered at the origin.

In[9]:= Tetrahedron[ ]

Out[9]= �Polygon��0., 0., 1.73205�, �0., 1.63299, �0.57735�,��1.41421, �0.816497, �0.57735���,
Polygon��0., 0., 1.73205�, ��1.41421, �0.816497,

�0.57735�, �1.41421, �0.816497, �0.57735���,
Polygon��0., 0., 1.73205�, �1.41421, �0.816497,

�0.57735�, �0., 1.63299, �0.57735���,
Polygon��0., 1.63299, �0.57735�,�1.41421, �0.816497, �0.57735�,��1.41421, �0.816497, �0.57735����

This displays the tetrahedron as a
three-dimensional object.

In[10]:= Show[ Graphics3D[ % ] ]

Dodecahedron[ ] is another
three-dimensional object defined in the
polyhedra package.

In[11]:= Show[ Graphics3D[ Dodecahedron[ ] ] ]



524 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

This shows four intersecting
dodecahedra.

In[12]:= Show[ Graphics3D[
Table[Dodecahedron[0.8 {k, k, k}], {k, 0, 3}] ] ]

Mathematica allows polygons in three dimensions to have any number of vertices. However, these
vertices should lie in a plane, and should form a convex figure. If they do not, then Mathematica will
break the polygon into triangles, which are planar by definition, before rendering it.

Cuboid[{x, y, z}] a unit cube with opposite corners having coordinates
{x, y, z} and {x+1, y+1, z+1}

Cuboid[{xmin, ymin, zmin}, {xmax, ymax, zmax}]
a cuboid (rectangular parallelepiped) with opposite corners
having the specified coordinates

Cuboid graphics elements.

This draws 20 random unit cubes in
three-dimensional space.

In[13]:= Show[Graphics3D[ Table[Cuboid[10 rcoord], {20}] ]]



2.10.9 Three-Dimensional Graphics Directives 525

2.10.9 Three-Dimensional Graphics Directives

In three dimensions, just as in two dimensions, you can give various graphics directives to specify
how the different elements in a graphics object should be rendered.

All the graphics directives for two dimensions also work in three dimensions. There are however
some additional directives in three dimensions.

Just as in two dimensions, you can use the directives PointSize, Thickness and Dashing to tell
Mathematica how to render Point and Line elements. Note that in three dimensions, the lengths that
appear in these directives are measured as fractions of the total width of the display area for your
plot.

This generates a list of 20 random
points in three dimensions.

In[1]:= pts = Table[Point[Table[Random[ ], {3}]], {20}];

This displays the points, with each one
being a circle whose diameter is 5% of
the display area width.

In[2]:= Show[Graphics3D[ { PointSize[0.05], pts } ]]

As in two dimensions, you can use AbsolutePointSize, AbsoluteThickness and
AbsoluteDashing if you want to measure length in absolute units.

This generates a line through 10
random points in three dimensions.

In[3]:= line = Line[Table[Random[ ], {10}, {3}]] ;



526 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

This shows the line dashed, with a
thickness of 2 printer’s points.

In[4]:= Show[Graphics3D[ { AbsoluteThickness[2],
AbsoluteDashing[{5, 5}], line } ]]

For Point and Line objects, the color specification directives also work the same in three dimensions
as in two dimensions. For Polygon objects, however, they can work differently.

In two dimensions, polygons are always assumed to have an intrinsic color, specified directly by
graphics directives such as RGBColor. In three dimensions, however, Mathematica also provides the
option of generating colors for polygons using a more physical approach based on simulated illumi-
nation. With the default option setting Lighting -> True for Graphics3D objects, Mathematica ignores
explicit colors specified for polygons, and instead determines all polygon colors using the simulated
illumination model. Even in this case, however, explicit colors are used for points and lines.

Lighting -> False intrinsic colors

Lighting -> True colors based on simulated illumination (default)

The two schemes for coloring polygons in three dimensions.

This loads a package which defines
various polyhedra.

In[5]:= <<Graphics`Polyhedra`



2.10.9 Three-Dimensional Graphics Directives 527

This draws an icosahedron, using the
same gray level for all faces.

In[6]:= Show[Graphics3D[{GrayLevel[0.7], Icosahedron[ ]}],
Lighting -> False]

With the default setting
Lighting -> True, the colors of
polygons are determined by the
simulated illumination model, and
explicit color specifications are ignored.

In[7]:= Show[%, Lighting -> True]



528 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

Explicit color directives are, however,
always followed for points and lines.

In[8]:= Show[{%, Graphics3D[{GrayLevel[0.5], Thickness[0.05],
Line[{{0, 0, -2}, {0, 0, 2}}]}]}]

EdgeForm[ ] draw no lines at the edges of polygons

EdgeForm[g] use the graphics directives g to determine how to draw lines
at the edges of polygons

Giving graphics directives for all the edges of polygons.

When you render a three-dimensional graphics object in Mathematica, there are two kinds of lines
that can appear. The first kind are lines from explicit Line primitives that you included in the graphics
object. The second kind are lines that were generated as the edges of polygons.

You can tell Mathematica how to render all lines of the second kind by giving a list of graphics
directives inside EdgeForm .

This renders a dodecahedron with its
edges shown as thick gray lines.

In[9]:= Show[Graphics3D[
{EdgeForm[{GrayLevel[0.5], Thickness[0.02]}],

Dodecahedron[ ]}]]



2.10.9 Three-Dimensional Graphics Directives 529

FaceForm[gfront, gback] use gfront graphics directives for the front face of each
polygon, and gback for the back

Rendering the fronts and backs of polygons differently.

An important aspect of polygons in three dimensions is that they have both front and back faces.
Mathematica uses the following convention to define the “front face” of a polygon: if you look at a
polygon from the front, then the corners of the polygon will appear counterclockwise, when taken in
the order that you specified them.

This defines a dodecahedron with one
face removed.

In[10]:= d = Drop[Dodecahedron[ ], {6}] ;

You can now see inside the
dodecahedron.

In[11]:= Show[Graphics3D[d]]

This makes the front (outside) face of
each polygon light gray, and the back
(inside) face dark gray.

In[12]:= Show[Graphics3D[
{FaceForm[GrayLevel[0.8], GrayLevel[0.3]], d}],

Lighting -> False]



530 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

2.10.10 Coordinate Systems for Three-Dimensional Graphics

Whenever Mathematica draws a three-dimensional object, it always effectively puts a cuboidal box
around the object. With the default option setting Boxed -> True, Mathematica in fact draws the edges
of this box explicitly. But in general, Mathematica automatically “clips” any parts of your object that
extend outside of the cuboidal box.

The option PlotRange specifies the range of x, y and z coordinates that Mathematica should in-
clude in the box. As in two dimensions the default setting is PlotRange -> Automatic, which makes
Mathematica use an internal algorithm to try and include the “interesting parts” of a plot, but drop
outlying parts. With PlotRange -> All, Mathematica will include all parts.

This loads a package defining various
polyhedra.

In[1]:= <<Graphics`Polyhedra`

This creates a stellated icosahedron. In[2]:= stel = Stellate[Icosahedron[ ]] ;

Here is the stellated icosahedron,
drawn in a box.

In[3]:= Show[Graphics3D[stel], Axes -> True]

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

With this setting for PlotRange, many
parts of the stellated icosahedron lie
outside the box, and are clipped.

In[4]:= Show[%, PlotRange -> {-1, 1}]

-1

0

1

-1

0

1

-1

-0.5

0

0.5

1

-1

0

1



2.10.10 Coordinate Systems for Three-Dimensional Graphics 531

Much as in two dimensions, you can use either “original” or “scaled” coordinates to specify the po-
sitions of elements in three-dimensional objects. Scaled coordinates, specified as Scaled[{sx, sy, sz}]
are taken to run from 0 to 1 in each dimension. The coordinates are set up to define a right-handed
coordinate system on the box.

{x, y, z} original coordinates

Scaled[{sx, sy, sz}] scaled coordinates, running from 0 to 1 in each dimension

Coordinate systems for three-dimensional objects.

This puts a cuboid in one corner of the
box.

In[5]:= Show[Graphics3D[{stel,
Cuboid[Scaled[{0, 0, 0}],

Scaled[{0.2, 0.2, 0.2}]]}]]

Once you have specified where various graphical elements go inside a three-dimensional box, you
must then tell Mathematica how to draw the box. The first step is to specify what shape the box should
be. This is analogous to specifying the aspect ratio of a two-dimensional plot. In three dimensions, you
can use the option BoxRatios to specify the ratio of side lengths for the box. For Graphics3D objects,
the default is BoxRatios -> Automatic, specifying that the shape of the box should be determined
from the ranges of actual coordinates for its contents.

BoxRatios -> {xr, yr, zr} specify the ratio of side lengths for the box

BoxRatios -> Automatic determine the ratio of side lengths from the range of actual
coordinates (default for Graphics3D)

BoxRatios -> {1, 1, 0.4} specify a fixed shape of box (default for SurfaceGraphics)

Specifying the shape of the bounding box for three-dimensional objects.



532 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

This displays the stellated icosahedron
in a tall box.

In[6]:= Show[Graphics3D[stel], BoxRatios -> {1, 1, 5}]

To produce an image of a three-dimensional object, you have to tell Mathematica from what view
point you want to look at the object. You can do this using the option ViewPoint.

Some common settings for this option were given on page 153. In general, however, you can tell
Mathematica to use any view point, so long as it lies outside the box.

View points are specified in the form ViewPoint -> {sx, sy, sz}. The values si are given in a
special coordinate system, in which the center of the box is {0, 0, 0}. The special coordinates are
scaled so that the longest side of the box corresponds to one unit. The lengths of the other sides
of the box in this coordinate system are determined by the setting for the BoxRatios option. For a
cubical box, therefore, each of the special coordinates runs from ���� to ��� across the box. Note that
the view point must always lie outside the box.

This generates a picture using the
default view point {1.3, -2.4, 2}.

In[7]:= surf = Plot3D[(2 + Sin[x]) Cos[2 y],
{x, -2, 2}, {y, -3, 3},

AxesLabel -> {"x", "y", "z"}]

-2

-1

0

1

2

x -2

0

2

y

-2

0

2

z

-2

-1

0

1
x



2.10.10 Coordinate Systems for Three-Dimensional Graphics 533

This is what you get with a view point
close to one of the corners of the box.

In[8]:= Show[surf, ViewPoint -> {1.2, 1.2, 1.2}]

-2

-1

0

1

2

x

-2

0

2

y

-2

0

2

z

-2

-1

0

1

x

-2

0

As you move away from the box, the
perspective effect gets smaller.

In[9]:= Show[surf, ViewPoint -> {5, 5, 5}]

-2

-1

0

1

2

x

-2

0

2

y

-2

0

2

z

-

-1

0

1

x

option name default value

ViewPoint {1.3, -2.4, 2} the point in a special scaled coordinate
system from which to view the object

ViewCenter Automatic the point in the scaled coordinate system
which appears at the center of the final
image

ViewVertical {0, 0, 1} the direction in the scaled coordinate system
which appears as vertical in the final image

Specifying the position and orientation of three-dimensional objects.



534 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

In making a picture of a three-dimensional object you have to specify more than just where you
want to look at the object from. You also have to specify how you want to “frame” the object in your
final image. You can do this using the additional options ViewCenter and ViewVertical.

ViewCenter allows you to tell Mathematica what point in the object should appear at the center of
your final image. The point is specified by giving its scaled coordinates, running from 0 to 1 in each
direction across the box. With the setting ViewCenter -> {1/2, 1/2, 1/2}, the center of the box will
therefore appear at the center of your final image. With many choices of view point, however, the box
will not appear symmetrical, so this setting for ViewCenter will not center the whole box in the final
image area. You can do this by setting ViewCenter -> Automatic.

ViewVertical specifies which way up the object should appear in your final image. The setting
for ViewVertical gives the direction in scaled coordinates which ends up vertical in the final im-
age. With the default setting ViewVertical -> {0, 0, 1}, the z direction in your original coordinate
system always ends up vertical in the final image.

With this setting for ViewCenter, a
corner of the box appears in the center
of your image.

In[10]:= Show[surf, ViewCenter -> {1, 1, 1}]

-2 -1 0 1 2x

-2

0

2y

-2
0
2

z

-2 -1 0 1 2x

-2

0

2y

This setting for ViewVertical makes
the x axis of the box appear vertical in
your image.

In[11]:= Show[surf, ViewVertical -> {1, 0, 0}]

-2

-1

0

1

2

x

-2
0

2
y

-2
0

2 z

-2

-

0

1



2.10.10 Coordinate Systems for Three-Dimensional Graphics 535

When you set the options ViewPoint, ViewCenter and ViewVertical, you can think about it
as specifying how you would look at a physical object. ViewPoint specifies where your head is
relative to the object. ViewCenter specifies where you are looking (the center of your gaze). And
ViewVertical specifies which way up your head is.

In terms of coordinate systems, settings for ViewPoint, ViewCenter and ViewVertical specify
how coordinates in the three-dimensional box should be transformed into coordinates for your image
in the final display area.

For some purposes, it is useful to think of the coordinates in the final display area as three di-
mensional. The x and y axes run horizontally and vertically, respectively, while the z axis points out
of the page. Positions specified in this “display coordinate system” remain fixed when you change
ViewPoint and so on. The positions of light sources discussed in the next section are defined in this
display coordinate system.

Box coordinate system measured relative to the box around your object

Display coordinate system measured relative to your final display area

Coordinate systems for three-dimensional graphics.

Once you have obtained a two-dimensional image of a three-dimensional object, there are still some
issues about how this image should be rendered. The issues however are identical to those that occur
for two-dimensional graphics. Thus, for example, you can modify the final shape of your image by
changing the AspectRatio option. And you specify what region of your whole display area your
image should take up by setting the PlotRegion option.

This modifies the aspect ratio of the
final image.

In[12]:= Show[surf, Axes -> False, AspectRatio -> 0.3]



536 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

Mathematica usually scales the images of three-dimensional objects to be as large as possible, given
the display area you specify. Although in most cases this scaling is what you want, it does have the
consequence that the size at which a particular three-dimensional object is drawn may vary with the
orientation of the object. You can set the option SphericalRegion -> True to avoid such variation.
With this option setting, Mathematica effectively puts a sphere around the three-dimensional bounding
box, and scales the final image so that the whole of this sphere fits inside the display area you specify.
The sphere has its center at the center of the bounding box, and is drawn so that the bounding box
just fits inside it.

This draws a rather elongated version
of the plot.

In[13]:= Show[surf, BoxRatios -> {1, 5, 1}]

-2
-1

0
1

2x

-2

0

2

y

-2

0

2
z

2
-1

0
1

-2

0

2

y

With SphericalRegion -> True, the
final image is scaled so that a sphere
placed around the bounding box
would fit in the display area.

In[14]:= Show[%, SphericalRegion -> True]

-2-1 0 1 2x

-2

0

2

y

-2
0
2

z

-2-1 0 1 2x

-2

0

2

y

By setting SphericalRegion -> True, you can make the scaling of an object consistent for all
orientations of the object. This is useful if you create animated sequences which show a particular
object in several different orientations.



2.10.11 Plotting Three-Dimensional Surfaces 537

SphericalRegion -> False scale three-dimensional images to be as large as possible

SphericalRegion -> True scale images so that a sphere drawn around the
three-dimensional bounding box would fit in the final
display area

Changing the magnification of three-dimensional images.

2.10.11 Plotting Three-Dimensional Surfaces

By giving an appropriate list of graphics primitives, you can represent essentially any three-dimensional
object in Mathematica with Graphics3D. You can represent three-dimensional surfaces with Graphics3D
by giving explicit lists of polygons with adjacent edges.

If you need to represent arbitrary surfaces which can fold over and perhaps intersect themselves,
there is no choice but to use explicit lists of polygons with Graphics3D, as ParametricPlot3D does.

However, there are many cases in which you get simpler surfaces. For example, Plot3D and
ListPlot3D yield surfaces which never fold over, and have a definite height at every x, y point. You
can represent simple surfaces like these in Mathematica without giving an explicit list of polygons.
Instead, all you need do is to give an array which specifies the z height at every point in an x, y grid.
The graphics object SurfaceGraphics[array] represents a surface constructed in this way.

Graphics3D[primitives] arbitrary three-dimensional objects, including folded surfaces

SurfaceGraphics[array] simple three-dimensional surfaces

Three-dimensional graphics objects.

Here is a 
 � 
 array of values. In[1]:= moda = Table[Mod[i, j], {i, 4}, {j, 4}]

Out[1]= ��0, 1, 1, 1�, �0, 0, 2, 2�, �0, 1, 0, 3�, �0, 0, 1, 0��



538 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

This uses the array to give the height
of each point on the surface.

In[2]:= Show[SurfaceGraphics[moda]]

Both Plot3D and ListPlot3D work by creating SurfaceGraphics objects.

Graphics3D[surface] convert SurfaceGraphics to Graphics3D

Converting between representations of surfaces.

If you apply Graphics3D to a SurfaceGraphics object, Mathematica will generate a Graphics3D
object containing an explicit list of polygons representing the surface in the SurfaceGraphics object.
Whenever you ask Mathematica to combine two SurfaceGraphics objects together, it automatically
converts them both to Graphics3D objects.

Here is a surface represented by a
SurfaceGraphics object.

In[3]:= Plot3D[(1 - Sin[x]) (2 - Cos[2 y]),
{x, -2, 2}, {y, -2, 2}]

-2

-1

0

1

2 -2

-1

0

1

2

0

2

4

6

-2

-1

0

1



2.10.11 Plotting Three-Dimensional Surfaces 539

Here is another surface. In[4]:= Plot3D[(2 + Sin[x]) (1 + Cos[2 y]),
{x, -2, 2}, {y, -2, 2}]

-2

-1

0

1

2 -2

-1

0

1

2

0

2

4

6

-2

-1

0

1

Mathematica shows the two surfaces
together by converting each of them to
a Graphics3D object containing an
explicit list of polygons.

In[5]:= Show[%, %%]

-2

-1

0

1

2
-2

-1

0

1

2

0

2

4

6

-2

-1

0

1

option name default value

Mesh True whether to draw a mesh on the surface

MeshStyle Automatic graphics directives specifying how to render
the mesh

MeshRange Automatic the original range of coordinates
corresponding to the mesh

Mesh options in SurfaceGraphics.



540 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

When you create a surface using SurfaceGraphics, the default is to draw a rectangular mesh on
the surface. As discussed on page 154, including this mesh typically makes it easier for one to see the
shape of the surface. You can nevertheless get rid of the mesh by setting the option Mesh -> False.
You can also set the option MeshStyle to a list of graphics directives which specify thickness, color or
other properties of the mesh lines.

A SurfaceGraphics object contains an array of values which specify the height of a surface at
points in an x, y grid. By setting the option MeshRange, you can give the range of original x and y
coordinates that correspond to the points in this grid. When you use
Plot3D[f, {x, xmin, xmax}, {y, ymin, ymax}] to generate a SurfaceGraphics object, the setting
MeshRange -> {{xmin, xmax}, {ymin, ymax}} is automatically generated. The setting for MeshRange
is used in labeling the x and y axes in surface plots, and in working out polygon coordinates if you
convert a SurfaceGraphics object to an explicit list of polygons in a Graphics3D object.

None leave out clipped parts of the surface, so that you can see
through

Automatic show the clipped part of the surface with the same shading
as an actual surface in the same position would have
(default setting)

GrayLevel[i], RGBColor[r, g, b], etc.
show the clipped part of the surface with a particular gray
level, color, etc.

{bottom, top} give different specifications for parts that are clipped at the
bottom and top

Settings for the ClipFill option.

The option PlotRange works for SurfaceGraphics as it does for other Mathematica graphics ob-
jects. Any parts of a surface that lie outside the range of coordinates defined by PlotRange will be
“clipped”. The option ClipFill allows you to specify what should happen to the parts of a surface
that are clipped.



2.10.11 Plotting Three-Dimensional Surfaces 541

Here is a three-dimensional plot in
which the top and bottom of the
surface are clipped. With the default
setting for ClipFill, the clipped parts
are shown as they would be if they
were part of the actual surface.

In[6]:= Plot3D[Sin[x y], {x, 0, 3}, {y, 0, 3},
PlotRange -> {-.5, .5}]

0

1

2

3 0

1

2

3

-0.4
-0.2

0

0.2

0.4

0

1

2

With ClipFill->None, parts of the
surface which are clipped are left out,
so that you can “see through” the
surface there. Mathematica always
leaves out parts of the surface that
correspond to places where the value
of the function you are plotting is not
a real number.

In[7]:= Show[%, ClipFill -> None]

0

1

2

3 0

1

2

3

-0.4
-0.2

0

0.2

0.4

0

1

2

This makes the bottom clipped face
white (gray level 1), and the top one
black.

In[8]:= Show[%, ClipFill -> {GrayLevel[1], GrayLevel[0]}]

0

1

2

3 0

1

2

3

-0.4
-0.2

0

0.2

0.4

0

1

2



542 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

Whenever Mathematica draws a surface, it has to know not only the height, but also the color of the
surface at each point. With the default setting Lighting -> True, Mathematica colors the surface using
a simulated lighted model. However, with Lighting -> False, Mathematica uses a “color function”
to determine how to color the surface.

The default color function takes the height of the surface, normalized to run from 0 to 1, and colors
each part of the surface with a gray level corresponding to this height. There are two ways to change
the default.

First, if you set the option ColorFunction -> c, then Mathematica will apply the function c to each
height value to determine the color to use at that point. With ColorFunction -> Hue, Mathematica
will for example color the surface with a range of hues.

Plot3D[f, . . . , ColorFunction -> c]
apply c to the normalized values of f to determine the color
of each point on a surface

ListPlot3D[array, ColorFunction -> c]
apply c to the elements of array to determine color

SurfaceGraphics[array, ColorFunction -> c]
apply c to the elements of array to determine color

Specifying functions for coloring surfaces.

With Lighting -> False, the default is
to color surfaces with gray scales
determined by height.

In[9]:= exp = Plot3D[Exp[-Sqrt[x^2 + y^2]],
{x, -2, 2}, {y, -2, 2}, Lighting -> False]

-2

-1

0

1

2 -2

-1

0

1

2

0

0.2

0.4

0.6

-2

-1

0

1

This defines a function which maps
alternating ranges of values into black
and white.

In[10]:= stripes[f_] :=
If[Mod[f, 1] > 0.5, GrayLevel[1], GrayLevel[0]]



2.10.11 Plotting Three-Dimensional Surfaces 543

This shows the surface colored with
black and white stripes.

In[11]:= Show[exp, ColorFunction -> (stripes[5 #]&)]

-2

-1

0

1

2 -2

-1

0

1

2

0

0.2

0.4

0.6

-2

-1

0

1

The second way to change the default coloring of surfaces is to supply an explicit second array
along with the array of heights. ColorFunction is then applied to the elements of this second array,
rather than the array of heights, to find the color directives to use. In the second array, you can
effectively specify the value of another coordinate for each point on the surface. This coordinate will
be plotted using color, rather than position.

You can generate an array of color values automatically using Plot3D[{f, s}, . . . ]. If you give the
array explicitly in ListPlot3D or SurfaceGraphics, you should realize that with an n � n array of
heights, you need an �n���� �n��� array to specify colors. The reason is that the heights are specified
for points on a grid, whereas the colors are specified for squares on the grid.

When you supply a second function or array to Plot3D, ListPlot3D, and so on, the default setting
for the ColorFunction option is Automatic. This means that the function or array should contain
explicit Mathematica color directives, such as GrayLevel or RGBColor. However, if you give another
setting, such as ColorFunction -> Hue, then the function or array can yield pure numbers or other
data which are converted to color directives when the function specified by ColorFunction is applied.

Plot3D[{f, s}, {x, xmin, xmax}, {y, ymin, ymax}]
plot a surface whose height is determined by f and whose
color is determined by s

ListPlot3D[height, color] generate a colored surface plot from an array of heights and
colors

SurfaceGraphics[height, color] a graphics object representing a surface with a specified
array of heights and colors

Specifying arrays of colors for surfaces.



544 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

This plots a surface with gray level
determined by the y coordinate.

In[12]:= Plot3D[{Sin[x] Sin[y]^2, GrayLevel[y/3]},
{x, 0, 3}, {y, 0, 3}]

0

1

2

3 0

1

2

3

0

0.25

0.5

0.75

1

0

1

2

This puts a random gray level in each
grid square. Notice that the array of
grid squares is � � �, whereas the array
of grid points is �� � ��.

In[13]:= ListPlot3D[ Table[i/j, {i, 10}, {j, 10}],
Table[GrayLevel[Random[ ]], {i, 9}, {j, 9}] ]

2

4

6

8

10

2

4

6

8

10

0

2

4

2

4

6

8

2.10.12 Lighting and Surface Properties

With the default option setting Lighting -> True, Mathematica uses a simulated lighting model to
determine how to color polygons in three-dimensional graphics.

Mathematica allows you to specify two components to the illumination of an object. The first is
“ambient lighting”, which produces uniform shading all over the object. The second is light from a
collection of point sources, each with a particular position and color. Mathematica adds together the
light from all of these sources in determining the total illumination of a particular polygon.



2.10.12 Lighting and Surface Properties 545

AmbientLight -> color diffuse isotropic lighting

LightSources -> {{pos�, col�}, {pos�, col�}, . . . }
point light sources with specified positions and colors

Options for simulated illumination.

The default lighting used by Mathematica involves three point light sources, and no ambient com-
ponent. The light sources are colored respectively red, green and blue, and are placed at 
�� angles
on the right-hand side of the object.

Here is a surface, shaded using
simulated lighting using the default set
of lights.

In[1]:= Plot3D[Sin[x + Sin[y]], {x, -3, 3}, {y, -3, 3},
Lighting -> True]

-2

0

2

-2

0

2

-1

-0.5

0

0.5

1

-2

0

2

This shows the result of adding
ambient light, and removing all point
light sources.

In[2]:= Show[%, AmbientLight -> GrayLevel[0.5],
LightSources -> {}]

-2

0

2

-2

0

2

-1

-0.5

0

0.5

1

-2

0

2



546 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

This adds a single point light source at
the left-hand side of the image.

In[3]:= Show[%,
LightSources -> {{{-1, 0, 0.5}, GrayLevel[0.5]}}]

-2

0

2

-2

0

2

-1

-0.5

0

0.5

1

-2

0

2

The positions of light sources in Mathematica are specified in the display coordinate system. The x
and y coordinates are in the plane of the final display, and the z coordinate comes out of the plane.
Using this coordinate system ensures that the light sources remain fixed with respect to the viewer,
even when the relative positions of the viewer and object change.

Even though the view point is
changed, the light source is kept fixed
on the left-hand side of the image.

In[4]:= Show[%, ViewPoint -> {2, 2, 6}]

-2

0

2

-2

0

2

-1
-0.5

0
0.5

1

-2

0

2

1
5
0

The perceived color of a polygon depends not only on the light which falls on the polygon, but also
on how the polygon reflects that light. You can use the graphics directive SurfaceColor to specify
the way that polygons reflect light.

If you do not explicitly use SurfaceColor directives, Mathematica effectively assumes that all poly-
gons have matte white surfaces. Thus the polygons reflect light of any color incident on them, and do
so equally in all directions. This is an appropriate model for materials such as uncoated white paper.



2.10.12 Lighting and Surface Properties 547

Using SurfaceColor, however, you can specify more complicated models. The basic idea is to
distinguish two kinds of reflection: diffuse and specular.

In diffuse reflection, light incident on a surface is scattered equally in all directions. When this kind
of reflection occurs, a surface has a “dull” or “matte” appearance. Diffuse reflectors obey Lambert’s
Law of light reflection, which states that the intensity of reflected light is cos�Α� times the intensity of
the incident light, where Α is the angle between the incident light direction and the surface normal
vector. Note that when Α c ���, there is no reflected light.

In specular reflection, a surface reflects light in a mirror-like way. As a result, the surface has a
“shiny” or “gloss” appearance. With a perfect mirror, light incident at a particular angle is reflected at
exactly the same angle. Most materials, however, scatter light to some extent, and so lead to reflected
light that is distributed over a range of angles. Mathematica allows you to specify how broad the
distribution is by giving a specular exponent, defined according to the Phong lighting model. With
specular exponent n, the intensity of light at an angle Θ away from the mirror reflection direction is
assumed to vary like cos�Θ�n. As n # �, therefore, the surface behaves like a perfect mirror. As n
decreases, however, the surface becomes less “shiny”, and for n � �, the surface is a completely diffuse
reflector. Typical values of n for actual materials range from about 1 to several hundred.

Most actual materials show a mixture of diffuse and specular reflection. In addition, they typically
behave as if they have a certain intrinsic color. When the incident light is white, the reflected light has
the color of the material. When the incident light is not white, each color component in the reflected
light is a product of the corresponding component in the incident light and in the intrinsic color of
the material.

In Mathematica, you can specify reflection properties by giving an intrinsic color associated with
diffuse reflection, and another one associated with specular reflection. To get no reflection of a partic-
ular kind, you must give the corresponding intrinsic color as black, or GrayLevel[0]. For materials
that are effectively “white”, you can specify intrinsic colors of the form GrayLevel[a], where a is the
reflectance or albedo of the surface.

SurfaceColor[GrayLevel[a]] matte surface with albedo a

SurfaceColor[RGBColor[r, g, b]] matte surface with intrinsic color

SurfaceColor[diff, spec] surface with diffuse intrinsic color diff and specular
intrinsic color spec

SurfaceColor[diff, spec, n] surface with specular exponent n

Specifying surface properties of lighted polygons.

This loads a package containing
various graphics objects.

In[5]:= <<Graphics`Shapes`



548 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

Sphere creates a graphics object which
represents a sphere.

In[6]:= s = Sphere[ ] ;

This shows the sphere with the default
matte white surface.

In[7]:= Show[Graphics3D[s]]

This makes the sphere have low
diffuse reflectance, but high specular
reflectance. As a result, the sphere has
a “specular highlight” near the light
sources, and is quite dark elsewhere.

In[8]:= Show[Graphics3D[{
SurfaceColor[GrayLevel[0.2],

GrayLevel[0.8], 5], s}]]

When you set up light sources and surface colors, it is important to make sure that the total
intensity of light reflected from a particular polygon is never larger than 1. You will get strange effects
if the intensity is larger than 1.

2.10.13 Labeling Three-Dimensional Graphics

Mathematica provides various options for labeling three-dimensional graphics. Some of these options
are directly analogous to those for two-dimensional graphics, discussed in Section 2.10.5. Others are
different.



2.10.13 Labeling Three-Dimensional Graphics 549

Boxed -> True draw a cuboidal bounding box around the graphics (default)

Axes -> True draw x, y and z axes on the edges of the box (default for
SurfaceGraphics)

Axes -> {False, False, True} draw the z axis only

FaceGrids -> All draw grid lines on the faces of the box

PlotLabel -> text give an overall label for the plot

Some options for labeling three-dimensional graphics.

This loads a package containing
various polyhedra.

In[1]:= <<Graphics`Polyhedra`

The default for Graphics3D is to
include a box, but no other forms of
labeling.

In[2]:= Show[Graphics3D[Dodecahedron[ ]]]

Setting Axes -> True adds x, y and z
axes.

In[3]:= Show[%, Axes -> True]

-1
-0.5

0

0.5

1

-1

-0.5

0

0.5
1

-0.5

0

0.5

-1
-0.5

0

0.5

1

-1

-0.5

0

0.5



550 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

This adds grid lines to each face of the
box.

In[4]:= Show[%, FaceGrids -> All]

-1
-0.5

0

0.5

1

-1

-0.5

0

0.5
1

-0.5

0

0.5

-1
-0.5

0

0.5

1

-1

-0.5

0

0.5

BoxStyle -> style specify the style for the box

AxesStyle -> style specify the style for axes

AxesStyle -> {{xstyle}, {ystyle}, {zstyle}}
specify separate styles for each axis

Style options.

This makes the box dashed, and draws
axes which are thicker than normal.

In[5]:= Show[Graphics3D[Dodecahedron[ ]],
BoxStyle -> Dashing[{0.02, 0.02}],
Axes -> True, AxesStyle -> Thickness[0.01]]

-1
-0.5

0

0.5

1

-1

-0.5

0

0.5
1

-0.5

0

0.5

-1
-0.5

0

0.5

1

-1

-0.5

0

0.5



2.10.13 Labeling Three-Dimensional Graphics 551

By setting the option Axes -> True, you tell Mathematica to draw axes on the edges of the three-
dimensional box. However, for each axis, there are in principle four possible edges on which it can
be drawn. The option AxesEdge allows you to specify on which edge to draw each of the axes.

AxesEdge -> Automatic use an internal algorithm to choose where to draw all axes

AxesEdge -> {xspec, yspec, zspec}
give separate specifications for each of the x, y and z axes

None do not draw this axis

Automatic decide automatically where to draw this axis

{diri, dirj} specify on which of the four possible edges to draw this axis

Specifying where to draw three-dimensional axes.

This draws the x on the edge with
larger y and z coordinates, draws no y
axis, and chooses automatically where
to draw the z axis.

In[6]:= Show[Graphics3D[Dodecahedron[ ]], Axes -> True,
AxesEdge -> {{1, 1}, None, Automatic}]

-1
-0.5

0
0.5

1

-0.5

0

0.5

When you draw the x axis on a three-dimensional box, there are four possible edges on which the
axis can be drawn. These edges are distinguished by having larger or smaller y and z coordinates.
When you use the specification {diry, dirz} for where to draw the x axis, you can set the diri to be +1
or -1 to represent larger or smaller values for the y and z coordinates.



552 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

AxesLabel -> None give no axis labels

AxesLabel -> zlabel put a label on the z axis

AxesLabel -> {xlabel, ylabel, zlabel} put labels on all three axes

Axis labels in three-dimensional graphics.

You can use AxesLabel to label edges
of the box, without necessarily drawing
scales on them.

In[7]:= Show[Graphics3D[Dodecahedron[ ]], Axes -> True,
AxesLabel -> {"x", "y", "z"}, Ticks -> None]

x

y

z

x

y

Ticks -> None draw no tick marks

Ticks -> Automatic place tick marks automatically

Ticks -> {xticks, yticks, zticks} tick mark specifications for each axis

Settings for the Ticks option.

You can give the same kind of tick mark specifications in three dimensions as were described for
two-dimensional graphics in Section 2.10.5.



2.10.14 Advanced Topic: Low-Level Graphics Rendering 553

FaceGrids -> None draw no grid lines on faces

FaceGrids -> All draw grid lines on all faces

FaceGrids -> {face�, face�, . . . } draw grid lines on the faces specified by the facei

FaceGrids -> {{face�, {xgrid�, ygrid�}}, . . . }
use xgridi, ygridi to determine where and how to draw grid
lines on each face

Drawing grid lines in three dimensions.

Mathematica allows you to draw grid lines on the faces of the box that surrounds a three-
dimensional object. If you set FaceGrids -> All, grid lines are drawn in gray on every face. By
setting FaceGrids -> {face�, face�, . . . } you can tell Mathematica to draw grid lines only on specific
faces. Each face is specified by a list {dirx, diry, dirz}, where two of the diri must be 0, and the third
one is +1 or -1. For each face, you can also explicitly tell Mathematica where and how to draw the grid
lines, using the same kind of specifications as you give for the GridLines option in two-dimensional
graphics.

This draws grid lines only on the top
and bottom faces of the box.

In[8]:= Show[Graphics3D[Dodecahedron[ ]],
FaceGrids -> {{0, 0, 1}, {0, 0, -1}}]

2.10.14 Advanced Topic: Low-Level Graphics Rendering

All Mathematica graphics functions such as Show and Plot have an option DisplayFunction, which
specifies how the Mathematica graphics objects they produce should actually be displayed. The way
this works is that the setting you give for DisplayFunction is automatically applied to each graphics
object that is produced.



554 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

DisplayFunction -> $DisplayFunction default setting

DisplayFunction -> Identity generate no display

DisplayFunction -> f apply f to graphics objects to produce display

Settings for the DisplayFunction option.

Within the Mathematica kernel, graphics are always represented by graphics objects involving graph-
ics primitives. When you actually render graphics, however, they must be converted to a lower-level
form which can be processed by a Mathematica front end, such as a notebook interface, or by other
external programs.

The standard low-level form that Mathematica uses for graphics is PostScript. The Mathematica func-
tion Display takes any Mathematica graphics object, and converts it into a block of PostScript code. It
can then send this code to a file, an external program, or in general any output stream.

Display["file", graphics] store the PostScript for a piece of Mathematica
graphics in a file

Display["!program", graphics] send the PostScript to an external program

Display[stream, graphics] send the PostScript to an arbitrary stream

DisplayString[graphics] generate a string of PostScript

Converting Mathematica graphics to PostScript.

The default value of the global variable $DisplayFunction is Function[ Display[$Display, #] ].
With this default, graphics objects produced by functions like Show and Plot are automatically con-
verted to PostScript, and sent to whatever stream is specified by the value of the global variable
$Display. The variable $Display is typically set during the initialization of a particular Mathematica
session.

PostScript["string�", "string�", . . . ] a two-dimensional graphics primitive giving
PostScript code to include verbatim

Inserting verbatim PostScript code.



2.10.14 Advanced Topic: Low-Level Graphics Rendering 555

With the standard two-dimensional graphics primitives in Mathematica you can produce most of
the effects that can be obtained with PostScript. Sometimes, however, you may find it necessary to
give PostScript code directly. You can do this using the special two-dimensional graphics primitive
PostScript.

The strings you specify in the PostScript primitive will be inserted verbatim into the final Post-
Script code generated by Display. You should use the PostScript primitive with care. For example,
it is crucial that the code you give restores the PostScript stack to exactly its original state when it
is finished. In addition, to specify positions of objects, you will have to understand the coordinate
scaling that Mathematica does in its PostScript output. Finally, any PostScript primitives that you insert
can only work if they are supported in the final PostScript interpreter that you use to display your
graphics.

The PostScript primitive gives raw
PostScript code which draws a Bézier
curve.

In[1]:= Show[Graphics[ {
PostScript[".008 setlinewidth"],
PostScript[".1 .1 moveto"],
PostScript["1.1 .6 -.1 .6 .9 .1 curveto stroke"] },

Frame -> True]]

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

In most cases, a particular Mathematica graphics object always generates PostScript of a particular
form. For Graphics3D objects, the option RenderAll allows you to choose between two different
forms.

The main issue is how the polygons which make up three-dimensional objects should be rendered.
With the default setting RenderAll -> True, all polygons you specify are drawn in full, but those
behind are drawn first. When all the polygons are drawn, only those in front are visible. However,
while an object is being drawn on a display, you can typically see the polygons inside it.

The problem with this approach is that for an object with many layers, you may generate a large
amount of spurious PostScript code associated with polygons that are not visible in the final image.
You can potentially avoid this by setting RenderAll -> False. In this case, Mathematica works out
exactly which polygons or parts of polygons will actually be visible in your final image, and renders



556 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

only these. So long as there are fairly few intersections between polygons, this approach will typically
yield less PostScript code, though it may be much slower.

RenderAll -> True draw all polygons, starting from the back (default)

RenderAll -> False draw only those polygons or parts of polygons that are
visible in the final image

An option for rendering three-dimensional pictures.

When you generate a PostScript representation of a three-dimensional object, you lose all infor-
mation about the depths of the parts of the object. Sometimes, you may want to send to external
programs a representation which includes depth information. Often, the original Graphics3D object in
Mathematica form is then the appropriate representation. But some external programs cannot handle
intersecting polygons. To deal with this, Graphics3D includes the option PolygonIntersections. If
you set PolygonIntersections -> False, then Show will return not your original Graphics3D object,
but rather one in which intersecting polygons have been broken into disjoint pieces, at least with the
setting for ViewPoint and so on that you have given.

2.10.15 Formats for Text in Graphics

$TextStyle = value set the default text style for all graphics

$FormatType = value set the default text format type for all graphics

TextStyle -> value an option for the text style in a particular graphic

FormatType -> value an option for the text format type in a particular graphic

Specifying formats for text in graphics.

Here is a plot with default settings for
all formats.

In[1]:= Plot[Sin[x]^2, {x, 0, 2 Pi}, PlotLabel->Sin[x]^2]

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1
Sinx�2



2.10.15 Formats for Text in Graphics 557

Here is the same plot, but now using a
7-point italic font.

In[2]:= Plot[Sin[x]^2, {x, 0, 2 Pi}, PlotLabel->Sin[x]^2,
TextStyle->{FontSlant->"Italic", FontSize->7}]

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

Sinx�2

This uses TraditionalForm rather than
StandardForm.

In[3]:= Plot[Sin[x]^2, {x, 0, 2 Pi}, PlotLabel->Sin[x]^2,
FormatType -> TraditionalForm]

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1
sin2 �x�

This tells Mathematica what default text
style to use for all subsequent plots.

In[4]:= $TextStyle = {FontFamily -> "Times", FontSize -> 7}

Out[4]= �FontFamily � Times, FontSize � 7�
Now all the text is in 7-point Times
font.

In[5]:= Plot[Sin[x]^2, {x, 0, 2 Pi}, PlotLabel->Sin[x]^2]

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1
Sin�x 2



558 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

"style" a cell style in your current notebook

FontSize -> n the size of font to use in printer’s points

FontSlant -> "Italic" use an italic font

FontWeight -> "Bold" use a bold font

FontFamily -> "name" specify the name of the font family to use (e.g. "Times",
"Courier", "Helvetica")

Typical elements used in the setting for TextStyle or $TextStyle.

If you use the standard notebook front end for Mathematica, then you can set $TextStyle or TextStyle
to be the name of a cell style in your current notebook. This tells Mathematica to use that cell style as
the default for formatting any text that appears in graphics.

You can also explicitly specify how text should be formatted by using options such as FontSize
and FontFamily. Note that FontSize gives the absolute size of the font to use, measured in units
of printer’s points, with one point being �

�� inches. If you resize a plot, the text in it will not by
default change size: to get text of a different size you must explicitly specify a new value for the
FontSize option.

StyleForm[expr, "style"] output expr in the specified cell style

StyleForm[expr, options] output expr using the specified font and style options

TraditionalForm[expr] output expr in TraditionalForm

Changing the formats of individual pieces of output.

This outputs the plot label using the
section heading style in your current
notebook.

In[6]:= Plot[Sin[x]^2, {x, 0, 2 Pi},
PlotLabel->StyleForm[Sin[x]^2, "Section"]]

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1
Sin�x�2



2.10.15 Formats for Text in Graphics 559

This uses the section heading style, but
modified to be in italics.

In[7]:= Plot[Sin[x]^2, {x, 0, 2 Pi},
PlotLabel->StyleForm[Sin[x]^2, "Section",

FontSlant->"Italic"]]

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1
Sin�x�2

This produces TraditionalForm
output, with a 12-point font.

In[8]:= Plot[Sin[x]^2, {x, 0, 2 Pi},
PlotLabel->StyleForm[TraditionalForm[Sin[x]^2],

FontSize->12]]

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1
sin2 �x�

You should realize that the ability to refer to cell styles such as "Section" depends on using the
standard Mathematica notebook front end. Even if you are just using a text-based interface to Mathe-
matica, however, you can still specify formatting of text in graphics using options such as FontSize.
The complete collection of options that you can use is given on page 612.



560 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

2.10.16 Graphics Primitives for Text

With the Text graphics primitive, you can insert text at any position in two- or three-dimensional
Mathematica graphics. Unless you explicitly specify a style or font using StyleForm , the text will be
given in your current default style.

Text[expr, {x, y}] text centered at the point {x, y}

Text[expr, {x, y}, {-1, 0}] text with its left-hand end at {x, y}

Text[expr, {x, y}, {1, 0}] right-hand end at {x, y}

Text[expr, {x, y}, {0, -1}] centered above {x, y}

Text[expr, {x, y}, {0, 1}] centered below {x, y}

Text[expr, {x, y}, {dx, dy}] text positioned so that {x, y} is at relative
coordinates {dx, dy} within the box that bounds
the text

Text[expr, {x, y}, {dx, dy}, {0, 1}] text oriented vertically to read from bottom to top

Text[expr, {x, y}, {dx, dy}, {0, -1}] text that reads from top to bottom

Text[expr, {x, y}, {dx, dy}, {-1, 0}] text that is upside-down

Two-dimensional text.

This generates five pieces of text, and
displays them in a plot.

In[1]:= Show[Graphics[
Table[ Text[Expand[(1 + x)^n], {n, n}], {n, 5} ] ],

PlotRange -> All]

1 � x

1 � 2x � x2

1 � 3x � 3x2 � x3

1 � 4x � 6x2 � 4x3 � x4

1 � 5x � 10x2 � 10x3 � 5x4 � x5



2.10.16 Graphics Primitives for Text 561

Here is some vertically oriented text
with its left-hand side at the point
{2, 2}.

In[2]:= Show[Graphics[Text[
StyleForm["Some text", FontSize->14, FontWeight->"Bold"],

{2, 2}, {-1, 0}, {0, 1}]], Frame -> True]

0 1 2 3 4
0

1

2

3

4

S
o
m
e
t
e
x
t

When you specify an offset for text, the relative coordinates that are used are taken to run from ��
to 1 in each direction across the box that bounds the text. The point {0, 0} in this coordinate system
is defined to be center of the text. Note that the offsets you specify need not lie in the range �� to 1.

Note that you can specify the color of a piece of text by preceding the Text graphics primitive with
an appropriate RGBColor or other graphics directive.

Text[expr, {x, y, z}] text centered at the point {x, y, z}

Text[expr, {x, y, z}, {sdx, sdy}] text with a two-dimensional offset

Three-dimensional text.

This loads a package containing
definitions of polyhedra.

In[3]:= <<Graphics`Polyhedra`

This puts text at the specified position
in three dimensions.

In[4]:= Show[Graphics3D[{Dodecahedron[ ],
Text["a point", {2, 2, 2}, {1, 1}]}]]

a point



562 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

Note that when you use text in three-dimensional graphics, Mathematica assumes that the text is
never hidden by any polygons or other objects.

option name default value

Background None background color

TextStyle {} style or font specification

FormatType StandardForm format type

Options for Text.

By default the text is just put straight
on top of whatever graphics have
already been drawn.

In[5]:= Show[Graphics[{{GrayLevel[0.5],
Rectangle[{0, 0}, {1, 1}]},

Text["Some text", {0.5, 0.5}]}]]

Some text

Now there is a rectangle with the
background color of the whole plot
enclosing the text.

In[6]:= Show[Graphics[{{GrayLevel[0.5],
Rectangle[{0, 0}, {1, 1}]},

Text["Some text", {0.5, 0.5},
Background->Automatic]}]]

Some text



2.10.17 Advanced Topic: Color Output 563

2.10.17 Advanced Topic: Color Output

Monochrome displays gray levels

Color displays red, green and blue mixtures

Color printing cyan, magenta, yellow and black mixtures

Specifications of color for different kinds of output devices.

When you generate graphics output in Mathematica, there are different specifications of color which
are natural for different kinds of output devices. Sometimes output devices may automatically convert
from one form of color specification to another. But Mathematica provides graphics directives which
allow you directly to produce color specifications appropriate for particular devices.

GrayLevel[i] gray level (setgray in PostScript)

RGBColor[r, g, b] red, green and blue components for a display (setrgbcolor)

Hue[h, s, b] hue, saturation and brightness components for a display
(setrgbcolor)

CMYKColor[c, m, y, k] cyan, magenta, yellow and black components for four-color
process printing (setcmykcolor)

Color directives in Mathematica.

Each color directive in Mathematica yields a definite color directive in the PostScript code that
Mathematica sends to your output device. Thus, for example, the RGBColor directive in Mathematica
yields setrgbcolor in PostScript. The final treatment of the PostScript color directives is determined
by your output device, and the PostScript interpreter that is used.

Nevertheless, in most cases, the parameters specified in the Mathematica color directives will be
used fairly directly to set the intensities or densities of the components of the color output.

When this is done, it is important to realize that a given set of parameters in a Mathematica color
directive may yield different perceived colors on different output devices. For example, the actual
intensities of red, green and blue components will often differ between different color displays even
when the settings for these components are the same. Such differences also occur when the brightness
or contrast of a particular color display is changed.

In addition, you should realize that the complete “gamut” of colors that you can produce by varying
parameters on a particular output device is smaller, often substantially so, than the gamut of colors
which can be perceived by the human visual system. Even though the space of colors that we can
perceive can be described with three parameters, it is not possible to reach all parts of this space with
mixtures of a fixed number of “primary colors”.



564 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

Different choices of primary colors are typically made for different types of output devices. Color
displays, which work with emitted or transmitted light, typically use red, green and blue primary
colors. However, color printing, which works with reflected light, typically uses cyan, magenta, yellow
and black as primary colors. When a color image is printed, four separate passes are typically made,
each time laying down one of these primary colors.

Thus, while RGBColor and Hue are natural color specifications for color displays, CMYKColor is the
natural specification for color printing.

By default, Mathematica takes whatever color specifications you give, and uses them directly. The
option ColorOutput, however, allows you to make Mathematica always convert the color specifications
you give to ones appropriate for a particular kind of output device.

ColorOutput -> Automatic use color specifications as given (default)

ColorOutput -> None convert to monochrome

ColorOutput -> GrayLevel convert all color specifications to gray levels

ColorOutput -> RGBColor convert to RGBColor form

ColorOutput -> CMYKColor convert to CMYKColor form

ColorOutput -> f apply f to each color directive

Color output conversions.

One of the most complicated issues in color output is performing the “color separation” necessary to
take a color specified using red, green and blue primaries, and render the color using cyan, magenta,
yellow and black printing inks. Mathematica has a built-in algorithm for doing this conversion. The
algorithm is based on an approximation to typical monitor colors and the standard set of four-color
process printing inks. Note that the colors of these printing inks are not even close to complementary
to typical monitor colors, and the actual transformation is quite nonlinear.

While Mathematica has built-in capabilities for various color conversions, you can also specify your
own color conversions using ColorOutput -> f. With this option setting, the function f is automatically
applied to each color directive generated by Mathematica.

Note that while any of the color directives given above can be used in setting up graphics objects,
simulated lighting calculations in Mathematica are always done using RGBColor, and so all color
directives are automatically converted to this form when simulated lighting is used.

This defines a transformation on
RGBColor objects, which extracts the
red component, and squares it.

In[1]:= red[RGBColor[r_, g_, b_]] = GrayLevel[r^2]

Out[1]= GrayLevelr2�
This specifies that red should simply
square any GrayLevel specification.

In[2]:= red[GrayLevel[g_]] = GrayLevel[g^2]

Out[2]= GrayLevelg2�



2.10.18 The Representation of Sound 565

This plots the squared red component,
rather than using the usual
transformation from color to black and
white.

In[3]:= Plot3D[Sin[x + y], {x, -3, 3}, {y, -3, 3},
ColorOutput -> red]

-2

0

2

-2

0

2

-1

-0.5

0

0.5

1

-2

0

2

Note that if you give your own ColorOutput transformation, you must specify how the transfor-
mation acts on every color directive that arises in the image you are producing. For three-dimensional
plots shaded with simulated lighting, you must typically specify the transformation at least for
RGBColor and GrayLevel.

2.10.18 The Representation of Sound

Section 1.9.12 described how you can take functions and lists of data and produce sounds from them.
This subsection discusses how sounds are represented in Mathematica.

Mathematica treats sounds much like graphics. In fact, Mathematica allows you to combine graphics
with sound to create pictures with “sound tracks”.

In analogy with graphics, sounds in Mathematica are represented by symbolic sound objects. The
sound objects have head Sound, and contain a list of sound primitives, which represent sounds to be
played in sequence.

Sound[{s�, s�, . . . }] a sound object containing a list of sound primitives

The structure of a sound object.

The functions Play and ListPlay discussed in Section 1.9.12 return Sound objects.

Play returns a Sound object. On
appropriate computer systems, it also
produces sound.

In[1]:= Play[Sin[300 t + 2 Sin[400 t]], {t, 0, 2}]

Out[1]= -Sound-



566 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

The Sound object contains a
SampledSoundFunction primitive
which uses a compiled function to
generate amplitude samples for the
sound.

In[2]:= Short[ InputForm[%] ]

Out[2]//Short= Sound[SampledSoundFunction[<<3>>]]

SampledSoundList[{a�, a�, . . . }, r] a sound with a sequence of amplitude levels, sampled
at rate r

SampledSoundFunction[f, n, r] a sound whose amplitude levels sampled at rate r are
found by applying the function f to n successive
integers

Mathematica sound primitives.

At the lowest level, all sounds in Mathematica are represented as a sequence of amplitude samples. In
SampledSoundList, these amplitude samples are given explicitly in a list. In SampledSoundFunction ,
however, they are generated when the sound is output, by applying the specified function to a
sequence of integer arguments. In both cases, all amplitude values obtained must be between ��
and 1.

ListPlay generates SampledSoundList primitives, while Play generates SampledSoundFunction
primitives. With the default option setting Compiled -> True, Play will produce a
SampledSoundFunction object containing a CompiledFunction.

Once you have generated a Sound object containing various sound primitives, you must then output
it as a sound. Much as with graphics, the basic scheme is to take the Mathematica representation of
the sound, and convert it to a lower-level form that can be handled by an external program, such as
a Mathematica front end.

The low-level representation of sound used by Mathematica consists of a sequence of hexadecimal
numbers specifying amplitude levels. Within Mathematica, amplitude levels are given as approximate
real numbers between �1 and 1. In producing the low-level form, the amplitude levels are “quan-
tized”. You can use the option SampleDepth to specify how many bits should be used for each
sample. The default is SampleDepth -> 8, which yields 256 possible amplitude levels, sufficient for
most purposes.

You can use the option SampleDepth in any of the functions Play, ListPlay and PlaySound. In
sound primitives, you can specify the sample depth by replacing the sample rate argument by the list
{rate, depth}.

Since graphics and sound can be combined in Mathematica, their low-level representations must
not conflict. As discussed in Section 2.10.14, all graphics in Mathematica are generated in the Post-
Script language. Sounds are also generated as a special PostScript function, which can be ignored by
PostScript interpreters on devices which do not support sound output.



2.10.19 Exporting Graphics and Sounds 567

Display[stream, sound] output sound to a stream

Display[stream, {graphics, sound}] output graphics and sound to a stream

Sending sound to a stream.

Mathematica uses the same function Display to output sound, graphics, and combinations of the
two.

In Play, ListPlay and Sound, the option DisplayFunction specifies how the sound should ulti-
mately be output. The default for this option is the global variable $SoundDisplayFunction . Typically,
this is set to an appropriate call to Display.

- 2.10.19 Exporting Graphics and Sounds

Export["name.ext", graphics] export graphics in a format deduced from the file name

Export["file", graphics, "format"] export graphics in the specified format

Export["file", {g�, g�, . . . }, . . . ] export a sequence of graphics for an animation

ExportString[graphics, "format"] generate a string representation of exported graphics

Exporting graphics and sounds.



568 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

"EPS" Encapsulated PostScript (.eps)

"PDF" Adobe Acrobat portable document format (.pdf)

, "SVG" Scalable Vector Graphics (.svg)

"PICT" Macintosh PICT

"WMF" Windows metafile format (.wmf)

"TIFF" TIFF (.tif, .tiff)

"GIF" GIF and animated GIF (.gif)

"JPEG" JPEG (.jpg, .jpeg)

, "PNG" PNG format (.png)

"BMP" Microsoft bitmap format (.bmp)

"EPSI" Encapsulated PostScript with device-independent preview
(.epsi)

"EPSTIFF" Encapsulated PostScript with TIFF preview

"XBitmap" X window system bitmap (.xbm)

"PBM" portable bitmap format (.pbm)

"PPM" portable pixmap format (.ppm)

"PGM" portable graymap format (.pgm)

"PNM" portable anymap format (.pnm)

, "DICOM" DICOM medical imaging format (.dcm, .dic)

Typical graphics formats supported by Mathematica. The first group are resolution independent.

When you export a graphic outside of Mathematica, you usually have to specify the absolute size at
which the graphic should be rendered. You can do this using the ImageSize option to Export.

ImageSize->x makes the width of the graphic be x printer’s points; ImageSize->72 xi thus makes
the width xi inches. The default is to produce an image that is four inches wide. ImageSize->{x, y}
scales the graphic so that it fits in an x � y region.



2.10.20 Importing Graphics and Sounds 569

ImageSize Automatic absolute image size in printer’s points

ImageRotated False whether to rotate the image (landscape mode)

ImageResolution Automatic resolution in dpi for the image

Options for Export.

Within Mathematica, graphics are manipulated in a way that is completely independent of the
resolution of the computer screen or other output device on which the graphics will eventually be
rendered.

Many programs and devices accept graphics in resolution-independent formats such as Encapsu-
lated PostScript (EPS). But some require that the graphics be converted to rasters or bitmaps with a
specific resolution. The ImageResolution option for Export allows you to determine what resolution
in dots per inch (dpi) should be used. The lower you set this resolution, the lower the quality of the
image you will get, but also the less memory the image will take to store. For screen display, typical
resolutions are 72 dpi and above; for printers, 300 dpi and above.

"DXF" AutoCAD drawing interchange format (.dxf)

, "STL" STL stereolithography format (.stl)

Typical 3D geometry formats supported by Mathematica.

"WAV" Microsoft wave format (.wav)

"AU" Μ law encoding (.au)

"SND" sound file format (.snd)

"AIFF" AIFF format (.aif, .aiff)

Typical sound formats supported by Mathematica.

2.10.20 Importing Graphics and Sounds

Mathematica allows you not only to export graphics and sounds, but also to import them. With Import
you can read graphics and sounds in a wide variety of formats, and bring them into Mathematica as
Mathematica expressions.



570 2. Principles of Mathematica � 2.10 The Structure of Graphics and Sound

Import["name.ext"] import graphics from the file name.ext in a format
deduced from the file name

Import["file", "format"] import graphics in the specified format

ImportString["string", "format"] import graphics from a string

Importing graphics and sounds.

This imports an image stored in JPEG
format.

In[1]:= g = Import["ocelot.jpg"]

Out[1]= A�Graphics�A

Here is the image. In[2]:= Show[g]

This shows an array of four copies of
the image.

In[3]:= Show[GraphicsArray[{{g, g}, {g, g}}]]

Import yields expressions with different structures depending on the type of data it reads. Typically
you will need to know the structure if you want to manipulate the data that is returned.



2.10.20 Importing Graphics and Sounds 571

Graphics[primitives, opts] resolution-independent graphics

Graphics[Raster[data], opts] resolution-dependent bitmap images

{graphics�, graphics�, . . . } animated graphics

Sound[SampledSoundList[data, r]] sounds

Structures of expressions returned by Import.

This shows the overall structure of the
graphics object imported above.

In[4]:= Shallow[InputForm[g]]

Out[4]//Shallow= Graphics[Raster[<<4>>], Rule[<<2>>]]

This extracts the array of pixel values
used.

In[5]:= d = g[[1, 1]] ;

Here are the dimensions of the array. In[6]:= Dimensions[d]

Out[6]= �200, 200�
This shows the distribution of pixel
values.

In[7]:= ListPlot[Sort[Flatten[d]]]

10000 20000 30000 40000

50

100

150

200

250

This shows a transformed version of
the image.

In[8]:= Show[Graphics[Raster[d^2 / Max[d^2]]],
AspectRatio->Automatic]



572 2. Principles of Mathematica � 2.11 Manipulating Notebooks

2.11 Manipulating Notebooks

2.11.1 Cells as Mathematica Expressions

Like other objects in Mathematica, the cells in a notebook, and in fact the whole notebook itself, are
all ultimately represented as Mathematica expressions. With the standard notebook front end, you can
use the command Show Expression to see the text of the Mathematica expression that corresponds to any
particular cell.

Show Expression menu item toggle between displayed form and underlying Mathematica
expression

��*� or ��8� (between existing cells)
put up a dialog box to allow input of a cell in Mathematica
expression form

Handling Cell expressions in the notebook front end.

Here is a cell displayed in its usual
way in the front end. This is a text cell.

Here is the underlying Mathematica
expression that corresponds to the cell. Cell["This is a text cell.", "Text"]

Cell[contents, "style"] a cell with a specific style

Cell[contents, "style", options] a cell with additional options specified

Mathematica expressions corresponding to cells in notebooks.

Within a given notebook, there is always a collection of styles that can be used to determine the
appearance and behavior of cells. Typically the styles are named so as to reflect what role cells which
have them will play in the notebook.



2.11.1 Cells as Mathematica Expressions 573

"Title" the title of the notebook

"Section" a section heading

"Subsection" a subsection heading

"Text" ordinary text

"Input" Mathematica input

"Output" Mathematica output

Some typical cell styles defined in notebooks.

Here are several cells in different styles.
� This is in Section style.

This is in Text style.

This is in Input style.

Here are the expressions that
correspond to these cells. Cell["This is in Section style.", "Section"]

Cell["This is in Text style.", "Text"]

Cell["This is in Input style.", "Input"]

A particular style such as "Section" or "Text" defines various settings for the options associated
with a cell. You can override these settings by explicitly setting options within a specific cell.

Here is the expression for a cell in
which options are set to use a gray
background and to put a frame around
the cell.

Cell["This is some text.", "Text", CellFrame−>True,
  Background−>GrayLevel[.8]]

This is how the cell looks in a
notebook. This is some text.



574 2. Principles of Mathematica � 2.11 Manipulating Notebooks

option default value

CellFrame False whether to draw a frame around the cell

Background GrayLevel[1] what color to draw the background for the
cell

Editable True whether to allow the contents of the cell to
be edited

TextAlignment Left how to align text in the cell

FontSize 12 the point size of the font for text

CellTags { } tags to be associated with the cell

A few of the large number of possible options for cells.

The standard notebook front end for Mathematica provides several ways to change the options of a
cell. In simple cases, such as changing the size or color of text, there will often be a specific menu
item for the purpose. But in general you can use the option inspector that is built into the front end.
This is typically accessed using the Option Inspector menu item in the Format menu.

Change settings for specific options with menus.

Look at and modify all options with the option inspector.

Edit the textual form of the expression corresponding to the cell.

Change the settings for all cells with a particular style.

Ways to manipulate cells in the front end.

Sometimes you will want just to change the options associated with a specific cell. But often you
may want to change the options associated with all cells in your notebook that have a particular style.
You can do this by using the Edit Style Sheet command in the front end to open up the style sheet
associated with your notebook, and then modifying the options for the cells in this style sheet that
represent the style you want to change.



2.11.1 Cells as Mathematica Expressions 575

CellPrint[Cell[. . . ]] insert a cell into your currently selected notebook

CellPrint[{Cell[. . . ], Cell[. . . ], . . . }]
insert a sequence of cells into your currently selected
notebook

Inserting cells into a notebook.

This inserts a section cell into the
current notebook.

In[1]:= CellPrint[Cell["The heading", "Section"]]

� The heading

This inserts a text cell with a frame
around it.

In[2]:= CellPrint[Cell["Some text", "Text", CellFrame->True]]

� The heading

Some text

CellPrint allows you to take a raw Cell expression and insert it into your current notebook.
Sometimes, however, you may find it more convenient to give an ordinary Mathematica expression,
and then have Mathematica convert it into a Cell of a certain style, and insert this cell into a notebook.
You can do this using the function StylePrint.

StylePrint[expr, "style"] create a new cell of the specified style, and write expr into it

StylePrint[contents, "style", options]
use the specified options for the new cell

Writing expressions into cells with specified styles.

This inserts a cell in section style into
your current notebook.

In[3]:= StylePrint["The heading", "Section"]

� The heading



576 2. Principles of Mathematica � 2.11 Manipulating Notebooks

This creates several cells in output
style.

In[4]:= Do[StylePrint[Factor[x^i - 1], "Output"], {i, 7, 10}]

� The heading

��1 � x� �1 � x � x2 � x3 � x4 � x5 � x6�
��1 � x� �1 � x� �1 � x2� �1 � x4�
��1 � x� �1 � x � x2� �1 � x3 � x6�
��1 � x� �1 � x� �1 � x � x2 � x3 � x4� �1 � x � x2 � x3 � x4�

You can use any cell options in
StylePrint.

In[5]:= StylePrint["Another heading", "Section", CellFrame->True,
FontSize->28]

� The heading

��1 � x� �1 � x � x2 � x3 � x4 � x5 � x6�
��1 � x� �1 � x� �1 � x2� �1 � x4�
��1 � x� �1 � x � x2� �1 � x3 � x6�
��1 � x� �1 � x� �1 � x � x2 � x3 � x4� �1 � x � x2 � x3 � x4�

� Another heading

CellPrint and StylePrint provide simple ways to modify open notebooks in the front end from
within the kernel. Later in this section we will discuss more sophisticated and flexible ways to do
this.

2.11.2 Notebooks as Mathematica Expressions

Notebook[{cell�, cell�, . . . }] a notebook containing a sequence of cells

Notebook[cells, options] a notebook with options specified

Expressions corresponding to notebooks.

Here is a simple Mathematica notebook.
� Section heading

Some text.

More text.



2.11.2 Notebooks as Mathematica Expressions 577

Here is the expression that corresponds
to this notebook.

Notebook[�
Cell["Section heading", "Section"],
Cell["Some text.", "Text"],
Cell["More text.", "Text"]�]

Just like individual cells, notebooks in Mathematica can also have options. You can look at and
modify these options using the options inspector in the standard notebook front end.

option default value

WindowSize {nx, ny} the size in pixels of the window used to
display the notebook

WindowFloating False whether the window should float on top of
others

WindowToolbars { } what toolbars to include at the top of the
window

ShowPageBreaks False whether to show where page breaks would
occur if the notebook were printed

CellGrouping Automatic how to group cells in the notebook

Evaluator "Local" what kernel should be used to do evaluations
in the notebook

A few of the large number of possible options for notebooks.

In addition to notebook options, you can also set any cell option at the notebook level. Doing this
tells Mathematica to use that option setting as the default for all the cells in the notebook. You can
override the default by explicitly setting the options within a particular cell.

Here is the expression corresponding to
a notebook with a ruler displayed in
the toolbar at the top of the window.

Notebook[�
Cell["Section heading", "Section"],
Cell["Some text.", "Text"]�,

WindowToolbars->�"RulerBar"�]

This is what the notebook looks like in
the front end.



578 2. Principles of Mathematica � 2.11 Manipulating Notebooks

This sets the default background color
for all cells in the notebook.

Notebook[�
Cell["Section heading", "Section"],
Cell["Some text.", "Text"]�,

Background->GrayLevel[.7]]

Now each cell has a gray background.
� Section heading

Some text.

If you go outside of Mathematica and look at the raw text of the file that corresponds to a Mathematica
notebook, you will find that what is in the file is just the textual form of the expression that represents
the notebook. One way to create a Mathematica notebook is therefore to construct an appropriate
expression and put it in a file.

In notebook files that are written out by Mathematica, some additional information is typically
included to make it faster for Mathematica to read the file in again. The information is enclosed in
Mathematica comments indicated by (* . . . *) so that it does not affect the actual expression stored in
the file.

NotebookOpen["file.nb"] open a notebook file in the front end

NotebookPut[expr] create a notebook corresponding to expr in the front end

NotebookGet[obj] get the expression corresponding to an open notebook in the
front end

Setting up notebooks in the front end from the kernel.

This writes a notebook expression out
to the file sample.nb.

In[1]:= Notebook[{Cell["Section heading", "Section"],
Cell["Some text.", "Text"]}] >> "sample.nb"

This reads the notebook expression
back from the file.

In[2]:= <<sample.nb

Out[2]= Notebook�CellSection heading, Section�,
CellSome text., Text���

This opens sample.nb as a notebook in
the front end.

In[3]:= NotebookOpen["sample.nb"]

� Section heading

Some text.



2.11.3 Manipulating Notebooks from the Kernel 579

Once you have set up a notebook in the front end using NotebookOpen, you can then manipulate
the notebook interactively just as you would any other notebook. But in order to use NotebookOpen,
you have to explicitly have a notebook expression in a file. With NotebookPut, however, you can take
a notebook expression that you have created in the kernel, and immediately display it as a notebook
in the front end.

Here is a notebook expression in the
kernel.

In[4]:= Notebook[{Cell["Section heading", "Section"],
Cell["Some text.", "Text"]}]

Out[4]= Notebook�CellSection heading, Section�,
CellSome text., Text���

This uses the expression to set up a
notebook in the front end.

In[5]:= NotebookPut[%]

� Section heading

Some text.

Out[5]= �NotebookObject�

You can use NotebookGet to get the
notebook corresponding to a particular
NotebookObject back into the kernel.

In[6]:= NotebookGet[%]

Out[6]= Notebook�CellCellGroupData�CellTextDataSection heading�, Section�,
CellTextDataSome text.�, Text��, Open����

2.11.3 Manipulating Notebooks from the Kernel

If you want to do simple operations on Mathematica notebooks, then you will usually find it convenient
just to use the interactive capabilities of the standard Mathematica front end. But if you want to do
more complicated and systematic operations, then you will often find it better to use the kernel.

Notebooks[ ] a list of all your open notebooks

Notebooks["name"] a list of all open notebooks with the specified name

SelectedNotebook[ ] the notebook that is currently selected

InputNotebook[ ] the notebook into which typed input will go

EvaluationNotebook[ ] the notebook in which this function is being evaluated

ButtonNotebook[ ] the notebook containing the button (if any) which initiated
this evaluation

Functions that give the notebook objects corresponding to particular notebooks.



580 2. Principles of Mathematica � 2.11 Manipulating Notebooks

Within the Mathematica kernel, notebooks that you have open in the front end are referred to by
notebook objects of the form NotebookObject[fe, id]. The first argument of NotebookObject specifies
the FrontEndObject for the front end in which the notebook resides, while the second argument gives
a unique serial number for the notebook.

Here is a notebook named Example.nb.
� First Heading

� Second Heading

This finds the corresponding notebook
object in the front end.

In[1]:= Notebooks["Example.nb"]

Out[1]= {NotebookObject[<<Example.nb>>]}

This gets the expression corresponding
to the notebook into the kernel.

In[2]:= NotebookGet[First[%]]

Out[2]= Notebook[{Cell[First Heading, Section],
Cell[Second Heading, Section]}]

This replaces every occurrence of the
string "Section" by "Text".

In[3]:= % /. "Section" -> "Text"

Out[3]= Notebook[{Cell[First Heading, Text],
Cell[Second Heading, Text]}]

This creates a new modified notebook
in the front end.

In[4]:= NotebookPut[%]

First Heading

Second Heading

Out[4]= {NotebookObject[<<Untitled-1.nb>>]}

NotebookGet[obj] get the notebook expression corresponding to the notebook
object obj

NotebookPut[expr, obj] make expr the expression corresponding to the notebook
object obj

NotebookPut[expr] make expr the expression corresponding to the currently
selected notebook

Exchanging whole notebook expressions between the kernel and front end.

If you want to do extensive manipulations on a particular notebook you will usually find it con-
venient to use NotebookGet to get the whole notebook into the kernel as a single expression. But if
instead you want to do a sequence of small operations on a notebook, then it is often better to leave



2.11.3 Manipulating Notebooks from the Kernel 581

the notebook in the front end, and then to send specific commands from the kernel to the front end
to tell it what operations to do.

Mathematica is set up so that anything you can do interactively to a notebook in the front end you
can also do by sending appropriate commands to the front end from the kernel.

Options[obj] give a list of all options set for the notebook corresponding
to notebook object obj

Options[obj, option] give the value of a specific option

AbsoluteOptions[obj, option] give absolute option values even when the actual setting is
Automatic

SetOptions[obj, option->value] set the value of an option

Finding and setting options for notebooks.

This gives the setting of the
WindowSize option for your currently
selected notebook.

In[5]:= Options[SelectedNotebook[ ], WindowSize]

Out[5]= �WindowSize � �550., 600.��
This changes the size of the currently
selected notebook on the screen.

In[6]:= SetOptions[SelectedNotebook[ ], WindowSize -> {250, 100}]

First Heading

Second Heading

Out[6]= {WindowSize � {250., 100.}}

Within any open notebook, the front end always maintains a current selection. The selection can
consist for example of a region of text within a cell or of a complete cell. Usually the selection is
indicated on the screen by some form of highlighting. The selection can also be between two charac-
ters of text, or between two cells, in which case it is usually indicated on the screen by a vertical or
horizontal insertion bar.

You can modify the current selection in an open notebook by issuing commands from the kernel.



582 2. Principles of Mathematica � 2.11 Manipulating Notebooks

SelectionMove[obj, Next, unit] move the current selection to make it be the next unit
of the specified type

SelectionMove[obj, Previous, unit] move to the previous unit

SelectionMove[obj, After, unit] move to just after the end of the present unit of the
specified type

SelectionMove[obj, Before, unit] move to just before the beginning of the present unit

SelectionMove[obj, All, unit] extend the current selection to cover the whole unit of
the specified type

Moving the current selection in a notebook.

Character individual character

Word word or other token

Expression complete subexpression

TextLine line of text

TextParagraph paragraph of text

CellContents the contents of the cell

Cell complete cell

CellGroup cell group

EvaluationCell cell associated with the current evaluation

ButtonCell cell associated with any button that initiated the
evaluation

GeneratedCell cell generated by the current evaluation

Notebook complete notebook

Units used in specifying selections.



2.11.3 Manipulating Notebooks from the Kernel 583

Here is a simple notebook.
� Here is a first cell.

� Here is a second one.

This sets nb to be the notebook object
corresponding to the currently selected
notebook.

In[7]:= nb = SelectedNotebook[ ];

This moves the current selection within
the notebook to be the next word.

In[8]:= SelectionMove[nb, Next, Word]

� Here is a first cell.

� Here is a second one.

This extends the selection to the
complete first cell.

In[9]:= SelectionMove[nb, All, Cell]

� Here is a first cell.

� Here is a second one.

This puts the selection at the end of
the whole notebook.

In[10]:= SelectionMove[nb, After, Notebook]

� Here is a first cell.

� Here is a second one.



584 2. Principles of Mathematica � 2.11 Manipulating Notebooks

NotebookFind[obj, data] move the current selection to the next occurrence of the
specified data in a notebook

NotebookFind[obj, data, Previous] move to the previous occurrence

NotebookFind[obj, data, All] make the current selection cover all occurrences

NotebookFind[obj, data, dir, elems] search in the specified elements of each cell, going in
direction dir

NotebookFind[obj, "text", IgnoreCase->True]
do not distinguish upper- and lower-case letters in text

Searching the contents of a notebook.

This moves the current selection to the
position of the previous occurrence of
the word cell.

In[11]:= NotebookFind[nb, "cell", Previous]

� Here is a first cell.

� Here is a second one.

Out[11]= $Failed

The letter Α does not appear in the
current notebook, so $Failed is
returned, and the selection is not
moved.

In[12]:= NotebookFind[nb, "\[Alpha]", Next]

� Here is a first cell.

� Here is a second one.

Out[12]= $Failed

CellContents contents of each cell

CellStyle the name of the style for each cell

CellLabel the label for each cell

CellTags tags associated with each cell

{elem�, elem�, . . . } several kinds of elements

Possible elements of cells to be searched by NotebookFind.



2.11.3 Manipulating Notebooks from the Kernel 585

In setting up large notebooks, it is often convenient to insert tags which are not usually displayed,
but which mark particular cells in such a way that they can be found using NotebookFind . You can
set up tags for cells either interactively in the front end, or by explicitly setting the CellTags option
for a cell.

NotebookLocate["tag"] locate and select cells with the specified tag in the current
notebook

NotebookLocate[{"file", "tag"}] open another notebook if necessary

Globally locating cells in notebooks.

NotebookLocate is the underlying function that Mathematica calls when you follow a hyperlink in
a notebook. The menu item Create Hyperlink sets up the appropriate NotebookLocate as part of the
script for a particular hyperlink button.

NotebookWrite[obj, data] write data into a notebook at the current selection

NotebookApply[obj, data] write data into a notebook, inserting the current selection in
place of the first � that appears in data

NotebookDelete[obj] delete whatever is currently selected in a notebook

NotebookRead[obj] get the expression that corresponds to the current selection
in a notebook

Writing and reading in notebooks.

NotebookWrite[obj, data] is similar to a Paste operation in the front end: it replaces the cur-
rent selection in your notebook by data. If the current selection is a cell NotebookWrite[obj, data]



586 2. Principles of Mathematica � 2.11 Manipulating Notebooks

will replace the cell with data. If the current selection lies between two cells, however, then
NotebookWrite[obj, data] will create an appropriate new cell or cells.

Here is a notebook with a word of text
selected. � Here is a first cell.

� Here is a second one.

This replaces the selected word by new
text.

In[13]:= NotebookWrite[nb, "<<inserted text>>"]

� Here is a first <<inserted text>>.

� Here is a second one.

This moves the current selection to just
after the first cell in the notebook.

In[14]:= SelectionMove[nb, After, Cell]

� Here is a first <<inserted text>>.

� Here is a second one.

This now inserts a text cell after the
first cell in the notebook.

In[15]:= NotebookWrite[nb,
Cell["This cell contains text.", "Text"]]

� Here is a first <<inserted text>>.

This cell contains text.

� Here is a second one.



2.11.3 Manipulating Notebooks from the Kernel 587

This makes the current selection be the
next cell in the notebook.

In[16]:= SelectionMove[nb, Next, Cell]

� Here is a first <<inserted text>>.

This cell contains text.

� Here is a second one.

This reads the current selection,
returning it as an expression in the
kernel.

In[17]:= NotebookRead[nb]

� Here is a first <<inserted text>>.

This cell contains text.

� Here is a second one.

Out[17]= CellHere is a second one., Section�
NotebookWrite[obj, data] just discards the current selection and replaces it with data. But particu-

larly if you are setting up palettes, it is often convenient first to modify data by inserting the current
selection somewhere inside it. You can do this using selection placeholders and NotebookApply. The
first time the character � , entered as \[SelectionPlaceholder] or �spl�, appears anywhere in
data, NotebookApply will replace this character by the current selection.

Here is a simple notebook with the
current selection being the contents of
a cell.

In[18]:= nb = SelectedNotebook[ ] ;

Expand��1 � x�4�

This replaces the current selection by a
string that contains a copy of its
previous form.

In[19]:= NotebookApply[nb, "x + 1/"]

x � 1  Expand��1 � x�4�



588 2. Principles of Mathematica � 2.11 Manipulating Notebooks

SelectionEvaluate[obj] evaluate the current selection in place

SelectionCreateCell[obj] create a new cell containing just the current selection

SelectionEvaluateCreateCell[obj] evaluate the current selection and create a new cell for
the result

SelectionAnimate[obj] animate graphics in the current selection

SelectionAnimate[obj, t] animate graphics for t seconds

Operations on the current selection.

This makes the current selection be the
whole contents of the cell.

In[20]:= SelectionMove[nb, All, CellContents]

x � 1  Expand��1 � x�4�

This evaluates the current selection in
place.

In[21]:= SelectionEvaluate[nb]

x �
1

��������������������������������������������������������
1 � 4�x � 6�x2 � 4�x3 � x4

SelectionEvaluate allows you to take material from a notebook and send it through the kernel
for evaluation. On its own, however, SelectionEvaluate always overwrites the material you took.
But by using functions like SelectionCreateCell you can maintain a record of the sequence of forms
that are generated—just like in a standard Mathematica session.

This makes the current selection be the
whole cell.

In[22]:= SelectionMove[nb, All, Cell]

x �
1

��������������������������������������������������������
1 � 4�x � 6�x2 � 4�x3 � x4

This creates a new cell, and copies the
current selection into it.

In[23]:= SelectionCreateCell[nb]

x �
1

��������������������������������������������������������
1 � 4�x � 6�x2 � 4�x3 � x4

x �
1

��������������������������������������������������������
1 � 4�x � 6�x2 � 4�x3 � x4



2.11.3 Manipulating Notebooks from the Kernel 589

This wraps Factor around the contents
of the current cell.

In[24]:= NotebookApply[nb, "Factor[]"]

x �
1

��������������������������������������������������������
1 � 4�x � 6�x2 � 4�x3 � x4

Factor�x �
1

��������������������������������������������������������
1 � 4�x � 6�x2 � 4�x3 � x4

�

This evaluates the contents of the
current cell, and creates a new cell to
give the result.

In[25]:= SelectionEvaluateCreateCell[nb]

x �
1

��������������������������������������������������������
1 � 4�x � 6�x2 � 4�x3 � x4

Factor�x �
1

��������������������������������������������������������
1 � 4�x � 6�x2 � 4�x3 � x4

�
1 � x � 4�x2 � 6�x3 � 4�x4 � x5

�������������������������������������������������������������������1 � x�4

Functions like NotebookWrite and SelectionEvaluate by default leave the current selection just
after whatever material they insert into your notebook. You can then always move the selection by
explicitly using SelectionMove. But functions like NotebookWrite and SelectionEvaluate can also
take an additional argument which specifies where the current selection should be left after they do
their work.

NotebookWrite[obj, data, sel] write data into a notebook, leaving the current selection as
specified by sel

NotebookApply[obj, data, sel] write data replacing � by the previous current selection, then
leaving the current selection as specified by sel

SelectionEvaluate[obj, sel] evaluate the current selection, making the new current
selection be as specified by sel

SelectionCreateCell[obj, sel] create a new cell containing just the current selection, and
make the new current selection be as specified by sel

SelectionEvaluateCreateCell[obj, sel]
evaluate the current selection, make a new cell for the result,
and make the new current selection be as specified by sel

Performing operations and specifying what the new current selection should be.



590 2. Principles of Mathematica � 2.11 Manipulating Notebooks

After immediately after whatever material is inserted (default)

Before immediately before whatever material is inserted

All the inserted material itself

Placeholder the first � in the inserted material

None leave the current selection unchanged

Specifications for the new current selection.

Here is a blank notebook. In[26]:= nb = SelectedNotebook[ ] ;

 

This writes 10! into the notebook,
making the current selection be what
was written.

In[27]:= NotebookWrite[nb, "10!", All]

10�

This evaluates the current selection,
creating a new cell for the result, and
making the current selection be the
whole of the result.

In[28]:= SelectionEvaluateCreateCell[nb, All]

10�

3628800

This wraps FactorInteger around the
current selection.

In[29]:= NotebookApply[nb, "FactorInteger[]", All]

10�

FactorInteger�3628800�

This evaluates the current selection,
leaving the selection just before the
result.

In[30]:= SelectionEvaluate[nb, Before]

10�

! ��2, 8�, �3, 4�, �5, 2�, �7, 1��

This now inserts additional text at the
position of the current selection.

In[31]:= NotebookWrite[nb, "a = "]

10�

a � ��2, 8�, �3, 4�, �5, 2�, �7, 1��



2.11.3 Manipulating Notebooks from the Kernel 591

Options[obj, option] find the value of an option for a complete notebook

Options[NotebookSelection[obj], option]
find the value for the current selection

SetOptions[obj, option->value] set the value of an option for a complete notebook

SetOptions[NotebookSelection[obj], option->value]
set the value for the current selection

Finding and setting options for whole notebooks and for the current selection.

Make the current selection be a
complete cell.

In[32]:= SelectionMove[nb, All, Cell]

10�

a � ��2, 8�, �3, 4�, �5, 2�, �7, 1��

Put a frame around the cell that is the
current selection.

In[33]:= SetOptions[NotebookSelection[nb], CellFrame->True]

10�

a � ��2, 8�, �3, 4�, �5, 2�, �7, 1��

NotebookCreate[ ] create a new notebook

NotebookCreate[options] create a notebook with specified options

NotebookOpen["name"] open an existing notebook

NotebookOpen["name", options] open a notebook with specified options

SetSelectedNotebook[obj] make the specified notebook the selected one

NotebookPrint[obj] send a notebook to your printer

NotebookPrint[obj, "file"] send a PostScript version of a notebook to a file

NotebookPrint[obj, "!command"] send a PostScript version of a notebook to an external
command

NotebookSave[obj] save the current version of a notebook in a file

NotebookSave[obj, "file"] save the notebook in a file with the specified name

NotebookClose[obj] close a notebook

Operations on whole notebooks.



592 2. Principles of Mathematica � 2.11 Manipulating Notebooks

If you call NotebookCreate[ ] a new empty notebook will appear on your screen.

By executing commands like SetSelectedNotebook and NotebookOpen, you tell the Mathematica
front end to change the windows you see. Sometimes you may want to manipulate a notebook without
ever having it displayed on the screen. You can do this by using the option setting Visible->False
in NotebookOpen or NotebookCreate.

2.11.4 Manipulating the Front End from the Kernel

$FrontEnd the front end currently in use

Options[$FrontEnd, option] the setting for a global option in the front end

AbsoluteOptions[$FrontEnd, option]
the absolute setting for an option

SetOptions[$FrontEnd, option->value]
reset an option in the front end

Manipulating global options in the front end.

Just like cells and notebooks, the complete Mathematica front end has various options, which you can
look at and manipulate from the kernel.

This gives the object corresponding to
the front end currently in use.

In[1]:= $FrontEnd

Out[1]= A�FrontEndObject�A

This gives the current directory used
by the front end for notebook files.

In[2]:= Options[$FrontEnd, NotebookDirectory]

Out[2]= �NotebookDirectory$InstallationDirectory�

option default value

NotebookDirectory "M$" the current directory for notebook files

NotebookPath (system dependent) the path to search when trying to open
notebooks

Language "English" default language for text

MessageOptions (list of settings) how to handle various help and warning
messages

A few global options for the Mathematica front end.



2.11.5 Advanced Topic: Executing Notebook Commands Directly in the Front End 593

By using NotebookWrite you can effectively input to the front end any ordinary text that you can
enter on the keyboard. FrontEndTokenExecute allows you to send from the kernel any command
that the front end can execute. These commands include both menu items and control sequences.

FrontEndTokenExecute["name"] execute a named command in the front end

Executing a named command in the front end.

"Indent" indent all selected lines by one tab

"NotebookStatisticsDialog" display statistics about the current notebook

"OpenCloseGroup" toggle a cell group between open and closed

"CellSplit" split a cell in two at the current insertion point

"DuplicatePreviousInput" create a new cell which is a duplicate of the nearest input
cell above

"FindDialog" bring up the find dialog

"ColorSelectorDialog" bring up the color selector dialog

"GraphicsAlign" align selected graphics

"CompleteSelection" complete the command name that is the current selection

A few named commands that can be given to the front end. These commands usually correspond to menu items.

2.11.5 Advanced Topic: Executing Notebook Commands Directly in the Front End

When you execute a command like NotebookWrite[obj, data] the actual operation of inserting data
into your notebook is performed in the front end. Normally, however, the kernel is needed in order to
evaluate the original command, and to construct the appropriate request to send to the front end. But
it turns out that the front end is set up to execute a limited collection of commands directly, without
ever involving the kernel.



594 2. Principles of Mathematica � 2.11 Manipulating Notebooks

NotebookWrite[obj, data] version of NotebookWrite to be executed in the kernel

FrontEnd`NotebookWrite[obj, data]
version of NotebookWrite to be executed directly in the
front end

Distinguishing kernel and front end versions of commands.

The basic way that Mathematica distinguishes between commands to be executed in the kernel and
to be executed directly in the front end is by using contexts. The kernel commands are in the usual
System` context, but the front end commands are in the FrontEnd` context.

FrontEndExecute[expr] send expr to be executed in the front end

Sending an expression to be executed in the front end.

Here is a blank notebook.
 

This uses kernel commands to write
data into the notebook.

In[1]:= NotebookWrite[SelectedNotebook[ ], "x + y + z"]

x � y � z

In the kernel, these commands do
absolutely nothing.

In[2]:= FrontEnd`NotebookWrite[FrontEnd`SelectedNotebook[ ],
"a + b + c + d"]

x � y � z

Out[2]= FrontEnd`NotebookWrite
FrontEnd`SelectedNotebook�, a � b � c � d�

If they are sent to the front end,
however, they cause data to be written
into the notebook.

In[3]:= FrontEndExecute[%]

x � y � z

a � b � c � d

If you write sophisticated programs for manipulating notebooks, then you will have no choice but
to execute these programs primarily in the kernel. But for the kinds of operations typically performed
by simple buttons, you may find that it is possible to execute all the commands you need directly in
the front end—without the kernel even needing to be running.



2.11.6 Button Boxes and Active Elements in Notebooks 595

2.11.6 Button Boxes and Active Elements in Notebooks

Within any cell in a notebook it is possible to set up ButtonBox objects that perform actions whenever
you click on them. ButtonBox objects are the way that palette buttons, hyperlinks and other active
elements are implemented in Mathematica notebooks.

When you first enter a ButtonBox object in a cell, it will behave just like any other expression, and
by clicking on it you can select it, edit it, and so on. But if you set the Active option for the cell, say
by choosing the Cell Active item in the Cell Properties menu, then the ButtonBox will become active, and
when you click on it, it will perform whatever action you have specified for it.

Here is a button. In[1]:= ButtonBox["Expand[]"] // DisplayForm

Out[1]//DisplayForm= Expand��
When the button appears in an active
cell, it will paste its contents whenever
you click on it.

Expand��

Here is a typical palette.
abc xy

In the expression corresponding to the
palette each button corresponds to a
ButtonBox object.

Cell[BoxData[GridBox[{
      {
        ButtonBox["abc"], 
        ButtonBox["xy"]}
      },
    ColumnSpacings->0]], "Input", Active->True]

ButtonBox[boxes] a button that will paste its contents when it appears in an
active cell

ButtonBox[boxes, Active->True] a button that will always be active

ButtonBox[boxes, ButtonStyle->"style"]
a button whose properties are taken from the specified
style

Basic ButtonBox objects.

By setting the ButtonStyle you can specify defaults both for how a button will be displayed, and
what its action will be. The notebook front end provides a number of standard ButtonStyle settings,
which you can access from the Create Button and Edit Button menu items.



596 2. Principles of Mathematica � 2.11 Manipulating Notebooks

"Paste" paste the contents of the button (default)

"Evaluate" paste then evaluate in place what has been pasted

"EvaluateCell" paste then evaluate the whole cell

"CopyEvaluate" copy the current selection into a new cell, then paste and
evaluate in place

"CopyEvaluateCell" copy the current selection into a new cell, then paste and
evaluate the whole cell

"Hyperlink" jump to a different location in the notebook

Standard settings for the ButtonStyle option.

Here is the expression corresponding to
a CopyEvaluateCell button. Cell[BoxData[

  ButtonBox[
    RowBox[{"Expand", "[", ""[SelectionPlaceholder]", "]"}],
    ButtonStyle->"CopyEvaluateCell"]], "Input",
  Active->True]

This is what the button looks like.
Expand��

Here is a notebook with a selection
made. �1 � x�6

This is what happens when one then
clicks on the button. �1 � x�6

In[1]:= Expand��1 � x�6�
Out[1]= 1 � 6 x � 15 x2 � 20 x3 � 15 x4 � 6 x5 � x6



2.11.6 Button Boxes and Active Elements in Notebooks 597

option default value

ButtonFunction (pasting function) the function to apply when the button is
clicked

ButtonSource Automatic where to get the first argument of the button
function from

ButtonData Automatic the second argument to supply to the button
function

ButtonEvaluator None where to send the button function for
evaluation

ButtonNote None what to display in the window status line
when the cursor is over the button

Options that affect the action of buttons.

A particular ButtonStyle setting will specify defaults for all other button options. Some of these
options will affect the display of the button, as discussed on page 452. Others affect the action it
performs.

What ultimately determines the action of a button is the setting for the ButtonFunction option.
This setting gives the Mathematica function which is to be executed whenever the button is clicked.
Typically this function will be a combination of various notebook manipulation commands.

Thus, for example, in its most basic form, a Paste button will have a ButtonFunction given
effectively by NotebookApply[SelectedNotebook[ ], #]&, while a Hyperlink button will have a
ButtonFunction given effectively by NotebookLocate[#2]& .

When a button is clicked, two arguments are supplied to its ButtonFunction. The first is specified
by ButtonSource, and the second by ButtonData.

Typically ButtonData is set to be a fixed expression, defined when the button was first created.
ButtonSource, on the other hand, usually changes with the contents of the button, or the environment
in which the button appears.



598 2. Principles of Mathematica � 2.11 Manipulating Notebooks

Automatic ButtonData if it is set, otherwise ButtonContents

ButtonContents the expression displayed on the button

ButtonData the setting for the ButtonData option

CellContents the contents of the cell in which the button appears

Cell the whole cell in which the button appears

Notebook the whole notebook in which the button appears

n the expression n levels up from the button in the notebook

Possible settings for the ButtonSource option.

For a simple Paste button, the setting for ButtonSource is typically ButtonContents. This means
that whatever is displayed in the button will be what is passed as the first argument of the button
function. The button function can then take this argument and feed it to NotebookApply, thereby
actually pasting it into the notebook.

By using settings other than ButtonContents for ButtonSource, you can create buttons which
effectively pull in various aspects of their environment for processing. Thus, for example, with the
setting ButtonSource->Cell, the first argument to the button function will be the expression that
represents the whole cell in which the button appears. By having the button function manipulate this
expression you can then make the button have a global effect on the whole cell, say by restructuring
it in some specified way.

None the front end

Automatic the current kernel

"name" a kernel with the specified name

Settings for the ButtonEvaluator option.

Once the arguments to a ButtonFunction have been found, and an expression has been con-
structed, there is then the question of where that expression should be sent for evaluation. The
ButtonEvaluator option for a ButtonBox allows you to specify this.

In general, if the expression involves a range of Mathematica functions, then there will be no choice
but to evaluate it in an actual Mathematica kernel. But if the expression involves only simple notebook
manipulation commands, then it may be possible to execute the expression directly in the front end,
without ever involving the kernel. You can specify that this should be done by setting the option
ButtonEvaluator->None .



2.11.7 Advanced Topic: The Structure of Cells 599

FrontEndExecute[expr] execute an expression in the front end

FrontEnd`NotebookApply[. . . ], etc. front end versions of notebook commands

Expressions to be executed directly in the front end.

As discussed in the previous section, the standard notebook front end can handle only a limited
set of commands, all identified as being in the FrontEnd` context. But these commands are sufficient
to be able to implement all of the actions associated with standard button styles such as Paste,
EvaluateCell and Hyperlink .

Note that even if an expression is sent to the front end, it will be executed only if it is wrapped in
a FrontEndExecute.

2.11.7 Advanced Topic: The Structure of Cells

Cell[contents, "style"] a cell in a particular style

Cell[contents, "style", options] a cell with additional options set

Expressions corresponding to cells.

Here is a notebook containing a text
cell and a Mathematica input cell. Here is some ordinary text.

xΑ �y

Here are the expressions corresponding
to these cells. Cell["Here is some ordinary text.", "Text"]

Cell[BoxData[
  RowBox[{
    SuperscriptBox["x", "Α"], "/", "y"}]], "Input"]

Here is a notebook containing a text
cell with Mathematica input inside. Text with the formula xyzΑ  inside.

This is the expression corresponding to
the cell. The Mathematica input is in a
cell embedded inside the text.

Cell[TextData[{
  "Text with the formula ",
  Cell[BoxData[
    FormBox[
      SuperscriptBox["xyz", ""[Alpha]"], TraditionalForm]]],
  " inside."
}], "Text"]



600 2. Principles of Mathematica � 2.11 Manipulating Notebooks

"text" plain text

TextData[{text�, text�, . . . }] text potentially in different styles, or containing cells

BoxData[boxes] formatted Mathematica expressions

GraphicsData["type", data] graphics or sounds

OutputFormData["itext", "otext"]
text as generated by InputForm and OutputForm

RawData["data"] unformatted expressions as obtained using Show Expression

CellGroupData[{cell�, cell�, . . . }, Open]
an open group of cells

CellGroupData[{cell�, cell�, . . . }, Closed]
a closed group of cells

StyleData["style"] a style definition cell

Expressions representing possible forms of cell contents.

2.11.8 Styles and the Inheritance of Option Settings

Global the complete front end and all open notebooks

Notebook the current notebook

Style the style of the current cell

Cell the specific current cell

Selection a selection within a cell

The hierarchy of levels at which options can be set.

Here is a notebook containing three
cells. � First Section

Some text in the first section.

Some more text in the first section.



2.11.8 Styles and the Inheritance of Option Settings 601

This is what happens when the setting
CellFrame->True is made specifically
for the third cell.

� First Section

Some text in the first section.

Some more text in the first section.

This is what happens when the setting
CellFrame->True is made globally for
the whole notebook. � First Section

Some text in the first section.

Some more text in the first section.

This is what happens when the setting
is made for the "Section" style.

� First Section

Some text in the first section.

Some more text in the first section.

In the standard notebook front end, you can check and set options at any level by using the Option
Inspector menu item. If you do not set an option at a particular level, then its value will always be
inherited from the level above. Thus, for example, if a particular cell does not set the CellFrame
option, then the value used will be inherited from its setting for the style of the cell or for the whole
notebook that contains the cell.

As a result, if you set CellFrame->True at the level of a whole notebook, then all the cells in the
notebook will have frames drawn around them—unless the style of a particular cell, or the cell itself,
explicitly overrides this setting.

Choose the basic default styles for a notebook

Choose the styles for screen and printing style environments

Edit specific styles for the notebook

Ways to set up styles in a notebook.



602 2. Principles of Mathematica � 2.11 Manipulating Notebooks

Depending on what you intend to use your Mathematica notebook for, you may want to choose
different basic default styles for the notebook. In the standard notebook front end, you can do this
using the Edit Style Sheet menu item.

"Report" styles for everyday work and for reports

"Tutorial" styles for tutorial-type material

"Book" styles for books such as this one

Some typical choices of basic default styles.

With each choice of basic default styles, the styles that are provided will change. Thus, for example,
only in the Book default styles is there a Box style which sets up the gray boxes used in this book.

Here is a notebook that uses Book
default styles. Miscellaneous‘ChemicalElements‘

Abbreviationelement� give the standard abbreviation

AtomicNumberelement� give the atomic number of ]element

AtomicWeightelement� give the atomic weight

StableIsotopeselement� give a list of the stable isotopes of ]element

Elements list of the names of the chemical elements

Basic properties of the chemical elements. 

This loads the package. 

In[1]:= <<Miscellaneous‘ChemicalElements‘

This gives the atomic weight of tungsten using the data in the package. 

In[2]:= AtomicWeight[Tungsten]

Out[2]= 183.85

option default value

ScreenStyleEnvironment "Working" the style environment to use for display
on the screen

PrintingStyleEnvironment "Printout" the style environment to use for printed
output

Options for specifying style environments.

Within a particular set of basic default styles, Mathematica allows for two different style environ-
ments: one for display on the screen, and another for output to a printer. The existence of separate
screen and printing style environments allows you to set up styles which are separately optimized
both for low-resolution display on a screen, and high-resolution printing.



2.11.8 Styles and the Inheritance of Option Settings 603

"Working" on-screen working environment

"Presentation" on-screen environment for presentations

"Condensed" on-screen environment for maximum display density

"Printout" paper printout environment

Some typical settings for style environments.

Here is a notebook with the usual
Working screen style environment. � log	x


���������������������
x3 
 1

�� x

�
�log�1 � x� log�x� � Li2�x�
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
!1 ��
�1

3 " �1 � ��1�2#3�
�
�log�x� log!�

�1
3

x � 1"� Li2!��
�1

3
x"

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
�1 � ��1�2#3� !�

�1
3
� ��1�2#3"

�

�log�x� log�1 � ��1�2#3 x� � Li2���1�2#3 x�
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

!1 ��
�1

3 " !��
�1

3
� ��1�2#3"

Here is the same notebook with the
Condensed screen style environment. � log	x


�����������������������
x3 
 1

�� x

�
�log�1 � x� log�x�� Li2 �x�
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
!1 ��
�1

3 " �1 � ��1�2#3 �
�
�log�x� log!�

�1
3

x � 1"� Li2 !��
�1

3
x"

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
�1 � ��1�2#3 � !�

�1
3
� ��1�2#3 "

�
�log�x� log�1 � ��1�2#3 x�� Li2 ���1�2#3 x�
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

!1 ��
�1

3 " !��
�1

3
� ��1�2#3 "

The way that Mathematica actually sets up the definitions for styles is by using style definition cells.
These cells can either be given in separate style definition notebooks, or can be included in the options of
a specific notebook. In either case, you can access style definitions by using the Edit Style Sheet menu
item in the standard notebook front end.

"name.nb" get definitions from the specified notebook

{cell�, cell�, . . . } get definitions from the explicit cells given

Settings for the StyleDefinitions option for a Notebook.

Here is an example of a typical style
definition cell. Prototype for style: "Section":

Section



604 2. Principles of Mathematica � 2.11 Manipulating Notebooks

This is the expression corresponding to
the cell. Any cell in Section style will
inherit the option settings given here.

Cell[StyleData["Section"], NotebookDefault,
  CellFrame->False,
  CellDingbat->"-[GraySquare]",
  CellMargins->{{22, Inherited}, {Inherited, 20}},
  CellGroupingRules->{"SectionGrouping", 30},
  PageBreakBelow->False,
  CounterIncrements->"Section",
  CounterAssignments->{{"Subsection", 0}, {"Subsubsection", 0}},
  FontFamily->"Times",
  FontSize->18,
  FontWeight->"Bold"]

Cell[StyleData["style"], options] a cell specifying option settings for a particular style

Cell[StyleData["style", "env"], options]
a cell specifying additional options for a particular style
environment

Expressions corresponding to style definition cells.

2.11.9 Options for Cells

Mathematica provides a large number of options for cells. All of these options can be accessed through
the Option Inspector menu item in the front end. They can be set either directly at the level of individual
cells or at a higher level, to be inherited by individual cells.

option typical default value

CellDingbat "" a dingbat to use to emphasize the cell

CellFrame False whether to draw a frame around the cell

Background GrayLevel[1] the background color for the cell

ShowCellBracket True whether to display the cell bracket

Magnification 1 the magnification at which to display the cell

CellOpen True whether to display the contents of the cell

Some basic cell display options.



2.11.9 Options for Cells 605

This creates a cell in Section style
with default settings for all options.

In[1]:= CellPrint[Cell["A Heading", "Section"]]

� A Heading

This creates a cell with dingbat and
background options modified.

In[2]:= CellPrint[Cell["A Heading", "Section",
CellDingbat->"\[FilledCircle]", Background->GrayLevel[.7]]]

� A Heading

� A Heading

option typical default value

CellMargins {{7, 0}, {4, 4}} outer margins in printer’s points to leave
around the contents of the cell

CellFrameMargins 8 margins to leave inside the cell frame

CellElementSpacings list of rules details of the layout of cell elements

CellBaseline Baseline how to align the baseline of an inline cell
with text around it

Options for cell positioning.

The option CellMargins allows you to specify both horizontal and vertical margins to put around a
cell. You can set the horizontal margins interactively by using the margin stops in the ruler displayed
when you choose the Show Ruler menu item in the front end.

Whenever an option can refer to all four edges of a cell, Mathematica follows the convention that
the setting for the option takes the form {{left, right}, {bottom, top}}. By giving non-zero values for
the top and bottom elements, CellMargins can specify gaps to leave above and below a particular cell.
The values are always taken to be in printer’s points.



606 2. Principles of Mathematica � 2.11 Manipulating Notebooks

This leaves 50 points of space on the
left of the cell, and 20 points above
and below.

In[3]:= CellPrint[Cell["First text", "Text",
CellMargins->{{50, 0}, {20, 20}}]]

� A Heading

� A Heading

First text

Almost every aspect of Mathematica notebooks can be controlled by some option or another. More
detailed aspects are typically handled by “aggregate options” such as CellElementSpacings. The
settings for these options are lists of Mathematica rules, which effectively give values for a sequence of
suboptions. The names of these suboptions are usually strings rather than symbols.

This shows the settings for all the
suboptions associated with
CellElementSpacings .

In[4]:= Options[SelectedNotebook[ ], CellElementSpacings]

Out[4]= �CellElementSpacings��CellMinHeight � 12., ClosedCellHeight � 19.,
ClosedGroupTopMargin� 4., GroupIconTopMargin �
3., GroupIconBottomMargin� 12.��

Mathematica allows you to embed cells inside pieces of text. The option CellBaseline determines
how such “inline cells” will be aligned vertically with respect to the text around them. In direct
analogy with the option GridBaseline for a GridBox, the option CellBaseline specifies what aspect
of the cell should be considered its baseline.

Here is a cell containing an inline
formula. The baseline of the formula is
aligned with the baseline of the text
around it.

� the x���
y

fraction 

Here is a cell in which the bottom of
the formula is aligned with the
baseline of the text around it. � the 

x���
y fraction 

This alignment is specified using the
CellBaseline->Bottom setting. Cell[TextData[{

  "the ",
  Cell[BoxData[
    RowBox[{
      FractionBox["x", "y"], " "}]],
    CellBaseline->Bottom],
    "fraction "
}], "Section"]



2.11.9 Options for Cells 607

option typical default value

CellLabel "" a label for a cell

ShowCellLabel True whether to show the label for a cell

CellLabelAutoDelete True whether to delete the label if the cell is
modified

CellTags { } tags for a cell

ShowCellTags False whether to show tags for a cell

ConversionRules { } rules for external conversions

Options for ancillary data associated with cells.

In addition to the actual contents of a cell, it is often useful to associate various kinds of ancillary
data with cells.

In a standard Mathematica session, cells containing successive lines of kernel input and output are
given labels of the form In[n]:= and Out[n]=. The option ShowCellLabel determines whether such
labels should be displayed. CellLabelAutoDelete determines whether the label on a cell should be
removed if the contents of the cell are modified. Doing this ensures that In[n]:= and Out[n]= labels
are only associated with unmodified pieces of kernel input and output.

Cell tags are typically used to associate keywords or other attributes with cells, that can be searched
for using functions like NotebookFind. Destinations for hyperlinks in Mathematica notebooks are
usually implemented using cell tags.

The option ConversionRules allows you to give a list containing entries such as "TeX" -> data
which specify how the contents of a cell should be converted to external formats. This is particularly
relevant if you want to keep a copy of the original form of a cell that has been converted in Mathematica
notebook format from some external format.

option typical default value

Deletable True whether to allow a cell to be deleted interactively
with the front end

Copyable True whether to allow a cell to be copied

Selectable True whether to allow the contents of a cell to be selected

Editable True whether to allow the contents of a cell to be edited

CellEditDuplicate False whether to make a copy of a cell if its contents are
edited

Active False whether buttons in the cell are active

Options for controlling interactive operations on cells.



608 2. Principles of Mathematica � 2.11 Manipulating Notebooks

The options Deletable, Copyable, Selectable and Editable allow you to control what interactive
operations should be allowed on cells. By setting these options to False at the notebook level, you
can protect all the cells in a notebook.

Even if you allow a particular cell to be edited, you can set CellEditDuplicate->True to get
Mathematica to make a copy of the contents of the cell before they are actually changed. Styles for
cells that contain output from Mathematica kernel evaluations usually make use of this option.

option typical default value

Evaluator "Local" the name of the kernel to use for evaluations

Evaluatable False whether to allow the contents of a cell to be
evaluated

CellEvaluationDuplicate False whether to make a copy of a cell if it is evaluated

CellAutoOverwrite False whether to overwrite previous output when new
output is generated

GeneratedCell False whether this cell was generated from the kernel

InitializationCell False whether this cell should automatically be evaluated
when the notebook is opened

Options for evaluation.

Mathematica makes it possible to specify a different evaluator for each cell in a notebook. But most
often, the Evaluator option is set only at the notebook level, typically using the Kernel menu item in
the front end.

The option CellAutoOverwrite is typically set to True for styles that represent Mathematica output.
Doing this means that when you re-evaluate a particular piece of input, Mathematica will automatically
delete the output that was previously generated from that input, and will overwrite it with new
output.

The option GeneratedCell is set whenever a cell is generated by an external request to the front
end rather than by an interactive operation within the front end. Thus, for example, any cell obtained
as output from a kernel evaluation, or created using a function like CellPrint or NotebookWrite,
will have GeneratedCell->True.



2.11.10 Text and Font Options 609

option typical default value

PageBreakAbove Automatic whether to put a page break just above a
particular cell

PageBreakWithin False whether to allow a page break within a
particular cell

PageBreakBelow Automatic whether to put a page break just below a
particular cell

GroupPageBreakWithin False whether to allow a page break within a
particular group of cells

Options for controlling page breaks when cells are printed.

When you display a notebook on the screen, you can scroll continuously through it. But if you
print the notebook out, you have to decide where page breaks will occur. A setting of Automatic for
a page break option tells Mathematica to make a page break if necessary; True specifies that a page
break should always be made, while False specifies that it should never be.

2.11.10 Text and Font Options

option typical default value

PageWidth WindowWidth how wide to assume the page to be

TextAlignment Left how to align successive lines of text

TextJustification 0 how much to allow lines of text to be
stretched to make them fit

Hyphenation True whether to allow hyphenation

ParagraphIndent 0 how many printer’s points to indent the first
line in each paragraph

General options for text formatting.

If you have a large block of text containing no explicit RETURN characters, then Mathematica will
automatically break your text into a sequence of lines. The option PageWidth specifies how long each
line should be allowed to be.



610 2. Principles of Mathematica � 2.11 Manipulating Notebooks

WindowWidth the width of the window on the screen

PaperWidth the width of the page as it would be printed

Infinity an infinite width (no linebreaking)

n explicit width given in printer’s points

Settings for the PageWidth option in cells and notebooks.

The option TextAlignment allows you to specify how you want successive lines of text to be
aligned. Since Mathematica normally breaks text only at space or punctuation characters, it is common
to end up with lines of different lengths. Normally the variation in lengths will give your text a
ragged boundary. But Mathematica allows you to adjust the spaces in successive lines of text so as to
make the lines more nearly equal in length. The setting for TextJustification gives the fraction of
extra space which Mathematica is allowed to add. TextJustification->1 leads to “full justification”
in which all complete lines of text are adjusted to be exactly the same length.

Left aligned on the left

Right aligned on the right

Center centered

x aligned at a position x running from -1 to +1 across the
page

Settings for the TextAlignment option.

Here is text with
TextAlignment->Left and
TextJustification->0 .

Like other objects in Mathematica, the cells in a notebook, and in fact the whole notebook itself, are all ultimately 
represented as Mathematica expressions. With the standard notebook front end, you can use the command Show 
Expression to see the text of the Mathematica expression that corresponds to any particular cell.

With TextAlignment->Center the text
is centered. Like other objects in Mathematica, the cells in a notebook, and in fact the whole notebook itself, are all ultimately

represented as Mathematica  expressions. With the standard notebook front end,  you can use the command Show
Expression to see the text of the Mathematica expression that corresponds to any particular cell.

TextJustification->1 adjusts word
spacing so that both the left and right
edges line up.

Like  other  objects  in  Mathematica,  the  cells  in  a  notebook,  and  in  fact  the  whole  notebook  itself,  are  all  ultimately
represented  as  Mathematica  expressions.  With  the  standard  notebook  front  end,  you  can  use  the  command  Show
Expression to see the text of the Mathematica expression that corresponds to any particular cell.

TextJustification->0.5 reduces the
degree of raggedness, but does not
force the left and right edges to be
precisely lined up.

Like other objects in Mathematica, the cells in a notebook, and in fact the whole notebook itself, are all ultimately
represented as Mathematica  expressions. With the standard notebook front end,  you can use the command Show
Expression to see the text of the Mathematica expression that corresponds to any particular cell.



2.11.10 Text and Font Options 611

When you enter a block of text in a Mathematica notebook, Mathematica will treat any explicit RETURN

characters that you type as paragraph breaks. The option ParagraphIndent allows you to specify
how much you want to indent the first line in each paragraph. By giving a negative setting for
ParagraphIndent, you can make the first line stick out to the left relative to subsequent lines.

LineSpacing->{c, 0} leave space so that the total height of each line is c times the
height of its contents

LineSpacing->{0, n} make the total height of each line exactly n printer’s points

LineSpacing->{c, n} make the total height c times the height of the contents plus
n printer’s points

ParagraphSpacing->{c, 0} leave an extra space of c times the height of the font before
the beginning of each paragraph

ParagraphSpacing->{0, n} leave an extra space of exactly n printer’s points before the
beginning of each paragraph

ParagraphSpacing->{c, n} leave an extra space of c times the height of the font plus n
printer’s points

Options for spacing between lines of text.

Here is some text with the default
setting LineSpacing->{1, 1}, which
inserts just 1 printer’s point of extra
space between successive lines.

Like other objects in Mathematica, the cells in a notebook, and in fact the whole notebook itself, are all ultimately
represented as Mathematica  expressions. With the standard notebook front end,  you can use the command Show
Expression to see the text of the Mathematica expression that corresponds to any particular cell.

With LineSpacing->{1, 5} the text is
“looser”. Like other objects in Mathematica, the cells in a notebook, and in fact the whole notebook itself, are all ultimately

represented as Mathematica  expressions. With the standard notebook front end,  you can use the command Show
Expression to see the text of the Mathematica expression that corresponds to any particular cell.

LineSpacing->{2, 0} makes the text
double-spaced. Like other objects in Mathematica, the cells in a notebook, and in fact the whole notebook itself, are all ultimately

represented as Mathematica  expressions. With the standard notebook front end,  you can use the command Show

Expression to see the text of the Mathematica expression that corresponds to any particular cell.

With LineSpacing->{1, -2} the text is
tight. Like other objects in Mathematica, the cells in a notebook, and in fact the whole notebook itself, are all ultimately

represented as Mathematica  expressions. With the standard notebook front end,  you can use the command Show
Expression to see the text of the Mathematica expression that corresponds to any particular cell.



612 2. Principles of Mathematica � 2.11 Manipulating Notebooks

option typical default value

FontFamily "Courier" the family of font to use

FontSubstitutions { } a list of substitutions to try for font family
names

FontSize 12 the maximum height of characters in
printer’s points

FontWeight "Bold" the weight of characters to use

FontSlant "Plain" the slant of characters to use

FontTracking "Plain" the horizontal compression or expansion of
characters

FontColor GrayLevel[0] the color of characters

Background GrayLevel[1] the color of the background for each
character

Options for fonts.

"Courier" text like this

"Times" text like this

"Helvetica" text like this

Some typical font family names.

FontWeight->"Plain" text like this

FontWeight->"Bold" text like this

FontWeight->"ExtraBold" text like this

FontSlant->"Oblique" text like this

Some settings of font options.

Mathematica allows you to specify the font that you want to use in considerable detail. Sometimes,
however, the particular combination of font families and variations that you request may not be avail-
able on your computer system. In such cases, Mathematica will try to find the closest approximation
it can. There are various additional options, such as FontPostScriptName, that you can set to help
Mathematica find an appropriate font. In addition, you can set FontSubstitutions to be a list of rules
that give replacements to try for font family names.



2.11.11 Advanced Topic: Options for Expression Input and Output 613

There are a great many fonts available for ordinary text. But for special technical characters, and
even for Greek letters, far fewer fonts are available. The Mathematica system includes fonts that
were built to support all of the various special characters that are used by Mathematica. There are
three versions of these fonts: ordinary (like Times), monospaced (like Courier), and sans serif (like
Helvetica).

For a given text font, Mathematica tries to choose the special character font that matches it best. You
can help Mathematica to make this choice by giving rules for "FontSerifed" and "FontMonospaced"
in the setting for the FontProperties option. You can also give rules for "FontEncoding" to specify
explicitly from what font each character is to be taken.

2.11.11 Advanced Topic: Options for Expression Input and Output

option typical default value

AutoIndent Automatic whether to indent after an explicit
RETURN character is entered

DelimiterFlashTime 0.3 the time in seconds to flash a delimiter
when a matching one is entered

ShowAutoStyles True whether to show automatic style
variations for syntactic and other
constructs

ShowCursorTracker True whether an elliptical spot should appear
momentarily to guide the eye if the
cursor position jumps

ShowSpecialCharacters True whether to replace \[Name] by a special
character as soon as the ] is entered

ShowStringCharacters False whether to display " when a string is
entered

SingleLetterItalics False whether to put single-letter symbol
names in italics

ZeroWidthTimes False whether to represent multiplication by a
zero width character

InputAliases {} additional HnameH aliases to allow

InputAutoReplacements {"->" -> "�", . . . } strings to automatically replace on input

AutoItalicWords {"Mathematica", . . . } words to automatically put in italics

LanguageCategory Automatic what category of language to assume a
cell contains for spell checking and
hyphenation

Options associated with the interactive entering of expressions.



614 2. Principles of Mathematica � 2.11 Manipulating Notebooks

The options SingleLetterItalics and ZeroWidthTimes are typically set whenever a cell uses
TraditionalForm .

Here is an expression entered with
default options for a StandardForm
input cell.

x6 � 6 x5 y � 15 x4 y2 � 20 x3 y3 � 15 x2 y4 � 6 x y5 � y6

Here is the same expression entered in
a cell with
SingleLetterItalics->True and
ZeroWidthTimes->True .

x6 � 6x5y � 15x4y2 � 20x3y3 � 15x2y4 � 6xy5 � y6

Built into Mathematica are a large number of aliases for common special characters. InputAliases
allows you to add your own aliases for further special characters or for any other kind of Mathematica
input. A rule of the form "name"->expr specifies that HnameH should immediately be replaced on input
by expr.

Aliases are delimited by explicit � characters. The option InputAutoReplacements allows you to
specify that certain kinds of input sequences should be immediately replaced even when they have
no explicit delimiters. By default, for example, -> is immediately replaced by �. You can give a rule
of the form "seq"->"rhs" to specify that whenever seq appears as a token in your input, it should
immediately be replaced by rhs.

"NaturalLanguage" human natural language such as English

"Mathematica" Mathematica input

"Formula" mathematical formula

None do no spell checking or hyphenation

Settings for LanguageCategory to control spell checking and hyphenation.

The option LanguageCategory allows you to tell Mathematica what type of contents it should as-
sume cells have. This determines how spelling and structure should be checked, and how hyphenation
should be done.



2.11.11 Advanced Topic: Options for Expression Input and Output 615

option typical default value

StructuredSelection False whether to allow only complete
subexpressions to be selected

DragAndDrop False whether to allow drag-and-drop editing

Options associated with interactive manipulation of expressions.

Mathematica normally allows you to select any part of an expression that you see on the screen. Occa-
sionally, however, you may find it useful to get Mathematica to allow only selections which correspond
to complete subexpressions. You can do this by setting the option StructuredSelection->True.

Here is an expression with a piece
selected. ��1 � x� �1��x� �1 � x � x2 � x3 ��x4� �1 � x � x2 � x3 � x4�

With StructuredSelection->True
only complete subexpressions can ever
be selected.

��1 � x� �1 � x� �1 � x � x2 � x3 � x4� �1 � x � x2 � x3 � x4�
��1 � x� �1 � x� �1 � x � x2 � x3 � x4� �1 � x � x2 � x3 � x4�
��1 � x� �1 � x� �1 � x � x2 � x3 � x4� �1 � x � x2 � x3 � x4�

GridBox[data, opts] give options that apply to a particular grid box

StyleBox[boxes, opts] give options that apply to all boxes in boxes

Cell[contents, opts] give options that apply to all boxes in contents

Cell[contents, GridBoxOptions->opts]
give default options settings for all GridBox objects in
contents

Examples of specifying options for the display of expressions.

As discussed in Section 2.9, Mathematica provides many options for specifying how expressions
should be displayed. By using StyleBox[boxes, opts] you can apply such options to collections of
boxes. But Mathematica is set up so that any option that you can give to a StyleBox can also be given
to a complete Cell object, or even a complete Notebook. Thus, for example, options like Background
and LineIndent can be given to complete cells as well as to individual StyleBox objects.

There are some options that apply only to a particular type of box, such as GridBox. Usually these
options are best given separately in each GridBox where they are needed. But sometimes you may
want to specify default settings to be inherited by all GridBox objects that appear in a particular cell.



616 2. Principles of Mathematica � 2.11 Manipulating Notebooks

You can do this by giving these default settings as the value of the option GridBoxOptions for the
whole cell.

For each box type named XXXBox, Mathematica provides a cell option XXXBoxOptions that allows
you to specify the default options settings for that type of box.

2.11.12 Options for Graphics Cells

option typical default value

AspectRatioFixed True whether to keep a fixed aspect ratio if the
image is resized

ImageSize {288, 288} the absolute width and height of the image
in printer’s points

ImageMargins {{0, 0}, {0, 0}} the widths of margins in printer’s points to
leave around the image

Options for displaying images in notebooks.

Here is a graphic displayed in a
notebook.

With the default setting
AspectRatioFixed->True resizing the
graphic does not change its shape.

If you set AspectRatioFixed->False
then you can change the shape.

Mathematica allows you to specify the final size of a graphic by setting the ImageSize option in kernel
graphics functions such as Plot and Display. Once a graphic is in a notebook, you can then typically
resize or move it just by using the mouse.



2.11.13 Options for Notebooks 617

Use the Animate Selected Graphics menu item in the front end.

Use the kernel command SelectionAnimate[obj].

Ways to generate animations in a notebook.

Mathematica generates animated graphics by taking a sequence of graphics cells, and then treating
them like frames in a movie. The option AnimationDisplayTime specifies how long a particular cell
should be displayed as part of the movie.

option typical default value

AnimationDisplayTime 0.1 minimum time in seconds to display this cell
during an animation

AnimationDirection Forward which direction to run an animation starting
with this cell

Options for animations.

2.11.13 Options for Notebooks

Use the Option Inspector menu to change options interactively.

Use SetOptions[obj, options] from the kernel.

Use NotebookCreate[options] to create a new notebook with specified options.

Ways to change the overall options for a notebook.

This creates a notebook displayed in a

� � � window with a thin frame.

In[1]:= NotebookCreate[WindowFrame->"ThinFrame",
WindowSize->{40, 30}]



618 2. Principles of Mathematica � 2.11 Manipulating Notebooks

option typical default value

StyleDefinitions "DefaultStyles.nb" the basic style sheet to use for the
notebook

ScreenStyleEnvironment "Working" the style environment to use for screen
display

PrintingStyleEnvironment "Printout" the style environment to use for
printing

Style options for a notebook.

In giving style definitions for a particular notebook, Mathematica allows you either to reference another
notebook, or explicitly to include the Notebook expression that defines the styles.

option typical default value

CellGrouping Automatic how to group cells in the notebook

ShowPageBreaks False whether to show where page breaks would
occur if the notebook were printed

NotebookAutoSave False whether to automatically save the notebook
after each piece of output

General options for notebooks.

With CellGrouping->Automatic , cells
are automatically grouped based on
their style.

� Section heading

First text cell.

Second text cell.

With CellGrouping->Manual , you have
to group cells by hand. � Section heading

First text cell.

Second text cell.



2.11.13 Options for Notebooks 619

option typical default value

DefaultNewCellStyle "Input" the default style for new cells created in
the notebook

DefaultDuplicateCellStyle "Input" the default style for cells created by
automatic duplication of existing cells

Options specifying default styles for cells created in a notebook.

Mathematica allows you to take any cell option and set it at the notebook level, thereby specifying
a global default for that option throughout the notebook.

option typical default value

Editable True whether to allow cells in the notebook to be
edited

Selectable True whether to allow cells to be selected

Deletable True whether to allow cells to be deleted

ShowSelection True whether to show the current selection
highlighted

Background GrayLevel[1] what background color to use for the
notebook

Magnification 1 at what magnification to display the
notebook

PageWidth WindowWidth how wide to allow the contents of cells to be

A few cell options that are often set at the notebook level.

Here is a notebook with the
Background option set at the notebook
level.

Here is some text.



620 2. Principles of Mathematica � 2.11 Manipulating Notebooks

option typical default value

Visible True whether the window should be visible on
the screen

WindowSize {Automatic, Automatic} the width and height of the window in
printer’s points

WindowMargins Automatic the margins to leave around the window
when it is displayed on the screen

WindowFrame "Normal" the type of frame to draw around the
window

WindowElements {"StatusArea", . . . } elements to include in the window

WindowTitle Automatic what title should be displayed for the
window

WindowToolbars { } toolbars to display at the top of the window

WindowMovable True whether to allow the window to be moved
around on the screen

WindowFloating False whether the window should always float on
top of other windows

WindowClickSelect True whether the window should become
selected if you click in it

Characteristics of the notebook window.

WindowSize allows you to specify how large you want a window to be; WindowMargins al-
lows you to specify where you want the window to be placed on your screen. The setting
WindowMargins->{{left, right}, {bottom, top}} gives the margins in printer’s points to leave around
your window on the screen. Often only two of the margins will be set explicitly; the others will be
Automatic, indicating that these margins will be determined from the particular size of screen that
you use.



2.11.13 Options for Notebooks 621

"Normal" an ordinary window

"Palette" a palette window

"ModelessDialog" a modeless dialog box window

"ModalDialog" a modal dialog box window

"MovableModalDialog" a modal dialog box window that can be moved around the
screen

"ThinFrame" an ordinary window with a thin frame

"Frameless" an ordinary window with no frame at all

"Generic" a window with a generic border, as used for the examples in
this book

Typical possible settings for WindowFrame.

Mathematica allows many different types of windows. The details of how particular windows are
rendered may differ slightly from one computer system to another, but their general form is always
the same. WindowFrame specifies the type of frame to draw around the window. WindowElements
gives a list of specific elements to include in the window.

"StatusArea" an area used to display status messages, such as those from
ButtonNote options

"MagnificationPopUp" a pop-up menu of common magnifications

"HorizontalScrollBar" a scroll bar for horizontal motion

"VerticalScrollBar" a scroll bar for vertical motion

Some typical possible entries in the WindowElements list.

Here is a window with a status area
and horizontal scroll bar, but no
magnification pop-up or vertical scroll
bar.



622 2. Principles of Mathematica � 2.11 Manipulating Notebooks

"RulerBar" a ruler showing margin settings

"EditBar" buttons for common editing operations

Some typical possible entries in the WindowToolbars list.

Here is a window with ruler and edit
toolbars.

2.11.14 Advanced Topic: Global Options for the Front End

In the standard notebook front end, Mathematica allows you to set a large number of global options.
The values of all these options are by default saved in a “preferences file”, and are automatically
reused when you run Mathematica again.

style definitions default style definitions to use for new notebooks

file locations directories for finding notebooks and system files

data export options how to export data in various formats

character encoding options how to encode special characters

language options what language to use for text

message options how to handle messages generated by Mathematica

menu settings items displayed in modifiable menus

dialog settings choices made in dialog boxes

system configuration private options for specific computer systems

Some typical categories of global options for the front end.

As discussed on page 592, you can access global front end options from the kernel by using
Options[$FrontEnd, name]. But more often, you will want to access these options interactively
using the Option Inspector in the front end.



2.12.1 Reading and Writing Mathematica Files 623

2.12 Files and Streams

2.12.1 Reading and Writing Mathematica Files

Particularly if you use a text-based Mathematica interface, you will often need to read and write files
containing definitions and results from Mathematica. Section 1.11.1 gave a general discussion of how
to do this. This section gives some more details.

<<file or Get["file"] read in a file of Mathematica input, and return the last
expression in the file

!!file display the contents of a file

Reading files.

This shows the contents of the file
factors.

In[1]:= !!factors

(* Factors of x^20 - 1 *)
(-1 + x)*(1 + x)*(1 + x^2)*(1 - x + x^2 - x^3 + x^4)*
(1 + x + x^2 + x^3 + x^4)*(1 - x^2 + x^4 - x^6 + x^8)

This reads in the file, and returns the
last expression in it.

In[2]:= <<factors

Out[2]= ��1 � x� �1 � x� �1 � x2� �1 � x � x2 � x3 � x4��1 � x � x2 � x3 � x4� �1 � x2 � x4 � x6 � x8�
If Mathematica cannot find the file you
ask it to read, it prints a message, then
returns the symbol $Failed.

In[3]:= <<faxors

Get::noopen: Cannot open faxors.

Out[3]= $Failed

Mathematica input files can contain any number of expressions. Each expression, however, must
start on a new line. The expressions may however continue for as many lines as necessary. Just as in
a standard interactive Mathematica session, the expressions are processed as soon as they are complete.
Note, however, that in a file, unlike an interactive session, you can insert a blank line at any point
without effect.

When you read in a file with <<file, Mathematica returns the last expression it evaluates in the file.
You can avoid getting any visible result from reading a file by ending the last expression in the file
with a semicolon, or by explicitly adding Null after that expression.

If Mathematica encounters a syntax error while reading a file, it reports the error, skips the remainder
of the file, then returns $Failed. If the syntax error occurs in the middle of a package which uses
BeginPackage and other context manipulation functions, then Mathematica tries to restore the context
to what it was before the package was read.



624 2. Principles of Mathematica � 2.12 Files and Streams

expr >> file or Put[expr, "file"]
write an expression to a file

expr >>> file or PutAppend[expr, "file"]
append an expression to a file

Writing expressions to files.

This writes an expression to the file
tmp.

In[4]:= Factor[x^6 - 1] >> tmp

Here are the contents of the file. In[5]:= !!tmp

(-1 + x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)

This appends another expression to the
same file.

In[6]:= Factor[x^8 - 1] >>> tmp

Both expressions are now in the file. In[7]:= !!tmp

(-1 + x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)
(-1 + x)*(1 + x)*(1 + x^2)*(1 + x^4)

When you use expr >>> file, Mathematica appends each new expression you give to the end of your
file. If you use expr >> file, however, then Mathematica instead wipes out anything that was in the file
before, and then puts expr into the file.

When you use either >> or >>> to write expressions to files, the expressions are usually given in
Mathematica input format, so that you can read them back into Mathematica. Sometimes, however,
you may want to save expressions in other formats. You can do this by explicitly wrapping a format
directive such as OutputForm around the expression you write out.

This writes an expression to the file
tmp in output format.

In[8]:= OutputForm[ Factor[x^6 - 1] ] >> tmp

The expression in tmp is now in output
format.

In[9]:= !!tmp

2 2
(-1 + x) (1 + x) (1 - x + x ) (1 + x + x )

One of the most common reasons for using files is to save definitions of Mathematica objects, to be
able to read them in again in a subsequent Mathematica session. The operators >> and >>> allow you
to save Mathematica expressions in files. You can use the function Save to save complete definitions
of Mathematica objects, in a form suitable for execution in subsequent Mathematica sessions.



2.12.1 Reading and Writing Mathematica Files 625

Save["file", symbol] save the complete definitions for a symbol in a file

Save["file", "form"] save definitions for symbols whose names match the string
pattern form

Save["file", "context`"] save definitions for all symbols in the specified context

Save["file", {object�, object�, . . . }]
save definitions for several objects

Writing out definitions.

This assigns a value to the symbol a. In[10]:= a = 2 - x^2

Out[10]= 2 � x2

You can use Save to write the
definition of a to a file.

In[11]:= Save["afile", a]

Here is the definition of a that was
saved in the file.

In[12]:= !!afile

a = 2 - x^2

When you define a new object in Mathematica, your definition will often depend on other objects
that you defined before. If you are going to be able to reconstruct the definition of your new object in
a subsequent Mathematica session, it is important that you store not only its own definition, but also
the definitions of other objects on which it depends. The function Save looks through the definitions
of the objects you ask it to save, and automatically also saves all definitions of other objects on which it
can see that these depend. However, in order to avoid saving a large amount of unnecessary material,
Save never includes definitions for symbols that have the attribute Protected. It assumes that the
definitions for these symbols are also built in. Nevertheless, with such definitions taken care of, it
should always be the case that reading the output generated by Save back into a new Mathematica
session will set up the definitions of your objects exactly as you had them before.

This defines a function f which
depends on the symbol a defined
above.

In[13]:= f[z_] := a^2 - 2

This saves the complete definition of f
in a file.

In[14]:= Save["ffile", f]

The file contains not only the definition
of f itself, but also the definition of the
symbol a on which f depends.

In[15]:= !!ffile

f[z_] := a^2 - 2

a = 2 - x^2

The function Save makes use of the output forms Definition and FullDefinition, which print
as definitions of Mathematica symbols. In some cases, you may find it convenient to use these output
forms directly.



626 2. Principles of Mathematica � 2.12 Files and Streams

The output form Definition[f] prints
as the sequence of definitions that have
been made for f.

In[16]:= Definition[f]

Out[16]= fz_� := a2 � 2

FullDefinition[f] includes definitions
of the objects on which f depends.

In[17]:= FullDefinition[f]

Out[17]= fz_� := a2 � 2

a = 2 � x2

When you create files for input to Mathematica, you usually want them to contain only “plain text”,
which can be read or modified directly. Sometimes, however, you may want the contents of a file to
be “encoded” so that they cannot be read or modified directly as plain text, but can be loaded into
Mathematica. You can create encoded files using the Mathematica function Encode.

Encode["source", "dest"] write an encoded version of the file source to the file dest

<<dest read in an encoded file

Encode["source", "dest", "key"]
encode with the specified key

Get["dest", "key"] read in a file that was encoded with a key

Encode["source", "dest", MachineID -> "ID"]
create an encoded file which can only be read on a machine
with a particular ID

Creating and reading encoded files.

This writes an expression in plain text
to the file tmp.

In[18]:= Factor[x^2 - 1] >> tmp

This writes an encoded version of the
file tmp to the file tmp.x.

In[19]:= Encode["tmp", "tmp.x"]

Here are the contents of the encoded
file. The only recognizable part is the
special Mathematica comment at the
beginning.

In[20]:= !!tmp.x

(*!1N!*)mcm
_QZ9tcI1cfre*Wo8:) P

Even though the file is encoded, you
can still read it into Mathematica using
the << operator.

In[21]:= <<tmp.x

Out[21]= ��1 � x� �1 � x�



2.12.2 External Programs 627

DumpSave["file.mx", symbol] save definitions for a symbol in internal Mathematica format

DumpSave["file.mx", "context`"] save definitions for all symbols in a context

DumpSave["file.mx", {object�, object�, . . . }]
save definitions for several symbols or contexts

DumpSave["package`", objects] save definitions in a file with a specially chosen name

Saving definitions in internal Mathematica format.

If you have to read in very large or complicated definitions, you will often find it more efficient
to store these definitions in internal Mathematica format, rather than as text. You can do this using
DumpSave.

This saves the definition for f in
internal Mathematica format.

In[22]:= DumpSave["ffile.mx", f]

Out[22]= �f�
You can still use << to read the
definition in.

In[23]:= <<ffile.mx

<< recognizes when a file contains definitions in internal Mathematica format, and operates ac-
cordingly. One subtlety is that the internal Mathematica format differs from one computer system to
another. As a result, .mx files created on one computer cannot typically be read on another.

If you use DumpSave["package`", . . . ] then Mathematica will write out definitions to a file with a
name like package.mx/system/package.mx, where system identifies your type of computer system.

This creates a file with a name that
reflects the name of the computer
system being used.

In[24]:= DumpSave["gffile`", f]

Out[24]= �f�
<< automatically picks out the file with
the appropriate name for your
computer system.

In[25]:= <<gffile`

DumpSave["file.mx"] save all definitions in your current Mathematica session

DumpSave["package`"] save all definitions in a file with a specially chosen name

Saving the complete state of a Mathematica session.

2.12.2 External Programs

On most computer systems, you can execute external programs or commands from within Mathematica.
Often you will want to take expressions you have generated in Mathematica, and send them to an
external program, or take results from external programs, and read them into Mathematica.



628 2. Principles of Mathematica � 2.12 Files and Streams

Mathematica supports two basic forms of communication with external programs: structured and
unstructured.

Structured communication use MathLink to exchange expressions with
MathLink-compatible external programs

Unstructured communication use file reading and writing operations to exchange ordinary
text

Two kinds of communication with external programs in Mathematica.

The idea of structured communication is to exchange complete Mathematica expressions to external
programs which are specially set up to handle such objects. The basis for structured communication
is the MathLink system, discussed in Section 2.13.

Unstructured communication consists in sending and receiving ordinary text from external pro-
grams. The basic idea is to treat an external program very much like a file, and to support the same
kinds of reading and writing operations.

expr >> "!command" send the text of an expression to an external program

<< "!command" read in text from an external program as Mathematica input

Reading and writing to external programs.

In general, wherever you might use an ordinary file name, Mathematica allows you instead to give
a pipe, written as an external command, prefaced by an exclamation point. When you use the pipe,
Mathematica will execute the external command, and send or receive text from it.

This sends the result from
FactorInteger to the external
program lpr. On many Unix systems,
this program generates a printout.

In[1]:= FactorInteger[2^31 - 1] >> !lpr

This executes the external command
echo $TERM, then reads the result as
Mathematica input.

In[2]:= <<"!echo $TERM"

Out[2]= dumb

One point to notice is that you can get away with dropping the double quotes around the name of
a pipe on the right-hand side of << or >> if the name does not contain any spaces or other special
characters.

Pipes in Mathematica provide a very general mechanism for unstructured communication with
external programs. On many computer systems, Mathematica pipes are implemented using pipe mech-
anisms in the underlying operating system; in some cases, however, other interprocess communication
mechanisms are used. One restriction of unstructured communication in Mathematica is that a given



2.12.2 External Programs 629

pipe can only be used for input or for output, and not for both at the same time. In order to do
genuine two-way communication, you need to use MathLink.

Even with unstructured communication, you can nevertheless set up somewhat more complicated
arrangements by using temporary files. The basic idea is to write data to a file, then to read it as
needed.

OpenTemporary[ ] open a temporary file with a unique name

Opening a temporary file.

Particularly when you work with temporary files, you may find it useful to be able to execute
external commands which do not explicitly send or receive data from Mathematica. You can do this
using the Mathematica function Run.

Run["command", arg�, . . . ] run an external command from within Mathematica

Running external commands without input or output.

This executes the external Unix
command date. The returned value is
an “exit code” from the operating
system.

In[3]:= Run["date"]

Sat Jun 28 01:19:18 CDT 2003

Out[3]= 0

Note that when you use Run, you must not preface commands with exclamation points. Run simply
takes the textual forms of the arguments you specify, then joins them together with spaces in between,
and executes the resulting string as an external command.

It is important to realize that Run never “captures” any of the output from an external command.
As a result, where this output goes is purely determined by your operating system. Similarly, Run
does not supply input to external commands. This means that the commands can get input through
any mechanism provided by your operating system. Sometimes external commands may be able to
access the same input and output streams that are used by Mathematica itself. In some cases, this may
be what you want. But particularly if you are using Mathematica with a front end, this can cause
considerable trouble.

!command intercept a line of Mathematica input, and run it as an
external command

Shell escapes in Mathematica.



630 2. Principles of Mathematica � 2.12 Files and Streams

If you use Mathematica with a text-based interface, there is usually a special mechanism for execut-
ing external commands. With such an interface, Mathematica takes any line of input that starts with
an exclamation point, and executes the text on the remainder of the line as an external command.

The way Mathematica uses !command is typical of the way “shell escapes” work in programs run-
ning under the Unix operating system. In most versions of Mathematica, you will be able to start an
interactive shell from Mathematica simply by typing a single exclamation point on its own on a line.

This line is taken as a “shell escape”,
and executes the Unix command date.

In[4]:= !date

Sat Jun 28 01:19:18 CDT 2003

Out[4]= 0

RunThrough["command", expr] run command, using expr as input, and reading the output
back into Mathematica

Running Mathematica expressions through external programs.

As discussed above, << and >> cannot be used to both send and receive data from an external
program at the same time. Nevertheless, by using temporary files, you can effectively both send and
receive data from an external program while still using unstructured communication.

The function RunThrough writes the text of an expression to a temporary file, then feeds this
file as input to an external program, and captures the output as input to Mathematica. Note that in
RunThrough, like Run, you should not preface the names of external commands with exclamation
points.

This feeds the expression 789 to the
external program cat, which in this
case simply echoes the text of the
expression. The output from cat is
then read back into Mathematica.

In[5]:= RunThrough["cat", 789]

Out[5]= 789

2.12.3 Advanced Topic: Streams and Low-Level Input and Output

Files and pipes are both examples of general Mathematica objects known as streams. A stream in
Mathematica is a source of input or output. There are many operations that you can perform on
streams.

You can think of >> and << as “high-level” Mathematica input-output functions. They are based on
a set of lower-level input-output primitives that work directly with streams. By using these primitives,
you can exercise more control over exactly how Mathematica does input and output. You will often
need to do this, for example, if you write Mathematica programs which store and retrieve intermediate
data from files or pipes.



2.12.3 Advanced Topic: Streams and Low-Level Input and Output 631

The basic low-level scheme for writing output to a stream in Mathematica is as follows. First, you
call OpenWrite or OpenAppend to “open the stream”, telling Mathematica that you want to write output
to a particular file or external program, and in what form the output should be written. Having
opened a stream, you can then call Write or WriteString to write a sequence of expressions or
strings to the stream. When you have finished, you call Close to “close the stream”.

"name" a file, specified by name

"!name" a command, specified by name

InputStream["name", n] an input stream

OutputStream["name", n] an output stream

Streams in Mathematica.

When you open a file or a pipe, Mathematica creates a “stream object” that specifies the open stream
associated with the file or pipe. In general, the stream object contains the name of the file or the
external command used in a pipe, together with a unique number.

The reason that the stream object needs to include a unique number is that in general you can
have several streams connected to the same file or external program at the same time. For example,
you may start several different instances of the same external program, each connected to a different
stream.

Nevertheless, when you have opened a stream, you can still refer to it using a simple file name or
external command name so long as there is only one stream associated with this object.

This opens an output stream to the file
tmp.

In[1]:= stmp = OpenWrite["tmp"]

Out[1]= OutputStreamtmp, 6�
This writes a sequence of expressions
to the file.

In[2]:= Write[stmp, a, b, c]

Since you only have one stream
associated with file tmp, you can refer
to it simply by giving the name of the
file.

In[3]:= Write["tmp", x]

This closes the stream. In[4]:= Close[stmp]

Out[4]= tmp

Here is what was written to the file. In[5]:= !!tmp

abc
x



632 2. Principles of Mathematica � 2.12 Files and Streams

OpenWrite["file"] open an output stream to a file, wiping out the previous
contents of the file

OpenAppend["file"] open an output stream to a file, appending to what was
already in the file

OpenWrite["!command"] open an output stream to an external command

Write[stream, expr�, expr�, . . . ]
write a sequence of expressions to a stream, ending the
output with a newline (line feed)

WriteString[stream, str�, str�, . . . ]
write a sequence of character strings to a stream, with no
extra newlines

Display[stream, graphics] write graphics or sound output to a stream, in PostScript
form

Close[stream] tell Mathematica that you are finished with a stream

Low-level output functions.

When you call Write[stream, expr], it writes an expression to the specified stream. The default is
to write the expression in Mathematica input form. If you call Write with a sequence of expressions,
it will write these expressions one after another to the stream. In general, it leaves no space between
the successive expressions. However, when it has finished writing all the expressions, Write always
ends its output with a newline.

This re-opens the file tmp. In[6]:= stmp = OpenWrite["tmp"]

Out[6]= OutputStreamtmp, 10�
This writes a sequence of expressions
to the file, then closes the file.

In[7]:= Write[stmp, a^2, 1 + b^2]; Write[stmp, c^3]; Close[stmp]

Out[7]= tmp

All the expressions are written in input
form. The expressions from a single
Write are put on the same line.

In[8]:= !!tmp

a^21 + b^2
c^3

Write provides a way of writing out complete Mathematica expressions. Sometimes, however, you
may want to write out less structured data. WriteString allows you to write out any character string.
Unlike Write, WriteString adds no newlines or other characters.

This opens the stream. In[9]:= stmp = OpenWrite["tmp"]

Out[9]= OutputStreamtmp, 13�
This writes two strings to the stream. In[10]:= WriteString[stmp, "Arbitrary output.\n", "More output."]



2.12.3 Advanced Topic: Streams and Low-Level Input and Output 633

This writes another string, then closes
the stream.

In[11]:= WriteString[stmp, " Second line.\n"]; Close[stmp]

Out[11]= tmp

Here are the contents of the file. The
strings were written exactly as
specified, including only the newlines
that were explicitly given.

In[12]:= !!tmp

Arbitrary output.
More output. Second line.

Write[{stream�, stream�, . . . }, expr�, . . . ]
write expressions to a list of streams

WriteString[{stream�, stream�, . . . }, str�, . . . ]
write strings to a list of streams

Writing output to lists of streams.

An important feature of the functions Write and WriteString is that they allow you to write
output not just to a single stream, but also to a list of streams.

In using Mathematica, it is often convenient to define a channel which consists of a list of streams.
You can then simply tell Mathematica to write to the channel, and have it automatically write the same
object to several streams.

In a standard interactive Mathematica session, there are several output channels that are usually
defined. These specify where particular kinds of output should be sent. Thus, for example, $Output
specifies where standard output should go, while $Messages specifies where messages should go. The
function Print then works essentially by calling Write with the $Output channel. Message works in
the same way by calling Write with the $Messages channel. Page 705 lists the channels used in a
typical Mathematica session.

Note that when you run Mathematica through MathLink, a different approach is usually used. All
output is typically written to a single MathLink link, but each piece of output appears in a “packet”
which indicates what type it is.

In most cases, the names of files or external commands that you use in Mathematica correspond ex-
actly with those used by your computer’s operating system. On some systems, however, Mathematica
supports various streams with special names.

"stdout" standard output

"stderr" standard error

Special streams used on some computer systems.



634 2. Principles of Mathematica � 2.12 Files and Streams

The special stream "stdout" allows you to give output to the “standard output” provided by the
operating system. Note however that you can use this stream only with simple text-based interfaces
to Mathematica. If your interaction with Mathematica is more complicated, then this stream will not
work, and trying to use it may cause considerable trouble.

option name default value

FormatType InputForm the default output format to use

PageWidth 78 the width of the page in characters

NumberMarks $NumberMarks whether to include ` marks in approximate
numbers

CharacterEncoding $CharacterEncoding encoding to be used for special characters

Some options for output streams.

You can associate a number of options with output streams. You can specify these options when
you first open a stream using OpenWrite or OpenAppend.

This opens a stream, specifying that
the default output format used should
be OutputForm.

In[13]:= stmp = OpenWrite["tmp", FormatType -> OutputForm]

Out[13]= OutputStreamtmp, 16�
This writes expressions to the stream,
then closes the stream.

In[14]:= Write[stmp, x^2 + y^2, " ", z^2]; Close[stmp]

Out[14]= tmp

The expressions were written to the
stream in OutputForm.

In[15]:= !!tmp

2 2 2
x + y z

Note that you can always override the output format specified for a particular stream by wrapping
a particular expression you write to the stream with an explicit Mathematica format directive, such as
OutputForm or TeXForm.

The option PageWidth gives the width of the page available for textual output from Mathematica.
All lines of output are broken so that they fit in this width. If you do not want any lines to be
broken, you can set PageWidth -> Infinity. Usually, however, you will want to set PageWidth to
the value appropriate for your particular output device. On many systems, you will have to run an
external program to find out what this value is. Using SetOptions, you can make the default rule
for PageWidth be, for example, PageWidth :> <<"!devicewidth", so that an external program is run
automatically to find the value of the option.

This opens a stream, specifying that
the page width is 20 characters.

In[16]:= stmp = OpenWrite["tmp", PageWidth -> 20]

Out[16]= OutputStreamtmp, 19�



2.12.3 Advanced Topic: Streams and Low-Level Input and Output 635

This writes out an expression, then
closes the stream.

In[17]:= Write[stmp, Expand[(1 + x)^5]]; Close[stmp]

Out[17]= tmp

The lines in the expression written out
are all broken so as to be at most 20
characters long.

In[18]:= !!tmp

1 + 5*x + 10*x^2 +
10*x^3 + 5*x^4 +
x^5

The option CharacterEncoding allows you to specify a character encoding that will be used for
all strings containing special characters which are sent to a particular output stream, whether by
Write or WriteString. You will typically need to use CharacterEncoding if you want to modify
an international character set, or prevent a particular output device from receiving characters that it
cannot handle.

Options[stream] find the options that have been set for a stream

SetOptions[stream, opt� -> val�, . . . ]
reset options for an open stream

Manipulating options of streams.

This opens a stream with the default
settings for options.

In[19]:= stmp = OpenWrite["tmp"]

Out[19]= OutputStreamtmp, 22�
This changes the FormatType option
for the open stream.

In[20]:= SetOptions[stmp, FormatType -> TeXForm];

Options shows the options you have
set for the open stream.

In[21]:= Options[stmp]

Out[21]= �DOSTextFormat � True, FormatType � TeXForm,
PageWidth � 78, PageHeight � 22, TotalWidth � 	,
TotalHeight � 	, CharacterEncoding  ASCII,
NumberMarks  $NumberMarks�

This closes the stream again. In[22]:= Close[stmp]

Out[22]= tmp

Options[$Output] find the options set for all streams in the channel $Output

SetOptions[$Output, opt� -> val�, . . . ]
set options for all streams in the channel $Output

Manipulating options for the standard output channel.

At every point in your session, Mathematica maintains a list Streams[ ] of all the input and output
streams that are currently open, together with their options. In some cases, you may find it useful to
look at this list directly. Mathematica will not, however, allow you to modify the list, except indirectly
through OpenRead and so on.



636 2. Principles of Mathematica � 2.12 Files and Streams

- 2.12.4 Naming and Finding Files

The precise details of the naming of files differ from one computer system to another. Nevertheless,
Mathematica provides some fairly general mechanisms that work on all systems.

As mentioned in Section 1.11.2, Mathematica assumes that all your files are arranged in a hierarchy
of directories. To find a particular file, Mathematica must know both what the name of the file is, and
what sequence of directories it is in.

At any given time, however, you have a current working directory, and you can refer to files or
other directories by specifying where they are relative to this directory. Typically you can refer to
files or directories that are actually in this directory simply by giving their names, with no directory
information.

Directory[ ] your current working directory

SetDirectory["dir"] set your current working directory

ResetDirectory[ ] revert to your previous working directory

Manipulating directories.

This gives a string representing your
current working directory.

In[1]:= Directory[ ]

Out[1]= /users/sw

This sets your current working
directory to be the Packages
subdirectory.

In[2]:= SetDirectory["Packages"]

Out[2]= /users/sw/Packages

Now your current working directory is
different.

In[3]:= Directory[ ]

Out[3]= /users/sw/Packages

This reverts to your previous working
directory.

In[4]:= ResetDirectory[ ]

Out[4]= /users/sw

When you call SetDirectory, you can give any directory name that is recognized by your oper-
ating system. Thus, for example, on Unix-based systems, you can specify a directory one level up in
the directory hierarchy using the notation .., and you can specify your “home” directory as M.

Whenever you go to a new directory using SetDirectory, Mathematica always remembers what
the previous directory was. You can return to this previous directory using ResetDirectory. In
general, Mathematica maintains a stack of directories, given by DirectoryStack[ ]. Every time you
call SetDirectory, it adds a new directory to the stack, and every time you call ResetDirectory it
removes a directory from the stack.



2.12.4 Naming and Finding Files 637

ParentDirectory[ ] the parent of your current working directory

$InitialDirectory the initial directory when Mathematica was started

$HomeDirectory your home directory, if this is defined

, $BaseDirectory the base directory for system-wide files to be loaded by
Mathematica

, $UserBaseDirectory the base directory for user-specific files to be loaded by
Mathematica

, $InstallationDirectory the top-level directory in which your Mathematica installation
resides

Special directories.

Whenever you ask for a particular file, Mathematica in general goes through several steps to try and
find the file you want. The first step is to use whatever standard mechanisms exist in your operating
system or shell.

Mathematica scans the full name you give for a file, and looks to see whether it contains any of the
“metacharacters” *, $, M, ?, [, ", \ and '. If it finds such characters, then it passes the full name to your
operating system or shell for interpretation. This means that if you are using a Unix-based system,
then constructions like name* and $VAR will be expanded at this point. But in general, Mathematica
takes whatever was returned by your operating system or shell, and treats this as the full file name.

For output files, this is the end of the processing that Mathematica does. If Mathematica cannot find
a unique file with the name you specified, then it will proceed to create the file.

If you are trying to get input from a file, however, then there is another round of processing that
Mathematica does. What happens is that Mathematica looks at the value of the Path option for the
function you are using to determine the names of directories relative to which it should search for the
file. The default setting for the Path option is the global variable $Path.

Get["file", Path -> {"dir�", "dir�", . . . }]
get a file, searching for it relative to the directories diri

$Path default list of directories relative to which to search for
input files

Search path for files.

In general, the global variable $Path is defined to be a list of strings, with each string representing
a directory. Every time you ask for an input file, what Mathematica effectively does is temporarily to



638 2. Principles of Mathematica � 2.12 Files and Streams

make each of these directories in turn your current working directory, and then from that directory to
try and find the file you have requested.

Here is a typical setting for $Path. The
current directory (.) and your home
directory (M) are listed first.

In[5]:= $Path

Out[5]= {., M, /users/math/bin, /users/math/Packages}

FileNames[ ] list all files in your current working directory

FileNames["form"] list all files in your current working directory
whose names match the string pattern form

FileNames[{"form�", "form�", . . . }] list all files whose names match any of the formi

FileNames[forms, {"dir�", "dir�", . . . }] give the full names of all files whose names match
forms in any of the directories diri

FileNames[forms, dirs, n] include files that are in subdirectories up to n
levels down

FileNames[forms, dirs, Infinity] include files in all subdirectories

FileNames[forms, $Path, Infinity] give all files whose names match forms in any
subdirectory of the directories in $Path

Getting lists of files in particular directories.

Here is a list of all files in the current
working directory whose names end
with .m.

In[6]:= FileNames["*.m"]

Out[6]= {alpha.m, control.m, signals.m, test.m}

This lists files whose names start with
a in the current directory, and in
subdirectories with names that start
with P.

In[7]:= FileNames["a*", {".", "P*"}]

Out[7]= {alpha.m, Packages/astrodata, Packages/astro.m,

Previous/atmp}

FileNames returns a list of strings corresponding to file names. When it returns a file that is not
in your current directory, it gives the name of the file relative to the current directory. Note that all
names are given in the format appropriate for the particular computer system on which they were
generated.



2.12.4 Naming and Finding Files 639

DirectoryName["file"] extract the directory name from a file name

ToFileName["directory", "name"] assemble a full file name from a directory name and a
file name

ParentDirectory["directory"] give the parent of a directory

ToFileName[{"dir�", "dir�", . . . }, "name"]
assemble a full file name from a hierarchy of directory
names

ToFileName[{"dir�", "dir�", . . . }] assemble a single directory name from a hierarchy of
directory names

Manipulating file names.

You should realize that different computer systems may give file names in different ways. Thus,
for example, Windows systems typically give names in the form dir:\dir\#dir\#name, Unix systems
in the form dir/dir/name and Macintosh systems in the form :dir:dir:name. The function ToFileName
assembles file names in the appropriate way for the particular computer system you are using.

This gives the directory portion of the
file name.

In[8]:= DirectoryName["Packages/Math/test.m"]

Out[8]= Packages�Math�
This constructs the full name of another
file in the same directory as test.m.

In[9]:= ToFileName[%, "abc.m"]

Out[9]= Packages�Math�abc.m

If you want to set up a collection of related files, it is often convenient to be able to refer to one file
when you are reading another one. The global variable $Input gives the name of the file from which
input is currently being taken. Using DirectoryName and ToFileName you can then conveniently
specify the names of other related files.

$Input the name of the file or stream from which input is currently
being taken

Finding out how to refer to a file currently being read by Mathematica.



640 2. Principles of Mathematica � 2.12 Files and Streams

2.12.5 Files for Packages

When you create or use Mathematica packages, you will often want to refer to files in a system-
independent way. You can use contexts to do this.

The basic idea is that on every computer system there is a convention about how files corresponding
to Mathematica contexts should be named. Then, when you refer to a file using a context, the particular
version of Mathematica you are using converts the context name to the file name appropriate for the
computer system you are on.

<<context` read in the file corresponding to the specified context

Using contexts to specify files.

This reads in one of the standard
packages that come with Mathematica.

In[1]:= <<Graphics`Colors`

name.mx file in DumpSave format

name.mx/$SystemID/name.mx file in DumpSave format for your computer system

name.m file in Mathematica source format

name/init.m initialization file for a particular directory

dir/. . . files in other directories specified by $Path

The typical sequence of files looked for by <<name`.

Mathematica is set up so that <<name` will automatically try to load the appropriate version of a
file. It will first try to load a name.mx file that is optimized for your particular computer system. If
it finds no such file, then it will try to load a name.m file containing ordinary system-independent
Mathematica input.

If name is a directory, then Mathematica will try to load the initialization file init.m in that directory.
The purpose of the init.m file is to provide a convenient way to set up Mathematica packages that
involve many separate files. The idea is to allow you to give just the command <<name`, but then to
load init.m to initialize the whole package, reading in whatever other files are necessary.

This reads in the file Graphics/init.m,
which initializes all standard
Mathematica graphics packages.

In[2]:= <<Graphics`



2.12.6 Manipulating Files and Directories 641

2.12.6 Manipulating Files and Directories

CopyFile["file�", "file�"] copy file� to file�

RenameFile["file�", "file�"] give file� the name file�

DeleteFile["file"] delete a file

FileByteCount["file"] give the number of bytes in a file

FileDate["file"] give the modification date for a file

SetFileDate["file"] set the modification date for a file to be the current date

FileType["file"] give the type of a file as File, Directory or None

Functions for manipulating files.

Different operating systems have different commands for manipulating files. Mathematica provides
a simple set of file manipulation functions, intended to work in the same way under all operating
systems.

Notice that CopyFile and RenameFile give the final file the same modification date as the origi-
nal one. FileDate returns modification dates in the {year, month, day, hour, minute, second} format
used by Date.

CreateDirectory["name"] create a new directory

DeleteDirectory["name"] delete an empty directory

DeleteDirectory["name", DeleteContents -> True]
delete a directory and all files and directories it contains

RenameDirectory["name�", "name�"]
rename a directory

CopyDirectory["name�", "name�"]
copy a directory and all the files in it

Functions for manipulating directories.



642 2. Principles of Mathematica � 2.12 Files and Streams

- 2.12.7 Importing and Exporting Files

Import["file", "List"] import a one-dimensional list of data from a file

Export["file", list, "List"] export list to a file as a one-dimensional list of data

Import["file", "Table"] import a two-dimensional table of data from a file

Export["file", list, "Table"] export list to a file as a two-dimensional table of data

, Import["file", "CSV"] import data in comma-separated format

, Export["file", list, "CSV"] export data in comma-separated format

Importing and exporting lists and tables of data.

This exports a list of data to the file
out1.dat.

In[1]:= Export["out1.dat", {6.7, 8.2, -5.3}, "List"]

Out[1]= out1.dat

Here are the contents of the file. In[2]:= !!out1.dat

Out[2]= 6.7

8.2

�5.3

This imports the contents back into
Mathematica.

In[3]:= Import["out1.dat", "List"]

Out[3]= �6.7, 8.2, �5.3�
If you want to use data purely within Mathematica, then the best way to keep it in a file is usually
as a complete Mathematica expression, with all its structure preserved, as discussed on page 623. But
if you want to exchange data with other programs, it is often more convenient to have the data in a
simple list or table format.

This exports a two-dimensional array
of data.

In[4]:= Export["out2.dat", {{5.6 10^12, 7.2 10^12}, {3, 5}}, "Table"]

Out[4]= out2.dat

When necessary, numbers are written
in C or Fortran-like “E” notation.

In[5]:= !!out2.dat

5.6e12 7.2e12
3 5

This imports the array back into
Mathematica.

In[6]:= Import["out2.dat", "Table"]

Out[6]=   5.6�1012, 7.2�1012!, �3, 5�!
If you have a file in which each line consists of a single number, then you can use

Import["file", "List"] to import the contents of the file as a list of numbers. If each line consists of
a sequence of numbers separated by tabs or spaces, then Import["file", "Table"] will yield a list of
lists of numbers. If the file contains items that are not numbers, then these are returned as Mathematica
strings.



2.12.7 Importing and Exporting Files 643

This exports a mixture of textual and
numerical data.

In[7]:= Export["out3.dat", {{"first", 3.4}, {"second", 7.8}}]

Out[7]= out3.dat

Here is the exported data. In[8]:= !!out3.dat

first 3.4
second 7.8

This imports the data back into
Mathematica.

In[9]:= Import["out3.dat", "Table"]

Out[9]= ��first, 3.4�, �second, 7.8��
With InputForm, you can explicitly see
the strings.

In[10]:= InputForm[%]

Out[10]//InputForm= {{"first", 3.4}, {"second", 7.8}}

Import["file", "List"] treat each line as a separate numerical or other data item

Import["file", "Table"] treat each element on each line as a separate numerical or
other data item

Import["file", "Text"] treat the whole file as a single string of text

Import["file", "Lines"] treat each line as a string of text

Import["file", "Words"] treat each separated word as a string of text

Importing files in different formats.

This creates a file with two lines of
text.

In[11]:= Export["out4.dat",
{"The first line.", "The second line."}, "Lines"]

Out[11]= out4.dat

Here are the contents of the file. In[12]:= !!out4.dat

The first line.
The second line.

This imports the whole file as a single
string.

In[13]:= Import["out4.dat", "Text"]//InputForm

Out[13]//InputForm= "The first line.\nThe second line."

This imports the file as a list of lines of
text.

In[14]:= Import["out4.dat", "Lines"]//InputForm

Out[14]//InputForm= {"The first line.", "The second line."}

This imports the file as a list of words
separated by white space.

In[15]:= Import["out4.dat", "Words"]//InputForm

Out[15]//InputForm=
{"The", "first", "line.", "The", "second", "line."}



644 2. Principles of Mathematica � 2.12 Files and Streams

2.12.8 Reading Textual Data

With <<, you can read files which contain Mathematica expressions given in input form. Sometimes,
however, you may instead need to read files of data in other formats. For example, you may have
data generated by an external program which consists of a sequence of numbers separated by spaces.
This data cannot be read directly as Mathematica input. However, the function ReadList can take such
data from a file or input stream, and convert it to a Mathematica list.

ReadList["file", Number] read a sequence of numbers from a file, and put them in a
Mathematica list

Reading numbers from a file.

Here is a file of numbers. In[1]:= !!numbers

11.1 22.2 33.3
44.4 55.5 66.6

This reads all the numbers in the file,
and returns a list of them.

In[2]:= ReadList["numbers", Number]

Out[2]= �11.1, 22.2, 33.3, 44.4, 55.5, 66.6�

ReadList["file", {Number, Number}]
read numbers from a file, putting each successive pair into a
separate list

ReadList["file", Table[Number, {n}]]
put each successive block of n numbers in a separate list

ReadList["file", Number, RecordLists -> True]
put all the numbers on each line of the file into a separate
list

Reading blocks of numbers.

This puts each successive pair of
numbers from the file into a separate
list.

In[3]:= ReadList["numbers", {Number, Number}]

Out[3]= ��11.1, 22.2�, �33.3, 44.4�, �55.5, 66.6��
This makes each line in the file into a
separate list.

In[4]:= ReadList["numbers", Number, RecordLists -> True]

Out[4]= ��11.1, 22.2, 33.3�, �44.4, 55.5, 66.6��
ReadList can handle numbers which are given in Fortran-like “E” notation. Thus, for example,

ReadList will read 2.5E+5 as �	� � ���. Note that ReadList can handle numbers with any number of
digits of precision.



2.12.8 Reading Textual Data 645

Here is a file containing numbers in
Fortran-like “E” notation.

In[5]:= !!bignum

4.5E-5 7.8E4
2.5E2 -8.9

ReadList can handle numbers in this
form.

In[6]:= ReadList["bignum", Number]

Out[6]= �0.000045, 78000., 250., �8.9�

ReadList["file", type] read a sequence of objects of a particular type

ReadList["file", type, n] read at most n objects

Reading objects of various types.

ReadList can read not only numbers, but also a variety of other types of object. Each type of object
is specified by a symbol such as Number.

Here is a file containing text. In[7]:= !!strings

Here is text.
And more text.

This produces a list of the characters in
the file, each given as a one-character
string.

In[8]:= ReadList["strings", Character]

Out[8]= �H, e, r, e, , i, s, , t, e, x, t, ., ,
, A, n, d, , m, o, r, e, , t, e, x, t, .,�

Here are the integer codes
corresponding to each of the bytes in
the file.

In[9]:= ReadList["strings", Byte]

Out[9]= �72, 101, 114, 101, 32, 105, 115, 32, 116, 101,
120, 116, 46, 32, 10, 65, 110, 100, 32, 109,
111, 114, 101, 32, 116, 101, 120, 116, 46, 10�

This puts the data from each line in
the file into a separate list.

In[10]:= ReadList["strings", Byte, RecordLists -> True]

Out[10]= ��72, 101, 114, 101, 32, 105, 115, 32, 116, 101,
120, 116, 46, 32�, �65, 110, 100, 32, 109,
111, 114, 101, 32, 116, 101, 120, 116, 46��



646 2. Principles of Mathematica � 2.12 Files and Streams

Byte single byte of data, returned as an integer

Character single character, returned as a one-character string

Real approximate number in Fortran-like notation

Number exact or approximate number in Fortran-like notation

Word sequence of characters delimited by word separators

Record sequence of characters delimited by record separators

String string terminated by a newline

Expression complete Mathematica expression

Hold[Expression] complete Mathematica expression, returned inside Hold

Types of objects to read.

This returns a list of the “words” in
the file strings.

In[11]:= ReadList["strings", Word]

Out[11]= �Here, is, text., And, more, text.�
ReadList allows you to read “words” from a file. It considers a “word” to be any sequence of

characters delimited by word separators. You can set the option WordSeparators to specify the strings
you want to treat as word separators. The default is to include spaces and tabs, but not to include, for
example, standard punctuation characters. Note that in all cases successive words can be separated
by any number of word separators. These separators are never taken to be part of the actual words
returned by ReadList.

option name default value

RecordLists False whether to make a separate list for the
objects in each record

RecordSeparators {"\n"} separators for records

WordSeparators {" ", "\t"} separators for words

NullRecords False whether to keep zero-length records

NullWords False whether to keep zero-length words

TokenWords {} words to take as tokens

Options for ReadList.



2.12.8 Reading Textual Data 647

This reads the text in the file strings
as a sequence of words, using the
letter e and . as word separators.

In[12]:= ReadList["strings", Word, WordSeparators -> {"e", "."}]

Out[12]= �H, r, is t, xt, , And mor, t, xt�
Mathematica considers any data file to consist of a sequence of records. By default, each line is

considered to be a separate record. In general, you can set the option RecordSeparators to give a list
of separators for records. Note that words can never cross record separators. As with word separators,
any number of record separators can exist between successive records, and these separators are not
considered to be part of the records themselves.

By default, each line of the file is
considered to be a record.

In[13]:= ReadList["strings", Record] // InputForm

Out[13]//InputForm= {"Here is text. ", "And more text."}

Here is a file containing three
“sentences” ending with periods.

In[14]:= !!sentences

Here is text. And more.
And a second line.

This allows both periods and newlines
as record separators.

In[15]:= ReadList["sentences", Record,
RecordSeparators -> {".", "\n"}]

Out[15]= �Here is text, And more, And a second line�
This puts the words in each “sentence”
into a separate list.

In[16]:= ReadList["sentences", Word, RecordLists -> True,
RecordSeparators -> {".", "\n"}]

Out[16]= ��Here, is, text�,�And, more�, �And, a, second, line��

ReadList["file", Record, RecordSeparators -> { }]
read the whole of a file as a single string

ReadList["file", Record, RecordSeparators -> {{"lsep�", . . . }, {"rsep�", . . . }}]
make a list of those parts of a file which lie between the lsepi
and the rsepi

Settings for the RecordSeparators option.

Here is a file containing some text. In[17]:= !!source

f[x] (: function f :)

g[x] (: function g :)

This reads all the text in the file
source, and returns it as a single
string.

In[18]:= InputForm[
ReadList["source", Record, RecordSeparators -> { }]

]

Out[18]//InputForm=
{"f[x] (: function f :)\ng[x] (: function g :)\n"}



648 2. Principles of Mathematica � 2.12 Files and Streams

This gives a list of the parts of the file
that lie between (: and :) separators.

In[19]:= ReadList["source", Record,
RecordSeparators -> {{"(: "}, {" :)"}}]

Out[19]= �function f, function g�
By choosing appropriate separators,
you can pick out specific parts of files.

In[20]:= ReadList[ "source", Record,
RecordSeparators ->

{{"(: function ", "["}, {" :)", "]"}} ]

Out[20]= �x, f, x, g�
Mathematica usually allows any number of appropriate separators to appear between successive

records or words. Sometimes, however, when several separators are present, you may want to assume
that a “null record” or “null word” appears between each pair of adjacent separators. You can do this
by setting the options NullRecords -> True or NullWords -> True.

Here is a file containing “words”
separated by colons.

In[21]:= !!words

first:second::fourth:::seventh

Here the repeated colons are treated as
single separators.

In[22]:= ReadList["words", Word, WordSeparators -> {":"}]

Out[22]= �first, second, fourth, seventh�
Now repeated colons are taken to have
null words in between.

In[23]:= ReadList["words", Word, WordSeparators -> {":"},
NullWords -> True]

Out[23]= �first, second, , fourth, , , seventh�
In most cases, you want words to be delimited by separators which are not themselves considered

as words. Sometimes, however, it is convenient to allow words to be delimited by special “token
words”, which are themselves words. You can give a list of such token words as a setting for the
option TokenWords.

Here is some text. In[24]:= !!language

22*a*b+56*c+13*a*d

This reads the text, using the specified
token words to delimit words in the
text.

In[25]:= ReadList["language", Word, TokenWords -> {"+", "*"}]

Out[25]= �22, [, a, [, b, �, 56, [, c, �, 13, [, a, [, d�
You can use ReadList to read Mathematica expressions from files. In general, each expression must

end with a newline, although a single expression may go on for several lines.

Here is a file containing text that can
be used as Mathematica input.

In[26]:= !!exprs

x + y +
z
2^8

This reads the text in exprs as
Mathematica expressions.

In[27]:= ReadList["exprs", Expression]

Out[27]= �x � y � z, 256�
This prevents the expressions from
being evaluated.

In[28]:= ReadList["exprs", Hold[Expression]]

Out[28]= �Holdx � y � z�, Hold28��



2.12.8 Reading Textual Data 649

ReadList can insert the objects it reads into any Mathematica expression. The second argument
to ReadList can consist of any expression containing symbols such as Number and Word specifying
objects to read. Thus, for example, ReadList["file", {Number, Number}] inserts successive pairs of
numbers that it reads into lists. Similarly, ReadList["file", Hold[Expression]] puts expressions that
it reads inside Hold.

If ReadList reaches the end of your file before it has finished reading a particular set of objects
you have asked for, then it inserts the special symbol EndOfFile in place of the objects it has not yet
read.

Here is a file of numbers. In[29]:= !!numbers

11.1 22.2 33.3
44.4 55.5 66.6

The symbol EndOfFile appears in
place of numbers that were needed
after the end of the file was reached.

In[30]:= ReadList["numbers", {Number, Number, Number, Number}]

Out[30]= ��11.1, 22.2, 33.3, 44.4�,�55.5, 66.6, EndOfFile, EndOfFile��

ReadList["!command", type] execute a command, and read its output

ReadList[stream, type] read any input stream

Reading from commands and streams.

This executes the Unix command date,
and reads its output as a string.

In[31]:= ReadList["!date", String]

Out[31]= �Sat Jun 28 01:19:37 CDT 2003�

OpenRead["file"] open a file for reading

OpenRead["!command"] open a pipe for reading

Read[stream, type] read an object of the specified type from a stream

Skip[stream, type] skip over an object of the specified type in an input stream

Skip[stream, type, n] skip over n objects of the specified type in an input stream

Close[stream] close an input stream

Functions for reading from input streams.

ReadList allows you to read all the data in a particular file or input stream. Sometimes, however,
you want to get data a piece at a time, perhaps doing tests to find out what kind of data to expect
next.

When you read individual pieces of data from a file, Mathematica always remembers the “current
point” that you are at in the file. When you call OpenRead, Mathematica sets up an input stream from



650 2. Principles of Mathematica � 2.12 Files and Streams

a file, and makes your current point the beginning of the file. Every time you read an object from
the file using Read, Mathematica sets your current point to be just after the object you have read.
Using Skip, you can advance the current point past a sequence of objects without actually reading
the objects.

Here is a file of numbers. In[32]:= !!numbers

11.1 22.2 33.3
44.4 55.5 66.6

This opens an input stream from the
file.

In[33]:= snum = OpenRead["numbers"]

Out[33]= InputStreamnumbers, 49�
This reads the first number from the
file.

In[34]:= Read[snum, Number]

Out[34]= 11.1

This reads the second pair of numbers. In[35]:= Read[snum, {Number, Number}]

Out[35]= �22.2, 33.3�
This skips the next number. In[36]:= Skip[snum, Number]

And this reads the remaining numbers. In[37]:= ReadList[snum, Number]

Out[37]= �55.5, 66.6�
This closes the input stream. In[38]:= Close[snum]

Out[38]= numbers

You can use the options WordSeparators and RecordSeparators in Read and Skip just as you do
in ReadList.

Note that if you try to read past the end of file, Read returns the symbol EndOfFile.

2.12.9 Searching Files

FindList["file", "text"] get a list of all the lines in the file that contain the specified
text

FindList["file", "text", n] get a list of the first n lines that contain the specified text

FindList["file", {"text�", "text�", . . . }]
get lines that contain any of the texti

Finding lines that contain specified text.

Here is a file containing some text. In[1]:= !!textfile

Here is the first line of text.
And the second.
And the third. Here is the end.



2.12.9 Searching Files 651

This returns a list of all the lines in the
file containing the text is.

In[2]:= FindList["textfile", "is"]

Out[2]= �Here is the first line of text.,
And the third. Here is the end.�

The text fourth appears nowhere in
the file.

In[3]:= FindList["textfile", "fourth"]

Out[3]= ��
By default, FindList scans successive lines of a file, and returns those lines which contain the text you
specify. In general, however, you can get FindList to scan successive records, and return complete
records which contain specified text. As in ReadList, the option RecordSeparators allows you to
tell Mathematica what strings you want to consider as record separators. Note that by giving a pair
of lists as the setting for RecordSeparators, you can specify different left and right separators. By
doing this, you can make FindList search only for text which is between specific pairs of separators.

This finds all “sentences” ending with
a period which contain And.

In[4]:= FindList["textfile", "And", RecordSeparators -> {"."}]

Out[4]= �
And the second,
And the third�

option name default value

RecordSeparators {"\n"} separators for records

AnchoredSearch False whether to require the text searched for to be
at the beginning of a record

WordSeparators {" ", "\t"} separators for words

WordSearch False whether to require that the text searched for
appear as a word

IgnoreCase False whether to treat lower- and upper-case letters
as equivalent

Options for FindList.

This finds only the occurrence of Here
which is at the beginning of a line in
the file.

In[5]:= FindList["textfile", "Here", AnchoredSearch -> True]

Out[5]= �Here is the first line of text.�
In general, FindList finds text that appears anywhere inside a record. By setting the option

WordSearch -> True, however, you can tell FindList to require that the text it is looking for appears
as a separate word in the record. The option WordSeparators specifies the list of separators for words.

The text th does appear in the file, but
not as a word. As a result, the
FindList fails.

In[6]:= FindList["textfile", "th", WordSearch -> True]

Out[6]= ��



652 2. Principles of Mathematica � 2.12 Files and Streams

FindList[{"file�", "file�", . . . }, "text"]
search for occurrences of the text in any of the filei

Searching in multiple files.

This searches for third in two copies
of textfile.

In[7]:= FindList[{"textfile", "textfile"}, "third"]

Out[7]= �And the third. Here is the end.,
And the third. Here is the end.�

It is often useful to call FindList on lists of files generated by functions such as FileNames.

FindList["!command", . . . ] run an external command, and find text in its output

Finding text in the output from an external program.

This runs the external Unix command
date.

In[8]:= !date

Sat Jun 28 01:19:40 CDT 2003

Out[8]= 0

This finds the time-of-day field in the
date.

In[9]:= FindList["!date", ":", RecordSeparators -> {" "}]

Out[9]= �01:19:40�

OpenRead["file"] open a file for reading

OpenRead["!command"] open a pipe for reading

Find[stream, text] find the next occurrence of text

Close[stream] close an input stream

Finding successive occurrences of text.

FindList works by making one pass through a particular file, looking for occurrences of the text
you specify. Sometimes, however, you may want to search incrementally for successive occurrences
of a piece of text. You can do this using Find.

In order to use Find, you first explicitly have to open an input stream using OpenRead. Then, every
time you call Find on this stream, it will search for the text you specify, and make the current point in
the file be just after the record it finds. As a result, you can call Find several times to find successive
pieces of text.

This opens an input stream for
textfile.

In[10]:= stext = OpenRead["textfile"]

Out[10]= InputStreamtextfile, 24�



2.12.9 Searching Files 653

This finds the first line containing And. In[11]:= Find[stext, "And"]

Out[11]= And the second.

Calling Find again gives you the next
line containing And.

In[12]:= Find[stext, "And"]

Out[12]= And the third. Here is the end.

This closes the input stream. In[13]:= Close[stext]

Out[13]= textfile

Once you have an input stream, you can mix calls to Find, Skip and Read. If you ever call
FindList or ReadList, Mathematica will immediately read to the end of the input stream.

This opens the input stream. In[14]:= stext = OpenRead["textfile"]

Out[14]= InputStreamtextfile, 29�
This finds the first line which contains
second, and leaves the current point in
the file at the beginning of the next
line.

In[15]:= Find[stext, "second"]

Out[15]= And the second.

Read can then read the word that
appears at the beginning of the line.

In[16]:= Read[stext, Word]

Out[16]= And

This skips over the next three words. In[17]:= Skip[stext, Word, 3]

Mathematica finds is in the remaining
text, and prints the entire record as
output.

In[18]:= Find[stext, "is"]

Out[18]= And the third. Here is the end.

This closes the input stream. In[19]:= Close[stext]

Out[19]= textfile

StreamPosition[stream] find the position of the current point in an open stream

SetStreamPosition[stream, n] set the position of the current point

SetStreamPosition[stream, 0] set the current point to the beginning of a stream

SetStreamPosition[stream, Infinity]
set the current point to the end of a stream

Finding and setting the current point in a stream.

Functions like Read, Skip and Find usually operate on streams in an entirely sequential fashion.
Each time one of the functions is called, the current point in the stream moves on.

Sometimes, you may need to know where the current point in a stream is, and be able to reset it.
On most computer systems, StreamPosition returns the position of the current point as an integer
giving the number of bytes from the beginning of the stream.



654 2. Principles of Mathematica � 2.12 Files and Streams

This opens the stream. In[20]:= stext = OpenRead["textfile"]

Out[20]= InputStreamtextfile, 35�
When you first open the file, the
current point is at the beginning, and
StreamPosition returns 0.

In[21]:= StreamPosition[stext]

Out[21]= 0

This reads the first line in the file. In[22]:= Read[stext, Record]

Out[22]= Here is the first line of text.

Now the current point has advanced. In[23]:= StreamPosition[stext]

Out[23]= 31

This sets the stream position back. In[24]:= SetStreamPosition[stext, 5]

Out[24]= 5

Now Read returns the remainder of the
first line.

In[25]:= Read[stext, Record]

Out[25]= is the first line of text.

This closes the stream. In[26]:= Close[stext]

Out[26]= textfile

2.12.10 Searching and Reading Strings

Functions like Read and Find are most often used for processing text and data from external files. In
some cases, however, you may find it convenient to use these same functions to process strings within
Mathematica. You can do this by using the function StringToStream , which opens an input stream
that takes characters not from an external file, but instead from a Mathematica string.

StringToStream["string"] open an input stream for reading from a string

Close[stream] close an input stream

Treating strings as input streams.

This opens an input stream for reading
from the string.

In[1]:= str = StringToStream["A string of words."]

Out[1]= InputStreamString, 6�
This reads the first “word” from the
string.

In[2]:= Read[str, Word]

Out[2]= A

This reads the remaining words from
the string.

In[3]:= ReadList[str, Word]

Out[3]= �string, of, words.�



2.12.10 Searching and Reading Strings 655

This closes the input stream. In[4]:= Close[str]

Out[4]= String

Input streams associated with strings work just like those with files. At any given time, there is a cur-
rent position in the stream, which advances when you use functions like Read. The current position is
given as the number of bytes from the beginning of the string by the function StreamPosition[stream].
You can explicitly set the current position using SetStreamPosition[stream, n].

Here is an input stream associated
with a string.

In[5]:= str = StringToStream["123 456 789"]

Out[5]= InputStreamString, 12�
The current position is initially 0 bytes
from the beginning of the string.

In[6]:= StreamPosition[str]

Out[6]= 0

This reads a number from the stream. In[7]:= Read[str, Number]

Out[7]= 123

The current position is now 3 bytes
from the beginning of the string.

In[8]:= StreamPosition[str]

Out[8]= 3

This sets the current position to be 1
byte from the beginning of the string.

In[9]:= SetStreamPosition[str, 1]

Out[9]= 1

If you now read a number from the
string, you get the 23 part of 123.

In[10]:= Read[str, Number]

Out[10]= 23

This sets the current position to the
end of the string.

In[11]:= SetStreamPosition[str, Infinity]

Out[11]= 11

If you now try to read from the stream,
you will always get EndOfFile.

In[12]:= Read[str, Number]

Out[12]= EndOfFile

This closes the stream. In[13]:= Close[str]

Out[13]= String

Particularly when you are processing large volumes of textual data, it is common to read fairly
long strings into Mathematica, then to use StringToStream to allow further processing of these strings
within Mathematica. Once you have created an input stream using StringToStream , you can read
and search the string using any of the functions discussed for files above.

This puts the whole contents of
textfile into a string.

In[14]:= s = First[ ReadList["textfile", Record,
RecordSeparators -> {}] ]

Out[14]= Here is the first line of text.
And the second.
And the third. Here is the end.

This opens an input stream for the
string.

In[15]:= str = StringToStream[s]

Out[15]= InputStreamString, 24�



656 2. Principles of Mathematica � 2.12 Files and Streams

This gives the lines of text in the string
that contain is.

In[16]:= FindList[str, "is"]

Out[16]= �Here is the first line of text.,
And the third. Here is the end.�

This resets the current position back to
the beginning of the string.

In[17]:= SetStreamPosition[str, 0]

Out[17]= 0

This finds the first occurrence of the in
the string, and leaves the current point
just after it.

In[18]:= Find[str, "the", RecordSeparators -> {" "}]

Out[18]= the

This reads the “word” which appears
immediately after the.

In[19]:= Read[str, Word]

Out[19]= first

This closes the input stream. In[20]:= Close[str]

Out[20]= String



2.13.1 How MathLink Is Used 657

2.13 MathLink and External Program
Communication

2.13.1 How MathLink Is Used

Most of this book has been concerned with how human users interact with Mathematica. MathLink
provides a mechanism through which programs rather than human users can interact with Mathematica.

Calling functions in an external program from within Mathematica.

Calling Mathematica from within an external program.

Setting up alternative front ends to Mathematica.

Exchanging data between Mathematica and external programs.

Exchanging data between concurrent Mathematica processes.

Some typical uses of MathLink.

MathLink provides a general interface for external programs to communicate with Mathematica.
Many standard software systems now have MathLink compatibility either built in or available in
add-on modules.

In addition, the MathLink Developer Kit bundled with most versions of Mathematica provides the
tools you need to create your own MathLink-compatible programs.

Once you have a MathLink-compatible program, you can transparently establish a link between it
and Mathematica.

The link can either be on a single computer, or it can be over a network, potentially with a different
type of computer at each end.

Implementing inner loops in a low-level language.

Handling large volumes of data external to Mathematica.

Sending Mathematica graphics or other data for special processing.

Connecting to a system with an existing user interface.

A few uses of MathLink-compatible programs.



658 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

MathLink-compatible programs range from very simple to very complex. A minimal MathLink-
compatible program is just a few lines long. But it is also possible to build very large and sophisti-
cated MathLink-compatible programs. Indeed, the Mathematica notebook front end is one example of
a sophisticated MathLink-compatible program.

MathLink is a mechanism for exchanging Mathematica expressions between programs.

The basic idea of MathLink.

Much of the power of MathLink comes from its use of Mathematica expressions. The basic idea
is that MathLink provides a way to exchange Mathematica expressions between programs, and such
expressions can represent absolutely any kind of data.

An array of numbers.

A collection of geometrical objects.

A sequence of commands.

A stream of text.

Records in a database.

The cells of a Mathematica notebook.

A few examples of data represented by Mathematica expressions in MathLink.

The MathLink library consists of a collection of routines that allow external programs to send and
receive Mathematica expressions.

The MathLink Developer Kit provides utilities for incorporating these routines into external pro-
grams. Utilities are included for a variety of languages, although in this chapter we discuss mainly
the case of C.

An important feature of the MathLink library is that it is completely platform independent: it can
transparently use any interprogram communication mechanism that exists on your computer system.

2.13.2 Installing Existing MathLink-Compatible Programs

One of the most common uses of MathLink is to allow you to call functions in an external program
from within Mathematica. Once the external program has been set up, all you need do to be able to
use it is to “install” it in your current Mathematica session.



2.13.3 Setting Up External Functions to Be Called from Mathematica 659

Install["prog"] install a MathLink-compatible external program

Uninstall[link] uninstall the program

Setting up external programs with functions to be called from within Mathematica.

This installs a MathLink-compatible
external program called bitprog.

In[1]:= Install["bitprog"]

Out[1]= LinkObjectbitprog, 4, 4�
BitShift is one of the functions inside
bitprog.

In[2]:= BitShift[111, 3]

Out[2]= 13

You can use it just as you would a
function within Mathematica.

In[3]:= Table[BitShift[111, i], {i, 30, 35}]

Out[3]= �0, 0, 111, 55, 27, 13�
When you have a package written in the Mathematica language a single version will run unchanged

on any computer system. But external programs typically need to be compiled separately for every
different type of computer.

Mathematica has a convention of keeping versions of external programs in directories that are named
after the types of computers on which they will run. And assuming that this convention has been
followed, Install["prog"] should always install the version of prog appropriate for the particular
kind of computer that you are currently using.

Install["name`"] install a program found anywhere on $Path

Using context names to specify programs to install.

When you ask to read in a Mathematica language file using <<name`, Mathematica will automatically
search all directories in the list $Path in order to find a file with the appropriate name. Similarly, if
you use Install["name`"] Mathematica will automatically search all directories in $Path in order to
find an external program with the name name.exe. Install["name`"] allows you to install programs
that are stored in a central directory without explicitly having to specify their location.

2.13.3 Setting Up External Functions to Be Called from Mathematica

If you have a function defined in an external program, then what you need to do in order to make it
possible to call the function from within Mathematica is to add appropriate MathLink code that passes
arguments to the function, and takes back the results it produces.

In simple cases, you can generate the necessary code just by giving an appropriate MathLink template
for each external function.



660 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

:Begin:
:Function: f
:Pattern: f[x_Integer, y_Integer]
:Arguments: {x, y}
:ArgumentTypes: {Integer, Integer}
:ReturnType: Integer
:End:

A file f.tm containing a MathLink template for an external function f.

:Begin: begin the template for a particular function

:Function: the name of the function in the external program

:Pattern: the pattern to be defined to call the function

:Arguments: the arguments to the function

:ArgumentTypes: the types of the arguments to the function

:ReturnType: the type of the value returned by the function

:End: end the template for a particular function

:Evaluate: Mathematica input to evaluate when the function is installed

The elements of a MathLink template.

Once you have constructed a MathLink template for a particular external function, you have to
combine this template with the actual source code for the function. Assuming that the source code is
written in the C programming language, you can do this just by adding a line to include the standard
MathLink header file, and then inserting a small main program.

Include the standard MathLink header
file.

#include "mathlink.h"

Here is the actual source code for the
function f.

int f(int x, int y) �
return x+y;

�
This sets up the external program to be
ready to take requests from
Mathematica.

int main(int argc, char *argv[]) �
return MLMain(argc, argv);

�
A file f.c containing C source code.



2.13.3 Setting Up External Functions to Be Called from Mathematica 661

Note that the form of main required on different systems may be slightly different. The release
notes included in the MathLink Developer Kit on your particular computer system should give the
appropriate form.

mcc preprocess and compile MathLink source files

mprep preprocess MathLink source files

Typical external programs for processing MathLink source files.

MathLink templates are conventionally put in files with names of the form file.tm. Such files can
also contain C source code, interspersed between templates for different functions.

Once you have set up the appropriate files, you then need to process the MathLink template in-
formation, and compile all of your source code. Typically you do this by running various external
programs, but the details will depend on your computer system.

Under Unix, for example, the MathLink Developer Kit includes a program named mcc which will
preprocess MathLink templates in any file whose name ends with .tm, and then call cc on the resulting
C source code. mcc will pass command-line options and other files directly to cc.

This preprocesses f.tm, then compiles
the resulting C source file together
with the file f.c.

mcc -o f.exe f.tm f.c

This installs the binary in the current
Mathematica session.

In[1]:= Install["f.exe"]

Out[1]= LinkObjectf.exe, 4, 4�
Now f[x, y] calls the external
function f(int x, int y) and adds
two integers together.

In[2]:= f[6, 9]

Out[2]= 15

The external program handles only
machine integers, so this gives a
peculiar result.

In[3]:= f[2^31-1, 5]

Out[3]= �2147483644

On systems other than Unix, the MathLink Developer Kit typically includes a program named
mprep, which you have to call directly, giving as input all of the .tm files that you want to preprocess.
mprep will generate C source code as output, which you can then feed to a C compiler.



662 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

Install["prog"] install an external program

Uninstall[link] uninstall an external program

Links["prog"] show active links associated with "prog"

Links[ ] show all active links

LinkPatterns[link] show patterns that can be evaluated on a particular link

Handling links to external programs.

This finds the link to the f.exe
program.

In[4]:= Links["f.exe"]

Out[4]= {LinkObject[f.exe, 4, 4]}

This shows the Mathematica patterns
that can be evaluated using the link.

In[5]:= LinkPatterns[%[[1]]]

Out[5]= {f[x_Integer, y_Integer]}

Install sets up the actual function f
to execute an appropriate
ExternalCall function.

In[6]:= ?f

Global`f
f[x_Integer, y_Integer] := ExternalCall[

LinkObject["f.exe", 4, 4], CallPacket[0, {x, y}]]

When a MathLink template file is processed, two basic things are done. First, the :Pattern: and
:Arguments: specifications are used to generate a Mathematica definition that calls an external function
via MathLink. And second, the :Function:, :ArgumentTypes: and :ReturnType: specifications are
used to generate C source code that calls your function within the external program.

:Begin:

This gives the name of the actual C
function to call in the external program.

:Function: prog_add

This gives the Mathematica pattern for
which a definition should be set up.

:Pattern: SkewAdd[x_Integer, y_Integer:1]

The values of the two list elements are
the actual arguments to be passed to
the external function.

:Arguments: �x, If[x > 1, y, y + x - 2]�

This specifies that the arguments
should be passed as integers to the C
function.

:ArgumentTypes: �Integer, Integer�

This specifies that the return value
from the C function will be an integer.

:ReturnType: Integer

:End:



2.13.3 Setting Up External Functions to Be Called from Mathematica 663

Both the :Pattern: and :Arguments: specifications in a MathLink template can be any Mathematica
expressions. Whatever you give as the :Arguments: specification will be evaluated every time you
call the external function. The result of the evaluation will be used as the list of arguments to pass to
the function.

Sometimes you may want to set up Mathematica expressions that should be evaluated not when an
external function is called, but instead only when the external function is first installed.

You can do this by inserting :Evaluate: specifications in your MathLink template. The expression
you give after :Evaluate: can go on for several lines: it is assumed to end when there is first a blank
line, or a line that does not begin with spaces or tabs.

This specifies that a usage message for
SkewAdd should be set up when the
external program is installed.

:Evaluate: SkewAdd::usage = "SkewAdd[x, y] performs
a skew addition in an external program."

When an external program is installed, the specifications in its MathLink template file are used in
the order they were given. This means that any expressions given in :Evaluate: specifications that
appear before :Begin: will have been evaluated before definitions for the external function are set up.

Here are Mathematica expressions to be
evaluated before the definitions for
external functions are set up.

:Evaluate: BeginPackage["XPack`"]
:Evaluate: XF1::usage = "XF1[x, y] is one external function."
:Evaluate: XF2::usage = "XF2[x] is another external function."
:Evaluate: Begin["`Private`"]

This specifies that the function XF1 in
Mathematica should be set up to call the
function f in the external C program.

:Begin:
:Function: f
:Pattern: XF1[x_Integer, y_Integer]
:Arguments: �x, y�
:ArgumentTypes: �Integer, Integer�
:ReturnType: Integer
:End:

This specifies that XF2 in Mathematica
should call g. Its argument and return
value are taken to be approximate real
numbers.

:Begin:
:Function: g
:Pattern: XF2[x_?NumberQ]
:Arguments: �x�
:ArgumentTypes: �Real�
:ReturnType: Real
:End:

These Mathematica expressions are
evaluated after the definitions for the
external functions. They end the
special context used for the definitions.

:Evaluate: End[ ]
:Evaluate: EndPackage[ ]



664 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

Here is the actual source code for the
function f. There is no need for the
arguments of this function to have the
same names as their Mathematica
counterparts.

int f(int i, int j) �
return i + j;

�

Here is the actual source code for g.
Numbers that you give in Mathematica
will automatically be converted into C
double types before being passed to g.

double g(double x) �
return x*x;

�

By using :Evaluate: specifications, you can evaluate Mathematica expressions when an external
program is first installed. You can also execute code inside the external program at this time simply
by inserting the code in main() before the call to MLMain(). This is sometimes useful if you need to
initialize the external program before any functions in it are used.

MLEvaluateString(stdlink, "string") evaluate a string as Mathematica input

Executing a command in Mathematica from within an external program.

int diff(int i, int j) {

This evaluates a Mathematica Print
function if i < j.

if (i < j) MLEvaluateString(stdlink, "Print[\"negative\"]");

return i - j;
}

This installs an external program
containing the diff function defined
above.

In[7]:= Install["diffprog"]

Out[7]= LinkObjectdiffprog, 5, 5�
Calling diff causes Print to be
executed.

In[8]:= diff[4, 7]

negative

Out[8]= �3

Note that any results generated in the evaluation requested by MLEvaluateString() are ignored.
To make use of such results requires full two-way communication between Mathematica and external
programs, as discussed on page 687.



2.13.4 Handling Lists, Arrays and Other Expressions 665

2.13.4 Handling Lists, Arrays and Other Expressions

MathLink allows you to exchange data of any type with external programs. For more common types
of data, you simply need to give appropriate :ArgumentTypes: or :ReturnType: specifications in
your MathLink template file.

Mathematica specification C specification

Integer integer int

Real floating-point number double

IntegerList list of integers int *, long

RealList list of floating-point numbers double *, long

String character string char *

Symbol symbol name char *

Manual call MathLink routines directly void

Basic type specifications.

Here is the MathLink template for a
function that takes a list of integers as
its argument.

:Begin:
:Function: h
:Pattern: h[a_List]
:Arguments: �a�
:ArgumentTypes: �IntegerList�
:ReturnType: Integer
:End:

Here is the C source code for the
function. Note the extra argument
alen which is used to pass the length
of the list.

int h(int *a, long alen) �
int i, tot=0;

for(i=0; i<alen; i++)
tot += a[i];

return tot;
�

This installs an external program
containing the specifications for the
function h.

In[1]:= Install["hprog"]

Out[1]= LinkObjecthprog, 4, 4�



666 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

This calls the external code. In[2]:= h[{3, 5, 6}]

Out[2]= 14

This does not match the pattern
h[a_List] so does not call the external
code.

In[3]:= h[67]

Out[3]= h67�
The pattern is matched, but the
elements in the list are of the wrong
type for the external code, so $Failed
is returned.

In[4]:= h[{a, b, c}]

Out[4]= $Failed

You can mix basic types of arguments in any way you want. Whenever you use IntegerList or
RealList, however, you have to include an extra argument in your C program to represent the length
of the list.

Here is an :ArgumentTypes:
specification.

:ArgumentTypes: �IntegerList, RealList, Integer�

Here is a possible corresponding C
function declaration.

void f(int *a, long alen, double *b, long blen, int c)

Note that when a list is passed to a C program by MathLink its first element is assumed to be at
position 0, as is standard in C, rather than at position 1, as is standard in Mathematica.

In addition, following C standards, character strings specified by String are passed as char *
objects, terminated by \0 null bytes. Page 679 discusses how to handle special characters.



2.13.4 Handling Lists, Arrays and Other Expressions 667

MLPutInteger(stdlink, int i) put a single integer

MLPutReal(stdlink, double x) put a single floating-point number

MLPutIntegerList(stdlink, int *a, long n)
put a list of n integers starting from location a

MLPutRealList(stdlink, double *a, long n)
put a list of n floating-point numbers starting from
location a

MLPutIntegerArray(stdlink, int *a, long *dims, NULL, long d)
put an array of integers to form a depth d list with
dimensions dims

MLPutRealArray(stdlink, double *a, long *dims, NULL, long d)
put an array of floating-point numbers

MLPutString(stdlink, char *s) put a character string

MLPutSymbol(stdlink, char *s) put a character string as a symbol name

MLPutFunction(stdlink, char *s, long n)
begin putting a function with head s and n arguments

MathLink functions for sending data to Mathematica.

When you use a MathLink template file, what mprep and mcc actually do is to create a C program
that includes explicit calls to MathLink library functions. If you want to understand how MathLink
works, you can look at the source code of this program. Note when you use mcc, you typically need
to give a -g option, otherwise the source code that is generated is automatically deleted.

If your external function just returns a single integer or floating-point number, then you can specify
this just by giving Integer or Real as the :ReturnType: in your MathLink template file. But because
of the way memory allocation and deallocation work in C, you cannot directly give :ReturnType:
specifications such as IntegerList or RealList. And instead, to return such structures, you must ex-
plicitly call MathLink library functions within your C program, and give Manual as the :ReturnType:
specification.



668 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

Here is the MathLink template for a
function that takes an integer as an
argument, and returns its value using
explicit MathLink functions.

:Begin:
:Function: bits
:Pattern: bits[i_Integer]
:Arguments: �i�
:ArgumentTypes: �Integer�
:ReturnType: Manual
:End:

The function is declared as void. void bits(int i) {

int a[32], k;

This puts values into the C array a. for(k=0; k<32; k++) �
a[k] = i%2;
i >>= 1;
if (i==0) break;

�
if (k<32) k++;

This sends k elements of the array a
back to Mathematica.

MLPutIntegerList(stdlink, a, k);
return ;

}

This installs the program containing
the external function bits.

In[5]:= Install["bitsprog"]

Out[5]= LinkObjectbitsprog, 5, 5�
The external function now returns a list
of bits.

In[6]:= bits[14]

Out[6]= �0, 1, 1, 1�
If you declare an array in C as int a[n1][n2][n3] then you can use MLPutIntegerArray() to

send it to Mathematica as a depth 3 list.



2.13.4 Handling Lists, Arrays and Other Expressions 669

...

Here is a declaration for a
3-dimensional C array.

int a[8][16][100];

This sets up the array dims and
initializes it to the dimensions of a.

long dims[] = �8, 16, 100�;

...

This sends the 3-dimensional array a to
Mathematica, creating a depth 3 list.

MLPutIntegerArray(stdlink, a, dims, NULL, 3);

...

You can use MathLink functions to create absolutely any Mathematica expression. The basic idea is
to call a sequence of MathLink functions that correspond directly to the FullForm representation of
the Mathematica expression.

This sets up the Mathematica function
Plus with 2 arguments.

MLPutFunction(stdlink, "Plus", 2);

This specifies that the first argument is
the integer 77.

MLPutInteger(stdlink, 77);

And this specifies that the second
argument is the symbol x.

MLPutSymbol(stdlink, "x");

In general, you first call MLPutFunction(), giving the head of the Mathematica function you want
to create, and the number of arguments it has. Then you call other MathLink functions to fill in each
of these arguments in turn. Section 2.1 discusses the general structure of Mathematica expressions and
the notion of heads.

This creates a Mathematica list with 2
elements.

MLPutFunction(stdlink, "List", 2);

The first element of the list is a list of
10 integers from the C array r.

MLPutIntegerList(stdlink, r, 10);

The second element of the main list is
itself a list with 2 elements.

MLPutFunction(stdlink, "List", 2);

The first element of this sublist is a
floating-point number.

MLPutReal(stdlink, 4.5);

The second element is an integer. MLPutInteger(stdlink, 11);



670 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

MLPutIntegerArray() and MLPutRealArray() allow you to send arrays which are laid out in
memory in the one-dimensional way that C pre-allocates them. But if you create arrays during the
execution of a C program, it is more common to set them up as nested collections of pointers. You
can send such arrays to Mathematica by using a sequence of MLPutFunction() calls, ending with an
MLPutIntegerList() call.

...

This declares a to be a nested list of
lists of lists of integers.

int ***a;

...

This creates a Mathematica list with n1
elements.

MLPutFunction(stdlink, "List", n1);

for (i=0; i<n1; i++) {

This creates a sublist with n2 elements. MLPutFunction(stdlink, "List", n2);

for (j=0; j<n2; j++) {

This writes out lists of integers. MLPutIntegerList(stdlink, a[i][j], n3);

}
}

...

It is important to realize that any expression you create using MathLink functions will be evalu-
ated as soon as it is sent to Mathematica. This means, for example, that if you wanted to transpose
an array that you were sending back to Mathematica, all you would need to do is to wrap a
Transpose around the expression representing the array. You can then do this simply by calling
MLPutFunction(stdlink, "Transpose", 1); just before you start creating the expression that repre-
sents the array.

The idea of post-processing data that you send back to Mathematica has many uses. One example
is as a way of sending lists whose length you do not know in advance.

This creates a list in Mathematica by
explicitly appending successive
elements.

In[7]:= t = {}; Do[t = Append[t, i^2], {i, 5}]; t

Out[7]= �1, 4, 9, 16, 25�
This creates a list in which each
successive element is in a nested
sublist.

In[8]:= t = {}; Do[t = {t, i^2}, {i, 5}]; t

Out[8]= �������, 1�, 4�, 9�, 16�, 25�
Flatten flattens out the list. In[9]:= Flatten[t]

Out[9]= �1, 4, 9, 16, 25�



2.13.4 Handling Lists, Arrays and Other Expressions 671

Sequence automatically flattens itself. In[10]:= {Sequence[1, Sequence[4, Sequence[ ]]]}

Out[10]= �1, 4�
In order to call MLPutIntegerList(), you need to know the length of the list you want to send.

But by creating a sequence of nested Sequence objects, you can avoid having to know the length of
your whole list in advance.

This sets up the List around your
result.

MLPutFunction(stdlink, "List", 1);

while(condition) {
generate an element

Create the next level Sequence object. MLPutFunction(stdlink, "Sequence", 2);

Put the element. MLPutInteger(stdlink, i);

}

This closes off your last Sequence
object.

MLPutFunction(stdlink, "Sequence", 0);

MLGetInteger(stdlink, int *i) get an integer, storing it at address i

MLGetReal(stdlink, double *x) get a floating-point number, storing it at address x

Basic functions for explicitly getting data from Mathematica.

Just as MathLink provides functions like MLPutInteger() to send data from an external program
into Mathematica, so also MathLink provides functions like MLGetInteger() that allow you to get data
from Mathematica into an external program.

The list that you give for :ArgumentTypes: in a MathLink template can end with Manual, indicat-
ing that after other arguments have been received, you will call MathLink functions to get additional
expressions.



672 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

:Begin:
:Function: f

The function f in Mathematica takes 3
arguments.

:Pattern: f[i_Integer, x_Real, y_Real]

All these arguments are passed directly
to the external program.

:Arguments: �i, x, y�

Only the first argument is sent directly
to the external function.

:ArgumentTypes: �Integer, Manual�

:ReturnType: Real
:End:

The external function only takes one
explicit argument.

double f(int i) {

This declares the variables x and y. double x, y;

MLGetReal() explicitly gets data from
the link.

MLGetReal(stdlink, &x);
MLGetReal(stdlink, &y);

return i+x+y;
}

MathLink functions such as MLGetInteger(link, pi) work much like standard C library functions
such as fscanf(fp, "%d", pi). The first argument specifies the link from which to get data. The last
argument gives the address at which the data that is obtained should be stored.

MLCheckFunction(stdlink, "name", long *n)
check the head of a function and store how many arguments
it has

Getting a function via MathLink.



2.13.4 Handling Lists, Arrays and Other Expressions 673

:Begin:
:Function: f

The function f in Mathematica takes a
list of integers as an argument.

:Pattern: f[a:�___Integer�]

The list is passed directly to the
external program.

:Arguments: �a�

The argument is to be retrieved
manually by the external program.

:ArgumentTypes: �Manual�

:ReturnType: Integer
:End:

The external function takes no explicit
arguments.

int f(void) {

This declares local variables. long n, i;
int a[MAX];

This checks that the function being
sent is a list, and stores how many
elements it has in n.

MLCheckFunction(stdlink, "List", &n);

This gets each element in the list,
storing it in a[i].

for (i=0; i<n; i++)
MLGetInteger(stdlink, a+i);

...
}

In simple cases, it is usually possible to ensure on the Mathematica side that the data you send
to an external program has the structure that is expected. But in general the return value from
MLCheckFunction() will be non-zero only if the data consists of a function with the name you
specify.

Note that if you want to get a nested collection of lists or other objects, you can do this by making
an appropriate sequence of calls to MLCheckFunction().



674 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

MLGetIntegerList(stdlink, int **a, long *n)
get a list of integers, allocating the memory needed to
store it

MLGetRealList(stdlink, double **a, long *n)
get a list of floating-point numbers

MLDisownIntegerList(stdlink, int *a, long n)
disown the memory associated with a list of integers

MLDisownRealList(stdlink, double *a, long n)
disown the memory associated with a list of floating-point
numbers

Getting lists of numbers.

When an external program gets data from Mathematica, it must set up a place to store the data. If
the data consists of a single integer, as in MLGetInteger(stdlink, &n), then it suffices just to have
declared this integer using int n.

But when the data consists of a list of integers of potentially any length, memory must be allocated
to store this list at the time when the external program is actually called.

MLGetIntegerList(stdlink, &a, &n) will automatically do this allocation, setting a to be a pointer
to the result. Note that memory allocated by functions like MLGetIntegerList() is always in a special
reserved area, so you cannot modify or free it directly.

Here is an external program that will
be sent a list of integers.

int f(void) {

This declares local variables. a is an
array of integers.

long n;
int *a;

This gets a list of integers, making a
be a pointer to the result.

MLGetIntegerList(stdlink, &a, &n);

...

This disowns the memory used to store
the list of integers.

MLDisownIntegerList(stdlink, a, n);

...
}



2.13.4 Handling Lists, Arrays and Other Expressions 675

If you use IntegerList as an :ArgumentTypes: specification, then MathLink will automatically
disown the memory used for the list after your external function exits. But if you get a list of integers
explicitly using MLGetIntegerList(), then you must not forget to disown the memory used to store
the list after you have finished with it.

MLGetIntegerArray(stdlink, int **a, long **dims, char ***heads, long *d)
get an array of integers of any depth

MLGetRealArray(stdlink, double **a, long **dims, char ***heads, long *d)
get an array of floating-point numbers of any depth

MLDisownIntegerArray(stdlink, int *a, long *dims, char **heads, long d)
disown memory associated with an integer array

MLDisownRealArray(stdlink, double *a, long *dims, char **heads, long d)
disown memory associated with a floating-point array

Getting arrays of numbers.

MLGetIntegerList() extracts a one-dimensional array of integers from a single Mathematica list.
MLGetIntegerArray() extracts an array of integers from a collection of lists or other Mathematica
functions nested to any depth.

The name of the Mathematica function at level i in the structure is stored as a string in heads[i].
The size of the structure at level i is stored in dims[i], while the total depth is stored in d.

If you pass a list of complex numbers to your external program, then MLGetRealArray() will
create a two-dimensional array containing a sequence of pairs of real and imaginary parts. In this
case, heads[0] will be "List" while heads[1] will be "Complex".

Note that you can conveniently exchange arbitrary-precision numbers with external programs by
converting them to lists of digits in Mathematica using IntegerDigits and RealDigits.

MLGetString(stdlink, char **s) get a character string

MLGetSymbol(stdlink, char **s) get a symbol name

MLDisownString(stdlink, char *s)
disown memory associated with a character string

MLDisownSymbol(stdlink, char *s)
disown memory associated with a symbol name

Getting character strings and symbol names.



676 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

If you use String as an :ArgumentTypes: specification, then MathLink will automatically disown
the memory that is used to store the string after your function exits. This means that if you want to
continue to refer to the string, you must allocate memory for it, and explicitly copy each character in
it.

If you get a string using MLGetString(), however, then MathLink will not automatically disown the
memory used for the string when your function exits. As a result, you can continue referring to the
string. When you no longer need the string, you must nevertheless explicitly call MLDisownString()
in order to disown the memory associated with it.

MLGetFunction(stdlink, char **s, long *n)
begin getting a function, storing the name of the head in s
and the number of arguments in n

MLDisownSymbol(stdlink, char *s)
disown memory associated with a function name

Getting an arbitrary function.

If you know what function to expect in your external program, then it is usually simpler to call
MLCheckFunction(). But if you do not know what function to expect, you have no choice but to
call MLGetFunction(). If you do this, you need to be sure to call MLDisownSymbol() to disown the
memory associated with the name of the function that is found by MLGetFunction().

2.13.5 Special Topic: Portability of MathLink Programs

The Mathematica side of a MathLink connection is set up to work exactly the same on all computer
systems. But inevitably there are differences between external programs on different computer systems.

For a start, different computer systems almost always require different executable binaries. When
you call Install["prog"], therefore, you must be sure that prog corresponds to a program that can
be executed on your particular computer system.



2.13.5 Special Topic: Portability of MathLink Programs 677

Install["file"] try to execute file directly

Install["file", LinkProtocol->"type"]
use the specified protocol for low-level data transport

$SystemID identify the type of computer system being used

Install["dir"] try to execute a file with a name of the form
dir/$SystemID/dir

Installing programs on different computer systems.

Mathematica follows the convention that if prog is an ordinary file, then Install["prog"] will just
try to execute it. But if prog is a directory, then Mathematica will look for a subdirectory of that
directory whose name agrees with the current value of $SystemID, and will then try to execute a file
named prog within that subdirectory.

mcc -o prog . . . put compiled code in the file prog in the current directory

mcc -xo prog . . . put compiled code in prog/$SystemID/prog

Typical Unix commands for compiling external programs.

Even though the executable binary of an external program is inevitably different on different com-
puter systems, it can still be the case that the source code in a language such as C from which this
binary is obtained can be essentially the same.

But to achieve portability in your C source code there are several points that you need to watch.

For a start, you should never make use of extra features of the C language or C run-time libraries
that happen to be provided on a particular system, but are not part of standard C. In addition, you
should try to avoid dealing with segmented or otherwise special memory models.

The include file mathlink.h contains standard C prototypes for all the functions in the MathLink
library. If your compiler does not support such prototypes, you can ignore them by giving the di-
rective #define MLPROTOTYPES 0 before #include "mathlink.h". But assuming that it does support
prototypes, your compiler will always be able to check that the calls you make to functions in the
MathLink library have arguments of appropriate types.



678 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

MLPutInteger() MLGetInteger() default integer of type int; sometimes 16
bits, sometimes 32 bits

MLPutShortInteger() MLGetShortInteger()
short integer of type short; usually 16 bits

MLPutLongInteger() MLGetLongInteger() long integer of type long; usually 32 bits

MLPutReal() MLGetReal() default real number of type double; usually
at least 64 bits

MLPutFloat() MLGetFloat() single-precision floating-point number of
type float; often 32 bits

MLPutDouble() MLGetDouble() double-precision floating-point number of
type double; usually at least 64 bits

MathLink functions that use specific C types.

On some computer systems and with some compilers, a C language int may be equivalent to a
long. But the standard for the C language equally well allows int to be equivalent to short. And
if you are going to call MathLink library functions in a portable way, it is essential that you use the
same types as they do.

Once you have passed your data into the MathLink library functions, these functions then take care
of all further issues associated with differences between data representations on different computer
systems. Thus, for example, MathLink automatically swaps bytes when it sends data between big and
little endian machines, and converts floating-point formats losing as little precision as possible.



2.13.5 Special Topic: Portability of MathLink Programs 679

MLPutString(stdlink, char *s) put a string without special characters

MLPutUnicodeString(stdlink, unsigned short *s, long n)
put a string encoded in terms of 16-bit Unicode characters

MLPutByteString(stdlink, unsigned char *s, long n)
put a string containing only 8-bit character codes

MLGetString(stdlink, char **s) get a string without special characters

MLGetUnicodeString(stdlink, unsigned short **s, long *n)
get a string encoded in terms of 16-bit Unicode characters

MLGetByteString(stdlink, unsigned char **s, long *n, long spec)
get a string containing only 8-bit character codes, using
spec as the code for all 16-bit characters

Manipulating general strings.

In simple C programs, it is typical to use strings that contain only ordinary ASCII characters. But
in Mathematica it is possible to have strings containing all sorts of special characters. These characters
are specified within Mathematica using Unicode character codes, as discussed on page 420.

C language char * strings typically use only 8 bits to store the code for each character. Unicode
character codes, however, require 16 bits. As a result, the functions MLPutUnicodeString() and
MLGetUnicodeString() work with arrays of unsigned short integers.

If you know that your program will not have to handle special characters, then you may find it
convenient to use MLPutByteString() and MLGetByteString(). These functions represent all char-
acters directly using 8-bit character codes. If a special character is sent from Mathematica, then it will
be converted by MLGetByteString() to a fixed code that you specify.

main() may need to be different on different computer systems

A point to watch in creating portable MathLink programs.

Computer systems and compilers that have C run-time libraries based on the Unix model al-
low MathLink programs to have a main program of the form main(argc, argv) which simply calls
MLMain(argc, argv).

Some computer systems or compilers may however require main programs of a different form.
You should realize that you can do whatever initialization you want inside main() before calling
MLMain(). Once you have called MLMain(), however, your program will effectively go into an infinite
loop, responding to requests from Mathematica until the link to it is closed.



680 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

2.13.6 Using MathLink to Communicate between Mathematica Sessions

LinkCreate["name"] create a link for another program to connect to

LinkConnect["name"] connect to a link created by another program

LinkClose[link] close a MathLink connection

LinkWrite[link, expr] write an expression to a MathLink connection

LinkRead[link] read an expression from a MathLink connection

LinkRead[link, Hold] read an expression and immediately wrap it with Hold

LinkReadyQ[link] find out whether there is data ready to be read from a link

MathLink connections between Mathematica sessions.

Session A

This starts up a link on port number
8000.

In[1]:= link = LinkCreate["8000"]

Out[1]= LinkObject[8000@frog.wolfram.com, 4, 4]

Session B

This connects to the link on port 8000. In[1]:= Link = LinkConnect["8000"]

Out[1]= LinkObject["8000@frog.wolfram.com", 4, 4]

Session A

This evaluates 15! and writes it to the
link.

In[2]:= LinkWrite[link, 15!]

Session B

This reads from the link, getting the
15! that was sent.

In[2]:= LinkRead[link]

Out[2]= 1307674368000

This writes data back on the link. In[3]:= LinkWrite[link, N[%^6]]

Session A

And this reads the data written in
session B.

In[3]:= LinkRead[link]

Out[3]= 5.00032�1072

One use of MathLink connections between Mathematica sessions is simply as a way to transfer data
without using intermediate files.



2.13.6 Using MathLink to Communicate between Mathematica Sessions 681

Another use is as a way to dispatch different parts of a computation to different sessions.

Session A

This writes the expression 2 + 2
without evaluating it.

In[4]:= LinkWrite[link, Unevaluated[2 + 2]]

Session B

This reads the expression from the link,
immediately wrapping it in Hold.

In[4]:= LinkRead[link, Hold]

Out[4]= Hold[2 + 2]

This evaluates the expression. In[5]:= ReleaseHold[%]

Out[5]= 4

When you call LinkWrite, it writes an expression to the MathLink connection and immediately
returns. But when you call LinkRead, it will not return until it has read a complete expression from
the MathLink connection.

You can tell whether anything is ready to be read by calling LinkReadyQ[link]. If LinkReadyQ re-
turns True, then you can safely call LinkRead and expect immediately to start reading an expression.
But if LinkReadyQ returns False, then LinkRead would block until an expression for it to read had
been written by a LinkWrite in your other Mathematica session.

Session A

There is nothing waiting to be read on
the link, so if LinkRead were to be
called, it would block.

In[5]:= LinkReadyQ[link]

Out[5]= False

Session B

This writes an expression to the link. In[6]:= LinkWrite[link, x + y]

Session A

Now there is an expression waiting to
be read on the link.

In[6]:= LinkReadyQ[link]

Out[6]= True

LinkRead can thus be called without
fear of blocking.

In[7]:= LinkRead[link]

Out[7]= x + y



682 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

LinkCreate[ ] pick any unused port on your computer

LinkCreate["number"] use a specific port

LinkConnect["number"] connect to a port on the same computer

LinkConnect["number@host"] connect a port on another computer

Ways to set up MathLink links.

MathLink can use whatever mechanism for interprogram communication your computer system
supports. In setting up connections between concurrent Mathematica sessions, the most common
mechanism is internet TCP ports.

Most computer systems have a few thousand possible numbered ports, some of which are typically
allocated to standard system services.

You can use any of the unallocated ports for MathLink connections.

Session on frog.wolfram.com

This finds an unallocated port on
frog.wolfram.com .

In[8]:= link = LinkCreate[ ]

Out[8]= LinkObject["2981@frog.wolfram.com", 5, 5]

Session on toad.wolfram.com

This connects to the port on
frog.wolfram.com .

In[7]:= link = LinkConnect["2981@frog.wolfram.com"]

Out[7]= LinkObject["2981@frog.wolfram.com", 5, 5]

This sends the current machine name
over the link.

In[8]:= LinkWrite[link, $MachineName]

Session on frog.wolfram.com

This reads the expression written on
toad.

In[9]:= LinkRead[link]

Out[9]= toad

By using internet ports for MathLink connections, you can easily transfer data between Mathematica
sessions on different machines. All that is needed is that an internet connection exists between the
machines.

Note that because MathLink is completely system independent, the computers at each end of a
MathLink connection do not have to be of the same type. MathLink nevertheless notices when they
are, and optimizes data transmission in this case.



2.13.7 Calling Subsidiary Mathematica Processes 683

2.13.7 Calling Subsidiary Mathematica Processes

LinkLaunch["prog"] start an external program and open a connection to it

Connecting to a subsidiary program via MathLink.

This starts a subsidiary Mathematica
process on the computer system used
here.

In[1]:= link = LinkLaunch["math -mathlink"]

Out[1]= LinkObject[math -mathlink, 4, 4]

Here is a packet representing the first
input prompt from the subsidiary
Mathematica process.

In[2]:= LinkRead[link]

Out[2]= InputNamePacket[In[1]:= ]

This writes a packet representing text
to enter in the subsidiary Mathematica
process.

In[3]:= LinkWrite[link, EnterTextPacket["10!"]]

Here is a packet representing the
output prompt from the subsidiary
Mathematica process.

In[4]:= LinkRead[link]

Out[4]= OutputNamePacket[Out[1]= ]

And here is the actual result from the
computation.

In[5]:= LinkRead[link]

Out[5]= ReturnTextPacket[3628800]

The basic way that the various different objects involved in a Mathematica session are kept organized
is by using MathLink packets. A MathLink packet is simply an expression with a definite head that
indicates its role or meaning.

EnterTextPacket["input"] text to enter corresponding to an input line

ReturnTextPacket["output"] text returned corresponding to an output line

InputNamePacket["name"] text returned for the name of an input line

OutputNamePacket["name"] text returned for the name of an output line

Basic packets used in Mathematica sessions.

The fact that LinkRead returns an
InputNamePacket indicates that the
subsidiary Mathematica is now ready
for new input.

In[6]:= LinkRead[link]

Out[6]= InputNamePacket[In[2]:= ]

This enters two Print commands as
input.

In[7]:= LinkWrite[link, EnterTextPacket["Print[a]; Print[b];"]]



684 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

Here is the text from the first Print. In[8]:= LinkRead[link]

Out[8]= TextPacket[a
]

And here is the text from the second
Print.

In[9]:= LinkRead[link]

Out[9]= TextPacket[b
]

No output line is generated, so the
new packet is an InputNamePacket.

In[10]:= LinkRead[link]

Out[10]= InputNamePacket[In[3]:= ]

TextPacket["string"] text from Print etc.

MessagePacket[symb, "tag"] a message name

DisplayPacket["string"] parts of PostScript graphics

DisplayEndPacket["string"] the end of PostScript graphics

Some additional packets generated in Mathematica sessions.

If you enter input to Mathematica using EnterTextPacket["input"], then Mathematica will automat-
ically generate a string version of your output, and will respond with ReturnTextPacket["output"].
But if you instead enter input using EnterExpressionPacket[expr] then Mathematica will respond
with ReturnExpressionPacket[expr] and will not turn your output into a string.

EnterExpressionPacket[expr] an expression to enter corresponding to an input line

ReturnExpressionPacket[expr] an expression returned corresponding to an output line

Packets for representing input and output lines using expressions.

This enters an expression into the
subsidiary Mathematica session without
evaluating it.

In[11]:= LinkWrite[link, Unevaluated[EnterExpressionPacket[
Factor[x^6 - 1]]]]

Here are the next 3 packets that come
back from the subsidiary Mathematica
session.

In[12]:= Table[LinkRead[link], {3}]

Out[12]= �OutputNamePacketOut3�=�,
ReturnExpressionPacket��1 � x� �1 � x� �1 � x � x2� �1 � x � x2��,
InputNamePacketIn4�:=��

InputNamePacket and OutputNamePacket packets are often convenient for making it possible to
tell the current state of a subsidiary Mathematica session. But you can suppress the generation of these
packets by calling the subsidiary Mathematica session with a string such as
"math -mathlink -batchoutput".



2.13.7 Calling Subsidiary Mathematica Processes 685

Even if you suppress the explicit generation of InputNamePacket and OutputNamePacket packets,
Mathematica will still process any input that you give with EnterTextPacket or
EnterExpressionPacket as if you were entering an input line. This means for example that Mathe-
matica will call $Pre and $Post, and will assign values to In[$Line] and Out[$Line].

EvaluatePacket[expr] an expression to be sent purely for evaluation

ReturnPacket[expr] an expression returned from an evaluation

Evaluating expressions without explicit input and output lines.

This sends an EvaluatePacket. The
Unevaluated prevents evaluation
before the packet is sent.

In[13]:= LinkWrite[link, Unevaluated[EvaluatePacket[10!]]]

The result is a pure ReturnPacket. In[14]:= LinkRead[link]

Out[14]= ReturnPacket3628800�
This sends an EvaluatePacket
requesting evaluation of Print[x].

In[15]:= LinkWrite[link, Unevaluated[EvaluatePacket[Print[x]]]]

The first packet to come back is a
TextPacket representing text generated
by the Print.

In[16]:= LinkRead[link]

Out[16]= TextPacket[x
]

After that, the actual result of the
Print is returned.

In[17]:= LinkRead[link]

Out[17]= ReturnPacket[Null]

In most cases, it is reasonable to assume that sending an EvaluatePacket to Mathematica will
simply cause Mathematica to do a computation and to return various other packets, ending with a
ReturnPacket. However, if the computation involves a function like Input, then Mathematica will
have to request additional input before it can proceed with the computation.

This sends a packet whose evaluation
involves an Input function.

In[18]:= LinkWrite[link,
Unevaluated[EvaluatePacket[2 + Input["data ="]]]]

What comes back is an InputPacket
which indicates that further input is
required.

In[19]:= LinkRead[link]

Out[19]= InputPacket[data =]

There is nothing more to be read on
the link at this point.

In[20]:= LinkReadyQ[link]

Out[20]= False

This enters more input. In[21]:= LinkWrite[link, EnterTextPacket["x + y"]]

Now the Input function can be
evaluated, and a ReturnPacket is
generated.

In[22]:= LinkRead[link]

Out[22]= ReturnPacket[2 + x + y]



686 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

LinkInterrupt[link] send an interrupt to a MathLink-compatible program

Interrupting a MathLink-compatible program.

This sends a very time-consuming
calculation to the subsidiary process.

In[23]:= LinkWrite[link,
EnterTextPacket["FactorInteger[2^777-1]"]]

The calculation is still going on. In[24]:= LinkReadyQ[link]

Out[24]= False

This sends an interrupt. In[25]:= LinkInterrupt[link]

Now the subsidiary process has
stopped, and is sending back an
interrupt menu.

In[26]:= LinkRead[link]

Out[26]= MenuPacket[1, Interrupt> ]

2.13.8 Special Topic: Communication with Mathematica Front Ends

The Mathematica kernel uses MathLink to communicate with Mathematica front ends. If you start a
Mathematica kernel from within a front end, therefore, the kernel will be controlled through a MathLink
connection to this front end.

$ParentLink the MathLink connection to use for kernel input and output

The link to the front end for a particular kernel.

The global variable $ParentLink specifies the MathLink connection that a particular kernel will use
for input and output.

It is sometimes useful to reset $ParentLink in the middle of a Mathematica session, thereby effec-
tively changing the front end to which the kernel is connected.

Session A

This creates a link on port 8000. In[1]:= link = LinkCreate["8000"]

Out[1]= LinkObject[8000@frog.wolfram.com, 4, 4]

Session B

This connects to the link opened in
session A.

In[1]:= LinkConnect["8000"]

Out[1]= LinkObject[8000@frog.wolfram.com, 4, 4]

This tells session B that it should use
session A as a front end.

In[2]:= $ParentLink = %



2.13.9 Two-Way Communication with External Programs 687

Session A

Session A now acts as a front end to
session B and gets all output from it.

In[2]:= Table[LinkRead[link], {4}]

Out[2]= {ResumePacket[LinkObject[ParentLink, 1, 1]],
OutputNamePacket[Out[2]= ], ReturnTextPacket[
LinkObject[8000@frog.wolfram.com, 4, 4]],

InputNamePacket[In[3]:= ]}

This releases session B again. In[3]:= LinkWrite[link, EnterTextPacket["$ParentLink=."]]

Much like the Mathematica kernel, the standard notebook front end for Mathematica is set up to
handle a certain set of MathLink packets.

Usually it is best to use functions like NotebookWrite and FrontEndExecute if you want to control
the Mathematica front end from the kernel. But in some cases you may find it convenient to send
packets directly to the front end using LinkWrite.

2.13.9 Two-Way Communication with External Programs

When you install a MathLink-compatible external program using Install, the program is set up to
behave somewhat like a simplified Mathematica kernel. Every time you call a function in the external
program, a CallPacket is sent to the program, and the program responds by sending back a result
wrapped in a ReturnPacket.

This installs an external program,
returning the LinkObject used for the
connection to that program.

In[1]:= link = Install["bitsprog"]

Out[1]= LinkObjectbitsprog, 4, 4�
The function ExternalCall sends a
CallPacket to the external program.

In[2]:= ?bits

Global`bits

bits[i_Integer] := ExternalCall[LinkObject[

"bitsprog", 4, 4], CallPacket[0, {i}]]

You can send the CallPacket explicitly
using LinkWrite. The first argument
of the CallPacket specifies which
function in the external program to
call.

In[3]:= LinkWrite[link, CallPacket[0, {67}]]

Here is the response to the CallPacket
from the external program.

In[4]:= LinkRead[link]

Out[4]= �1, 1, 0, 0, 0, 0, 1�
If you use Install several times on a single external program, Mathematica will open several

MathLink connections to the program. Each connection will however always correspond to a unique
LinkObject. Note that on some computer systems, you may need to make an explicit copy of the file
containing the external program in order to be able to call it multiple times.



688 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

$CurrentLink the MathLink connection to the external program currently
being run

Identifying different instances of a single external program.

:Begin:
:Function: addto

This gives $CurrentLink as an
argument to addto.

:Pattern: addto[$CurrentLink, n_Integer]

:Arguments: �n�
:ArgumentTypes: �Integer�
:ReturnType: Integer
:End:

This zeros the global variable counter
every time the program is started.

int counter = 0;

int addto(int n) �
counter += n;
return counter;

�

This installs one instance of the
external program containing addto.

In[5]:= ct1 = Install["addtoprog"]

Out[5]= LinkObjectaddtoprog, 5, 5�
This installs another instance. In[6]:= ct2 = Install["addtoprog"]

Out[6]= LinkObjectaddtoprog, 6, 6�
This adds 10 to the counter in the first
instance of the external program.

In[7]:= addto[ct1, 10]

Out[7]= 10

This adds 15 to the counter in the
second instance of the external
program.

In[8]:= addto[ct2, 15]

Out[8]= 15

This operates on the first instance of
the program again.

In[9]:= addto[ct1, 20]

Out[9]= 30

If an external program maintains information about its state then you can use different instances of
the program to represent different states. $CurrentLink then provides a way to refer to each instance
of the program.

The value of $CurrentLink is temporarily set every time a particular instance of the program is
called, as well as when each instance of the program is first installed.



2.13.9 Two-Way Communication with External Programs 689

MLEvaluateString(stdlink, "string")
send input to Mathematica but return no results

Sending a string for evaluation by Mathematica.

The two-way nature of MathLink connections allows you not only to have Mathematica call an
external program, but also to have that external program call back to Mathematica.

In the simplest case, you can use the MathLink function MLEvaluateString() to send a string to
Mathematica. Mathematica will evaluate this string, producing whatever effects the string specifies, but
it will not return any results from the evaluation back to the external program.

To get results back you need explicitly to send an EvaluatePacket to Mathematica, and then read
the contents of the ReturnPacket that comes back.

...

This starts an EvaluatePacket. MLPutFunction(stdlink, "EvaluatePacket", 1);

This constructs the expression
Factorial[7] or 7!.

MLPutFunction(stdlink, "Factorial", 1);
MLPutInteger(stdlink, 7);

This specifies that the packet you are
constructing is finished.

MLEndPacket(stdlink);

This checks the ReturnPacket that
comes back.

MLCheckFunction(stdlink, "ReturnPacket", &n);

This extracts the integer result for 7!
from the packet.

MLGetInteger(stdlink, &ans);

...

MLEndPacket(stdlink) specify that a packet is finished and ready to be sent to
Mathematica

Sending a packet to Mathematica.

When you can send Mathematica an EvaluatePacket[input], it may in general produce many
packets in response, but the final packet should be ReturnPacket[output]. Page 695 will discuss how
to handle sequences of packets and expressions whose structure you do not know in advance.



690 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

2.13.10 Special Topic: Running Programs on Remote Computers

MathLink allows you to call an external program from within Mathematica even when that program
is running on a remote computer. Typically, you need to start the program directly from the oper-
ating system on the remote computer. But then you can connect to it using commands within your
Mathematica session.

Operating system on toad.wolfram.com
This starts the program fprog and tells
it to create a new link.

fprog -linkcreate

The program responds with the
specification of the link it has created.

Link created on: 2976@toad.wolfram.com

Mathematica session on frog.wolfram.com

This connects to the link that has been
created.

In[1]:= Install[LinkConnect["2976@toad.wolfram.com"]]

Out[1]= LinkObject[2976@toad.wolfram.com, 1]

This now executes code in the external
program on toad.wolfram.com .

In[2]:= f[16]

Out[2]= 561243

External programs that are created using mcc or mprep always contain the code that is needed to
set up MathLink connections. If you start such programs directly from your operating system, they
will prompt you to specify what kind of connection you want. Alternatively, if your operating system
supports it, you can also give this information as a command-line argument to the external program.

prog -linkcreate operating system command to run a program and have
it create a link

Install[LinkConnect["port@host"]] Mathematica command to connect to the external
program

Running an external program on a remote computer.



2.13.11 Special Topic: Running External Programs under a Debugger 691

2.13.11 Special Topic: Running External Programs under a Debugger

MathLink allows you to run external programs under whatever debugger is provided in your software
environment.

MathLink-compatible programs are typically set up to take arguments, usually on the command
line, which specify what MathLink connections they should use.

In debugger: run -linkcreate

In Mathematica: Install[LinkConnect["port"]]

Running an external program under a debugger.

Note that in order to get a version of an external program that can be run under a debugger, you
may need to specify -g or other flags when you compile the program.

Debugger

Set a breakpoint in the C function f. (debug) break f
Breakpoint set: f: line 1

Start the external program. (debug) run -linkcreate

The program responds with what port
it is listening on.

Link created on: 2981@frog.wolfram.com

Mathematica session

This connects to the program running
under the debugger.

In[1]:= Install[LinkConnect["2981@frog.wolfram.com"]]

Out[1]= LinkObject[2981@frog.wolfram.com, 1]

This calls a function which executes
code in the external program.

In[2]:= f[16]

Debugger
The external program stops at the
breakpoint.

(debug) Breakpoint: f(16)

This tells the debugger to continue. (debug) continue

Mathematica session

Now f returns. Out[2]= 561243



692 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

2.13.12 Manipulating Expressions in External Programs

Mathematica expressions provide a very general way to handle all kinds of data, and you may some-
times want to use such expressions inside your external programs. A language like C, however,
offers no direct way to store general Mathematica expressions. But it is nevertheless possible to do
this by using the loopback links provided by the MathLink library. A loopback link is a local MathLink
connection inside your external program, to which you can write expressions that can later be read
back.

MLINK MLLoopbackOpen(stdenv, long *errno)
open a loopback link

void MLClose(MLINK link) close a link

int MLTransferExpression(MLINK dest, MLINK src)
get an expression from src and put it onto dest

Functions for manipulating loopback links.

...

This opens a loopback link. ml = MLLoopbackOpen(stdenv, &errno);

This puts the expression Power[x, 3]
onto the loopback link.

MLPutFunction(ml, "Power", 2);
MLPutSymbol(ml, "x");
MLPutInteger(ml, 3);

...

This gets the expression back from the
loopback link.

MLGetFunction(ml, &head, &n);
MLGetSymbol(ml, &sname);
MLGetInteger(ml, &k);

...

This closes the loopback link again. MLClose(ml);

You can use MLTransferExpression() to take an expression that you get via stdlink from
Mathematica, and save it in a local loopback link for later processing.

You can also use MLTransferExpression() to take an expression that you have built up on a local
loopback link, and transfer it back to Mathematica via stdlink.



2.13.12 Manipulating Expressions in External Programs 693

...

This puts 21! onto a local loopback
link.

MLPutFunction(ml, "Factorial", 1);
MLPutInteger(ml, 21);

This sends the head FactorInteger to
Mathematica.

MLPutFunction(stdlink, "FactorInteger", 1);

This transfers the 21! from the
loopback link to stdlink.

MLTransferExpression(stdlink, ml);

You can put any sequence of expressions onto a loopback link. Usually you get the expressions off
the link in the same order as you put them on.

And once you have got an expression off the link it is usually no longer saved. But by using
MLCreateMark() you can mark a particular position in a sequence of expressions on a link, forcing
MathLink to save every expression after the mark so that you can go back to it later.

MLMARK MLCreateMark(MLINK link) create a mark at the current position in a sequence of
expressions on a link

MLSeekMark(MLINK link, MLMARK mark, long n)
go back to a position n expressions after the specified
mark on a link

MLDestroyMark(MLINK link, MLMARK mark)
destroy a mark in a link

Setting up marks in MathLink links.



694 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

...

This puts the integer 45 onto a
loopback link.

MLPutInteger(ml, 45);

This puts 33 onto the link. MLPutInteger(ml, 33);

And this puts 76. MLPutInteger(ml, 76);

This will read 45 from the link. The
45 will no longer be saved.

MLGetInteger(ml, &i);

This creates a mark at the current
position on the link.

mark = MLCreateMark(ml);

This will now read 33. MLGetInteger(ml, &i);

And this will read 76. MLGetInteger(ml, &i);

This goes back to the position of the
mark.

MLSeekMark(ml, mark, 0);

Now this will read 33 again. MLGetInteger(ml, &i);

It is important to destroy marks when
you have finished with them, so no
unnecessary expressions will be saved.

MLDestroyMark(ml, mark);

The way the MathLink library is implemented, it is very efficient to open and close loopback links,
and to create and destroy marks in them. The only point to remember is that as soon as you create
a mark on a particular link, MathLink will save subsequent expressions that are put on that link, and
will go on doing this until the mark is destroyed.

int MLGetNext(MLINK link) find the type of the next object on a link

int MLGetArgCount(MLINK link, long *n) store in n the number of arguments for a
function on a link

int MLGetSymbol(MLINK link, char **name) get the name of a symbol

int MLGetInteger(MLINK link, int *i) get a machine integer

int MLGetReal(MLINK link, double *x) get a machine floating-point number

int MLGetString(MLINK link, char **string) get a character string

Functions for getting pieces of expressions from a link.



2.13.12 Manipulating Expressions in External Programs 695

MLTKFUNC composite function—head and arguments

MLTKSYM Mathematica symbol

MLTKINT integer

MLTKREAL floating-point number

MLTKSTR character string

Constants returned by MLGetNext().

switch(MLGetNext(ml)) {

This reads a composite function. case MLTKFUNC:
MLGetArgCount(ml, &n);
recurse for head
for (i = 0; i < n; i++) �

recurse for each argument
�
. . .

This reads a single symbol. case MLTKSYM:
MLGetSymbol(ml, &name);
. . .

This reads a machine integer. case MLTKINT:
MLGetInteger(ml, &i);
. . .

}

By using MLGetNext() it is straightforward to write programs that can read any expression. The
way MathLink works, the head and arguments of a function appear as successive expressions on the
link, which you read one after another.

Note that if you know that the head of a function will be a symbol, then you can use
MLGetFunction() instead of MLGetNext(). In this case, however, you still need to call
MLDisownSymbol() to disown the memory used to store the symbol name.



696 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

int MLPutNext(MLINK link, int type) prepare to put an object of the specified type
on a link

int MLPutArgCount(MLINK link, long n) give the number of arguments for a composite
function

int MLPutSymbol(MLINK link, char *name) put a symbol on the link

int MLPutInteger(MLINK link, int i) put a machine integer

int MLPutReal(MLINK link, double x) put a machine floating-point number

int MLPutString(MLINK link, char *string) put a character string

Functions for putting pieces of expressions onto a link.

MLPutNext() specifies types of expressions using constants such as MLTKFUNC from the mathlink.h
header file—just like MLGetNext().

2.13.13 Advanced Topic: Error and Interrupt Handling

When you are putting and getting data via MathLink various kinds of errors can occur. Whenever any
error occurs, MathLink goes into a completely inactive state, and all MathLink functions you call will
return 0 immediately.

long MLError(MLINK link) return a number identifying the current error, or 0 if
none has occurred

char *MLErrorMessage(MLINK link) return a character string describing the current error

int MLClearError(MLINK link) clear the current error, returning MathLink if possible to
an active state

Handling errors in MathLink programs.

When you do complicated operations, it is often convenient to check for errors only at the end. If
you find that an error occurred, you must then call MLClearError() to activate MathLink again.



2.13.14 Running Mathematica from Within an External Program 697

int MLNewPacket(MLINK link) skip to the end of the current packet

Clearing out the remains of a packet.

After an error, it is common to want to discard the remainder of the packet or expression that you
are currently processing. You can do this using MLNewPacket().

In some cases, you may want to set it up so that if an error occurs while you are processing
particular data, you can then later go back and reprocess the data in a different way. You can do
this by calling MLCreateMark() to create a mark before you first process the data, and then calling
MLSeekMark() to seek back to the mark if you need to reprocess the data. You should not forgot to call
MLDestroyMark() when you have finally finished with the data—otherwise MathLink will continue to
store it.

int MLAbort a global variable set when a program set up by Install is
sent an abort interrupt

Aborting an external program.

If you interrupt Mathematica while it is in the middle of executing an external function, it will
typically give you the opportunity to try to abort the external function. If you choose to do this, what
will happen is that the global variable MLAbort will be set to 1 inside your external program.

MathLink cannot automatically back out of an external function call that has been made. So if
you have a function that can take a long time, you should explicitly check MLAbort every so often,
returning from the function if you find that the variable has been set.

2.13.14 Running Mathematica from Within an External Program

To run Mathematica from within an external program requires making use of many general features of
MathLink. The first issue is how to establish a MathLink connection to Mathematica.

When you use MathLink templates to create external programs that can be called from Mathematica,
source code to establish a MathLink connection is automatically generated, and all you have to do in
your external program is to call MLMain(argc, argv). But in general you need to call several functions
to establish a MathLink connection.



698 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

MLENV MLInitialize(0) initialize MathLink library functions

MLINK MLOpenArgv(MLENV env, char **argv0, char **argv1, long *errno)
open a MathLink connection taking parameters from an argv
array

MLINK MLOpenString(MLENV env, char *string, long *errno)
open a MathLink connection taking parameters from a single
character string

int MLActivate(MLINK link) activate a MathLink connection, waiting for the program at
the other end to respond

void MLClose(MLINK link) close a MathLink connection

void MLDeinitialize(MLENV env)
deinitialize MathLink library functions

Opening and closing MathLink connections.

Include the standard MathLink header
file.

#include "mathlink.h"

int main(int argc, char *argv[]) {

MLENV env;
MLINK link;
long errno;

This initializes MathLink library
functions.

env = MLInitialize(0);

This opens a MathLink connection,
using the same arguments as were
passed to the main program.

link = MLOpenArgv(env, argv, argv+argc, &errno);

This activates the connection, waiting
for the other program to respond.

MLActivate(link);

...
}

Often the argv that you pass to MLOpenArgv() will come directly from the argv that is passed to
main() when your whole program is started. Note that MLOpenArgv() takes pointers to the beginning
and end of the argv array. By not using argc directly it avoids having to know the size of an int.



2.13.14 Running Mathematica from Within an External Program 699

The elements in the argv array are character strings which mirror the arguments and options used
in the Mathematica functions LinkLaunch, LinkCreate and LinkConnect.

"-linklaunch" operate like LinkLaunch["name"]

"-linkcreate" operate like LinkCreate["name"]

"-linkconnect" operate like LinkConnect["name"]

"-linkname", "name" give the name to use

"-linkprotocol", "protocol" give the link protocol to use (tcp, pipes, etc.)

Possible elements of the argv array passed to MLOpenArgv().

As an alternative to MLOpenArgv() you can use MLOpenString(), which takes parameters concate-
nated into a single character string with spaces in between.

Once you have successfully opened a MathLink connection to the Mathematica kernel, you can then
use standard MathLink functions to exchange data with it.

int MLEndPacket(MLINK link) indicate the end of a packet

int MLNextPacket(MLINK link) find the head of the next packet

int MLNewPacket(MLINK link) skip to the end of the current packet

Functions often used in communicating with the Mathematica kernel.

Once you have sent all the pieces of a packet using MLPutFunction() etc., MathLink requires you
to call MLEndPacket() to ensure synchronization and consistency.

One of the main issues in writing an external program which communicates directly with the
Mathematica kernel is handling all the various kinds of packets that the kernel can generate.

The function MLNextPacket() finds the head of the next packet that comes from the kernel, and
returns a constant that indicates the type of the packet.



700 2. Principles of Mathematica � 2.13 MathLink and External Program Communication

Mathematica packet constant

ReturnPacket[expr] RETURNPKT result from a computation

ReturnTextPacket["string"] RETURNTEXTPKT textual form of a result

InputNamePacket["name"] INPUTNAMEPKT name of an input line

OutputNamePacket["name"] OUTPUTNAMEPKT name of an output line

TextPacket["string"] TEXTPKT textual output from functions like Print

MessagePacket[symb, "tag"] MESSAGEPKT name of a message generated by
Mathematica

DisplayPacket["string"] DISPLAYPKT part of PostScript graphics

DisplayEndPacket["string"] DISPLAYENDPKT end of PostScript graphics

InputPacket["prompt"] INPUTPKT request for a response to an Input function

CallPacket[i, list] CALLPKT request for a call to an external function

Some packets recognized by MLNextPacket().

This keeps on reading data from a link,
discarding it until an error or a
ReturnPacket is found.

while ((p = MLNextPacket(link)) && p != RETURNPKT)
MLNewPacket(link);

If you want to write a complete front end to Mathematica, you will need to handle all of the possible
types of packets that the kernel can generate. Typically you can do this by setting up an appropriate
switch on the value returned by MLNextPacket().

The MathLink Developer Kit contains sample source code for several simple but complete front
ends.

int MLReady(MLINK link) test whether there is data waiting to be read on a link

int MLFlush(MLINK link) flush out buffers containing data waiting to be sent on a link

Flow of data on links.

One feature of more sophisticated external programs such as front ends is that they may need to
perform operations while they are waiting for data to be sent to them by Mathematica. When you call



2.13.14 Running Mathematica from Within an External Program 701

a standard MathLink library function such as MLNextPacket() your program will normally block until
all the data needed by this function is available.

You can avoid blocking by repeatedly calling MLReady(), and only calling functions like
MLNextPacket() when MLReady() no longer returns 0. MLReady() is the analog of the Mathematica
function LinkReadyQ.

Note that MathLink sometimes buffers the data that you tell it to send. To make sure that all
necessary data has been sent you should call MLFlush(). Only after doing this does it make sense to
call MLReady() and wait for data to be sent back.



702 2. Principles of Mathematica � 2.14 Global Aspects of Mathematica Sessions

2.14 Global Aspects of Mathematica Sessions

2.14.1 The Main Loop

In any interactive session, Mathematica effectively operates in a loop. It waits for your input, processes
the input, prints the result, then goes back to waiting for input again. As part of this “main loop”,
Mathematica maintains and uses various global objects. You will often find it useful to work with these
objects.

You should realize, however, that if you use Mathematica through a special front end, your front
end may set up its own main loop, and what is said in this section may not apply.

In[n] the expression on the nth input line

InString[n] the textual form of the nth input line

%n or Out[n] the expression on the nth output line

Out[{n�, n�, . . . }] a list of output expressions

%% . . . % (n times) or Out[-n] the expression on the nth previous output line

MessageList[n] a list of messages produced while processing the nth line

$Line the current line number (resettable)

Input and output expressions.

In a standard interactive session, there is a sequence of input and output lines. Mathematica stores
the values of the expressions on these lines in In[n] and Out[n].

As indicated by the usual In[n]:= prompt, the input expressions are stored with delayed assign-
ments. This means that whenever you ask for In[n], the input expression will always be re-evaluated
in your current environment.

This assigns a value to x. In[1]:= x = 7

Out[1]= 7

Now the value for x is used. In[2]:= x - x^2 + 5x - 1

Out[2]= �8

This removes the value assigned to x. In[3]:= x =.

This is re-evaluated in your current
environment, where there is no value
assigned to x.

In[4]:= In[2]

Out[4]= �1 � 6 x � x2



2.14.1 The Main Loop 703

This gives the textual form of the
second input line, appropriate for
editing or other textual manipulation.

In[5]:= InString[2] // InputForm

Out[5]//InputForm= "x - x^2 + 5x - 1"

$HistoryLength the number of previous lines of input and output to keep

Specifying the length of session history to keep.

Mathematica by default stores all your input and output lines for the duration of the session. In
a very long session, this may take up a large amount of computer memory. You can neverthe-
less get rid of the input and output lines by explicitly clearing the values of In and Out, using
Unprotect[In, Out], followed by Clear[In, Out]. You can also tell Mathematica to keep only a
limited number of lines of history by setting the global variable $HistoryLength .

Note that at any point in a session, you can reset the line number counter $Line, so that for
example new lines are numbered so as to overwrite previous ones.

$PreRead a function applied to each input string before being fed to
Mathematica

$Pre a function applied to each input expression before
evaluation

$Post a function applied to each expression after evaluation

$PrePrint a function applied after Out[n] is assigned, but before the
result is printed

$SyntaxHandler a function applied to any input line that yields a syntax
error

Global functions used in the main loop.

Mathematica provides a variety of “hooks” that allow you to insert functions to be applied to
expressions at various stages in the main loop. Thus, for example, any function you assign as the
value of the global variable $Pre will automatically be applied before evaluation to any expression
you give as input.

For a particular input line, the standard main loop begins by getting a text string of input. Partic-
ularly if you need to deal with special characters, you may want to modify this text string before it is
further processed by Mathematica. You can do this by assigning a function as the value of the global
variable $PreRead. This function will be applied to the text string, and the result will be used as the
actual input string for the particular input line.



704 2. Principles of Mathematica � 2.14 Global Aspects of Mathematica Sessions

This tells Mathematica to replace
<< . . . >> by { . . . } in every input
string.

In[6]:= $PreRead = StringReplace[#, {"<<" -> "{", ">>" -> "}"}]&

Out[6]= StringReplace#1, �?? � �, >> � ��� &

You can now enter braces as double
angle brackets.

In[7]:= <<4, 5, 6>>

Out[7]= �4, 5, 6�
You can remove the value for
$PreRead like this, at least so long as
your definition for $PreRead does not
modify this very input string.

In[8]:= $PreRead =.

Once any $PreRead processing on an input string is finished, the string is read by Mathematica.
At this point, Mathematica may find that there is a syntax error in the string. If this happens, then
Mathematica calls whatever function you have specified as the value of $SyntaxHandler. It supplies
two arguments: the input string, and the character position at which the syntax error was detected.
With $SyntaxHandler you can, for example, generate an analysis of the syntax error, or call an editor.
If your function returns a string, then Mathematica will use this string as a new input string.

This specifies what Mathematica should
do when it gets a syntax error.

In[9]:= $SyntaxHandler =
(Print[StringForm["Error at char `1` in `2`",

#2, #1]]; $Failed)&

Out[9]= �PrintError at char #2 in #1�; $Failed� &

This input generates a syntax error. In[10]:= 3 +/+ 5

Syntax::sntxf: "3 +" cannot be followed by "/+ 5".

Error at char 4 in 3 +/+ 5

Once Mathematica has successfully read an input expression, it then evaluates this expression. Before
doing the evaluation, Mathematica applies any function you have specified as the value of $Pre, and
after the evaluation, it applies any function specified as the value of $Post. Note that unless the $Pre
function holds its arguments unevaluated, the function will have exactly the same effect as $Post.

$Post allows you to specify arbitrary “post processing” to be done on results obtained from Mathe-
matica. Thus, for example, to make Mathematica get a numerical approximation to every result it
generates, all you need do is to set $Post = N.

This tells Mathematica to apply N to
every result it generates.

In[10]:= $Post = N

Out[10]= N

Now Mathematica gets a numerical
approximation to anything you type in.

In[11]:= Sqrt[7]

Out[11]= 2.64575

This removes the post-processing
function you specified.

In[12]:= $Post =.

As soon as Mathematica has generated a result, and applied any $Post function you have specified,
it takes the result, and assigns it as the value of Out[$Line]. The next step is for Mathematica to



2.14.1 The Main Loop 705

print the result. However, before doing this, it applies any function you have specified as the value
of $PrePrint.

This tells Mathematica to shorten all
output to two lines.

In[13]:= $PrePrint = Short[#, 2]& ;

Only a two-line version of the output
is now shown.

In[14]:= Expand[(x + y)^40]

Out[14]= x40 � 40 x39 y � 780 x38 y2 �
:35;� 780 x2 y38 � 40 x y39 � y40

This removes the value you assigned to
$PrePrint.

In[15]:= $PrePrint =.

There are various kinds of output generated in a typical Mathematica session. In general, each kind
of output is sent to a definite output channel, as discussed on page 633. Associated with each output
channel, there is a global variable which gives a list of the output streams to be included in that
output channel.

$Output standard output and text generated by Print

$Echo an echo of each input line (as stored in InString[n])

$Urgent input prompts and other urgent output

$Messages standard messages and output generated by Message

$Display graphics output generated by the default $DisplayFunction

$SoundDisplay sound output generated by the default
$SoundDisplayFunction

Output channels in a standard Mathematica session.

By modifying the list of streams in a given output channel, you can redirect or copy particular
kinds of Mathematica output. Thus, for example, by opening an output stream to a file, and including
that stream in the $Echo list, you can get each piece of input you give to Mathematica saved in a file.

Streams[ ] list of all open streams

Streams["name"] list of all open streams with the specified name

$Input the name of the current input stream

Open streams in a Mathematica session.

The function Streams shows you all the input, output and other streams that are open at a partic-
ular point in a Mathematica session. The variable $Input gives the name of the current stream from



706 2. Principles of Mathematica � 2.14 Global Aspects of Mathematica Sessions

which Mathematica input is being taken at a particular point. $Input is reset, for example, during the
execution of a Get command.

$MessagePrePrint a function to be applied to expressions that are given in
messages

$Language list of default languages to use for messages

Parameters for messages.

There are various global parameters which determine the form of messages generated by Mathe-
matica.

As discussed in Section 2.9.21, typical messages include a sequence of expressions which are com-
bined with the text of the message through StringForm . $MessagePrePrint gives a function to be
applied to the expressions before they are printed. The default value of $MessagePrePrint is Short.

As discussed in Section 2.9.22, Mathematica allows you to specify the language in which you want
messages to be produced. In a particular Mathematica session, you can assign a list of language names
as the value of $Language.

Exit[ ] or Quit[ ] terminate your Mathematica session

$Epilog a global variable to be evaluated before termination

Terminating Mathematica sessions.

Mathematica will continue in its main loop until you explicitly tell it to exit. Most Mathematica
interfaces provide special ways to do this. Nevertheless, you can always do it by explicitly calling
Exit or Quit.

Mathematica allows you to give a value to the global variable $Epilog to specify operations to
perform just before Mathematica actually exits. In this way, you can for example make Mathematica
always save certain objects before exiting.

$IgnoreEOF whether to ignore the end-of-file character

A global variable that determines the treatment of end-of-file characters.

As discussed in Section 2.8.5, Mathematica usually does not treat special characters in a special way.
There is one potential exception, however. With the default setting $IgnoreEOF = False, Mathematica
recognizes end-of-file characters. If Mathematica receives an end-of-file character as the only thing on
a particular input line in a standard interactive Mathematica session, then it will exit the session.



2.14.2 Dialogs 707

Exactly how you enter an end-of-file character depends on the computer system you are using.
Under Unix, for example, you typically press CONTROL-D.

Note that if you use Mathematica in a “batch mode”, with all its input coming from a file, then it
will automatically exit when it reaches the end of the file, regardless of the value of $IgnoreEOF.

2.14.2 Dialogs

Within a standard interactive session, you can create “subsessions” or dialogs using the Mathematica
command Dialog. Dialogs are often useful if you want to interact with Mathematica while it is in the
middle of doing a calculation. As mentioned in Section 2.6.11, TraceDialog for example automati-
cally calls Dialog at specified points in the evaluation of a particular expression. In addition, if you
interrupt Mathematica during a computation, you can typically “inspect” its state using a dialog.

Dialog[ ] initiate a Mathematica dialog

Dialog[expr] initiate a dialog with expr as the current value of %

Return[ ] return from a dialog, taking the current value of % as the
return value

Return[expr] return from a dialog, taking expr as the return value

Initiating and returning from dialogs.

This initiates a dialog. In[1]:= Dialog[ ]

You can do computations in a dialog
just as you would in any Mathematica
session.

In[2]:= 2^41

Out[2]= 2199023255552

You can use Return to exit from a
dialog.

In[3]:= Return[ ]

Out[1]= 2199023255552

When you exit a dialog, you can return a value for the dialog using Return[expr]. If you do not
want to return a value, and you have set $IgnoreEOF = False, then you can also exit a dialog simply
by giving an end-of-file character, at least on systems with text-based interfaces.

To evaluate this expression, Mathematica
initiates a dialog.

In[2]:= 1 + Dialog[ ]^2

The value a + b returned from the
dialog is now inserted in the original
expression.

In[3]:= Return[a + b]

Out[2]= 1 � �a � b�2

In starting a dialog, you will often find it useful to have some “initial expression”. If you use
Dialog[expr], then Mathematica will start a dialog, using expr as the initial expression, accessible for
example as the value of %.



708 2. Principles of Mathematica � 2.14 Global Aspects of Mathematica Sessions

This first starts a dialog with initial
expression a^2.

In[3]:= Map[Dialog, {a^2, b + c}]

Out[4]= a2

% is the initial expression in the dialog. In[5]:= %^2 + 1

Out[5]= 1 � a4

This returns a value from the first
dialog, and starts the second dialog,
with initial expression b + c.

In[6]:= Return[%]

Out[4]= b � c

This returns a value from the second
dialog. The final result is the original
expression, with values from the two
dialogs inserted.

In[5]:= Return[444]

Out[3]= �1 � a4, 444�

Dialog effectively works by running a subsidiary version of the standard Mathematica main loop.
Each dialog you start effectively “inherits” various values from the overall main loop. Some of the
values are, however, local to the dialog, so their original values are restored when you exit the dialog.

Thus, for example, dialogs inherit the current line number $Line when they start. This means that
the lines in a dialog have numbers that follow the sequence used in the main loop. Nevertheless, the
value of $Line is local to the dialog. As a result, when you exit the dialog, the value of $Line reverts
to what it was in the main loop.

If you start a dialog on line 10 of your Mathematica session, then the first line of the dialog will be
labeled In[11]. Successive lines of the dialog will be labeled In[12], In[13] and so on. Then, when
you exit the dialog, the next line in your main loop will be labeled In[11]. At this point, you can
still refer to results generated within the dialog as Out[11], Out[12] and so on. These results will be
overwritten, however, when you reach lines In[12], In[13], and so on in the main loop.

In a standard Mathematica session, you can tell whether you are in a dialog by seeing whether
your input and output lines are indented. If you call a dialog from within a dialog, you will get two
levels of indentation. In general, the indentation you get inside d nested dialogs is determined by the
output form of the object DialogIndent[d]. By defining the format for this object, you can specify
how dialogs should be indicated in your Mathematica session.

DialogSymbols :> {x, y, . . . } symbols whose values should be treated as local to the
dialog

DialogSymbols :> {x = x�, y = y�, . . . }
symbols with initial values

DialogProlog :> expr an expression to evaluate before starting the dialog

Options for Dialog.



2.14.3 Date and Time Functions 709

Whatever setting you give for DialogSymbols, Dialog will always treat the values of $Line,
$Epilog and $MessageList as local. Note that if you give a value for $Epilog, it will automatically
be evaluated when you exit the dialog.

When you call Dialog, its first step is to localize the values of variables. Then it evaluates any
expression you have set for the option DialogProlog. If you have given an explicit argument to the
Dialog function, this is then evaluated next. Finally, the actual dialog is started.

When you exit the dialog, you can explicitly specify the return value using Return[expr]. If you
do not do this, the return value will be taken to be the last value generated in the dialog.

- 2.14.3 Date and Time Functions

Date[ ] give the current local date and time in the form
{year, month, day, hour, minute, second}

Date[z] give the current date and time in time zone z

TimeZone[ ] give the time zone assumed by your computer system

Finding the date and time.

This gives the current date and time. In[1]:= Date[ ]

Out[1]= �2003, 6, 28, 1, 20, 53.518907�
The Mathematica Date function returns whatever your computer system gives as the current date and
time. It assumes that any corrections for daylight saving time and so on have already been done
by your computer system. In addition, it assumes that your computer system has been set for the
appropriate time zone.

The function TimeZone[ ] returns the current time zone assumed by your computer system. The
time zone is given as the number of hours which must be added to Greenwich mean time (GMT)
to obtain the correct local time. Thus, for example, U.S. eastern standard time (EST) corresponds to
time zone ��. Note that daylight saving time corrections must be included in the time zone, so U.S.
eastern daylight time (EDT) corresponds to time zone �
.

This gives the current time zone
assumed by your computer system.

In[2]:= TimeZone[ ]

Out[2]= �5.

This gives the current date and time in
time zone +9, the time zone for Japan.

In[3]:= Date[9]

Out[3]= �2003, 6, 28, 15, 20, 53.862027�



710 2. Principles of Mathematica � 2.14 Global Aspects of Mathematica Sessions

AbsoluteTime[ ] total number of seconds since the beginning of January 1,
1900

SessionTime[ ] total number of seconds elapsed since the beginning of your
current Mathematica session

TimeUsed[ ] total number of seconds of CPU time used in your current
Mathematica session

$TimeUnit the minimum time interval recorded on your computer
system

Time functions.

You should realize that on any computer system, there is a certain “granularity” in the times that
can be measured. This granularity is given as the value of the global variable $TimeUnit. Typically
it is either about ���� or �

���� of a second.

Pause[n] pause for at least n seconds

Pausing during a calculation.

This gives various time functions. In[4]:= {AbsoluteTime[ ], SessionTime[ ], TimeUsed[ ]}

Out[4]=  3.265752053952846�109, 1.845655, 0.26!
This pauses for 10 seconds, then
re-evaluates the time functions. Note
that TimeUsed[ ] is not affected by the
pause.

In[5]:= Pause[10]; {AbsoluteTime[ ], SessionTime[ ],
TimeUsed[ ]}

Out[5]=  3.265752064079360�109, 11.972179, 0.26!

FromDate[date] convert from date to absolute time

ToDate[time] convert from absolute time to date

Converting between dates and absolute times.

This sets d to be the current date. In[6]:= d = Date[ ]

Out[6]= �2003, 6, 28, 1, 21, 4.162634�
This adds one month to the current
date.

In[7]:= Date[ ] + {0, 1, 0, 0, 0, 0}

Out[7]= �2003, 7, 28, 1, 21, 4.282415�



2.14.3 Date and Time Functions 711

This gives the number of seconds in
the additional month.

In[8]:= FromDate[%] - FromDate[d]

Out[8]= 2.592000119781�106

Timing[expr] evaluate expr, and return a list of the CPU time needed,
together with the result obtained

, AbsoluteTiming[expr] evaluate expr, giving the absolute time taken

Timing Mathematica operations.

Timing allows you to measure the CPU time, corresponding to the increase in TimeUsed, associated
with the evaluation of a single Mathematica expression. Note that only CPU time associated with the
actual evaluation of the expression within the Mathematica kernel is included. The time needed to
format the expression for output, and any time associated with external programs, is not included.

AbsoluteTiming allows you to measure absolute total elapsed time. You should realize, however,
that the time reported for a particular calculation by both AbsoluteTiming and Timing depends on
many factors.

First, the time depends in detail on the computer system you are using. It depends not only on
instruction times, but also on memory caching, as well as on the details of the optimization done in
compiling the parts of the internal code of Mathematica used in the calculation.

The time also depends on the precise state of your Mathematica session when the calculation was
done. Many of the internal optimizations used by Mathematica depend on details of preceding calcula-
tions. For example, Mathematica often uses previous results it has obtained, and avoids unnecessarily
re-evaluating expressions. In addition, some Mathematica functions build internal tables when they are
first called in a particular way, so that if they are called in that way again, they run much faster. For
all of these kinds of reasons, it is often the case that a particular calculation may not take the same
amount of time if you run it at different points in the same Mathematica session.

This gives the CPU time needed for
the calculation. The semicolon causes
the result of the calculation to be given
as Null.

In[9]:= Timing[100000!;]

Out[9]= �0.51 Second, Null�

Now Mathematica has built internal
tables for factorial functions, and the
calculation takes no measurable CPU
time.

In[10]:= Timing[100000!;]

Out[10]= �0. Second, Null�

However, some absolute time does
elapse.

In[11]:= AbsoluteTiming[100000!;]

Out[11]= �0.000083 Second, Null�
Note that the results you get from Timing are only accurate to the timing granularity $TimeUnit

of your computer system. Thus, for example, a timing reported as 0 could in fact be as much as
$TimeUnit.



712 2. Principles of Mathematica � 2.14 Global Aspects of Mathematica Sessions

TimeConstrained[expr, t] try to evaluate expr, aborting the calculation after t
seconds

TimeConstrained[expr, t, failexpr] return failexpr if the time constraint is not met

Time-constrained calculation.

When you use Mathematica interactively, it is quite common to try doing a calculation, but to abort
the calculation if it seems to be taking too long. You can emulate this behavior inside a program by
using TimeConstrained . TimeConstrained tries to evaluate a particular expression for a specified
amount of time. If it does not succeed, then it aborts the evaluation, and returns either $Aborted, or
an expression you specify.

You can use TimeConstrained , for example, to have Mathematica try a particular approach to a
problem for a certain amount of time, and then to switch to another approach if the first one has
not yet succeeded. You should realize however that TimeConstrained may overrun the time you
specify if Mathematica cannot be interrupted during a particular part of a calculation. In addition,
you should realize that because different computer systems run at different speeds, programs that use
TimeConstrained will often give different results on different systems.

2.14.4 Memory Management

MemoryInUse[ ] number of bytes of memory currently being used by
Mathematica

MaxMemoryUsed[ ] maximum number of bytes of memory used by Mathematica
in this session

Finding memory usage.

Particularly for symbolic computations, memory is usually the primary resource which limits the size
of computations you can do. If a computation runs slowly, you can always potentially let it run longer.
But if the computation generates intermediate expressions which simply cannot fit in the memory of
your computer system, then you cannot proceed with the computation.

Mathematica is careful about the way it uses memory. Every time an intermediate expression you
have generated is no longer needed, Mathematica immediately reclaims the memory allocated to it.
This means that at any point in a session, Mathematica stores only those expressions that are actually
needed; it does not keep unnecessary objects which have to be “garbage collected” later.

This gives the number of bytes of
memory currently being used by
Mathematica.

In[1]:= MemoryInUse[ ]

Out[1]= 947712



2.14.4 Memory Management 713

This generates a 10000-element list. In[2]:= Range[10000] // Short

Out[2]= �1, 2, 3, 4, 5, 6, 7, 8, :9985;,
9994, 9995, 9996, 9997, 9998, 9999, 10000�

Additional memory is needed to store
the list.

In[3]:= MemoryInUse[ ]

Out[3]= 989616

This list is kept because it is the value
of Out[2]. If you clear Out[2], the list
is no longer needed.

In[4]:= Unprotect[Out]; Out[2]=.

The memory in use goes down again. In[5]:= MemoryInUse[ ]

Out[5]= 954408

This shows the maximum memory
needed at any point in the session.

In[6]:= MaxMemoryUsed[ ]

Out[6]= 1467536

One issue that often comes up is exactly how much memory Mathematica can actually use on a
particular computer system. Usually there is a certain amount of memory available for all processes
running on the computer at a particular time. Sometimes this amount of memory is equal to the
physical number of bytes of RAM in the computer. Often, it includes a certain amount of “virtual
memory”, obtained by swapping data on and off a mass storage device.

When Mathematica runs, it needs space both for data and for code. The complete code of Mathe-
matica is typically several megabytes in size. For any particular calculation, only a small fraction of
this code is usually used. However, in trying to work out the total amount of space available for
Mathematica data, you should not forget what is needed for Mathematica code. In addition, you must
include the space that is taken up by other processes running in the computer. If there are fewer jobs
running, you will usually find that your job can use more memory.

It is also worth realizing that the time needed to do a calculation can depend very greatly on how
much physical memory you have. Although virtual memory allows you in principle to use large
amounts of memory space, it is usually hundreds or even thousands of times slower to access than
physical memory. As a result, if your calculation becomes so large that it needs to make use of virtual
memory, it may run much more slowly.

MemoryConstrained[expr, b] try to evaluate expr, aborting if more than b additional bytes
of memory are requested

MemoryConstrained[expr, b, failexpr]
return failexpr if the memory constraint is not met

Memory-constrained computation.

MemoryConstrained works much like TimeConstrained. If more than the specified amount of
memory is requested, MemoryConstrained attempts to abort your computation. As with



714 2. Principles of Mathematica � 2.14 Global Aspects of Mathematica Sessions

TimeConstrained , there may be some overshoot in the actual amount of memory used before the
computation is aborted.

ByteCount[expr] the maximum number of bytes of memory needed to store
expr

LeafCount[expr] the number of terminal nodes in the expression tree for expr

Finding the size of expressions.

Although you may find ByteCount useful in estimating how large an expression of a particular kind
you can handle, you should realize that the specific results given by ByteCount can differ substantially
from one version of Mathematica to another.

Another important point is that ByteCount always gives you the maximum amount of memory
needed to store a particular expression. Often Mathematica will actually use a much smaller amount of
memory to store the expression. The main issue is how many of the subexpressions in the expression
can be shared.

In an expression like f[1 + x, 1 + x], the two subexpressions 1 + x are identical, but they may or
may not actually be stored in the same piece of computer memory. ByteCount gives you the number
of bytes needed to store expressions with the assumption that no subexpressions are shared. You
should realize that the sharing of subexpressions is often destroyed as soon as you use an operation
like the /. operator.

Nevertheless, you can explicitly tell Mathematica to share subexpressions using the function Share.
In this way, you can significantly reduce the actual amount of memory needed to store a particular
expression.

Share[expr] share common subexpressions in the storage of expr

Share[ ] share common subexpressions throughout memory

Optimizing memory usage.

On most computer systems, the memory used by a running program is divided into two parts:
memory explicitly allocated by the program, and “stack space”. Every time an internal routine is
called in the program, a certain amount of stack space is used to store parameters associated with the
call. On many computer systems, the maximum amount of stack space that can be used by a program
must be specified in advance. If the specified stack space limit is exceeded, the program usually just
exits.

In Mathematica, one of the primary uses of stack space is in handling the calling of one Mathematica
function by another. All such calls are explicitly recorded in the Mathematica Stack discussed in Sec-



2.14.5 Advanced Topic: Global System Information 715

tion 2.6.12. You can control the size of this stack by setting the global parameter $RecursionLimit.
You should be sure that this parameter is set small enough that you do not run out of stack space on
your particular computer system.

- 2.14.5 Advanced Topic: Global System Information

In order to write the most general Mathematica programs you will sometimes need to find out global
information about the setup under which your program is being run.

Thus, for example, to tell whether your program should be calling functions like NotebookWrite,
you need to find out whether the program is being run in a Mathematica session that is using the
notebook front end. You can do this by testing the global variable $Notebooks.

$Notebooks whether a notebook front end is being used

Determining whether a notebook front end is being used.

Mathematica is usually used interactively, but it can also operate in a batch mode—say taking input
from a file and writing output to a file. In such a case, a program cannot for example expect to get
interactive input from the user.

$BatchInput whether input is being given in batch mode

$BatchOutput whether output should be given in batch mode, without
labeling, etc.

Variables specifying batch mode operation.

The Mathematica kernel is a process that runs under the operating system on your computer. Within
Mathematica there are several global variables that allow you to find the characteristics of this process
and its environment.



716 2. Principles of Mathematica � 2.14 Global Aspects of Mathematica Sessions

$CommandLine the original command line used to invoke the Mathematica
kernel

$ParentLink the MathLink LinkObject specifying the program that
invoked the kernel (or Null if the kernel was invoked
directly)

$ProcessID the ID assigned to the Mathematica kernel process by the
operating system

$ParentProcessID the ID of the process that invoked the Mathematica kernel

$UserName the login name of the user running the Mathematica kernel

Environment["var"] the value of a variable defined by the operating system

Variables associated with the Mathematica kernel process.

If you have a variable such as x in a particular Mathematica session, you may or may not want
that variable to be the same as an x in another Mathematica session. In order to make it possible to
maintain distinct objects in different sessions, Mathematica supports the variable $SessionID, which
uses information such as starting time, process ID and machine ID to try to give a different value for
every single Mathematica session, whether it is run on the same computer or a different one.

$SessionID a number set up to be different for every Mathematica
session

A unique number different for every Mathematica session.

Mathematica provides various global variables that allow you to tell which version of the kernel you
are running. This is important if you write programs that make use of features that are, say, new in
Version 5. You can then check $VersionNumber to find out if these features will be available.



2.14.5 Advanced Topic: Global System Information 717

$Version a string giving the complete version of Mathematica in use

$VersionNumber the Mathematica kernel version number (e.g. 5.0)

$ReleaseNumber the release number for your version of the Mathematica
kernel on your particular computer system

$CreationDate the date, in Date format, on which your particular
Mathematica release was created

$InstallationDate the date on which your copy of Mathematica was installed

, $ProductInformation a list of detailed product information

Variables specifying the version of Mathematica used.

Mathematica itself is set up to be as independent of the details of the particular computer system on
which it is run as possible. However, if you want to access external aspects of your computer system,
then you will often need to find out its characteristics.

$System a full string describing the computer system in use

$SystemID a short string specifying the computer system in use

$ProcessorType the architecture of the processor in your computer system

$MachineType the general type of your computer system

$ByteOrdering the native byte ordering convention on your computer
system

$OperatingSystem the basic operating system in use

$SystemCharacterEncoding the default raw character encoding used by your operating
system

Variables specifying the characteristics of your computer system.

Mathematica uses the values of $SystemID to label directories that contain versions of files for dif-
ferent computer systems, as discussed on pages 627 and 677. Computer systems for which $SystemID
is the same will normally be binary compatible.

$OperatingSystem has values such as "Unix" and "MacOS". By testing $OperatingSystem you can
determine whether a particular external program is likely to be available on your computer system.

This gives some characteristics of the
computer system used to generate the
examples for this book.

In[1]:= {$System, $ProcessorType, $OperatingSystem}

Out[1]= �Linux, x86, Unix�



718 2. Principles of Mathematica � 2.14 Global Aspects of Mathematica Sessions

$MachineName the name of the computer on which Mathematica is running

$MachineDomain the network domain for the computer

$MachineID the unique ID assigned by Mathematica to the computer

Variables identifying the computer on which Mathematica is running.

$LicenseID the ID for the license under which Mathematica is running

$LicenseExpirationDate the date on which the license expires

$NetworkLicense whether this is a network license

$LicenseServer the full name of the machine serving the license

$LicenseProcesses the number of Mathematica processes currently being run
under the license

$MaxLicenseProcesses the maximum number of processes provided by the license

$PasswordFile password file used when the kernel was started

Variables associated with license management.



Part 3

Part 1 described how to do basic mathematics with Mathematica.

For many kinds of calculations, you will need to know nothing

more. But if you do want to use more advanced mathematics, this

part discusses how to do it in Mathematica.

This part goes through the various mathematical functions and

methods that are built into Mathematica. Some calculations can be

done just by using these built-in mathematical capabilities. For

many specific calculations, however, you will need to use application

packages that have been written in Mathematica. These packages

build on the mathematical capabilities discussed in this part, but

add new functions for doing special kinds of calculations.

Much of what is said in this part assumes a knowledge of mathe-

matics at an advanced undergraduate level. If you do not under-

stand a particular section, then you can probably assume that you

will not need to use that section.



Part 3Part 3



Advanced Mathematics in
Mathematica

3.1 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 722

3.2 Mathematical Functions . . . . . . . . . . . . . . . . . . 745

3.3 Algebraic Manipulation . . . . . . . . . . . . . . . . . . 797

3.4 Manipulating Equations and Inequalities . . . . . . . . 819

3.5 Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 853

3.6 Series, Limits and Residues . . . . . . . . . . . . . . . . 883

3.7 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . 896

3.8 Numerical Operations on Data . . . . . . . . . . . . . . 924

3.9 Numerical Operations on Functions . . . . . . . . . . . 951

3.10 Mathematical and Other Notation . . . . . . . . . . . . 982



722 3. Advanced Mathematics in Mathematica � 3.1 Numbers

3.1 Numbers

3.1.1 Types of Numbers

Four underlying types of numbers are built into Mathematica.

Integer arbitrary-length exact integer

Rational integer/integer in lowest terms

Real approximate real number, with any specified precision

Complex complex number of the form number + number I

Intrinsic types of numbers in Mathematica.

Rational numbers always consist of a
ratio of two integers, reduced to lowest
terms.

In[1]:= 12344/2222

Out[1]=
6172
����������������������
1111

Approximate real numbers are
distinguished by the presence of an
explicit decimal point.

In[2]:= 5456.

Out[2]= 5456.

An approximate real number can have
any number of digits.

In[3]:= 4.54543523454543523453452345234543

Out[3]= 4.5454352345454352345345234523454

Complex numbers can have integer or
rational components.

In[4]:= 4 + 7/8 I

Out[4]= 4 �
7 �
��������������
8

They can also have approximate real
number components.

In[5]:= 4 + 5.6 I

Out[5]= 4 � 5.6 �

123 an exact integer

123. an approximate real number

123.0000000000000 an approximate real number with a certain precision

123. + 0. I a complex number with approximate real number
components

Several versions of the number 123.



3.1.1 Types of Numbers 723

You can distinguish different types of numbers in Mathematica by looking at their heads. (Although
numbers in Mathematica have heads like other expressions, they do not have explicit elements which
you can extract.)

The object 123 is taken to be an exact
integer, with head Integer.

In[6]:= Head[123]

Out[6]= Integer

The presence of an explicit decimal
point makes Mathematica treat 123. as
an approximate real number, with head
Real.

In[7]:= Head[123.]

Out[7]= Real

NumberQ[x] test whether x is any kind of number

IntegerQ[x] test whether x is an integer

EvenQ[x] test whether x is even

OddQ[x] test whether x is odd

PrimeQ[x] test whether x is a prime integer

Head[x]===type test the type of a number

Tests for different types of numbers.

NumberQ[x] tests for any kind of
number.

In[8]:= NumberQ[5.6]

Out[8]= True

5. is treated as a Real, so IntegerQ
gives False.

In[9]:= IntegerQ[5.]

Out[9]= False

If you use complex numbers extensively, there is one subtlety you should be aware of. When you
enter a number like 123., Mathematica treats it as an approximate real number, but assumes that its
imaginary part is exactly zero. Sometimes you may want to enter approximate complex numbers with
imaginary parts that are zero, but only to a certain precision.

When the imaginary part is the exact
integer 0, Mathematica simplifies
complex numbers to real ones.

In[10]:= Head[ 123 + 0 I ]

Out[10]= Integer

Here the imaginary part is only zero to
a certain precision, so Mathematica
retains the complex number form.

In[11]:= Head[ 123. + 0. I ]

Out[11]= Complex

The distinction between complex numbers whose imaginary parts are exactly zero, or are only zero
to a certain precision, may seem like a pedantic one. However, when we discuss, for example, the
interpretation of powers and roots of complex numbers in Section 3.2.7, the distinction will become
significant.



724 3. Advanced Mathematics in Mathematica � 3.1 Numbers

One way to find out the type of a number in Mathematica is just to pick out its head using
Head[expr]. For many purposes, however, it is better to use functions like IntegerQ which explicitly
test for particular types. Functions like this are set up to return True if their argument is manifestly
of the required type, and to return False otherwise. As a result, IntegerQ[x] will give False, unless
x has an explicit integer value.

3.1.2 Numeric Quantities

NumberQ[expr] test whether expr is explicitly a number

NumericQ[expr] test whether expr has a numerical value

Testing for numeric quantities.

Pi is a symbol, so Pi + 3 is not
explicitly a number.

In[1]:= NumberQ[Pi + 3]

Out[1]= False

It does however have a numerical
value.

In[2]:= NumericQ[Pi + 3]

Out[2]= True

This finds the explicit numerical value
of Pi + 3.

In[3]:= N[Pi + 3]

Out[3]= 6.14159

Mathematica knows that constants such as Pi are numeric quantities. It also knows that standard math-
ematical functions such as Log and Sin have numerical values when their arguments are numerical.

Log[2 + x] contains x, and is therefore
not a numeric quantity.

In[4]:= {NumericQ[Log[2]], NumericQ[Log[2 + x]]}

Out[4]= �True, False�
Many functions implicitly use the
numerical values of numeric quantities.

In[5]:= Min[Exp[2], Log[2], Sqrt[2]]

Out[5]= Log2�
In general, Mathematica assumes that any function which has the attribute NumericFunction will

yield numerical values when its arguments are numerical. All standard mathematical functions in
Mathematica already have this attribute. But when you define your own functions, you can explicitly
set the attribute to tell Mathematica to assume that these functions will have numerical values when
their arguments are numerical.



3.1.3 Digits in Numbers 725

3.1.3 Digits in Numbers

IntegerDigits[n] a list of the decimal digits in the integer n

IntegerDigits[n, b] the digits of n in base b

IntegerDigits[n, b, len] the list of digits padded on the left with zeros to give total
length len

IntegerExponent[n, b] the number of zeros at the end of n in base b

RealDigits[x] a list of the decimal digits in the approximate real number x,
together with the number of digits to the left of the decimal
point

RealDigits[x, b] the digits of x in base b

RealDigits[x, b, len] the first len digits of x in base b

RealDigits[x, b, len, n] the first len digits starting with the coefficient of bn

FromDigits[list] reconstruct a number from its decimal digit sequence

FromDigits[list, b] reconstruct a number from its digits sequence in base b

Converting between numbers and lists of digits.

Here is the list of base 16 digits for an
integer.

In[1]:= IntegerDigits[1234135634, 16]

Out[1]= �4, 9, 8, 15, 6, 10, 5, 2�
This gives a list of digits, together with
the number of digits that appear to the
left of the decimal point.

In[2]:= RealDigits[123.4567890123456]

Out[2]= ��1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6�, 3�
Here is the binary digit sequence for
56, padded with zeros so that it is of
total length 8.

In[3]:= IntegerDigits[56, 2, 8]

Out[3]= �0, 0, 1, 1, 1, 0, 0, 0�
This reconstructs the original number
from its binary digit sequence.

In[4]:= FromDigits[%, 2]

Out[4]= 56

b^^nnnn a number in base b

BaseForm[x, b] print with x in base b

Numbers in other bases.



726 3. Advanced Mathematics in Mathematica � 3.1 Numbers

When the base is larger than 10, extra digits are represented by letters a–z.

The number ������� in base 2 is � in
base 10.

In[5]:= 2^^100101

Out[5]= 37

This prints � in base 2. In[6]:= BaseForm[37, 2]

Out[6]//BaseForm= 1001012

Here is a number in base 16. In[7]:= 16^^ffffaa00

Out[7]= 4294945280

You can do computations with
numbers in base 16. Here the result is
given in base 10.

In[8]:= 16^^fffaa2 + 16^^ff - 1

Out[8]= 16776096

This gives the result in base 16. In[9]:= BaseForm[%, 16]

Out[9]//BaseForm= fffba016

You can give approximate real
numbers, as well as integers, in other
bases.

In[10]:= 2^^101.100101

Out[10]= 5.57813

Here are the first few digits of
 

� in
octal.

In[11]:= BaseForm[N[Sqrt[2], 30], 8]

Out[11]//BaseForm= 1.3240474631771674622042627661154678

This gives an explicit list of the first 15
octal digits.

In[12]:= RealDigits[Sqrt[2], 8, 15]

Out[12]= ��1, 3, 2, 4, 0, 4, 7, 4, 6, 3, 1, 7, 7, 1, 7�, 1�
This gives 15 octal digits starting with
the coefficient of ����.

In[13]:= RealDigits[Sqrt[2], 8, 15, -10]

Out[13]= ��1, 7, 7, 1, 6, 7, 4, 6, 2, 2, 0, 4, 2, 6, 3�, �9�
Section 2.9.7 describes how to print numbers in various formats. If you want to create your own

formats, you will often need to use MantissaExponent to separate the pieces of real numbers.

MantissaExponent[x] give a list containing the mantissa and exponent of x

MantissaExponent[x, b] give the mantissa and exponent in base b

Separating the mantissa and exponent of numbers.

This gives a list in which the mantissa
and exponent of the number are
separated.

In[14]:= MantissaExponent[3.45 10^125]

Out[14]= �0.345, 126�



3.1.4 Numerical Precision 727

- 3.1.4 Numerical Precision

As discussed in Section 1.1.2, Mathematica can handle approximate real numbers with any number
of digits. In general, the precision of an approximate real number is the effective number of decimal
digits in it which are treated as significant for computations. The accuracy is the effective number of
these digits which appear to the right of the decimal point. Note that to achieve full consistency in
the treatment of numbers, precision and accuracy often have values that do not correspond to integer
numbers of digits.

Precision[x] the total number of significant decimal digits in x

Accuracy[x] the number of significant decimal digits to the right of the
decimal point in x

Precision and accuracy of real numbers.

This generates a number with 30-digit
precision.

In[1]:= x = N[Pi^10, 30]

Out[1]= 93648.0474760830209737166901849

This gives the precision of the number. In[2]:= Precision[x]

Out[2]= 30.

The accuracy is lower since only some
of the digits are to the right of the
decimal point.

In[3]:= Accuracy[x]

Out[3]= 25.0285

This number has all its digits to the
right of the decimal point.

In[4]:= x / 10^6

Out[4]= 0.0936480474760830209737166901849

Now the accuracy is larger than the
precision.

In[5]:= {Precision[%], Accuracy[%]}

Out[5]= �30., 31.0285�
An approximate real number always has some uncertainty in its value, associated with digits

beyond those known. One can think of precision as providing a measure of the relative size of this
uncertainty. Accuracy gives a measure of the absolute size of the uncertainty.

Mathematica is set up so that if a number x has uncertainty ∆, then its true value can lie anywhere
in an interval of size ∆ from x � ∆�� to x � ∆��. An approximate number with accuracy a is defined
to have uncertainty ���a, while a non-zero approximate number with precision p is defined to have
uncertainty /x/���p.



728 3. Advanced Mathematics in Mathematica � 3.1 Numbers

Precision[x] � log���∆�/x/�

Accuracy[x] � log���∆�

Definitions of precision and accuracy in terms of uncertainty.

Adding or subtracting a quantity
smaller than the uncertainty has no
visible effect.

In[6]:= {x - 10^-26, x, x + 10^-26}

Out[6]= �93648.0474760830209737166901849,
93648.0474760830209737166901849,
93648.0474760830209737166901849�

N[expr, n] evaluate expr to n-digit precision using arbitrary-precision
numbers

N[expr] evaluate expr numerically using machine-precision numbers

Numerical evaluation with arbitrary-precision and machine-precision numbers.

Mathematica distinguishes two kinds of approximate real numbers: arbitrary-precision numbers, and
machine-precision numbers or machine numbers. Arbitrary-precision numbers can contain any number
of digits, and maintain information on their precision. Machine numbers, on the other hand, always
contain the same number of digits, and maintain no information on their precision.

Here is a machine-number
approximation to Π.

In[7]:= N[Pi]

Out[7]= 3.14159

These are both arbitrary-precision
numbers.

In[8]:= {N[Pi, 4], N[Pi, 20]}

Out[8]= �3.142, 3.1415926535897932385�
As discussed in more detail below, machine numbers work by making direct use of the numerical

capabilities of your underlying computer system. As a result, computations with them can often be
done more quickly. They are however much less flexible than arbitrary-precision numbers, and diffi-
cult numerical analysis can be needed to determine whether results obtained with them are correct.

, MachinePrecision the precision specification used to indicate machine numbers

$MachinePrecision the effective precision for machine numbers on your
computer system

MachineNumberQ[x] test whether x is a machine number

Machine numbers.



3.1.4 Numerical Precision 729

This returns the symbol
MachinePrecision to indicate a
machine number.

In[9]:= Precision[ N[Pi] ]

Out[9]= MachinePrecision

On this computer, machine numbers
have slightly less than 16 decimal
digits.

In[10]:= $MachinePrecision

Out[10]= 15.9546

When you enter an approximate real number, Mathematica has to decide whether to treat it as a
machine number or an arbitrary-precision number. Unless you specify otherwise, then if you give less
than $MachinePrecision digits, Mathematica will treat the number as machine precision, and if you
give more digits, it will treat the number as arbitrary precision.

123.4 a machine-precision number

123.45678901234567890 an arbitrary-precision number on some computer systems

123.45678901234567890` a machine-precision number on all computer systems

123.456`200 an arbitrary-precision number with 200 digits of precision

123.456``200 an arbitrary-precision number with 200 digits of accuracy

1.234*^6 a machine-precision number in scientific notation
(�	�
 � ���)

1.234`200*^6 a number in scientific notation with 200 digits of precision

2^^101.111`200 a number in base 2 with 200 binary digits of precision

2^^101.111`200*^6 a number in base 2 scientific notation (���	���� � ��)

Input forms for numbers.

When Mathematica prints out numbers, it usually tries to give them in a form that will be as easy
as possible to read. But if you want to take numbers that are printed out by Mathematica, and then
later use them as input to Mathematica, you need to make sure that no information gets lost.

In standard output form, Mathematica
prints a number like this to six digits.

In[11]:= N[Pi]

Out[11]= 3.14159

In input form, Mathematica prints all
the digits it knows.

In[12]:= InputForm[%]

Out[12]//InputForm= 3.141592653589793

Here is an arbitrary-precision number
in standard output form.

In[13]:= N[Pi, 20]

Out[13]= 3.1415926535897932385



730 3. Advanced Mathematics in Mathematica � 3.1 Numbers

In input form, Mathematica explicitly
indicates the precision of the number,
and gives extra digits to make sure the
number can be reconstructed correctly.

In[14]:= InputForm[%]

Out[14]//InputForm= 3.1415926535897932384626433832795028842`20.

This makes Mathematica not explicitly
indicate precision.

In[15]:= InputForm[%, NumberMarks->False]

Out[15]//InputForm= 3.1415926535897932385

InputForm[expr, NumberMarks->True]
use ` marks in all approximate numbers

InputForm[expr, NumberMarks->Automatic]
use ` only in arbitrary-precision numbers

InputForm[expr, NumberMarks->False]
never use ` marks

Controlling printing of numbers.

The default setting for the NumberMarks option, both in InputForm and in functions such as
ToString and OpenWrite is given by the value of $NumberMarks. By resetting $NumberMarks, there-
fore, you can globally change the way that numbers are printed in InputForm.

This makes Mathematica by default
always include number marks in input
form.

In[16]:= $NumberMarks = True

Out[16]= True

Even a machine-precision number is
now printed with an explicit number
mark.

In[17]:= InputForm[N[Pi]]

Out[17]//InputForm= 3.141592653589793`

Even with no number marks,
InputForm still uses *^ for scientific
notation.

In[18]:= InputForm[N[Exp[600], 20], NumberMarks->False]

Out[18]//InputForm= 3.7730203009299398234*^260

In doing numerical computations, it is inevitable that you will sometimes end up with results that
are less precise than you want. Particularly when you get numerical results that are very close to
zero, you may well want to assume that the results should be exactly zero. The function Chop allows
you to replace approximate real numbers that are close to zero by the exact integer 0.

Chop[expr] replace all approximate real numbers in expr with magnitude
less than ����� by 0

Chop[expr, dx] replace numbers with magnitude less than dx by 0

Removing numbers close to zero.



3.1.5 Arbitrary-Precision Numbers 731

This computation gives a small
imaginary part.

In[19]:= Exp[ N[2 Pi I] ]

Out[19]= 1. � 2.44921�10�16 �

You can get rid of the imaginary part
using Chop.

In[20]:= Chop[%]

Out[20]= 1.

- 3.1.5 Arbitrary-Precision Numbers

When you do calculations with arbitrary-precision numbers, Mathematica keeps track of precision at
all points. In general, Mathematica tries to give you results which have the highest possible precision,
given the precision of the input you provided.

Mathematica treats arbitrary-precision numbers as representing the values of quantities where a
certain number of digits are known, and the rest are unknown. In general, an arbitrary-precision
number x is taken to have Precision[x] digits which are known exactly, followed by an infinite
number of digits which are completely unknown.

This computes Π to 10-digit precision. In[1]:= N[Pi, 10]

Out[1]= 3.141592654

After a certain point, all digits are
indeterminate.

In[2]:= RealDigits[%, 10, 13]

Out[2]= ��3, 1, 4, 1, 5, 9, 2, 6, 5, 3,
5, Indeterminate, Indeterminate�, 1�

When you do a computation, Mathematica keeps track of which digits in your result could be
affected by unknown digits in your input. It sets the precision of your result so that no affected digits
are ever included. This procedure ensures that all digits returned by Mathematica are correct, whatever
the values of the unknown digits may be.

This evaluates ������ to 30-digit
precision.

In[3]:= N[Gamma[1/7], 30]

Out[3]= 6.54806294024782443771409334943

The result has a precision of exactly 30
digits.

In[4]:= Precision[%]

Out[4]= 30.

If you give input only to a few digits
of precision, Mathematica cannot give
you such high-precision output.

In[5]:= N[Gamma[0.142], 30]

Out[5]= 6.58965

If you want Mathematica to assume that
the argument is exactly 142/1000, then
you have to say so explicitly.

In[6]:= N[Gamma[142/1000], 30]

Out[6]= 6.58964729492039788328481917496

In many computations, the precision of the results you get progressively degrades as a result of
“roundoff error”. A typical case of this occurs if you subtract two numbers that are close together.
The result you get depends on high-order digits in each number, and typically has far fewer digits of
precision than either of the original numbers.



732 3. Advanced Mathematics in Mathematica � 3.1 Numbers

Both input numbers have a precision of
around 20 digits, but the result has
much lower precision.

In[7]:= 1.11111111111111111111 -
1.11111111111111111000

Out[7]= 1.1�10�18

Adding extra digits in one number but
not the other is not sufficient to allow
extra digits to be found in the result.

In[8]:= 1.11111111111111111111345 -
1.11111111111111111000

Out[8]= 1.1�10�18

The precision of the output from a function can depend in a complicated way on the precision of
the input. Functions that vary rapidly typically give less precise output, since the variation of the
output associated with uncertainties in the input is larger. Functions that are close to constants can
actually give output that is more precise than their input.

Functions like Sin that vary rapidly
typically give output that is less precise
than their input.

In[9]:= Sin[111111111.0000000000000000]

Out[9]= �0.2975351033349432

Here is e�
� evaluated to 20-digit
precision.

In[10]:= N[Exp[-40], 20]

Out[10]= 4.2483542552915889953�10�18

The result you get by adding the exact
integer 1 has a higher precision.

In[11]:= 1 + %

Out[11]= 1.0000000000000000042483542552915889953

It is worth realizing that different ways of doing the same calculation can end up giving you results
with very different precisions. Typically, if you once lose precision in a calculation, it is essentially
impossible to regain it; in losing precision, you are effectively losing information about your result.

Here is a 40-digit number that is close
to 1.

In[12]:= x = N[1 - 10^-30, 40]

Out[12]= 0.9999999999999999999999999999990000000000

Adding 1 to it gives another 40-digit
number.

In[13]:= 1 + x

Out[13]= 1.999999999999999999999999999999000000000

The original precision has been
maintained.

In[14]:= Precision[%]

Out[14]= 40.301

This way of computing 1 + x loses
precision.

In[15]:= (x^2 - 1) / (x - 1)

Out[15]= 2.000000000

The result obtained in this way has
quite low precision.

In[16]:= Precision[%]

Out[16]= 9.69897

The fact that different ways of doing the same calculation can give you different numerical answers
means, among other things, that comparisons between approximate real numbers must be treated with
care. In testing whether two real numbers are “equal”, Mathematica effectively finds their difference,
and tests whether the result is “consistent with zero” to the precision given.



3.1.5 Arbitrary-Precision Numbers 733

These numbers are equal to the
precision given.

In[17]:= 3 == 3.000000000000000000

Out[17]= True

The internal algorithms that Mathematica uses to evaluate mathematical functions are set up to
maintain as much precision as possible. In most cases, built-in Mathematica functions will give you
results that have as much precision as can be justified on the basis of your input. In some cases,
however, it is simply impractical to do this, and Mathematica will give you results that have lower
precision. If you give higher-precision input, Mathematica will use higher precision in its internal
calculations, and you will usually be able to get a higher-precision result.

N[expr] evaluate expr numerically to machine precision

N[expr, n] evaluate expr numerically trying to get a result with n digits
of precision

Numerical evaluation.

If you start with an expression that contains only integers and other exact numeric quantities,
then N[expr, n] will in almost all cases succeed in giving you a result to n digits of precision. You
should realize, however, that to do this Mathematica sometimes has to perform internal intermediate
calculations to much higher precision.

The global variable $MaxExtraPrecision specifies how many additional digits should be allowed
in such intermediate calculations.

variable default value

$MaxExtraPrecision 50 maximum additional precision to use

Controlling precision in intermediate calculations.

Mathematica automatically increases the
precision that it uses internally in order
to get the correct answer here.

In[18]:= N[Sin[10^40], 30]

Out[18]= �0.569633400953636327308034181574

Using the default setting
$MaxExtraPrecision=50 Mathematica
cannot get the correct answer here.

In[19]:= N[Sin[10^100], 30]

N::meprec: Internal precision limit $MaxExtraPrecision =
50. reached while evaluating
Sin[1000000000000000000<<71>>00000000000].

Out[19]= 0.

This tells Mathematica that it can use
more digits in its internal calculations.

In[20]:= $MaxExtraPrecision = 200

Out[20]= 200



734 3. Advanced Mathematics in Mathematica � 3.1 Numbers

Now it gets the correct answer. In[21]:= N[Sin[10^100], 30]

Out[21]= �0.372376123661276688262086695553

This resets $MaxExtraPrecision to its
default value.

In[22]:= $MaxExtraPrecision = 50

Out[22]= 50

Even when you are doing computations that give exact results, Mathematica still occasionally uses
approximate numbers for some of its internal calculations, so that the value of $MaxExtraPrecision
can thus have an effect.

Mathematica works this out using
bounds from approximate numbers.

In[23]:= Sin[Exp[100]] > 0

Out[23]= True

With the default value of
$MaxExtraPrecision , Mathematica
cannot work this out.

In[24]:= Sin[Exp[200]] > 0

N::meprec: Internal precision limit $MaxExtraPrecision =
200

50. reached while evaluating -Sin[E ].

Out[24]= Sin�200� > 0

Temporarily resetting
$MaxExtraPrecision allows
Mathematica to get the result.

In[25]:= Block[{$MaxExtraPrecision = 100},
Sin[Exp[200]] > 0 ]

Out[25]= False

In doing calculations that degrade precision, it is possible to end up with numbers that have no
significant digits at all. But even in such cases, Mathematica still maintains information on the accuracy
of the numbers. Given a number with no significant digits, but accuracy a, Mathematica can then still
tell that the actual value of the number must be in the range ��10�a , �10�a��2 . Mathematica by
default prints such numbers in the form 0.�10e .

Here is a number with 20-digit
precision.

In[26]:= x = N[Exp[50], 20]

Out[26]= 5.1847055285870724641�1021

Here there are no significant digits left. In[27]:= Sin[x]/x

Out[27]= 0.�10�22

But Mathematica still keeps track of the
accuracy of the result.

In[28]:= Accuracy[%]

Out[28]= 21.7147

Adding this to an exact 1 gives a
number with quite high precision.

In[29]:= 1 + %

Out[29]= 22.7147

One subtlety in characterizing numbers by their precision is that any number that is consistent with
zero must be treated as having zero precision. The reason for this is that such a number has no digits
that can be recognized as significant, since all its known digits are just zero.

This gives a number whose value is
consistent with zero.

In[30]:= d = N[Pi, 20] - Pi

Out[30]= �0.�10�20



3.1.5 Arbitrary-Precision Numbers 735

The number has no recognizable
significant digits of precision.

In[31]:= Precision[d]

Out[31]= 0.

But it still has a definite accuracy, that
characterizes the uncertainty in it.

In[32]:= Accuracy[d]

Out[32]= 19.2089

If you do computations whose results are likely to be near zero, it can be convenient to specify the
accuracy, rather than the precision, that you want to get.

N[expr, p] evaluate expr to precision p

, N[expr, {p, a}] evaluate expr to at most precision p and accuracy a

, N[expr, {Infinity, a}] evaluate expr to any precision but to accuracy a

Specifying accuracy as well as precision.

Here is a symbolic expression. In[33]:= u = ArcTan[1/3] - ArcCot[3]

Out[33]= �ArcCot3� � ArcTan� 1
�������
3
�

This shows that the expression is
equivalent to zero.

In[34]:= FullSimplify[u]

Out[34]= 0

N cannot guarantee to get a result to
precision 20.

In[35]:= N[u, 20]

N::meprec: Internal precision limit $MaxExtraPrecision =
1

50. reached while evaluating -ArcCot[3] + ArcTan[-].
3

Out[35]= 0.�10�71

But it can get a result to accuracy 20. In[36]:= N[u, {Infinity, 20}]

Out[36]= 0.�10�21

When Mathematica works out the potential effect of unknown digits in arbitrary-precision numbers,
it assumes by default that these digits are completely independent in different numbers. While this
assumption will never yield too high a precision in a result, it may lead to unnecessary loss of
precision.

In particular, if two numbers are generated in the same way in a computation, some of their
unknown digits may be equal. Then, when these numbers are, for example, subtracted, the un-
known digits may cancel. By assuming that the unknown digits are always independent, however,
Mathematica will miss such cancellations.

Here is a number computed to 20-digit
precision.

In[37]:= d = N[3^-30, 20]

Out[37]= 4.8569357496188611379�10�15



736 3. Advanced Mathematics in Mathematica � 3.1 Numbers

The quantity 1 + d has about 34-digit
precision.

In[38]:= Precision[1 + d]

Out[38]= 34.3136

This quantity still has the same
precision, since Mathematica assumes
that the unknown digits in each
number d are independent.

In[39]:= Precision[(1 + d) - d]

Out[39]= 34.0126

Numerical algorithms sometimes rely on cancellations between unknown digits in different numbers
yielding results of higher precision. If you can be sure that certain unknown digits will eventually
cancel, then you can explicitly introduce fixed digits in place of the unknown ones. You can carry
these fixed digits through your computation, then let them cancel, and get a result of higher precision.

SetPrecision[x, n] create a number with n decimal digits of precision, padding
with base-2 zeros if necessary

SetAccuracy[x, n] create a number with n decimal digits of accuracy

Functions for modifying precision and accuracy.

This introduces 10 more digits in d. In[40]:= d = SetPrecision[d, 30]

Out[40]= 4.85693574961886113790624266497�10�15

The digits that were added cancel out
here.

In[41]:= (1 + d) - d

Out[41]= 1.00000000000000000000000000000000000000000000

The precision of the result is now
about 44 digits, rather than 34.

In[42]:= Precision[%]

Out[42]= 44.0126

SetPrecision works by adding digits which are zero in base 2. Sometimes, Mathematica stores
slightly more digits in an arbitrary-precision number than it displays, and in such cases, SetPrecision
will use these extra digits before introducing zeros.

This creates a number with a precision
of 40 decimal digits. The extra digits
come from conversion to base 10.

In[43]:= SetPrecision[0.400000000000000, 40]

Out[43]= 0.4000000000000000222044604925031308084726

variable default value

- $MaxPrecision Infinity maximum total precision to be used

- $MinPrecision -Infinity minimum precision to be used

Global precision control parameters.



3.1.6 Machine-Precision Numbers 737

By making the global assignment $MinPrecision = n, you can effectively apply
SetPrecision[expr, n] at every step in a computation. This means that even when the number of
correct digits in an arbitrary-precision number drops below n, the number will always be padded to
have n digits.

If you set $MaxPrecision = n as well as $MinPrecision = n, then you can force all arbitrary-
precision numbers to have a fixed precision of n digits. In effect, what this does is to make Mathematica
treat arbitrary-precision numbers in much the same way as it treats machine numbers—but with more
digits of precision.

Fixed-precision computation can make some calculations more efficient, but without careful analysis
you can never be sure how many digits are correct in the results you get.

Here is a small number with 20-digit
precision.

In[44]:= k = N[Exp[-60], 20]

Out[44]= 8.7565107626965203385�10�27

With Mathematica’s usual arithmetic,
this works fine.

In[45]:= Evaluate[1 + k] - 1

Out[45]= 8.7565107626965203385�10�27

This tells Mathematica to use
fixed-precision arithmetic.

In[46]:= $MinPrecision = $MaxPrecision = 20

Out[46]= 20

The first few digits are correct, but the
rest are wrong.

In[47]:= Evaluate[1 + k] - 1

Out[47]= 8.7565107626963908935�10�27

3.1.6 Machine-Precision Numbers

Whenever machine-precision numbers appear in a calculation, the whole calculation is typically done
in machine precision. Mathematica will then give machine-precision numbers as the result.

Whenever the input contains any
machine-precision numbers,
Mathematica does the computation to
machine precision.

In[1]:= 1.4444444444444444444 ^ 5.7

Out[1]= 8.13382

Zeta[5.6] yields a machine-precision
result, so the N is irrelevant.

In[2]:= N[Zeta[5.6], 30]

Out[2]= 1.02338

This gives a higher-precision result. In[3]:= N[Zeta[56/10], 30]

Out[3]= 1.02337547922702991086041788103

When you do calculations with arbitrary-precision numbers, as discussed in the previous section,
Mathematica always keeps track of the precision of your results, and gives only those digits which
are known to be correct, given the precision of your input. When you do calculations with machine-
precision numbers, however, Mathematica always gives you a machine-precision result, whether or not
all the digits in the result can, in fact, be determined to be correct on the basis of your input.



738 3. Advanced Mathematics in Mathematica � 3.1 Numbers

This subtracts two machine-precision
numbers.

In[4]:= diff = 1.11111111 - 1.11111000

Out[4]= 1.11�10�6

The result is taken to have machine
precision.

In[5]:= Precision[diff]

Out[5]= MachinePrecision

Here are all the digits in the result. In[6]:= InputForm[diff]

Out[6]//InputForm= 1.1099999999153454*^-6

The fact that you can get spurious digits in machine-precision numerical calculations with Mathe-
matica is in many respects quite unsatisfactory. The ultimate reason, however, that Mathematica uses
fixed precision for these calculations is a matter of computational efficiency.

Mathematica is usually set up to insulate you as much as possible from the details of the computer
system you are using. In dealing with machine-precision numbers, you would lose too much, however,
if Mathematica did not make use of some specific features of your computer.

The important point is that almost all computers have special hardware or microcode for doing
floating-point calculations to a particular fixed precision. Mathematica makes use of these features
when doing machine-precision numerical calculations.

The typical arrangement is that all machine-precision numbers in Mathematica are represented
as “double-precision floating-point numbers” in the underlying computer system. On most current
computers, such numbers contain a total of 64 binary bits, typically yielding 16 decimal digits of
mantissa.

The main advantage of using the built-in floating-point capabilities of your computer is speed.
Arbitrary-precision numerical calculations, which do not make such direct use of these capabilities,
are usually many times slower than machine-precision calculations.

There are several disadvantages of using built-in floating-point capabilities. One already mentioned
is that it forces all numbers to have a fixed precision, independent of what precision can be justified
for them.

A second disadvantage is that the treatment of machine-precision numbers can vary slightly from
one computer system to another. In working with machine-precision numbers, Mathematica is at the
mercy of the floating-point arithmetic system of each particular computer. If floating-point arithmetic
is done differently on two computers, you may get slightly different results for machine-precision
Mathematica calculations on those computers.



3.1.6 Machine-Precision Numbers 739

$MachinePrecision the number of decimal digits of precision

$MachineEpsilon the minimum positive machine-precision number which can
be added to 1.0 to give a result distinguishable from 1.0

$MaxMachineNumber the maximum machine-precision number

$MinMachineNumber the minimum positive machine-precision number

$MaxNumber the maximum magnitude of an arbitrary-precision number

$MinNumber the minimum magnitude of a positive arbitrary-precision
number

Properties of numbers on a particular computer system.

Since machine-precision numbers on any particular computer system are represented by a definite
number of binary bits, numbers which are too close together will have the same bit pattern, and so
cannot be distinguished. The parameter $MachineEpsilon gives the distance between 1.0 and the
closest number which has a distinct binary representation.

This gives the value of
$MachineEpsilon for the computer
system on which these examples are
run.

In[7]:= $MachineEpsilon

Out[7]= 2.22045�10�16

Although this prints as 1., Mathematica
knows that the result is larger than 1.

In[8]:= 1. + $MachineEpsilon

Out[8]= 1.

Subtracting 1 gives $MachineEpsilon. In[9]:= % - 1.

Out[9]= 2.22045�10�16

This again prints as 1. In[10]:= 1. + $MachineEpsilon/2

Out[10]= 1.

In this case, however, subtracting 1
yields 0, since 1 + $MachineEpsilon/2
is not distinguished from 1. to
machine precision.

In[11]:= % - 1.

Out[11]= 0.

Machine numbers have not only limited precision, but also limited magnitude. If you generate
a number which lies outside the range specified by $MinMachineNumber and $MaxMachineNumber,
Mathematica will automatically convert the number to arbitrary-precision form.

This is the maximum machine-precision
number which can be handled on the
computer system used for this
example.

In[12]:= $MaxMachineNumber

Out[12]= 1.79769�10308



740 3. Advanced Mathematics in Mathematica � 3.1 Numbers

Mathematica automatically converts the
result of this computation to arbitrary
precision.

In[13]:= Exp[1000.]

Out[13]= 1.970071114017�10434

3.1.7 Advanced Topic: Interval Arithmetic

Interval[{min, max}] the interval from min to max

Interval[{min�, max�}, {min�, max�}, . . . ]
the union of intervals from min� to max�, min� to max�, . . .

Representations of real intervals.

This represents all numbers between
�� and ��.

In[1]:= Interval[{-2, 5}]

Out[1]= Interval��2, 5��
The square of any number between ��
and �� is always between 0 and 25.

In[2]:= Interval[{-2, 5}]^2

Out[2]= Interval�0, 25��
Taking the reciprocal gives two distinct
intervals.

In[3]:= 1/Interval[{-2, 5}]

Out[3]= Interval�	�	, �
1
�������
2

, 	 1

�������
5

, 	
�
Abs folds the intervals back together
again.

In[4]:= Abs[%]

Out[4]= Interval�	 1
�������
5

, 	
�
You can use intervals in many kinds of
functions.

In[5]:= Solve[3 x + 2 == Interval[{-2, 5}], x]

Out[5]= 		x � Interval�	� 4
�������
3

, 1
�





3.1.7 Advanced Topic: Interval Arithmetic 741

Some functions automatically generate
intervals.

In[6]:= Limit[Sin[1/x], x -> 0]

Out[6]= Interval��1, 1��

IntervalUnion[interval�, interval�, . . . ]
find the union of several intervals

IntervalIntersection[interval�, interval�, . . . ]
find the intersection of several intervals

IntervalMemberQ[interval, x] test whether the point x lies within an interval

IntervalMemberQ[interval�, interval�]
test whether interval� lies completely within interval�

Operations on intervals.

This finds the overlap of the two
intervals.

In[7]:= IntervalIntersection[Interval[{3, 7}], Interval[{-2, 5}]]

Out[7]= Interval�3, 5��
You can use Max and Min to find the
end points of intervals.

In[8]:= Max[%]

Out[8]= 5

This finds out which of a list of
intervals contains the point 7.

In[9]:= IntervalMemberQ[
Table[Interval[{i, i+1}], {i, 1, 20, 3}], 7]

Out[9]= �False, False, True, False, False, False, False�
You can use intervals not only with exact quantities but also with approximate numbers. Even with
machine-precision numbers, Mathematica always tries to do rounding in such a way as to preserve the
validity of results.

This shows explicitly the interval
treated by Mathematica as the
machine-precision number 0.

In[10]:= Interval[0.]

Out[10]= Interval� �2.22507�10�308, 2.22507�10�308!�
This shows the corresponding interval
around 100., shifted back to zero.

In[11]:= Interval[100.] - 100

Out[11]= Interval� �1.42109�10�14, 1.42109�10�14!�
The same kind of thing works with
numbers of any precision.

In[12]:= Interval[N[Pi, 50]] - Pi

Out[12]= Interval� �1.�10�49, 1.�10�49!�
With ordinary machine-precision
arithmetic, this computation gives an
incorrect result.

In[13]:= Sin[N[Pi]]

Out[13]= 1.22461�10�16

The interval generated here, however,
includes the correct value of 0.

In[14]:= Sin[Interval[N[Pi]]]

Out[14]= Interval� �3.21629�10�16, 5.6655�10�16!�



742 3. Advanced Mathematics in Mathematica � 3.1 Numbers

3.1.8 Advanced Topic: Indeterminate and Infinite Results

If you type in an expression like 0/0,
Mathematica prints a message, and
returns the result Indeterminate.

In[1]:= 0/0

1
Power::infy: Infinite expression - encountered.

0

Infinity::indet:
Indeterminate expression 0 ComplexInfinity encountered.

Out[1]= Indeterminate

An expression like 0/0 is an example of an indeterminate numerical result. If you type in 0/0, there
is no way for Mathematica to know what answer you want. If you got 0/0 by taking the limit of
x�x as x # �, then you might want the answer 1. On the other hand, if you got 0/0 instead as the
limit of �x�x, then you probably want the answer 2. The expression 0/0 on its own does not contain
enough information to choose between these and other cases. As a result, its value must be considered
indeterminate.

Whenever an indeterminate result is produced in an arithmetic computation, Mathematica prints
a warning message, and then returns Indeterminate as the result of the computation. If you ever
try to use Indeterminate in an arithmetic computation, you always get the result Indeterminate.
A single indeterminate expression effectively “poisons” any arithmetic computation. (The symbol
Indeterminate plays a role in Mathematica similar to the “not a number” object in the IEEE Floating
Point Standard.)

The usual laws of arithmetic
simplification are suspended in the
case of Indeterminate.

In[2]:= Indeterminate - Indeterminate

Out[2]= Indeterminate

Indeterminate “poisons” any
arithmetic computation, and leads to
an indeterminate result.

In[3]:= 2 Indeterminate - 7

Out[3]= Indeterminate

When you do arithmetic computations inside Mathematica programs, it is often important to be able
to tell whether indeterminate results were generated in the computations. You can do this by using
the function Check discussed on page 481 to test whether any warning messages associated with
indeterminate results were produced.

You can use Check inside a program to
test whether warning messages are
generated in a computation.

In[4]:= Check[(7 - 7)/(8 - 8), meaningless]

1
Power::infy: Infinite expression - encountered.

0

Infinity::indet:
Indeterminate expression 0 ComplexInfinity encountered.

Out[4]= meaningless



3.1.8 Advanced Topic: Indeterminate and Infinite Results 743

Indeterminate an indeterminate numerical result

Infinity a positive infinite quantity

-Infinity a negative infinite quantity (DirectedInfinity[-1])

DirectedInfinity[r] an infinite quantity with complex direction r

ComplexInfinity an infinite quantity with an undetermined direction

DirectedInfinity[ ] equivalent to ComplexInfinity

Indeterminate and infinite quantities.

There are many situations where it is convenient to be able to do calculations with infinite quan-
tities. The symbol Infinity in Mathematica represents a positive infinite quantity. You can use it to
specify such things as limits of sums and integrals. You can also do some arithmetic calculations with
it.

Here is an integral with an infinite
limit.

In[5]:= Integrate[1/x^3, {x, 1, Infinity}]

Out[5]=
1
�������
2

Mathematica knows that ��� � �. In[6]:= 1/Infinity

Out[6]= 0

If you try to find the difference
between two infinite quantities, you get
an indeterminate result.

In[7]:= Infinity - Infinity

Infinity::indet:
Indeterminate expression -Infinity + Infinity

encountered.

Out[7]= Indeterminate

There are a number of subtle points that arise in handling infinite quantities. One of them con-
cerns the “direction” of an infinite quantity. When you do an infinite integral, you typically think of
performing the integration along a path in the complex plane that goes to infinity in some direction.
In this case, it is important to distinguish different versions of infinity that correspond to different
directions in the complex plane. �� and �� are two examples, but for some purposes one also needs
i� and so on.

In Mathematica, infinite quantities can have a “direction”, specified by a complex number. When
you type in the symbol Infinity, representing a positive infinite quantity, this is converted internally
to the form DirectedInfinity[1] , which represents an infinite quantity in the �� direction. Simi-
larly, -Infinity becomes DirectedInfinity[-1], and I Infinity becomes DirectedInfinity[I].
Although the DirectedInfinity form is always used internally, the standard output format for
DirectedInfinity[r] is r Infinity.

Infinity is converted internally to
DirectedInfinity[1] .

In[8]:= Infinity // FullForm

Out[8]//FullForm= DirectedInfinity1�



744 3. Advanced Mathematics in Mathematica � 3.1 Numbers

Although the notion of a “directed infinity” is often useful, it is not always available. If you type
in 1/0, you get an infinite result, but there is no way to determine the “direction” of the infinity.
Mathematica represents the result of 1/0 as DirectedInfinity[ ]. In standard output form, this
undirected infinity is printed out as ComplexInfinity.

1/0 gives an undirected form of
infinity.

In[9]:= 1/0

1
Power::infy: Infinite expression - encountered.

0

Out[9]= ComplexInfinity

3.1.9 Advanced Topic: Controlling Numerical Evaluation

NHoldAll prevent any arguments of a function from being affected by N

NHoldFirst prevent the first argument from being affected

NHoldRest prevent all but the first argument from being affected

Attributes for controlling numerical evaluation.

Usually N goes inside functions and
gets applied to each of their
arguments.

In[1]:= N[f[2/3, Pi]]

Out[1]= f0.666667, 3.14159�
This tells Mathematica not to apply N to
the first argument of f.

In[2]:= SetAttributes[f, NHoldFirst]

Now the first argument of f is left in
its exact form.

In[3]:= N[f[2/3, Pi]]

Out[3]= f� 2
�������
3

, 3.14159�



3.2.2 Numerical Functions 745

3.2 Mathematical Functions

3.2.1 Naming Conventions

Mathematical functions in Mathematica are given names according to definite rules. As with most
Mathematica functions, the names are usually complete English words, fully spelled out. For a few
very common functions, Mathematica uses the traditional abbreviations. Thus the modulo function, for
example, is Mod, not Modulo.

Mathematical functions that are usually referred to by a person’s name have names in Mathe-
matica of the form PersonSymbol. Thus, for example, the Legendre polynomials Pn�x� are denoted
LegendreP[n, x]. Although this convention does lead to longer function names, it avoids any ambi-
guity or confusion.

When the standard notation for a mathematical function involves both subscripts and superscripts,
the subscripts are given before the superscripts in the Mathematica form. Thus, for example, the
associated Legendre polynomials Pm

n �x� are denoted LegendreP[n, m, x].

- 3.2.2 Numerical Functions

IntegerPart[x] integer part of x

FractionalPart[x] fractional part of x

Round[x] integer �x� closest to x

Floor[x] greatest integer $x% not larger than x

Ceiling[x] least integer &x' not smaller than x

Sign[x] 1 for x c �, -1 for x ) �

UnitStep[x] 1 for x ! �, 0 for x ) �

Abs[x] absolute value /x/ of x

Max[x�, x�, . . . ] or Max[{x�, x�, . . . }, . . . ]
the maximum of x�, x�, . . .

Min[x�, x�, . . . ] or Min[{x�, x�, . . . }, . . . ]
the minimum of x�, x�, . . .

Some numerical functions of real variables.



746 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

x IntegerPart[x] FractionalPart[x] Round[x] Floor[x] Ceiling[x]

2.4 2 0.4 2 2 3

2.5 2 0.5 2 2 3

2.6 2 0.6 3 2 3

-2.4 -2 -0.4 -2 -3 -2

-2.5 -2 -0.5 -2 -3 -2

-2.6 -2 -0.6 -3 -3 -2

Extracting integer and fractional parts.

IntegerPart[x] and FractionalPart[x] can be thought of as extracting digits to the left and right
of the decimal point. Round[x] is often used for forcing numbers that are close to integers to be
exactly integers. Floor[x] and Ceiling[x] often arise in working out how many elements there will
be in sequences of numbers with non-integer spacings.

x + I y the complex number x � iy

Re[z] the real part Re z

Im[z] the imaginary part Im z

Conjugate[z] the complex conjugate z� or z

Abs[z] the absolute value /z/

Arg[z] the argument Φ such that z � /z/eiΦ

Numerical functions of complex variables.

Rationalize[x] a rational number approximation to x

Rationalize[x, dx] a rational approximation within tolerance dx

Finding rational approximations.



3.2.3 Pseudorandom Numbers 747

3.2.3 Pseudorandom Numbers

Random[ ] a pseudorandom real between 0 and 1

Random[Real, xmax] a pseudorandom real between 0 and xmax

Random[Real, {xmin, xmax}] a pseudorandom real between xmin and xmax

Random[Complex] a pseudorandom complex number in the unit square

Random[Complex, {zmin, zmax}] a pseudorandom complex number in the rectangle
defined by zmin and zmax

Random[type, range, n] an n-digit pseudorandom number

Random[Integer] 0 or 1 with probability ��
Random[Integer, {imin, imax}] a pseudorandom integer between imin and imax, inclusive

SeedRandom[ ] reseed the pseudorandom generator, with the time of day

SeedRandom[s] reseed with the integer s

$RandomState the current state of the pseudorandom generator

Pseudorandom number generation.

This gives a list of 3 pseudorandom
numbers.

In[1]:= Table[Random[ ], {3}]

Out[1]= �0.0560708, 0.6303, 0.359894�
Here is a 30-digit pseudorandom real
number in the range 0 to 1.

In[2]:= Random[Real, {0, 1}, 30]

Out[2]= 0.748823044099679773836330229338

This gives a list of 8 pseudorandom
integers between 100 and 200
(inclusive).

In[3]:= Table[Random[Integer, {100, 200}], {8}]

Out[3]= �120, 108, 109, 147, 146, 189, 188, 187�
If you call Random[ ] repeatedly, you should get a “typical” sequence of numbers, with no particular
pattern. There are many ways to use such numbers.

One common way to use pseudorandom numbers is in making numerical tests of hypotheses. For
example, if you believe that two symbolic expressions are mathematically equal, you can test this by
plugging in “typical” numerical values for symbolic parameters, and then comparing the numerical
results. (If you do this, you should be careful about numerical accuracy problems and about functions
of complex variables that may not have unique values.)



748 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

Here is a symbolic equation. In[4]:= Sin[Cos[x]] == Cos[Sin[x]]

Out[4]= SinCosx�� � CosSinx��
Substituting in a random numerical
value shows that the equation is not
always True.

In[5]:= % /. x -> Random[ ]

Out[5]= False

Other common uses of pseudorandom numbers include simulating probabilistic processes, and
sampling large spaces of possibilities. The pseudorandom numbers that Mathematica generates are
always uniformly distributed over the range you specify.

Random is unlike almost any other Mathematica function in that every time you call it, you potentially
get a different result. If you use Random in a calculation, therefore, you may get different answers on
different occasions.

The sequences that you get from Random[ ] are not in most senses “truly random”, although they
should be “random enough” for practical purposes. The sequences are in fact produced by applying
a definite mathematical algorithm, starting from a particular “seed”. If you give the same seed, then
you get the same sequence.

When Mathematica starts up, it takes the time of day (measured in small fractions of a second) as
the seed for the pseudorandom number generator. Two different Mathematica sessions will therefore
almost always give different sequences of pseudorandom numbers.

If you want to make sure that you always get the same sequence of pseudorandom numbers, you
can explicitly give a seed for the pseudorandom generator, using SeedRandom.

This reseeds the pseudorandom
generator.

In[6]:= SeedRandom[143]

Here are three pseudorandom numbers. In[7]:= Table[Random[ ], {3}]

Out[7]= �0.952312, 0.93591, 0.813754�
If you reseed the pseudorandom
generator with the same seed, you get
the same sequence of pseudorandom
numbers.

In[8]:= SeedRandom[143]; Table[Random[ ], {3}]

Out[8]= �0.952312, 0.93591, 0.813754�

Every single time Random is called, the internal state of the pseudorandom generator that it uses is
changed. This means that calls to Random made in subsidiary calculations will have an effect on the
numbers returned by Random in your main calculation. To avoid any problems associated with this,
you can save the value of $RandomState before you do subsidiary calculations, and then restore it
afterwards.

By localizing the value of
$RandomState using Block, the internal
state of the pseudorandom generator is
restored after generating the first list.

In[9]:= {Block[{$RandomState}, {Random[ ], Random[ ]}],
{Random[ ], Random[ ]}}

Out[9]= ��0.1169, 0.783447�, �0.1169, 0.783447��



3.2.4 Integer and Number-Theoretical Functions 749

- 3.2.4 Integer and Number-Theoretical Functions

Mod[k, n] k modulo n (remainder from dividing k by n)

Quotient[m, n] the quotient of m and n (integer part of m/n)

GCD[n�, n�, . . . ] the greatest common divisor of n�, n�, . . .

LCM[n�, n�, . . . ] the least common multiple of n�, n�, . . .

KroneckerDelta[n�, n�, . . . ] the Kronecker delta ∆n�n�� � � equal to 1 if all the ni are equal,
and 0 otherwise

IntegerDigits[n, b] the digits of n in base b

IntegerExponent[n, b] the highest power of b that divides n

Some integer functions.

The remainder on dividing �� by . In[1]:= Mod[17, 3]

Out[1]= 2

The integer part of ���. In[2]:= Quotient[17, 3]

Out[2]= 5

Mod also works with real numbers. In[3]:= Mod[5.6, 1.2]

Out[3]= 0.8

The result from Mod always has the
same sign as the second argument.

In[4]:= Mod[-5.6, 1.2]

Out[4]= 0.4

For any integers a and b, it is always true that b*Quotient[a, b] + Mod[a, b] is equal to a.

Mod[k, n] result in the range 0 to n � �

Mod[k, n, 1] result in the range 1 to n

Mod[k, n, -n/2] result in the range &�n��' to $�n��%
Mod[k, n, d] result in the range d to d � n � �

Integer remainders with offsets.

Particularly when you are using Mod to get indices for parts of objects, you will often find it
convenient to specify an offset.

This effectively extracts the 18th part of
the list, with the list treated cyclically.

In[5]:= Part[{a, b, c}, Mod[18, 3, 1]]

Out[5]= c



750 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

The greatest common divisor function GCD[n�, n�, . . . ] gives the largest integer that divides all
the ni exactly. When you enter a ratio of two integers, Mathematica effectively uses GCD to cancel out
common factors, and give a rational number in lowest terms.

The least common multiple function LCM[n�, n�, . . . ] gives the smallest integer that contains all
the factors of each of the ni.

The largest integer that divides both 24
and 15 is 3.

In[6]:= GCD[24, 15]

Out[6]= 3

The Kronecker delta or Kronecker symbol KroneckerDelta[n�, n�, . . . ] is equal to 1 if all the ni

are equal, and is 0 otherwise. ∆n�n�� � � can be thought of as a totally symmetric tensor.

This gives a totally symmetric tensor of
rank 3.

In[7]:= Array[KroneckerDelta, {3, 3, 3}]

Out[7]= ���1, 0, 0�, �0, 0, 0�, �0, 0, 0��,��0, 0, 0�, �0, 1, 0�, �0, 0, 0��,��0, 0, 0�, �0, 0, 0�, �0, 0, 1���

FactorInteger[n] a list of the prime factors of n, and their exponents

Divisors[n] a list of the integers that divide n

Prime[k] the kth prime number

PrimePi[x] the number of primes less than or equal to x

PrimeQ[n] give True if n is a prime, and False otherwise

FactorInteger[n, GaussianIntegers->True]
a list of the Gaussian prime factors of the Gaussian integer
n, and their exponents

PrimeQ[n, GaussianIntegers->True]
give True if n is a Gaussian prime, and False otherwise

Integer factoring and related functions.

This gives the factors of 24 as �, �.
The first element in each list is the
factor; the second is its exponent.

In[8]:= FactorInteger[24]

Out[8]= ��2, 3�, �3, 1��
Here are the factors of a larger integer. In[9]:= FactorInteger[111111111111111111]

Out[9]= ��3, 2�, �7, 1�, �11, 1�, �13, 1�,�19, 1�, �37, 1�, �52579, 1�, �333667, 1��
You should realize that according to current mathematical thinking, integer factoring is a fundamen-

tally difficult computational problem. As a result, you can easily type in an integer that Mathematica
will not be able to factor in anything short of an astronomical length of time. But as long as the
integers you give are less than about 50 digits long, FactorInteger should have no trouble. And



3.2.4 Integer and Number-Theoretical Functions 751

in special cases it will be able to deal with much longer integers. (You can make some factoring
problems go faster by setting the option FactorComplete->False, so that FactorInteger[n] tries to
pull out only easy factors from n.)

Here is a rather special long integer. In[10]:= 30!

Out[10]= 265252859812191058636308480000000

Mathematica can easily factor this
special integer.

In[11]:= FactorInteger[%]

Out[11]= ��2, 26�, �3, 14�, �5, 7�, �7, 4�, �11, 2�,�13, 2�, �17, 1�, �19, 1�, �23, 1�, �29, 1��
Although Mathematica may not be able to factor a large integer, it can often still test whether or not

the integer is a prime. In addition, Mathematica has a fast way of finding the kth prime number.

It is often much faster to test whether
a number is prime than to factor it.

In[12]:= PrimeQ[234242423]

Out[12]= False

Here is a plot of the first 100 primes. In[13]:= ListPlot[ Table[ Prime[n], {n, 100} ] ]

20 40 60 80 100

100

200

300

400

500

This is the millionth prime. In[14]:= Prime[1000000]

Out[14]= 15485863

Particularly in number theory, it is often more important to know the distribution of primes than
their actual values. The function PrimePi[x] gives the number of primes Π�x� that are less than or
equal to x.

This gives the number of primes less
than a billion.

In[15]:= PrimePi[10^9]

Out[15]= 50847534

By default, FactorInteger allows only real integers. But with the option setting
GaussianIntegers -> True, it also handles Gaussian integers, which are complex numbers with
integer real and imaginary parts. Just as it is possible to factor uniquely in terms of real primes, it
is also possible to factor uniquely in terms of Gaussian primes. There is nevertheless some potential
ambiguity in the choice of Gaussian primes. In Mathematica, they are always chosen to have positive
real parts, and non-negative imaginary parts, except for a possible initial factor of �� or Mi.

Over the Gaussian integers, 2 can be
factored as ��i��� � i��.

In[16]:= FactorInteger[2, GaussianIntegers -> True]

Out[16]= ����, 1�, �1 � �, 2��



752 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

Here are the factors of a Gaussian
integer.

In[17]:= FactorInteger[111 + 78 I, GaussianIntegers -> True]

Out[17]= ��2 � �, 1�, �3, 1�, �20 � 3 �, 1��

PowerMod[a, b, n] the power ab modulo n

EulerPhi[n] the Euler totient function Φ�n�

MoebiusMu[n] the Möbius function Μ�n�

DivisorSigma[k, n] the divisor function Σk�n�

JacobiSymbol[n, m] the Jacobi symbol � n
m �

- ExtendedGCD[n�, n�, . . . ] the extended gcd of n�, n�, . . .

MultiplicativeOrder[k, n] the multiplicative order of k modulo n

MultiplicativeOrder[k, n, {r�, r�, . . . }]
the generalized multiplicative order with residues ri

CarmichaelLambda[n] the Carmichael function Λ�n�

LatticeReduce[{v�, v�, . . . }] the reduced lattice basis for the set of integer vectors vi

Some functions from number theory.

The modular power function PowerMod[a, b, n] gives exactly the same results as Mod[a^b, n] for
b c �. PowerMod is much more efficient, however, because it avoids generating the full form of a^b.

You can use PowerMod not only to find positive modular powers, but also to find modular inverses.
For negative b, PowerMod[a, b, n] gives, if possible, an integer k such that ka�b Q � mod n. (Whenever
such an integer exists, it is guaranteed to be unique modulo n.) If no such integer k exists, Mathematica
leaves PowerMod unevaluated.

PowerMod is equivalent to using Power,
then Mod, but is much more efficient.

In[18]:= PowerMod[2, 13451, 3]

Out[18]= 2

This gives the modular inverse of 3
modulo 7.

In[19]:= PowerMod[3, -1, 7]

Out[19]= 5

Multiplying the inverse by 3 modulo 7
gives 1, as expected.

In[20]:= Mod[3 %, 7]

Out[20]= 1

The Euler totient function Φ�n� gives the number of integers less than n that are relatively prime
to n. An important relation (Fermat’s Little Theorem) is that aΦ�n� Q � mod n for all a relatively prime
to n.

The Möbius function Μ�n� is defined to be ����k if n is a product of k distinct primes, and � if
n contains a squared factor (other than 1). An important relation is the Möbius inversion formula,



3.2.4 Integer and Number-Theoretical Functions 753

which states that if g�n� � �d / n f�d� for all n, then f�n� � �d / n Μ�d�g�n�d�, where the sums are over all
positive integers d that divide n.

The divisor function Σk�n� is the sum of the kth powers of the divisors of n. The function Σ��n�
gives the total number of divisors of n, and is often denoted d�n�. The function Σ��n�, equal to the
sum of the divisors of n, is often denoted Σ�n�.

For prime n, Φ�n� � n � �. In[21]:= EulerPhi[17]

Out[21]= 16

The result is 1, as guaranteed by
Fermat’s Little Theorem.

In[22]:= PowerMod[3, %, 17]

Out[22]= 1

This gives a list of all the divisors of
24.

In[23]:= Divisors[24]

Out[23]= �1, 2, 3, 4, 6, 8, 12, 24�
Σ��n� gives the total number of distinct
divisors of 24.

In[24]:= DivisorSigma[0, 24]

Out[24]= 8

The Jacobi symbol JacobiSymbol[n, m] reduces to the Legendre symbol � n
m � when m is an odd

prime. The Legendre symbol is equal to zero if n is divisible by m, otherwise it is equal to � if n is
a quadratic residue modulo the prime m, and to �� if it is not. An integer n relatively prime to m
is said to be a quadratic residue modulo m if there exists an integer k such that k� Q n mod m. The

full Jacobi symbol is a product of the Legendre symbols ! n
pi

" for each of the prime factors pi such that
m ��i pi.

The extended gcd ExtendedGCD[n�, n�, . . . ] gives a list {g, {r�, r�, . . . }} where g is the greatest
common divisor of the ni, and the ri are integers such that g � r�n� � r�n� � � � � . The extended gcd is
important in finding integer solutions to linear Diophantine equations.

The first number in the list is the gcd
of 105 and 196.

In[25]:= ExtendedGCD[105, 196]

Out[25]= �7, ��13, 7��
The second pair of numbers satisfies
g � rm � sn.

In[26]:= -13 105 + 7 196

Out[26]= 7

The multiplicative order function MultiplicativeOrder[k, n] gives the smallest integer m such
that km Q � mod n. The function is sometimes known as the index or discrete log of k. The notation
ordn�k� is occasionally used.

The generalized multiplicative order function MultiplicativeOrder[k, n, {r�, r�, . . . }] gives
the smallest integer m such that km Q ri mod n for some i. MultiplicativeOrder[k, n, {-1, 1}] is
sometimes known as the suborder function of k modulo n, denoted sordn�k�.

The Carmichael function or least universal exponent Λ�n� gives the smallest integer m such that
km Q � mod n for all integers k relatively prime to n.



754 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

The lattice reduction function LatticeReduce[{v�, v�, . . . }] is used in several kinds of modern
algorithms. The basic idea is to think of the vectors vk of integers as defining a mathematical lattice.
Any vector representing a point in the lattice can be written as a linear combination of the form
� ck vk, where the ck are integers. For a particular lattice, there are many possible choices of the “basis
vectors” vk. What LatticeReduce does is to find a reduced set of basis vectors v̄k for the lattice, with
certain special properties.

Three unit vectors along the three
coordinate axes already form a reduced
basis.

In[27]:= LatticeReduce[{{1,0,0},{0,1,0},{0,0,1}}]

Out[27]= ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��
This gives the reduced basis for a
lattice in four-dimensional space
specified by three vectors.

In[28]:= LatticeReduce[{{1,0,0,12345}, {0,1,0,12435},
{0,0,1,12354}}]

Out[28]= ���1, 0, 1, 9�, �9, 1, �10, 0�, �85, �143, 59, 6��
Notice that in the last example, LatticeReduce replaces vectors that are nearly parallel by vectors

that are more perpendicular. In the process, it finds some quite short basis vectors.

ContinuedFraction[x, n] generate the first n terms in the continued fraction
representation of x

FromContinuedFraction[list] reconstruct a number from its continued fraction
representation

Rationalize[x, dx] find a rational approximation to x with tolerance dx

Continued fractions.

This generates the first 10 terms in the
continued fraction representation for Π.

In[29]:= ContinuedFraction[Pi, 10]

Out[29]= �3, 7, 15, 1, 292, 1, 1, 1, 2, 1�
This reconstructs the number
represented by the list of continued
fraction terms.

In[30]:= FromContinuedFraction[%]

Out[30]=
1146408
������������������������������������
364913

The result is close to Π. In[31]:= N[%]

Out[31]= 3.14159

This gives directly a rational
approximation to Π.

In[32]:= Rationalize[Pi, 1/1000]

Out[32]=
201
�����������������
64

Continued fractions appear in many number-theoretical settings. Rational numbers have ter-
minating continued fraction representations. Quadratic irrational numbers have continued fraction
representations that become repetitive.



3.2.4 Integer and Number-Theoretical Functions 755

ContinuedFraction[x] the complete continued fraction representation for a rational
or quadratic irrational number

RealDigits[x] the complete digit sequence for a rational number

RealDigits[x, b] the complete digit sequence in base b

Complete representations for numbers.

The continued fraction representation
of
 

�� starts with the term 8, then
involves a sequence of terms that
repeat forever.

In[33]:= ContinuedFraction[Sqrt[79]]

Out[33]= �8, �1, 7, 1, 16��

This reconstructs
 

�� from its
continued fraction representation.

In[34]:= FromContinuedFraction[%]

Out[34]=
������

79

This shows the recurring sequence of
decimal digits in ��.

In[35]:= RealDigits[3/7]

Out[35]= ���4, 2, 8, 5, 7, 1��, 0�
FromDigits reconstructs the original
number.

In[36]:= FromDigits[%]

Out[36]=
3
�������
7

DigitCount[n, b, d] the number of d digits in the base b representation of n

Digit count function.

Here are the digits in the base 2
representation of the number 77.

In[37]:= IntegerDigits[77, 2]

Out[37]= �1, 0, 0, 1, 1, 0, 1�
This directly computes the number of
ones in the base 2 representation.

In[38]:= DigitCount[77, 2, 1]

Out[38]= 4



756 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

The plot of the digit count function is
self-similar.

In[39]:= ListPlot[Table[DigitCount[n, 2, 1], {n, 128}],
PlotJoined->True]

20 40 60 80 100 120

1

2

3

4

5

6

7

BitAnd[n�, n�, . . . ] bitwise AND of the integers ni

BitOr[n�, n�, . . . ] bitwise OR of the integers ni

BitXor[n�, n�, . . . ] bitwise XOR of the integers ni

BitNot[n] bitwise NOT of the integer n

Bitwise operations.

Bitwise operations act on integers represented as binary bits. BitAnd[n�, n�, . . . ] yields the integer
whose binary bit representation has ones at positions where the binary bit representations of all of the
ni have ones. BitOr[n�, n�, . . . ] yields the integer with ones at positions where any of the ni have
ones. BitXor[n�, n�] yields the integer with ones at positions where n� or n� but not both have ones.
BitXor[n�, n�, . . . ] has ones where an odd number of the ni have ones.

This finds the bitwise AND of the
numbers 23 and 29 entered in base 2.

In[40]:= BaseForm[BitAnd[2^^10111, 2^^11101], 2]

Out[40]//BaseForm= 101012

Bitwise operations are used in various combinatorial algorithms. They are also commonly used in
manipulating bitfields in low-level computer languages. In such languages, however, integers nor-
mally have a limited number of digits, typically a multiple of 8. Bitwise operations in Mathematica in
effect allow integers to have an unlimited number of digits. When an integer is negative, it is taken to
be represented in two’s complement form, with an infinite sequence of ones on the left. This allows
BitNot[n] to be equivalent simply to �� � n.



3.2.5 Combinatorial Functions 757

3.2.5 Combinatorial Functions

n! factorial n�n � ���n � �� � � � � � �

n!! double factorial n�n � ���n � 
� � � � �

Binomial[n, m] binomial coefficient �n
m� � nd�emd�n �m�df

Multinomial[n�, n�, . . . ] multinomial coefficient �n� � n� � � � � �d��n�dn�d � � � �

Fibonacci[n] Fibonacci number Fn

Fibonacci[n, x] Fibonacci polynomial Fn�x�

HarmonicNumber[n] harmonic number Hn

HarmonicNumber[n, r] harmonic number H�r�n of order r

BernoulliB[n] Bernoulli number Bn

BernoulliB[n, x] Bernoulli polynomial Bn�x�

EulerE[n] Euler number En

EulerE[n, x] Euler polynomial En�x�

StirlingS1[n, m] Stirling number of the first kind S�m�n

StirlingS2[n, m] Stirling number of the second kind ��m�n

PartitionsP[n] the number p�n� of unrestricted partitions of the integer n

PartitionsQ[n] the number q�n� of partitions of n into distinct parts

Signature[{i�, i�, . . . }] the signature of a permutation

Combinatorial functions.

The factorial function n! gives the number of ways of ordering n objects. For non-integer n, the
numerical value of nd is obtained from the gamma function, discussed in Section 3.2.10.

The binomial coefficient Binomial[n, m] can be written as �n
m� � nd�emd�n � m�df. It gives the

number of ways of choosing m objects from a collection of n objects, without regard to order. The
Catalan numbers, which appear in various tree enumeration problems, are given in terms of binomial
coefficients as cn � ��nn �(�n � ��.



758 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

The multinomial coefficient Multinomial[n�, n�, . . . ], denoted �Ngn�� n�� 			�nm� �
Nd��n�dn�d			nmd�, gives the number of ways of partitioning N distinct objects into m sets of sizes ni

(with N � �m
i�� ni).

Mathematica gives the exact integer
result for the factorial of an integer.

In[1]:= 30!

Out[1]= 265252859812191058636308480000000

For non-integers, Mathematica evaluates
factorials using the gamma function.

In[2]:= 3.6!

Out[2]= 13.3813

Mathematica can give symbolic results
for some binomial coefficients.

In[3]:= Binomial[n, 2]

Out[3]=
1
�������
2
��1 � n� n

This gives the number of ways of
partitioning � � � � �� objects into sets
containing 6 and 5 objects.

In[4]:= Multinomial[6, 5]

Out[4]= 462

The result is the same as ���� �. In[5]:= Binomial[11, 6]

Out[5]= 462

The Fibonacci numbers Fibonacci[n] satisfy the recurrence relation Fn � Fn�� � Fn�� with
F� � F� � �. They appear in a wide range of discrete mathematical problems. For large n, Fn�Fn��

approaches the golden ratio.

The Fibonacci polynomials Fibonacci[n, x] appear as the coefficients of tn in the expansion of
t��� � xt � t�� � ��n�� Fn�x�tn .

The harmonic numbers HarmonicNumber[n] are given by Hn � �n
i�� ��i; the harmonic numbers

of order r HarmonicNumber[n, r] are given by H�r�n � �n
i�� ��i

r. Harmonic numbers appear in many
combinatorial estimation problems, often playing the role of discrete analogs of logarithms.

The Bernoulli polynomials BernoulliB[n, x] satisfy the generating function relation text��et � �� �
��n�� Bn�x�tn�nd . The Bernoulli numbers BernoulliB[n] are given by Bn � Bn���. The Bn appear as
the coefficients of the terms in the Euler-Maclaurin summation formula for approximating integrals.

Numerical values for Bernoulli numbers are needed in many numerical algorithms. You can always
get these numerical values by first finding exact rational results using BernoulliB[n], and then
applying N.

The Euler polynomials EulerE[n, x] have generating function �ext��et � �� � ��n�� En�x�tn�nd , and
the Euler numbers EulerE[n] are given by En � �nEn� �� �. The Euler numbers are related to the
Genocchi numbers by Gn � ����nnE�n��.

This gives the second Bernoulli
polynomial B��x�.

In[6]:= BernoulliB[2, x]

Out[6]=
1
�������
6
� x � x2



3.2.5 Combinatorial Functions 759

You can also get Bernoulli polynomials
by explicitly computing the power
series for the generating function.

In[7]:= Series[t Exp[x t]/(Exp[t] - 1), {t, 0, 4}]

Out[7]= 1 � �� 1
�������
2
� x� t � "#$$

1
������������
12

�
x
�������
2
�

x2

������������
2
%&'' t2 � "#$$

x
������������
12

�
x2

������������
4

�
x3

������������
6
%&'' t3 �

"#$$�
1

�����������������
720

�
x2

������������
24

�
x3

������������
12

�
x4

������������
24

%&'' t4 � Ot�5

BernoulliB[n] gives exact
rational-number results for Bernoulli
numbers.

In[8]:= BernoulliB[20]

Out[8]= �
174611
�������������������������������

330

Stirling numbers show up in many combinatorial enumeration problems. For Stirling numbers
of the first kind StirlingS1[n, m], ����n�mS�m�n gives the number of permutations of n elements
which contain exactly m cycles. These Stirling numbers satisfy the generating function relation
x�x � �� � � � �x � n � �� � �n

m�� S�m�n xm. Note that some definitions of the S�m�n differ by a factor ����n�m

from what is used in Mathematica.

Stirling numbers of the second kind StirlingS2[n, m] give the number of ways of partitioning a
set of n elements into m non-empty subsets. They satisfy the relation xn � �n

m�� �
�m�
n x�x���			�x�m���.

The partition function PartitionsP[n] gives the number of ways of writing the integer n as a sum
of positive integers, without regard to order. PartitionsQ[n] gives the number of ways of writing n
as a sum of positive integers, with the constraint that all the integers in each sum are distinct.

This gives a table of Stirling numbers
of the first kind.

In[9]:= Table[StirlingS1[5, i], {i, 5}]

Out[9]= �24, �50, 35, �10, 1�
The Stirling numbers appear as
coefficients in this product.

In[10]:= Expand[Product[x - i, {i, 0, 4}]]

Out[10]= 24 x � 50 x2 � 35 x3 � 10 x4 � x5

This gives the number of partitions of
100, with and without the constraint
that the terms should be distinct.

In[11]:= {PartitionsQ[100], PartitionsP[100]}

Out[11]= �444793, 190569292�
The partition function p�n� increases

asymptotically like e
 

n. Note that you
cannot simply use Plot to generate a
plot of a function like PartitionsP
because the function can only be
evaluated with integer arguments.

In[12]:= ListPlot[ Table[
N[Log[ PartitionsP[n] ]], {n, 100} ] ]

20 40 60 80 100

5

10

15



760 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

The functions in this section allow you to enumerate various kinds of combinatorial objects. Func-
tions like Permutations allow you instead to generate lists of various combinations of elements.

The signature function Signature[{i�, i�, . . . }] gives the signature of a permutation. It is equal
to �� for even permutations (composed of an even number of transpositions), and to �� for odd
permutations. The signature function can be thought of as a totally antisymmetric tensor, Levi-Civita
symbol or epsilon symbol.

ClebschGordan[{j�, m�}, {j�, m�}, {j, m}]
Clebsch-Gordan coefficient

ThreeJSymbol[{j�, m�}, {j�, m�}, {j, m}]
Wigner 3-j symbol

SixJSymbol[{j�, j�, j}, {j
, j�, j�}]
Racah 6-j symbol

Rotational coupling coefficients.

Clebsch-Gordan coefficients and n-j symbols arise in the study of angular momenta in quan-
tum mechanics, and in other applications of the rotation group. The Clebsch-Gordan coefficients
ClebschGordan[{j�, m�}, {j�, m�}, {j, m}] give the coefficients in the expansion of the quantum
mechanical angular momentum state /j�m� in terms of products of states /j��m�� /j��m��.

The 3-j symbols or Wigner coefficients ThreeJSymbol[{j�, m�}, {j�, m�}, {j, m}] are a more
symmetrical form of Clebsch-Gordan coefficients. In Mathematica, the Clebsch-Gordan coefficients are

given in terms of 3-j symbols by Cj�j�j
m�m�m � ����

m�j��j�
!

�j � � ! j�
m�

j�
m�

j
�m

".
The 6-j symbols SixJSymbol[{j�, j�, j}, {j
, j�, j�}] give the couplings of three quantum me-

chanical angular momentum states. The Racah coefficients are related by a phase to the 6-j symbols.

You can give symbolic parameters in
3-j symbols.

In[13]:= ThreeJSymbol[{j, m}, {j+1/2, -m-1/2}, {1/2, 1/2}]

Out[13]= �
��1��j�m ���������������

1 � j � m
�����������������������������������������������������������������������������������������

2
���������

1 � j
������������

1 � 2 j



3.2.6 Elementary Transcendental Functions 761

3.2.6 Elementary Transcendental Functions

Exp[z] exponential function ez

Log[z] logarithm loge�z�

Log[b, z] logarithm logb�z� to base b

Sin[z], Cos[z], Tan[z], Csc[z], Sec[z], Cot[z]
trigonometric functions (with arguments in radians)

ArcSin[z], ArcCos[z], ArcTan[z], ArcCsc[z], ArcSec[z], ArcCot[z]
inverse trigonometric functions (giving results in radians)

ArcTan[x, y] the argument of x � iy

Sinh[z], Cosh[z], Tanh[z], Csch[z], Sech[z], Coth[z]
hyperbolic functions

ArcSinh[z], ArcCosh[z], ArcTanh[z], ArcCsch[z], ArcSech[z], ArcCoth[z]
inverse hyperbolic functions

Elementary transcendental functions.

Mathematica gives exact results for
logarithms whenever it can. Here is
log� ���
.

In[1]:= Log[2, 1024]

Out[1]= 10

You can find the numerical values of
mathematical functions to any
precision.

In[2]:= N[Log[2], 40]

Out[2]= 0.6931471805599453094172321214581765680755

This gives a complex number result. In[3]:= N[ Log[-2] ]

Out[3]= 0.693147 � 3.14159 �

Mathematica can evaluate logarithms
with complex arguments.

In[4]:= N[ Log[2 + 8 I] ]

Out[4]= 2.10975 � 1.32582 �

The arguments of trigonometric
functions are always given in radians.

In[5]:= Sin[Pi/2]

Out[5]= 1

You can convert from degrees by
explicitly multiplying by the constant
Degree.

In[6]:= N[ Sin[30 Degree] ]

Out[6]= 0.5



762 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

Here is a plot of the hyperbolic tangent
function. It has a characteristic
“sigmoidal” form.

In[7]:= Plot[ Tanh[x], {x, -8, 8} ]

-7.5 -5 -2.5 2.5 5 7.5

-1

-0.5

0.5

1

There are a number of additional trigonometric and hyperbolic functions that are sometimes used.
The versine function is defined as vers�z� � � � cos�z�. The haversine is simply hav�z� � ��vers�z�.
The complex exponential eix is sometimes written as cis�x�. The gudermannian function is defined as
gd�z� � � tan���ez� � Π� . The inverse gudermannian is gd���z� � logesec�z� � tan�z�f. The gudermannian
satisfies such relations as sinh�z� � tanegd�x�f.

3.2.7 Functions That Do Not Have Unique Values

When you ask for the square root s of a number a, you are effectively asking for the solution to the
equation s� � a. This equation, however, in general has two different solutions. Both s � � and s � ��
are, for example, solutions to the equation s� � 
. When you evaluate the “function”

 


, however,
you usually want to get a single number, and so you have to choose one of these two solutions. A
standard choice is that

 

x should be positive for x c �. This is what the Mathematica function Sqrt[x]
does.

The need to make one choice from two solutions means that Sqrt[x] cannot be a true inverse func-
tion for x^2. Taking a number, squaring it, and then taking the square root can give you a different
number than you started with.
 


 gives ��, not ��. In[1]:= Sqrt[4]

Out[1]= 2

Squaring and taking the square root
does not necessarily give you the
number you started with.

In[2]:= Sqrt[(-2)^2]

Out[2]= 2

When you evaluate
 

��i, there are again two possible answers: �� � i and � � i. In this case,
however, it is less clear which one to choose.

There is in fact no way to choose
 

z so that it is continuous for all complex values of z. There
has to be a “branch cut”—a line in the complex plane across which the function

 

z is discontinuous.
Mathematica adopts the usual convention of taking the branch cut for

 

z to be along the negative real
axis.



3.2.7 Functions That Do Not Have Unique Values 763

This gives � � i, not �� � i. In[3]:= N[ Sqrt[-2 I] ]

Out[3]= 1. � 1. �

The branch cut in Sqrt along the
negative real axis means that values of
Sqrt[z] with z just above and below
the axis are very different.

In[4]:= {Sqrt[-2 + 0.1 I], Sqrt[-2 - 0.1 I]}

Out[4]= �0.0353443 � 1.41466 �, 0.0353443 � 1.41466 ��

Their squares are nevertheless close. In[5]:= %^2

Out[5]= ��2. � 0.1 �, �2. � 0.1 ��
The discontinuity along the negative
real axis is quite clear in this
three-dimensional picture of the
imaginary part of the square root
function.

In[6]:= Plot3D[ Im[Sqrt[x + I y]], {x, -4, 4}, {y, -4, 4} ]

-4

-2

0

2

4 -4

-2

0

2

4

-2

-1

0

1

2

-4

-2

0

2

When you find an nth root using z��n, there are, in principle, n possible results. To get a single
value, you have to choose a particular principal root. There is absolutely no guarantee that taking the
nth root of an nth power will leave you with the same number.

This takes the tenth power of a
complex number. The result is unique.

In[7]:= (2.5 + I)^10

Out[7]= �15781.2 � 12335.8 �

There are ten possible tenth roots.
Mathematica chooses one of them. In
this case it is not the number whose
tenth power you took.

In[8]:= %^(1/10)

Out[8]= 2.61033 � 0.660446 �

There are many mathematical functions which, like roots, essentially give solutions to equations.
The logarithm function and the inverse trigonometric functions are examples. In almost all cases,
there are many possible solutions to the equations. Unique “principal” values nevertheless have to
be chosen for the functions. The choices cannot be made continuous over the whole complex plane.
Instead, lines of discontinuity, or branch cuts, must occur. The positions of these branch cuts are often
quite arbitrary. Mathematica makes the most standard mathematical choices for them.



764 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

Sqrt[z] and z^s ���� �� for Re s c �, ���� �f for Re s * � (s not an integer)

Exp[z] none

Log[z] ���� �f

trigonometric functions none

ArcSin[z] and ArcCos[z] ������� and ���� ���

ArcTan[z] ��i���if and ei� i��

ArcCsc[z] and ArcSec[z] ���� ���

ArcCot[z] e�i� �if

hyperbolic functions none

ArcSinh[z] ��i���i� and ��i� �i��

ArcCosh[z] �������

ArcTanh[z] ������f and e��� ���

ArcCsch[z] ��i� i�

ArcSech[z] ���� �f and ���� ���

ArcCoth[z] e��� ��f

Some branch-cut discontinuities in the complex plane.

ArcSin is a multiple-valued function,
so there is no guarantee that it always
gives the “inverse” of Sin.

In[9]:= ArcSin[Sin[4.5]]

Out[9]= �1.35841

Values of ArcSin[z] on opposite sides
of the branch cut can be very different.

In[10]:= {ArcSin[2 + 0.1 I], ArcSin[2 - 0.1 I]}

Out[10]= �1.51316 � 1.31888 �, 1.51316 � 1.31888 ��



3.2.8 Mathematical Constants 765

A three-dimensional picture, showing
the two branch cuts for the function
sin���z�.

In[11]:= Plot3D[ Im[ArcSin[x + I y]], {x, -4, 4}, {y, -4, 4}]

-4

-2

0

2

4 -4

-2

0

2

4

-2

0

2

-4

-2

0

2

3.2.8 Mathematical Constants

I i �
 

��

Infinity �

Pi Π � 	�
���

Degree Π����: degrees to radians conversion factor

GoldenRatio Φ � �� �
 

���� � �	����

E e � �	�����

EulerGamma Euler’s constant Γ � �	������

Catalan Catalan’s constant � �	������

Khinchin Khinchin’s constant � �	���
�

Glaisher Glaisher’s constant � �	���


Mathematical constants.

Euler’s constant EulerGamma is given by the limit Γ � limm#� ��m
k��
�
k � log m�. It appears in many

integrals, and asymptotic formulas. It is sometimes known as the Euler-Mascheroni constant, and
denoted C.

Catalan’s constant Catalan is given by the sum ��k������k��k� ����. It often appears in asymptotic
estimates of combinatorial functions.



766 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

Khinchin’s constant Khinchin (sometimes called Khintchine’s constant) is given by ��s���� �
�

s�s��� �
log� s. It gives the geometric mean of the terms in the continued fraction representation for

a typical real number.

Glaisher’s constant Glaisher A (sometimes called the Glaisher-Kinkelin constant) satisfies log�A� �
�
�� �Ζ

$����, where Ζ is the Riemann zeta function. It appears in various sums and integrals, particularly
those involving gamma and zeta functions.

Mathematical constants can be
evaluated to arbitrary precision.

In[1]:= N[EulerGamma, 40]

Out[1]= 0.5772156649015328606065120900824024310422

Exact computations can also be done
with them.

In[2]:= IntegerPart[GoldenRatio^100]

Out[2]= 792070839848372253126

3.2.9 Orthogonal Polynomials

LegendreP[n, x] Legendre polynomials Pn�x�

LegendreP[n, m, x] associated Legendre polynomials Pm
n �x�

SphericalHarmonicY[l, m, Θ, Φ] spherical harmonics Ym
l �Θ� Φ�

GegenbauerC[n, m, x] Gegenbauer polynomials C�m�n �x�

ChebyshevT[n, x], ChebyshevU[n, x] Chebyshev polynomials Tn�x� and Un�x� of the first
and second kinds

HermiteH[n, x] Hermite polynomials Hn�x�

LaguerreL[n, x] Laguerre polynomials Ln�x�

LaguerreL[n, a, x] generalized Laguerre polynomials La
n�x�

JacobiP[n, a, b, x] Jacobi polynomials P�a�b�n �x�

Orthogonal polynomials.

Legendre polynomials LegendreP[n, x] arise in studies of systems with three-dimensional spherical
symmetry. They satisfy the differential equation �� � x��y$$ � �xy$ �n�n���y � �, and the orthogonality

relation � ��� Pm�x�Pn�x� dx � � for m ^ n.

The associated Legendre polynomials LegendreP[n, m, x] are obtained from derivatives of the
Legendre polynomials according to Pm

n �x� � ����
m���x��m�� dmePn�x�f�dxm. Notice that for odd integers

m * n, the Pm
n �x� contain powers of

 

� � x�, and are therefore not strictly polynomials. The Pm
n �x�

reduce to Pn�x� when m � �.



3.2.9 Orthogonal Polynomials 767

The spherical harmonics SphericalHarmonicY[l, m, Θ, Φ] are related to associated Legendre
polynomials. They satisfy the orthogonality relation � Y m

l �Θ� Φ�Ȳ
m$
l$ �Θ� Φ� dΩ � � for l ^ l$ or m ^ m$,

where dΩ represents integration over the surface of the unit sphere.

This gives the algebraic form of the
Legendre polynomial P��x�.

In[1]:= LegendreP[8, x]

Out[1]=
35
�����������������
128

�
315 x2

����������������������������
32

�
3465 x4

��������������������������������
64

�
3003 x6

��������������������������������
32

�
6435 x8

��������������������������������
128

The integral � ��� P��x�P��x� dx gives
zero by virtue of the orthogonality of
the Legendre polynomials.

In[2]:= Integrate[LegendreP[7,x] LegendreP[8,x], {x, -1, 1}]

Out[2]= 0

Integrating the square of a single
Legendre polynomial gives a non-zero
result.

In[3]:= Integrate[LegendreP[8, x]^2, {x, -1, 1}]

Out[3]=
2
������������
17

High-degree Legendre polynomials
oscillate rapidly.

In[4]:= Plot[LegendreP[10, x], {x, -1, 1}]

-1 -0.5 0.5 1

-0.4

-0.2

0.2

0.4

0.6

0.8

1

The associated Legendre “polynomials”
involve fractional powers.

In[5]:= LegendreP[8, 3, x]

Out[5]= �
3465
����������������������

8
���������������1 � x

��������������������������
�1 � x

��1 � x�2 �1 � x� �3 x � 26 x3 � 39 x5�
Section 3.2.10 discusses the
generalization of Legendre polynomials
to Legendre functions, which can have
non-integer degrees.

In[6]:= LegendreP[8.1, 0]

Out[6]= 0.268502

Gegenbauer polynomials GegenbauerC[n, m, x] can be viewed as generalizations of the Legendre
polynomials to systems with �m � ��-dimensional spherical symmetry. They are sometimes known as
ultraspherical polynomials.

GegenbauerC[n, 0, x] is always equal to zero. GegenbauerC[n, x] is however given by the limit
limm#� C�m�n �x��m. This form is sometimes denoted C���n �x�.

Series of Chebyshev polynomials are often used in making numerical approximations to functions.
The Chebyshev polynomials of the first kind ChebyshevT[n, x] are defined by Tn�cos Θ� � cos�nΘ�.

They are normalized so that Tn��� � �. They satisfy the orthogonality relation � ��� Tm�x�Tn�x��� �



768 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

x������ dx � � for m ^ n. The Tn�x� also satisfy an orthogonality relation under summation at discrete
points in x corresponding to the roots of Tn�x�.

The Chebyshev polynomials of the second kind ChebyshevU[n, z] are defined by Un�cos Θ� �
sine�n � ��Θf�sin Θ. With this definition, Un��� � n � �. The Un satisfy the orthogonality relation

� ���Um�x�Un�x��� � x����� dx � � for m ^ n.

The name “Chebyshev” is a transliteration from the Cyrillic alphabet; several other spellings, such
as “Tschebyscheff”, are sometimes used.

Hermite polynomials HermiteH[n, x] arise as the quantum-mechanical wave functions for a har-
monic oscillator. They satisfy the differential equation y$$ � �xy$ � �ny � �, and the orthogonality
relation � ���Hm�x�Hn�x�e�x

�
dx � � for m ^ n. An alternative form of Hermite polynomials sometimes

used is Hen�x� � ��n��Hn�x�
 

�� (a different overall normalization of the Hen�x� is also sometimes used).

The Hermite polynomials are related to the parabolic cylinder functions or Weber functions Dn�x�
by Dn�x� � ��n��e�x

��
Hn�x�
 

��.

This gives the density for an excited
state of a quantum-mechanical
harmonic oscillator. The average of the
wiggles is roughly the classical physics
result.

In[7]:= Plot[(HermiteH[6, x] Exp[-x^2/2])^2, {x, -6, 6}]

-6 -4 -2 2 4 6

5000

10000

15000

20000

25000

Generalized Laguerre polynomials LaguerreL[n, a, x] are related to hydrogen atom wave func-
tions in quantum mechanics. They satisfy the differential equation xy$$ � �a � � � x�y$ � ny � �,
and the orthogonality relation � �� La

m�x�L
a
n�x�x

ae�x dx � � for m ^ n. The Laguerre polynomials
LaguerreL[n, x] correspond to the special case a � �.

Jacobi polynomials JacobiP[n, a, b, x] occur in studies of the rotation group, particularly in

quantum mechanics. They satisfy the orthogonality relation � ��� P�a�b�m �x�P
�a�b�
n �x��� � x�a�� � x�b dx � �

for m ^ n. Legendre, Gegenbauer and Chebyshev polynomials can all be viewed as special cases of
Jacobi polynomials. The Jacobi polynomials are sometimes given in the alternative form Gn�p� q� x� �
nd ��n � p�����n � p� P�p�q�q���n ��x � ��.

You can get formulas for generalized
Laguerre polynomials with arbitrary
values of a.

In[8]:= LaguerreL[2, a, x]

Out[8]=
1
�������
2
�2 � 3 a � a2 � 4 x � 2 a x � x2�



3.2.10 Special Functions 769

3.2.10 Special Functions

Mathematica includes all the common special functions of mathematical physics found in standard
handbooks. We will discuss each of the various classes of functions in turn.

One point you should realize is that in the technical literature there are often several conflicting
definitions of any particular special function. When you use a special function in Mathematica, there-
fore, you should be sure to look at the definition given here to confirm that it is exactly what you
want.

Mathematica gives exact results for
some values of special functions.

In[1]:= Gamma[15/2]

Out[1]=
135135

����Π
������������������������������������������������

128

No exact result is known here. In[2]:= Gamma[15/7]

Out[2]= Gamma� 15
������������
7

�
A numerical result, to arbitrary
precision, can nevertheless be found.

In[3]:= N[%, 40]

Out[3]= 1.069071500448624397994137689702693267367

You can give complex arguments to
special functions.

In[4]:= Gamma[3 + 4I] //N

Out[4]= 0.00522554 � 0.172547 �

Special functions automatically get
applied to each element in a list.

In[5]:= Gamma[{3/2, 5/2, 7/2}]

Out[5]= 	 ����Π
������������������

2
,

3
����Π

������������������������
4

,
15

����Π
�����������������������������

8



Mathematica knows analytical properties
of special functions, such as
derivatives.

In[6]:= D[Gamma[x], {x, 2}]

Out[6]= Gammax� PolyGamma0, x�2 � Gammax� PolyGamma1, x�
You can use FindRoot to find roots of
special functions.

In[7]:= FindRoot[ BesselJ[0, x], {x, 1} ]

Out[7]= �x � 2.40483�
Special functions in Mathematica can usually be evaluated for arbitrary complex values of their

arguments. Often, however, the defining relations given below apply only for some special choices of
arguments. In these cases, the full function corresponds to a suitable extension or “analytic continua-
tion” of these defining relations. Thus, for example, integral representations of functions are valid only
when the integral exists, but the functions themselves can usually be defined elsewhere by analytic
continuation.

As a simple example of how the domain of a function can be extended, consider the function
represented by the sum ��k�� xk. This sum converges only when /x/ ) �. Nevertheless, it is easy to
show analytically that for any x, the complete function is equal to ���� � x�. Using this form, you can
easily find a value of the function for any x, at least so long as x ^ �.



770 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

Gamma and Related Functions

Beta[a, b] Euler beta function h�a� b�

Beta[z, a, b] incomplete beta function hz�a� b�

BetaRegularized[z, a, b] regularized incomplete beta function I�z� a� b�

Gamma[z] Euler gamma function ��z�

Gamma[a, z] incomplete gamma function ��a� z�

Gamma[a, z�, z�] generalized incomplete gamma function ��a� z�� � ��a� z��

GammaRegularized[a, z] regularized incomplete gamma function Q�a� z�

InverseBetaRegularized[s, a, b] inverse beta function

InverseGammaRegularized[a, s] inverse gamma function

Pochhammer[a, n] Pochhammer symbol �a�n

PolyGamma[z] digamma function Ψ�z�

PolyGamma[n, z] nth derivative of the digamma function Ψ�n��z�

Gamma and related functions.

The Euler gamma function Gamma[z] is defined by the integral ��z� � � �� tz��e�tdt. For positive integer
n, ��n� � �n � ��d . ��z� can be viewed as a generalization of the factorial function, valid for complex
arguments z.

There are some computations, particularly in number theory, where the logarithm of the gamma
function often appears. For positive real arguments, you can evaluate this simply as Log[Gamma[z]].
For complex arguments, however, this form yields spurious discontinuities. Mathematica therefore
includes the separate function LogGamma[z], which yields the logarithm of the gamma function with
a single branch cut along the negative real axis.

The Euler beta function Beta[a, b] is h�a� b� � ��a���b����a � b� � � �� ta���� � t�b��dt.

The Pochhammer symbol or rising factorial Pochhammer[a, n] is �a�n � a�a � �� � � � �a � n � �� �
��a � n����a�. It often appears in series expansions for hypergeometric functions. Note that the
Pochhammer symbol has a definite value even when the gamma functions which appear in its
definition are infinite.

The incomplete gamma function Gamma[a, z] is defined by the integral ��a� z� � � �z ta��e�tdt. Mathe-

matica includes a generalized incomplete gamma function Gamma[a, z�, z�] defined as � z�
z�

ta��e�tdt.



3.2.10 Special Functions 771

The alternative incomplete gamma function Γ�a� z� can therefore be obtained in Mathematica as
Gamma[a, 0, z].

The incomplete beta function Beta[z, a, b] is given by hz�a� b� � � z

�
ta���� � t�b��dt. Notice that in

the incomplete beta function, the parameter z is an upper limit of integration, and appears as the first
argument of the function. In the incomplete gamma function, on the other hand, z is a lower limit of
integration, and appears as the second argument of the function.

In certain cases, it is convenient not to compute the incomplete beta and gamma functions on
their own, but instead to compute regularized forms in which these functions are divided by com-
plete beta and gamma functions. Mathematica includes the regularized incomplete beta function
BetaRegularized[z, a, b] defined for most arguments by I�z� a� b� � h�z� a� b��h�a� b�, but taking
into account singular cases. Mathematica also includes the regularized incomplete gamma function
GammaRegularized[a, z] defined by Q�a� z� � ��a� z����a�, with singular cases taken into account.

The incomplete beta and gamma functions, and their inverses, are common in statistics. The inverse
beta function InverseBetaRegularized[s, a, b] is the solution for z in s � I�z� a� b�. The inverse
gamma function InverseGammaRegularized[a, s] is similarly the solution for z in s � Q�a� z�.

Derivatives of the gamma function often appear in summing rational series. The digamma function
PolyGamma[z] is the logarithmic derivative of the gamma function, given by Ψ�z� � �$�z����z�. For
integer arguments, the digamma function satisfies the relation Ψ�n� � �Γ � Hn��, where Γ is Euler’s
constant (EulerGamma in Mathematica) and Hn are the harmonic numbers.

The polygamma functions PolyGamma[n, z] are given by Ψ�n��z� � dnΨ�z��dzn. Notice that the
digamma function corresponds to Ψ����z�. The general form Ψ�n��z� is the �n � ��th, not the nth, log-
arithmic derivative of the gamma function. The polygamma functions satisfy the relation Ψ�n��z� �
����n��nd��k�� ���z � k�n��.

Many exact results for gamma and
polygamma functions are built into
Mathematica.

In[1]:= PolyGamma[6]

Out[1]=
137
�����������������
60

� EulerGamma

Here is a contour plot of the gamma
function in the complex plane.

In[2]:= ContourPlot[ Abs[Gamma[x + I y]], {x, -3, 3},
{y, -2, 2}, PlotPoints->50 ]

-3 -2 -1 0 1 2 3
-2

-1

0

1

2



772 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

Zeta and Related Functions

LerchPhi[z, s, a] Lerch’s transcendent E�z� s� a�

PolyLog[n, z] polylogarithm function Lin�z�

PolyLog[n, p, z] Nielsen generalized polylogarithm function Sn�p�z�

RiemannSiegelTheta[t] Riemann-Siegel function i�t�

RiemannSiegelZ[t] Riemann-Siegel function Z�t�

StieltjesGamma[n] Stieltjes constants Γn

Zeta[s] Riemann zeta function Ζ�s�

Zeta[s, a] generalized Riemann zeta function Ζ�s� a�

Zeta and related functions.

The Riemann zeta function Zeta[s] is defined by the relation Ζ�s� � ��k�� k�s (for s c �). Zeta functions
with integer arguments arise in evaluating various sums and integrals. Mathematica gives exact results
when possible for zeta functions with integer arguments.

There is an analytic continuation of Ζ�s� for arbitrary complex s ^ �. The zeta function for com-
plex arguments is central to number-theoretical studies of the distribution of primes. Of particular
importance are the values on the critical line Re s � �� .

In studying Ζ� �� � it�, it is often convenient to define the two analytic Riemann-Siegel func-
tions RiemannSiegelZ[t] and RiemannSiegelTheta[z] according to Z�t� � eii�t�Ζ� �� � it� and i�t� �
Im log���
 � it��� � t log�Π��� (for t real). Note that the Riemann-Siegel functions are both real as long
as t is real.

The Stieltjes constants StieltjesGamma[n] are generalizations of Euler’s constant which appear in
the series expansion of Ζ�s� around its pole at s � �; the coefficient of �� � s�n is Γn�nd . Euler’s constant
is Γ�.

The generalized Riemann zeta function or Hurwitz zeta function Zeta[s, a] is given by Ζ�s� a� �
��k���k � a��s, where any term with k � a � � is excluded.

Mathematica gives exact results for
Ζ��n�.

In[1]:= Zeta[6]

Out[1]=
Π6

�����������������
945



3.2.10 Special Functions 773

Here is a three-dimensional picture of
the Riemann zeta function in the
complex plane.

In[2]:= Plot3D[ Abs[ Zeta[x + I y] ], {x, -3, 3}, {y, 2, 35}]

-2

0

2

10

20

30

0

10

20

-2

0

2

This is a plot of the absolute value of
the Riemann zeta function on the
critical line Re z � �� . You can see the
first few zeros of the zeta function.

In[3]:= Plot[ Abs[ Zeta[ 1/2 + I y ] ], {y, 0, 40} ]

10 20 30 40

0.5

1

1.5

2

2.5

3

The polylogarithm functions PolyLog[n, z] are given by Lin�z� � ��k�� zk�kn. The polyloga-
rithm function is sometimes known as Jonquière’s function. The dilogarithm PolyLog[2, z] sat-

isfies Li��z� � � �z log�� � t��t dt. Sometimes Li��� � z� is known as Spence’s integral. The Nielsen
generalized polylogarithm functions or hyperlogarithms PolyLog[n, p, z] are given by Sn�p�z� �

����n�p�����n � ��dpd� � �� logn���t� logp�� � zt��t dt. Polylogarithm functions appear in Feynman diagram
integrals in elementary particle physics, as well as in algebraic K-theory.

The Lerch transcendent LerchPhi[z, s, a] is a generalization of the zeta and polylogarithm func-
tions, given by E�z� s� a� � ��k�� zk��a � k�s, where any term with a � k � � is excluded. Many sums of
reciprocal powers can be expressed in terms of the Lerch transcendent. For example, the Catalan beta
function Β�s� � ��k������k��k � ���s can be obtained as ��sE���� s� �� �.

The Lerch transcendent is related to integrals of the Fermi-Dirac distribution in statistical mechanics
by � �� ks��ek�Μ � �� dk � eΜ��s � ��E��eΜ� s � �� ��.

The Lerch transcendent can also be used to evaluate Dirichlet L-series which appear in number
theory. The basic L-series has the form L�s� Χ� � ��k�� Χ�k�k�s, where the “character” Χ�k� is an integer



774 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

function with period m. L-series of this kind can be written as sums of Lerch functions with z a power
of e�Πi�m.

LerchPhi[z, s, a, DoublyInfinite->True] gives the doubly infinite sum ��k��� zk��a � k�s.

Exponential Integral and Related Functions

CosIntegral[z] cosine integral function Ci�z�

CoshIntegral[z] hyperbolic cosine integral function Chi�z�

ExpIntegralE[n, z] exponential integral En�z�

ExpIntegralEi[z] exponential integral Ei�z�

LogIntegral[z] logarithmic integral li�z�

SinIntegral[z] sine integral function Si�z�

SinhIntegral[z] hyperbolic sine integral function Shi�z�

Exponential integral and related functions.

Mathematica has two forms of exponential integral: ExpIntegralE and ExpIntegralEi.

The exponential integral function ExpIntegralE[n, z] is defined by En�z� � � �� e�zt�tn dt.

The second exponential integral function ExpIntegralEi[z] is defined by Ei�z� � � � ��z e�t�t dt (for
z c �), where the principal value of the integral is taken.

The logarithmic integral function LogIntegral[z] is given by li�z� � � z

�
dt�log t (for z c �), where

the principal value of the integral is taken. li�z� is central to the study of the distribution of primes
in number theory. The logarithmic integral function is sometimes also denoted by Li�z�. In some
number-theoretical applications, li�z� is defined as � z

�
dt�log t, with no principal value taken. This

differs from the definition used in Mathematica by the constant li���.

The sine and cosine integral functions SinIntegral[z] and CosIntegral[z] are defined by
Si�z� � � z

�
sin�t��t dt and Ci�z� � � � �z cos�t��t dt. The hyperbolic sine and cosine integral func-

tions SinhIntegral[z] and CoshIntegral[z] are defined by Shi�z� � � z

�
sinh�t��t dt and Chi�z� �

Γ � log�z� � � z

�
�cosh�t� � ���t dt.



3.2.10 Special Functions 775

Error Function and Related Functions

Erf[z] error function erf�z�

Erf[z�, z�] generalized error function erf�z�� � erf�z��

Erfc[z] complementary error function erfc�z�

Erfi[z] imaginary error function erfi�z�

FresnelC[z] Fresnel integral C�z�

FresnelS[z] Fresnel integral S�z�

InverseErf[s] inverse error function

InverseErfc[s] inverse complementary error function

Error function and related functions.

The error function Erf[z] is the integral of the Gaussian distribution, given by erf�z� � ��
 

Π � z

�
e�t
�
dt.

The complementary error function Erfc[z] is given simply by erfc�z� � � � erf�z�. The imaginary
error function Erfi[z] is given by erfi�z� � erf�iz��i. The generalized error function Erf[z�, z�] is
defined by the integral ��

 

Π � z�
z�

e�t
�
dt. The error function is central to many calculations in statistics.

The inverse error function InverseErf[s] is defined as the solution for z in the equation s � erf�z�.
The inverse error function appears in computing confidence intervals in statistics as well as in some
algorithms for generating Gaussian random numbers.

Closely related to the error function are the Fresnel integrals FresnelC[z] defined by C�z� �

� z

�
cos �Πt���� dt and FresnelS[z] defined by S�z� � � z

�
sin �Πt���� dt. Fresnel integrals occur in diffrac-

tion theory.

Bessel and Related Functions

AiryAi[z] and AiryBi[z] Airy functions Ai�z� and Bi�z�

AiryAiPrime[z] and AiryBiPrime[z] derivatives of Airy functions Ai$�z� and Bi$�z�

BesselJ[n, z] and BesselY[n, z] Bessel functions Jn�z� and Yn�z�

BesselI[n, z] and BesselK[n, z] modified Bessel functions In�z� and Kn�z�

StruveH[n, z] and StruveL[n, z] Struve function Hn�z� and modified Struve function
Ln�z�

Bessel and related functions.



776 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

The Bessel functions BesselJ[n, z] and BesselY[n, z] are linearly independent solutions to the
differential equation z�y$$ � zy$ � �z� � n��y � �. For integer n, the Jn�z� are regular at z � �, while the
Yn�z� have a logarithmic divergence at z � �.

Bessel functions arise in solving differential equations for systems with cylindrical symmetry.

Jn�z� is often called the Bessel function of the first kind, or simply the Bessel function. Yn�z� is
referred to as the Bessel function of the second kind, the Weber function, or the Neumann function
(denoted Nn�z�).

The Hankel functions (or Bessel functions of the third kind) H�����n �z� � Jn�z� M iYn�z� give an
alternative pair of solutions to the Bessel differential equation.

In studying systems with spherical symmetry, spherical Bessel functions arise, defined by fn�z� � 

Π��zFn� ��
�z�, where f and F can be j and J, y and Y, or hi and Hi. For integer n, Mathematica gives

exact algebraic formulas for spherical Bessel functions.

The modified Bessel functions BesselI[n, z] and BesselK[n, z] are solutions to the differential
equation z�y$$ � zy$ � �z� � n��y � �. For integer n, In�z� is regular at z � �; Kn�z� always has a
logarithmic divergence at z � �. The In�z� are sometimes known as hyperbolic Bessel functions.

Particularly in electrical engineering, one often defines the Kelvin functions, according to
bern�z� � i bein�z� � enΠiJn�ze�Πi�
�, kern�z� � i kein�z� � e�nΠi��Kn�zeΠi�
�.

The Airy functions AiryAi[z] and AiryBi[z] are the two independent solutions Ai�z� and Bi�z�
to the differential equation y$$ � zy � �. Ai�z� tends to zero for large positive z, while Bi�z� increases
unboundedly. The Airy functions are related to modified Bessel functions with one-third-integer or-
ders. The Airy functions often appear as the solutions to boundary value problems in electromagnetic
theory and quantum mechanics. In many cases the derivatives of the Airy functions AiryAiPrime[z]
and AiryBiPrime[z] also appear.

The Struve function StruveH[n, z] appears in the solution of the inhomogeneous Bessel equa-
tion which for integer n has the form z�y$$ � zy$ � �z� � n��y � �Π

zn��

��n���dd ; the general solution to this
equation consists of a linear combination of Bessel functions with the Struve function Hn�z� added.
The modified Struve function StruveL[n, z] is given in terms of the ordinary Struve function by
Ln�z� � �ie�inΠ��Hn�z�. Struve functions appear particularly in electromagnetic theory.

Here is a plot of J��
 

x�. This is a
curve that an idealized chain hanging
from one end can form when you
wiggle it.

In[1]:= Plot[ BesselJ[0, Sqrt[x]], {x, 0, 50} ]

10 20 30 40 50

-0.4

-0.2

0.2

0.4

0.6

0.8

1



3.2.10 Special Functions 777

Mathematica generates explicit formulas
for half-integer-order Bessel functions.

In[2]:= BesselK[3/2, x]

Out[2]=
��x �����Π������2 �1 � 1������x ��������������������������������������������������������������������������

x

The Airy function plotted here gives
the quantum-mechanical amplitude for
a particle in a potential that increases
linearly from left to right. The
amplitude is exponentially damped in
the classically inaccessible region on
the right.

In[3]:= Plot[ AiryAi[x], {x, -10, 10} ]

-10 -5 5 10

-0.4

-0.2

0.2

0.4

Legendre and Related Functions

LegendreP[n, z] Legendre functions of the first kind Pn�z�

LegendreP[n, m, z] associated Legendre functions of the first kind Pm
n �z�

LegendreQ[n, z] Legendre functions of the second kind Qn�z�

LegendreQ[n, m, z] associated Legendre functions of the second kind Qm
n �z�

Legendre and related functions.

The Legendre functions and associated Legendre functions satisfy the differential equation ���z��y$$�
�zy$ � en�n � �� � m���� � z��fy � �. The Legendre functions of the first kind, LegendreP[n, z] and
LegendreP[n, m, z], reduce to Legendre polynomials when n and m are integers. The Legendre
functions of the second kind LegendreQ[n, z] and LegendreQ[n, m, z] give the second linearly
independent solution to the differential equation. For integer m they have logarithmic singularities at
z � M�. The Pn�z� and Qn�z� solve the differential equation with m � �.

Legendre functions arise in studies of quantum-mechanical scattering processes.



778 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

LegendreP[n, m, z] or LegendreP[n, m, 1, z]
type 1 function containing �� � z��m��

LegendreP[n, m, 2, z] type 2 function containing ��� � z���� � z��m��

LegendreP[n, m, 3, z] type 3 function containing ��� � z����� � z��m��

Types of Legendre functions. Analogous types exist for LegendreQ.

Legendre functions of type 1 are defined only when z lies inside the unit circle in the complex
plane. Legendre functions of type 2 have the same numerical values as type 1 inside the unit circle,
but are also defined outside. The type 2 functions have branch cuts from �� to �� and from �� to
��. Legendre functions of type 3, sometimes denoted �m

n �z� and �m
n �z�, have a single branch cut

from �� to ��.

Toroidal functions or ring functions, which arise in studying systems with toroidal symmetry, can
be expressed in terms of the Legendre functions P Μ

Ν� ��
�cosh Η� and Q Μ

Ν� ��
�cosh Η�.

Conical functions can be expressed in terms of P Μ
� ���ip
�cos Θ� and Q Μ

� ���ip
�cos Θ�.

When you use the function LegendreP[n, x] with an integer n, you get a Legendre polynomial. If
you take n to be an arbitrary complex number, you get, in general, a Legendre function.

In the same way, you can use the functions GegenbauerC and so on with arbitrary complex indices
to get Gegenbauer functions, Chebyshev functions, Hermite functions, Jacobi functions and La-
guerre functions. Unlike for associated Legendre functions, however, there is no need to distinguish
different types in such cases.

Confluent Hypergeometric Functions

Hypergeometric0F1[a, z] hypergeometric function �F��g ag z�

Hypergeometric0F1Regularized[a, z]
regularized hypergeometric function �F��g ag z����a�

Hypergeometric1F1[a, b, z] Kummer confluent hypergeometric function �F��ag bg z�

Hypergeometric1F1Regularized[a, b, z]
regularized confluent hypergeometric function
�F��ag bg z����b�

HypergeometricU[a, b, z] confluent hypergeometric function U�a� b� z�

Confluent hypergeometric functions.



3.2.10 Special Functions 779

Many of the special functions that we have discussed so far can be viewed as special cases of the
confluent hypergeometric function Hypergeometric1F1[a, b, z].

The confluent hypergeometric function can be obtained from the series expansion �F��ag bg z� �
� � az�b � a�a � ���b�b � �� z���d � & & & � ��k�� �a�k��b�k zk�kd . Some special results are obtained when a
and b are both integers. If a ) �, and either b c � or b ) a, the series yields a polynomial with a finite
number of terms.

If b is zero or a negative integer, then �F��ag bg z� itself is infinite. But the regularized confluent
hypergeometric function Hypergeometric1F1Regularized[a, b, z] given by �F��ag bg z����b� has a
finite value in all cases.

Among the functions that can be obtained from �F� are the Bessel functions, error function, incom-
plete gamma function, and Hermite and Laguerre polynomials.

The function �F��ag bg z� is sometimes denoted E�ag bg z� or M�a� b� z�. It is often known as the
Kummer function.

The �F� function can be written in the integral representation �F��ag bg z� � ��b��e��b � a���a�f � �� eztta��

�� � t�b�a�� dt.

The �F� confluent hypergeometric function is a solution to Kummer’s differential equation zy$$ �
�b � z�y$ � ay � �, with the boundary conditions �F��ag bg �� � � and "e�F��ag bg z�f�"z/z�� � a�b.

The function HypergeometricU[a, b, z] gives a second linearly independent solution to Kummer’s
equation. For Re b c � this function behaves like z��b for small z. It has a branch cut along the negative
real axis in the complex z plane.

The function U�a� b� z� has the integral representation U�a� b� z� � ����a� � �� e�ztta���� � t�b�a�� dt.

U�a� b� z�, like �F��ag bg z�, is sometimes known as the Kummer function. The U function is some-
times denoted by �.

The Whittaker functions give an alternative pair of solutions to Kummer’s differential equation.
The Whittaker function MΚ� Μ is related to �F� by MΚ� Μ�z� � e�z��z����Μ�F�� �� � Μ� Κg �� �Μg z�. The second
Whittaker function WΚ� Μ obeys the same relation, with �F� replaced by U.

The parabolic cylinder functions are related to Whittaker functions by DΝ�z� � ���
�Ν��z���� �
W �

 �
Ν
� ��
�


�z����. For integer Ν, the parabolic cylinder functions reduce to Hermite polynomials.

The Coulomb wave functions are also special cases of the confluent hypergeometric function.
Coulomb wave functions give solutions to the radial Schrödinger equation in the Coulomb potential
of a point nucleus. The regular Coulomb wave function is given by FL�Η� Ρ� � CL�Η�ΡL��e�iΡ�F��L � � �
iΗg �L � �g �iΡ�, where CL�Η� � �Le�ΠΗ��/��L � � � iΗ�/����L � ��.

Other special cases of the confluent hypergeometric function include the Toronto functions T�m� n� r�,
Poisson-Charlier polynomials Ρn�Ν� x�, Cunningham functions Ωn�m�x� and Bateman functions kΝ�x�.



780 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

A limiting form of the confluent hypergeometric function which often appears is
Hypergeometric0F1[a, z]. This function is obtained as the limit �F��g ag z� � limq#� �F��qg ag z�q�.

The �F� function has the series expansion �F��g ag z� � ��k�� ���a�k zk�kd and satisfies the differential
equation zy$$ � ay$ � y � �.

Bessel functions of the first kind can be expressed in terms of the �F� function.

Hypergeometric Functions and Generalizations

Hypergeometric2F1[a, b, c, z] hypergeometric function �F��a� bg cg z�

Hypergeometric2F1Regularized[a, b, c, z]
regularized hypergeometric function �F��a� bg cg z����c�

HypergeometricPFQ[{a�, . . . , ap}, {b�, . . . , bq}, z]
generalized hypergeometric function pFq�agbg z�

HypergeometricPFQRegularized[{a�, . . . , ap}, {b�, . . . , bq}, z]
regularized generalized hypergeometric function

MeijerG[{{a�, . . . , an}, {an��, . . . , ap}}, {{b�, . . . , bm}, {bm��, . . . , bq}}, z]
Meijer G function

AppellF1[a, b�, b�, c, x, y] Appell hypergeometric function of two variables
F��ag b�� b�g cg x� y�

Hypergeometric functions and generalizations.

The hypergeometric function Hypergeometric2F1[a, b, c, z] has series expansion �F��a� bg cg z� �
��k�� �a�k�b�k��c�k zk�kd . The function is a solution of the hypergeometric differential equation z�� �
z�y$$ � ec � �a � b � ��zfy$ � aby � �.

The hypergeometric function can also be written as an integral: �F��a� bg cg z� � ��c��e��b���c � b�f �

� �� tb���� � t�c�b���� � tz��a dt.

The hypergeometric function is also sometimes denoted by F, and is known as the Gauss series or
the Kummer series.

The Legendre functions, and the functions which give generalizations of other orthogonal polyno-
mials, can be expressed in terms of the hypergeometric function. Complete elliptic integrals can also
be expressed in terms of the �F� function.

The Riemann P function, which gives solutions to Riemann’s differential equation, is also a �F�
function.



3.2.11 Elliptic Integrals and Elliptic Functions 781

The generalized hypergeometric function or Barnes extended hypergeometric function
HypergeometricPFQ[{a�, . . . , ap}, {b�, . . . , bq}, z] has series expansion pFq�agbg z� �
��k�� �a��k			�ap�k�e�b��k			�bq�kf zk�kd .

The Meijer G function MeijerG[{{a�,. . .,an}, {an��,. . .,ap}}, {{b�,. . .,bm}, {bm��,. . .,bq}}, z] is

defined by the contour integral representation Gmn
pq �z 	 a������ap

b������bq
� � ��Πi � ��� � a� � s� � � � ��� � an � s� � ��b� �

s� � � � ��bm � s�����an�� � s� � � � ��ap � s���� � bm�� � s� � � � ��� � bq � s�� z�sds, where the contour of integration
is set up to lie between the poles of ��� � ai � s� and the poles of ��bi � s�. MeijerG is a very general
function whose special cases cover most of the functions discussed in the past few sections.

The Appell hypergeometric function of two variables AppellF1[a, b�, b�, c, x, y] has series
expansion F��ag b�� b�g cg x� y� � ��m����n���a�m�n�b��m�b��n��mdnd�c�m�n�xmyn. This function appears for
example in integrating cubic polynomials to arbitrary powers.

The Product Log Function

ProductLog[z] product log function W�z�

The product log function.

The product log function gives the solution for w in z � wew. The function can be viewed as a
generalization of a logarithm. It can be used to represent solutions to a variety of transcendental
equations. The tree generating function for counting distinct oriented trees is related to the product
log by T�z� � �W��z�.

3.2.11 Elliptic Integrals and Elliptic Functions

Even more so than for other special functions, you need to be very careful about the arguments you
give to elliptic integrals and elliptic functions. There are several incompatible conventions in common
use, and often these conventions are distinguished only by the specific names given to arguments or
by the presence of separators other than commas between arguments.



782 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

Amplitude Φ (used by Mathematica, in radians)

Argument u (used by Mathematica): related to amplitude by Φ � am�u�

Delta amplitude ?�Φ�: ?�Φ� �
!

� �m sin��Φ�

Coordinate x: x � sin�Φ�

Characteristic n (used by Mathematica in elliptic integrals of the third kind)

Parameter m (used by Mathematica): preceded by /, as in I�Φ /m�

Complementary parameter m�: m� � � �m

Modulus k: preceded by comma, as in I�Φ� k�; m � k�

Modular angle Α: preceded by � , as in I�Φ�Α�; m � sin��Α�

Nome q: preceded by comma in Θ functions; q � expe�ΠK�� �m��K�m�f � exp�iΠΩ$�Ω�

Invariants g�, g (used by Mathematica)

Half-periods Ω, Ω$: g� � ���$r� s w�
, g � �
��$r� s w��, where w � �rΩ � �sΩ$

Ratio of periods Τ: Τ � Ω$�Ω

Discriminant ?: ? � g� � ��g
�


Parameters of curve a, b (used by Mathematica)

Coordinate y (used by Mathematica): related by y� � x � ax� � bx

Common argument conventions for elliptic integrals and elliptic functions.

JacobiAmplitude[u, m] give the amplitude Φ corresponding to argument u and
parameter m

EllipticNomeQ[m] give the nome q corresponding to parameter m

InverseEllipticNomeQ[q] give the parameter m corresponding to nome q

WeierstrassInvariants[{Ω, Ω$}] give the invariants {g�, g} corresponding to the
half-periods �Ω�Ω$�

WeierstrassHalfPeriods[{g�, g}] give the half-periods �Ω�Ω$� corresponding to the
invariants {g�, g}

Converting between different argument conventions.



3.2.11 Elliptic Integrals and Elliptic Functions 783

Elliptic Integrals

EllipticK[m] complete elliptic integral of the first kind K�m�

EllipticF[Φ, m] elliptic integral of the first kind F�Φ /m�

EllipticE[m] complete elliptic integral of the second kind E�m�

EllipticE[Φ, m] elliptic integral of the second kind E�Φ /m�

EllipticPi[n, m] complete elliptic integral of the third kind B�n /m�

EllipticPi[n, Φ, m] elliptic integral of the third kind B�ng Φ /m�

JacobiZeta[Φ, m] Jacobi zeta function Z�Φ /m�

Elliptic integrals.

Integrals of the form � R�x� y� dx, where R is a rational function, and y� is a cubic or quartic polyno-
mial in x, are known as elliptic integrals. Any elliptic integral can be expressed in terms of the three
standard kinds of Legendre-Jacobi elliptic integrals.

The elliptic integral of the first kind EllipticF[Φ, m] is given for �Π�� ) Φ ) Π�� by F�Φ /m� �

� Φ� e� �m sin��Θ�f���� dΘ � � sin�Φ�

�
e�� � t���� �mt��f���� dt. This elliptic integral arises in solving the equa-

tions of motion for a simple pendulum. It is sometimes known as an incomplete elliptic integral of
the first kind.

Note that the arguments of the elliptic integrals are sometimes given in the opposite order from
what is used in Mathematica.

The complete elliptic integral of the first kind EllipticK[m] is given by K�m� � F� Π� /m�. Note
that K is used to denote the complete elliptic integral of the first kind, while F is used for its incomplete
form. In many applications, the parameter m is not given explicitly, and K�m� is denoted simply by K.
The complementary complete elliptic integral of the first kind K$�m� is given by K�� �m�. It is often
denoted K$. K and iK$ give the “real” and “imaginary” quarter-periods of the corresponding Jacobi
elliptic functions discussed below.

The elliptic integral of the second kind EllipticE[Φ, m] is given for �Π�� ) Φ ) Π�� by

E�Φ /m� � � Φ� e� �m sin��Θ�f��� dΘ � � sin�Φ�

�
�� � t�������� �mt����� dt.

The complete elliptic integral of the second kind EllipticE[m] is given by E�m� � E� Π� /m�. It is
often denoted E. The complementary form is E$�m� � E�� �m�.

The Jacobi zeta function JacobiZeta[Φ, m] is given by Z�Φ /m� � E�Φ /m� � E�m�F�Φ /m��K�m�.

The Heuman lambda function is given by A��Φ /m� � F�Φ / � �m��K�� �m� � �ΠK�m�Z�Φ / � �m�.



784 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

The elliptic integral of the third kind EllipticPi[n, Φ, m] is given by B�ng Φ /m� � � Φ� �� �
n sin��Θ����e� �m sin��Θ�f���� dΘ.

The complete elliptic integral of the third kind EllipticPi[n, m] is given by B�n /m� � B�ng Π� /m�.

Here is a plot of the complete elliptic
integral of the second kind E�m�.

In[1]:= Plot[EllipticE[m], {m, 0, 1}]

0.2 0.4 0.6 0.8 1

1.1

1.2

1.3

1.4

1.5

Here is K�Α� with Α � ��. In[2]:= EllipticK[Sin[30 Degree]^2] // N

Out[2]= 1.68575

The elliptic integrals have a
complicated structure in the complex
plane.

In[3]:= Plot3D[ Im[EllipticF[px + I py, 2]],
{px, 0.5, 2.5}, {py, -1, 1}, PlotPoints->60 ]

0.5

1

1.5

2

2.5 -1

-0.5

0

0.5

1

-4

-2

0

.5

1

1.5

2



3.2.11 Elliptic Integrals and Elliptic Functions 785

Elliptic Functions

JacobiAmplitude[u, m] amplitude function am�u /m�

JacobiSN[u, m], JacobiCN[u, m], etc. Jacobi elliptic functions sn�u /m�, etc.

InverseJacobiSN[v, m], InverseJacobiCN[v, m], etc.
inverse Jacobi elliptic functions sn���v /m�, etc.

EllipticTheta[a, u, q] theta functions ia�u� q� (a � �� 			� 
)

EllipticThetaPrime[a, u, q] derivatives of theta functions i$a�u� q� (a � �� 			� 
)

WeierstrassP[u, {g�, g}] Weierstrass elliptic function j�ug g�� g�

WeierstrassPPrime[u, {g�, g}] derivative of Weierstrass elliptic function
j$�ug g�� g�

InverseWeierstrassP[p, {g�, g}] inverse Weierstrass elliptic function

WeierstrassSigma[u, {g�, g}] Weierstrass sigma function Σ�ug g�� g�

WeierstrassZeta[u, {g�, g}] Weierstrass zeta function Ζ�ug g�� g�

Elliptic and related functions.

Rational functions involving square roots of quadratic forms can be integrated in terms of inverse
trigonometric functions. The trigonometric functions can thus be defined as inverses of the functions
obtained from these integrals.

By analogy, elliptic functions are defined as inverses of the functions obtained from elliptic integrals.

The amplitude for Jacobi elliptic functions JacobiAmplitude[u, m] is the inverse of the elliptic
integral of the first kind. If u � F�Φ /m�, then Φ � am�u /m�. In working with Jacobi elliptic functions,
the argument m is often dropped, so am�u /m� is written as am�u�.

The Jacobi elliptic functions JacobiSN[u, m] and JacobiCN[u, m] are given respectively by
sn�u� � sin�Φ� and cn�u� � cos�Φ�, where Φ � am�u /m�. In addition, JacobiDN[u, m] is given by

dn�u� �
!

� �m sin��Φ� � ?�Φ�.

There are a total of twelve Jacobi elliptic functions JacobiPQ[u, m], with the letters P and Q
chosen from the set S, C, D and N. Each Jacobi elliptic function JacobiPQ[u, m] satisfies the relation
pq�u� � pn�u��qn�u�, where for these purposes nn�u� � �.

There are many relations between the Jacobi elliptic functions, somewhat analogous to those between
trigonometric functions. In limiting cases, in fact, the Jacobi elliptic functions reduce to trigonometric



786 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

functions. So, for example, sn�u / �� � sin�u�, sn�u / �� � tanh�u�, cn�u / �� � cos�u�, cn�u / �� � sech�u�,
dn�u / �� � � and dn�u / �� � sech�u�.

The notation Pq�u� is often used for the integrals � u

�
pq��t� dt. These integrals can be expressed in

terms of the Jacobi zeta function defined above.

One of the most important properties of elliptic functions is that they are doubly periodic in the com-
plex values of their arguments. Ordinary trigonometric functions are singly periodic, in the sense that
f�z� sΩ� � f�z� for any integer s. The elliptic functions are doubly periodic, so that f�z� rΩ� sΩ$� � f�z�
for any pair of integers r and s.

The Jacobi elliptic functions sn�u /m�, etc. are doubly periodic in the complex u plane. Their periods
include Ω � 
K�m� and Ω$ � 
iK�� �m�, where K is the complete elliptic integral of the first kind.

The choice of p and q in the notation pq�u /m� for Jacobi elliptic functions can be understood in
terms of the values of the functions at the quarter periods K and iK$.

This shows two complete periods in
each direction of the absolute value of
the Jacobi elliptic function sn�u / � �.

In[1]:= ContourPlot[Abs[JacobiSN[ux + I uy, 1/3]],
{ux, 0, 4 EllipticK[1/3]},
{uy, 0, 4 EllipticK[2/3]},
PlotPoints->40 ]

0 1 2 3 4 5 6 7
0

2

4

6

8

Also built into Mathematica are the inverse Jacobi elliptic functions InverseJacobiSN[v, m],
InverseJacobiCN[v, m], etc. The inverse function sn���v /m�, for example, gives the value of u for
which v � sn�u /m�. The inverse Jacobi elliptic functions are related to elliptic integrals.

The four theta functions ia�u� q� are obtained from EllipticTheta[a, u, q] by taking a to be
1, 2, 3 or 4. The functions are defined by: i��u� q� � �q��
��n������nqn�n��� sine��n � ��uf, i��u� q� �
�q��
��n�� qn�n��� cose��n � ��uf, i�u� q� � � � ���n�� qn� cos��nu�, i
�u� q� � � � ���n������nqn� cos��nu�.
The theta functions are often written as ia�u� with the parameter q not explicitly given. The theta func-
tions are sometimes written in the form i�u /m�, where m is related to q by q � expe�ΠK���m��K�m�f. In
addition, q is sometimes replaced by Τ, given by q � eiΠΤ. All the theta functions satisfy a diffusion-like
differential equation "�i�u� Τ��"u� � 
Πi "i�u� Τ��"Τ.



3.2.11 Elliptic Integrals and Elliptic Functions 787

The Jacobi elliptic functions can be expressed as ratios of the theta functions.

An alternative notation for theta functions is @�u /m� � i
�v /m�, @��u /m� � i�v /m�, H�u /m� � i��v�,
H��u /m� � i��v�, where v � Πu��K�m�.

The Neville theta functions can be defined in terms of the theta functions as is�u� � �K�m�i��v /m��
Πi$��� /m�, ic�u� � i��v /m��i��� /m�, id�u� � i�v /m��i�� /m�, in�u� � i
�v /m��i
�� /m�, where v �
Πu��K�m�. The Jacobi elliptic functions can be represented as ratios of the Neville theta functions.

The Weierstrass elliptic function WeierstrassP[u, {g�, g}] can be considered as the inverse of
an elliptic integral. The Weierstrass function j�ug g�� g� gives the value of x for which u � � x

�
�
t �

g�t�g����� dt. The function WeierstrassPPrime[u, {g�, g}] is given by j$�ug g�� g� � ""uj�ug g�� g�.

The Weierstrass functions are also sometimes written in terms of their fundamental half-periods Ω and
Ω$, obtained from the invariants g� and g using WeierstrassHalfPeriods[{g�, g}].

The function InverseWeierstrassP[p, {g�, g}] finds one of the two values of u for which
p � j�ug g�� g�. This value always lies in the parallelogram defined by the complex number half-
periods Ω and Ω$.

InverseWeierstrassP[{p, q}, {g�, g}] finds the unique value of u for which p � j�ug g�� g� and
q � j$�ug g�� g�. In order for any such value of u to exist, p and q must be related by q� � 
p �g�p�g.

The Weierstrass zeta function WeierstrassZeta[u, {g�, g}] and Weierstrass sigma function
WeierstrassSigma[u, {g�, g}] are related to the Weierstrass elliptic functions by Ζ$�zg g�� g� �
�j�zg g�� g� and Σ$�zg g�� g��Σ�zg g�� g� � Ζ�zg g�� g�.

The Weierstrass zeta and sigma functions are not strictly elliptic functions since they are not
periodic.

Elliptic Modular Functions

DedekindEta[Τ] Dedekind eta function Η�Τ�

KleinInvariantJ[Τ] Klein invariant modular function J�Τ�

ModularLambda[Τ] modular lambda function Λ�Τ�

Elliptic modular functions.

The modular lambda function ModularLambda[Τ] relates the ratio of half-periods Τ � Ω$�Ω to the
parameter according to m � Λ�Τ�.

The Klein invariant modular function KleinInvariantJ[Τ] and the Dedekind eta function
DedekindEta[Τ] satisfy the relations ? � g��J�Τ� � ��Π�

��Η�
�Τ�.



788 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

Modular elliptic functions are defined to be invariant under certain fractional linear transformations
of their arguments. Thus for example Λ�Τ� is invariant under any combination of the transformations
Τ # Τ � � and Τ # Τ��� � �Τ�.

Generalized Elliptic Integrals and Functions

ArithmeticGeometricMean[a, b] the arithmetic-geometric mean of a and b

EllipticExp[u, {a, b}] generalized exponential associated with the elliptic curve
y� � x � ax� � bx

EllipticLog[{x, y}, {a, b}] generalized logarithm associated with the elliptic curve
y� � x � ax� � bx

Generalized elliptic integrals and functions.

The definitions for elliptic integrals and functions given above are based on traditional usage. For
modern algebraic geometry, it is convenient to use slightly more general definitions.

The function EllipticLog[{x, y}, {a, b}] is defined as the value of the integral
�
� � x

�
�t � at� � bt����� dt, where the sign of the square root is specified by giving the value of y such

that y �
 

x � ax� � bx. Integrals of the form � x

�
�t� � at����� dt can be expressed in terms of the or-

dinary logarithm (and inverse trigonometric functions). You can think of EllipticLog as giving a
generalization of this, where the polynomial under the square root is now of degree three.

The function EllipticExp[u, {a, b}] is the inverse of EllipticLog. It returns the list {x, y} that
appears in EllipticLog. EllipticExp is an elliptic function, doubly periodic in the complex u plane.

ArithmeticGeometricMean[a, b] gives the arithmetic-geometric mean (AGM) of two numbers a
and b. This quantity is central to many numerical algorithms for computing elliptic integrals and
other functions. For positive reals a and b the AGM is obtained by starting with a� � a, b� � b, then
iterating the transformation an�� � �� �an � bn�, bn�� �

 

anbn until an � bn to the precision required.



3.2.12 Mathieu and Related Functions 789

3.2.12 Mathieu and Related Functions

MathieuC[a, q, z] even Mathieu functions with characteristic value a and
parameter q

MathieuS[b, q, z] odd Mathieu function with characteristic value b and
parameter q

MathieuCPrime[a, q, z] and MathieuSPrime[b, q, z]
z derivatives of Mathieu functions

MathieuCharacteristicA[r, q] characteristic value ar for even Mathieu functions with
characteristic exponent r and parameter q

MathieuCharacteristicB[r, q] characteristic value br for odd Mathieu functions with
characteristic exponent r and parameter q

MathieuCharacteristicExponent[a, q]
characteristic exponent r for Mathieu functions with
characteristic value a and parameter q

Mathieu and related functions.

The Mathieu functions MathieuC[a, q, z] and MathieuS[a, q, z] are solutions to the equation
y$$ � ea � �q cos��z�fy � �. This equation appears in many physical situations that involve elliptical
shapes or periodic potentials. The function MathieuC is defined to be even in z, while MathieuS is
odd.

When q � � the Mathieu functions are simply cos�
 

az� and sin�
 

az�. For non-zero q, the Mathieu
functions are only periodic in z for certain values of a. Such Mathieu characteristic values are given
by MathieuCharacteristicA[r, q] and MathieuCharacteristicB[r, q] with r an integer or rational
number. These values are often denoted by ar and br.

For integer r, the even and odd Mathieu functions with characteristic values ar and br are often
denoted cer�z� q� and ser�z� q�, respectively. Note the reversed order of the arguments z and q.

According to Floquet’s Theorem any Mathieu function can be written in the form eirzf�z�, where f�z�
has period �Π and r is the Mathieu characteristic exponent MathieuCharacteristicExponent[a, q].
When the characteristic exponent r is an integer or rational number, the Mathieu function is therefore
periodic. In general, however, when r is not a real integer, ar and br turn out to be equal.



790 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

This shows the first five characteristic
values ar as functions of q.

In[1]:= Plot[Evaluate[Table[MathieuCharacteristicA[r, q],
{r, 0, 4}]], {q, 0, 15}]

2 4 6 8 10 12 14

-20

-10

10

20

3.2.13 Working with Special Functions

automatic evaluation exact results for specific arguments

N[expr, n] numerical approximations to any precision

D[expr, x] exact results for derivatives

N[D[expr, x]] numerical approximations to derivatives

Series[expr, {x, x�, n}] series expansions

Integrate[expr, x] exact results for integrals

NIntegrate[expr, x] numerical approximations to integrals

FindRoot[expr==0, {x, x�}] numerical approximations to roots

Some common operations on special functions.

Most special functions have simpler forms when given certain specific arguments. Mathematica will
automatically simplify special functions in such cases.

Mathematica automatically writes this in
terms of standard mathematical
constants.

In[1]:= PolyLog[2, 1/2]

Out[1]=
Π2

������������
12

�
Log2�2

�����������������������������������
2



3.2.13 Working with Special Functions 791

Here again Mathematica reduces a
special case of the Airy function to an
expression involving gamma functions.

In[2]:= AiryAi[0]

Out[2]=
1

��������������������������������������������������������������
32�3 Gamma� 2������3 �

For most choices of arguments, no exact reductions of special functions are possible. But in such
cases, Mathematica allows you to find numerical approximations to any degree of precision. The algo-
rithms that are built into Mathematica cover essentially all values of parameters—real and complex—for
which the special functions are defined.

There is no exact result known here. In[3]:= AiryAi[1]

Out[3]= AiryAi1�
This gives a numerical approximation
to 40 digits of precision.

In[4]:= N[AiryAi[1], 40]

Out[4]= 0.1352924163128814155241474235154663061749

The result here is a huge complex
number, but Mathematica can still find
it.

In[5]:= N[AiryAi[1000 I]]

Out[5]= �4.78026663777�106472 � 3.6749209072�106472 �

Most special functions have derivatives that can be expressed in terms of elementary functions or
other special functions. But even in cases where this is not so, you can still use N to find numerical
approximations to derivatives.

This derivative comes out in terms of
elementary functions.

In[6]:= D[FresnelS[x], x]

Out[6]= Sin� Π x2

������������������
2

�
This evaluates the derivative of the
gamma function at the point 3.

In[7]:= Gamma'[3]

Out[7]= 2 � 3
�������
2
� EulerGamma�

There is no exact formula for this
derivative of the zeta function.

In[8]:= Zeta'[Pi]

Out[8]= Zeta<Π�
Applying N gives a numerical
approximation.

In[9]:= N[%]

Out[9]= �0.167603

Mathematica incorporates a vast amount of knowledge about special functions—including essentially
all the results that have been derived over the years. You access this knowledge whenever you do
operations on special functions in Mathematica.

Here is a series expansion for a Fresnel
function.

In[10]:= Series[FresnelS[x], {x, 0, 15}]

Out[10]=
Π x3

������������������
6

�
Π3 x7

�����������������������
336

�
Π5 x11

��������������������������
42240

�
Π7 x15

������������������������������������
9676800

� Ox�16



792 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

Mathematica knows how to do a vast
range of integrals involving special
functions.

In[11]:= Integrate[AiryAi[x]^2, {x, 0, Infinity}]

Out[11]=
1

������������������������������������������������������������������
32�3 Gamma� 1������3 �2

One feature of working with special functions is that there are a large number of relations between
different functions, and these relations can often be used in simplifying expressions.

FullSimplify[expr] try to simplify expr using a range of transformation rules

Simplifying expressions involving special functions.

This uses the reflection formula for the
gamma function.

In[12]:= FullSimplify[Gamma[x] Gamma[1 - x]]

Out[12]= Π CscΠ x�
This makes use of a representation for
Chebyshev polynomials.

In[13]:= FullSimplify[ChebyshevT[n, z] - k Cos[n ArcCos[z]]]

Out[13]= ���1 � k� Cosn ArcCosz��
The Airy functions are related to Bessel
functions.

In[14]:= FullSimplify[3 AiryAi[1] + Sqrt[3] AiryBi[1]]

Out[14]= 2 BesselI�� 1
�������
3

,
2
�������
3
�

FunctionExpand[expr] try to expand out special functions

Manipulating expressions involving special functions.

This expands out the PolyGamma,
yielding a function with a simpler
argument.

In[15]:= FunctionExpand[PolyGamma[2, 2 + x]]

Out[15]= 2 "#$$
1
������������
x3

�
1

�����������������������������������1 � x�3
%&'' � PolyGamma2, x�

Here is an example involving Bessel
functions.

In[16]:= FunctionExpand[BesselY[n, I x]]

Out[16]= �
2 �� x��n

xn BesselKn, x�
��������������������������������������������������������������������������������������������������������������

Π
� BesselIn, x�

���� x��n
xn � �� x�n

x�n Cosn Π�� Cscn Π�
In this case the final result does not
even involve PolyGamma.

In[17]:= FunctionExpand[Im[PolyGamma[0, 3 I]]]

Out[17]=
1
�������
6
�

1
�������
2
Π Coth3 Π�



3.2.14 Statistical Distributions and Related Functions 793

This finds an expression for the second
derivative of the zeta function at zero.

In[18]:= FunctionExpand[Zeta''[0]]

Out[18]=
EulerGamma2

������������������������������������������������������
2

�
Π2

������������
24

�

1
�������
2
�Log2� � LogΠ��2 � StieltjesGamma1�

3.2.14 Statistical Distributions and Related Functions

There are standard Mathematica packages for evaluating functions related to common statistical
distributions. Mathematica represents the statistical distributions themselves in the symbolic form
name[param�, param�, . . . ], where the parami are parameters for the distributions. Functions such
as Mean, which give properties of statistical distributions, take the symbolic representation of the
distribution as an argument.

BetaDistribution[Α, Β] continuous beta distribution

CauchyDistribution[a, b] Cauchy distribution with location parameter a and scale
parameter b

ChiSquareDistribution[n] chi-square distribution with n degrees of freedom

ExponentialDistribution[Λ] exponential distribution with scale parameter Λ

ExtremeValueDistribution[Α, Β] extreme value (Fisher-Tippett) distribution

FRatioDistribution[n�, n�] F-ratio distribution with n� numerator and n�
denominator degrees of freedom

GammaDistribution[Α, Λ] gamma distribution with shape parameter Α and scale
parameter Λ

NormalDistribution[Μ, Σ] normal (Gaussian) distribution with mean Μ and
standard deviation Σ

LaplaceDistribution[Μ, Β] Laplace (double exponential) distribution with mean Μ
and variance parameter Β

LogNormalDistribution[Μ, Σ] lognormal distribution with mean parameter Μ and
variance parameter Σ

LogisticDistribution[Μ, Β] logistic distribution with mean Μ and variance
parameter Β

RayleighDistribution[Σ] Rayleigh distribution

StudentTDistribution[n] Student t distribution with n degrees of freedom

UniformDistribution[min, max] uniform distribution on the interval {min, max}

WeibullDistribution[Α, Β] Weibull distribution

Statistical distributions from the package Statistics`ContinuousDistributions` .



794 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

Most of the continuous statistical distributions commonly used are derived from the normal
or Gaussian distribution NormalDistribution[Μ, Σ]. This distribution has probability density
���
 

�ΠΣ� expe��x � Μ�����Σ��f. If you take random variables that follow any distribution with bounded
variance, then the Central Limit Theorem shows that the mean of a large number of these variables
always approaches a normal distribution.

The logarithmic normal distribution or lognormal distribution LogNormalDistribution[Μ, Σ] is
the distribution followed by the exponential of a normal-distributed random variable. This distribution
arises when many independent random variables are combined in a multiplicative fashion.

The chi-square distribution ChiSquareDistribution[n] is the distribution of the quantity �n
i�� xi

�,
where the xi are random variables which follow a normal distribution with mean zero and unit
variance. The chi-square distribution gives the distribution of variances of samples from a normal
distribution.

The Student t distribution StudentTDistribution[n] is the distribution followed by the ratio of
a variable that follows the normal distribution to the square root of one that follows the chi-square
distribution with n degrees of freedom. The t distribution characterizes the uncertainty in a mean
when both the mean and variance are obtained from data.

The F-ratio distribution, F-distribution or variance ratio distribution
FRatioDistribution[n�, n�] is the distribution of the ratio of two chi-square variables with n� and
n� degrees of freedom. The F-ratio distribution is used in the analysis of variance for comparing
variances from different models.

The extreme value distribution ExtremeValueDistribution[Α, Β] is the limiting distribution for
the smallest or largest values in large samples drawn from a variety of distributions, including the
normal distribution.

PDF[dist, x] probability density function (frequency function) at x

CDF[dist, x] cumulative distribution function at x

Quantile[dist, q] qth quantile

Mean[dist] mean

Variance[dist] variance

StandardDeviation[dist] standard deviation

Skewness[dist] coefficient of skewness

Kurtosis[dist] coefficient of kurtosis

CharacteristicFunction[dist, t] characteristic function Φ�t�

Random[dist] pseudorandom number with specified distribution

Functions of statistical distributions.



3.2.14 Statistical Distributions and Related Functions 795

The cumulative distribution function (cdf) CDF[dist, x] is given by the integral of the probability
density function for the distribution up to the point x. For the normal distribution, the cdf is usually
denoted E�x�. Cumulative distribution functions are used in evaluating probabilities for statistical
hypotheses. For discrete distributions, the cdf is given by the sum of the probabilities up to the point
x. The cdf is sometimes called simply the distribution function. The cdf at a particular point x for a
given distribution is often denoted P�x / Θ�� Θ�� 			�, where the Θi are parameters of the distribution. The
upper tail area is given in terms of the cdf by Q�x / Θi� � � � P�x / Θi�. Thus, for example, the upper
tail area for a chi-square distribution with Ν degrees of freedom is denoted Q�Χ� / Ν� and is given by
1 - CDF[ChiSquareDistribution[nu], chi2].

The quantile Quantile[dist, q] is effectively the inverse of the cdf. It gives the value of x at
which CDF[dist, x] reaches q. The median is given by Quantile[dist, 1/2]; quartiles, deciles and
percentiles can also be expressed as quantiles. Quantiles are used in constructing confidence intervals
for statistical parameter estimates.

The characteristic function CharacteristicFunction[dist, t] is given by Φ�t� � � p�x� exp�itx� dx,
where p�x� is the probability density for a distribution. The nth central moment of a distribution is
given by the nth derivative i�nΦ�n����.

Random[dist] gives pseudorandom numbers that follow the specified distribution. The numbers can
be seeded as discussed in Section 3.2.3.

This loads the package which defines
continuous statistical distributions.

In[1]:= <<Statistics`ContinuousDistributions`

This represents a normal distribution
with mean zero and unit variance.

In[2]:= ndist = NormalDistribution[0, 1]

Out[2]= NormalDistribution0, 1�
Here is a symbolic result for the
cumulative distribution function of the
normal distribution.

In[3]:= CDF[ndist, x]

Out[3]=
1
�������
2
"#$$1 � Erf� x

����������������������
2
�%&''

This gives the value of x at which the
cdf of the normal distribution reaches
the value �	�.

In[4]:= Quantile[ndist, 0.9] // N

Out[4]= 1.28155

Here is a list of five normal-distributed
pseudorandom numbers.

In[5]:= Table[ Random[ndist], {5} ]

Out[5]= ��1.63994, 0.987641,
�0.475946, �0.598517, �1.04913�



796 3. Advanced Mathematics in Mathematica � 3.2 Mathematical Functions

BernoulliDistribution[p] discrete Bernoulli distribution with mean p

BinomialDistribution[n, p] binomial distribution for n trials with probability p

DiscreteUniformDistribution[n] discrete uniform distribution with n states

GeometricDistribution[p] discrete geometric distribution with mean ��p � �

HypergeometricDistribution[n, nsucc, ntot]
hypergeometric distribution for n trials with nsucc

successes in a population of size ntot

NegativeBinomialDistribution[r, p] negative binomial distribution for failure count r
and probability p

PoissonDistribution[mu] Poisson distribution with mean Μ

Statistical distributions from the package Statistics`DiscreteDistributions`.

Most of the common discrete statistical distributions can be derived by considering a sequence of
“trials”, each with two possible outcomes, say “success” and “failure”.

The Bernoulli distribution BernoulliDistribution[p] is the probability distribution for a single
trial in which success, corresponding to value 1, occurs with probability p, and failure, corresponding
to value 0, occurs with probability � � p.

The binomial distribution BinomialDistribution[n, p] is the distribution of the number of suc-
cesses that occur in n independent trials when the probability for success in an individual trial is p.
The distribution is given by �n

k�pk�� � p�n�k.

The negative binomial distribution NegativeBinomialDistribution[r, p] gives the distribution
of the number of failures that occur in a sequence of trials before r successes have occurred, given
that the probability for success in each individual trial is p.

The geometric distribution GeometricDistribution[p] gives the distribution of the total number
of trials before the first success occurs in a sequence of trials where the probability for success in each
individual trial is p.

The hypergeometric distribution HypergeometricDistribution[n, nsucc, ntot] is used in place
of the binomial distribution for experiments in which the n trials correspond to sampling without
replacement from a population of size ntot with nsucc potential successes.

The discrete uniform distribution DiscreteUniformDistribution[n] represents an experiment
with n outcomes that occur with equal probabilities.



3.3.1 Structural Operations on Polynomials 797

3.3 Algebraic Manipulation

3.3.1 Structural Operations on Polynomials

Expand[poly] expand out products and powers

Factor[poly] factor completely

FactorTerms[poly] pull out any overall numerical factor

FactorTerms[poly, {x, y, . . . }] pull out any overall factor that does not depend
on x, y, . . .

Collect[poly, x] arrange a polynomial as a sum of powers of x

Collect[poly, {x, y, . . . }] arrange a polynomial as a sum of powers of x, y, . . .

Structural operations on polynomials.

Here is a polynomial in one variable. In[1]:= (2 + 4 x^2)^2 (x - 1)^3

Out[1]= ��1 � x�3 �2 � 4 x2�2

Expand expands out products and
powers, writing the polynomial as a
simple sum of terms.

In[2]:= t = Expand[ % ]

Out[2]= �4 � 12 x � 28 x2 � 52 x3 � 64 x4 � 64 x5 � 48 x6 � 16 x7

Factor performs complete factoring of
the polynomial.

In[3]:= Factor[ t ]

Out[3]= 4 ��1 � x�3 �1 � 2 x2�2

FactorTerms pulls out the overall
numerical factor from t.

In[4]:= FactorTerms[ t ]

Out[4]= 4 ��1 � 3 x � 7 x2 � 13 x3 � 16 x4 � 16 x5 � 12 x6 � 4 x7�
There are several ways to write any polynomial. The functions Expand, FactorTerms and Factor
give three common ways. Expand writes a polynomial as a simple sum of terms, with all products ex-
panded out. FactorTerms pulls out common factors from each term. Factor does complete factoring,
writing the polynomial as a product of terms, each of as low degree as possible.

When you have a polynomial in more than one variable, you can put the polynomial in differ-
ent forms by essentially choosing different variables to be “dominant”. Collect[poly, x] takes a
polynomial in several variables and rewrites it as a sum of terms containing different powers of the
“dominant variable” x.

Here is a polynomial in two variables. In[5]:= Expand[ (1 + 2x + y)^3 ]

Out[5]= 1 � 6 x � 12 x2 � 8 x3 � 3 y � 12 x y � 12 x2 y � 3 y2 � 6 x y2 � y3



798 3. Advanced Mathematics in Mathematica � 3.3 Algebraic Manipulation

Collect reorganizes the polynomial so
that x is the “dominant variable”.

In[6]:= Collect[ %, x ]

Out[6]= 1 � 8 x3 � 3 y � 3 y2 � y3 � x2 �12 � 12 y� � x �6 � 12 y � 6 y2�
If you specify a list of variables,
Collect will effectively write the
expression as a polynomial in these
variables.

In[7]:= Collect[ Expand[ (1 + x + 2y + 3z)^3 ], {x, y} ]

Out[7]= 1 � x3 � 8 y3 � 9 z � 27 z2 � 27 z3 � x2 �3 � 6 y � 9 z� �
y2 �12 � 36 z� � y �6 � 36 z � 54 z2� �
x �3 � 12 y2 � 18 z � 27 z2 � y �12 � 36 z��

Expand[poly, patt] expand out poly avoiding those parts which do not contain
terms matching patt

Controlling polynomial expansion.

This avoids expanding parts which do
not contain x.

In[8]:= Expand[(x + 1)^2 (y + 1)^2, x]

Out[8]= �1 � y�2 � 2 x �1 � y�2 � x2 �1 � y�2

This avoids expanding parts which do
not contain objects matching b[_].

In[9]:= Expand[(a[1] + a[2] + 1)^2 (1 + b[1])^2, b[_]]

Out[9]= �1 � a1� � a2��2 �
2 �1 � a1� � a2��2

b1� � �1 � a1� � a2��2
b1�2

PowerExpand[expr] expand out �ab�c and �ab�c in expr

Expanding powers.

Mathematica does not automatically expand out expressions of the form (a b)^c except when c is an
integer. In general it is only correct to do this expansion if a and b are positive reals. Nevertheless,
the function PowerExpand does the expansion, effectively assuming that a and b are indeed positive
reals.

Mathematica does not automatically
expand out this expression.

In[10]:= (x y)^n

Out[10]= �x y�n

PowerExpand does the expansion,
effectively assuming that x and y are
positive reals.

In[11]:= PowerExpand[%]

Out[11]= xn yn

Log is not automatically expanded out. In[12]:= Log[%]

Out[12]= Logxn yn�
PowerExpand does the expansion. In[13]:= PowerExpand[%]

Out[13]= n Logx� � n Logy�



3.3.2 Finding the Structure of a Polynomial 799

Collect[poly, patt] collect separately terms involving each object that matches patt

Collect[poly, patt, h] apply h to each final coefficient obtained

Ways of collecting terms.

Here is an expression involving various
functions f.

In[14]:= t = 3 + x f[1] + x^2 f[1] + y f[2]^2 + z f[2]^2

Out[14]= 3 � x f1� � x2 f1� � y f2�2 � z f2�2

This collects terms that match f[_]. In[15]:= Collect[t, f[_]]

Out[15]= 3 � �x � x2� f1� � �y � z� f2�2

This applies Factor to each coefficient
obtained.

In[16]:= Collect[t, f[_], Factor]

Out[16]= 3 � x �1 � x� f1� � �y � z� f2�2

3.3.2 Finding the Structure of a Polynomial

PolynomialQ[expr, x] test whether expr is a polynomial in x

PolynomialQ[expr, {x�, x�, . . . }] test whether expr is a polynomial in the xi

Variables[poly] a list of the variables in poly

Exponent[poly, x] the maximum exponent with which x appears in poly

Coefficient[poly, expr] the coefficient of expr in poly

Coefficient[poly, expr, n] the coefficient of expr^n in poly

Coefficient[poly, expr, 0] the term in poly independent of expr

CoefficientList[poly, {x�, x�, . . . }] generate an array of the coefficients of the xi in poly

Finding the structure of polynomials written in expanded form.

Here is a polynomial in two variables. In[1]:= t = (1 + x)^3 (1 - y - x)^2

Out[1]= �1 � x�3 �1 � x � y�2

This is the polynomial in expanded
form.

In[2]:= Expand[t]

Out[2]= 1 � x � 2 x2 � 2 x3 � x4 � x5 � 2 y � 4 x y �
4 x3 y � 2 x4 y � y2 � 3 x y2 � 3 x2 y2 � x3 y2



800 3. Advanced Mathematics in Mathematica � 3.3 Algebraic Manipulation

PolynomialQ reports that t is a
polynomial in x.

In[3]:= PolynomialQ[t, x]

Out[3]= True

This expression, however, is not a
polynomial in x.

In[4]:= PolynomialQ[x + Sin[x], x]

Out[4]= False

Variables gives a list of the variables
in the polynomial t.

In[5]:= Variables[t]

Out[5]= �x, y�
This gives the maximum exponent with
which x appears in the polynomial t.
For a polynomial in one variable,
Exponent gives the degree of the
polynomial.

In[6]:= Exponent[t, x]

Out[6]= 5

Coefficient[poly, expr] gives the
total coefficient with which expr
appears in poly. In this case, the result
is a sum of two terms.

In[7]:= Coefficient[t, x^2]

Out[7]= �2 � 3 y2

This is equivalent to
Coefficient[t, x^2].

In[8]:= Coefficient[t, x, 2]

Out[8]= �2 � 3 y2

This picks out the coefficient of x� in t. In[9]:= Coefficient[t, x, 0]

Out[9]= 1 � 2 y � y2

CoefficientList gives a list of the
coefficients of each power of x, starting
with x�.

In[10]:= CoefficientList[1 + 3x^2 + 4x^4, x]

Out[10]= �1, 0, 3, 0, 4�
For multivariate polynomials,
CoefficientList gives an array of the
coefficients for each power of each
variable.

In[11]:= CoefficientList[t, {x, y}]

Out[11]= ��1, �2, 1�, �1, �4, 3�, ��2, 0, 3�,��2, 4, 1�, �1, 2, 0�, �1, 0, 0��
It is important to notice that the functions in this section will work even on polynomials that are not
explicitly given in expanded form.

Many of the functions also work on expressions that are not strictly polynomials.

Without giving specific integer values
to a, b and c, this expression cannot
strictly be considered a polynomial.

In[12]:= x^a + x^b + y^c

Out[12]= xa � xb � yc

Exponent[expr, x] still gives the
maximum exponent of x in expr, but
here has to write the result in symbolic
form.

In[13]:= Exponent[%, x]

Out[13]= Max0, a, b�



3.3.3 Structural Operations on Rational Expressions 801

3.3.3 Structural Operations on Rational Expressions

For ordinary polynomials, Factor and Expand give the most important forms. For rational expressions,
there are many different forms that can be useful.

ExpandNumerator[expr] expand numerators only

ExpandDenominator[expr] expand denominators only

Expand[expr] expand numerators, dividing the denominator into each
term

ExpandAll[expr] expand numerators and denominators completely

Different kinds of expansion for rational expressions.

Here is a rational expression. In[1]:= t = (1 + x)^2 / (1 - x) + 3 x^2 / (1 + x)^2 + (2 - x)^2

Out[1]= �2 � x�2 �
3 x2

�����������������������������������1 � x�2
�
�1 � x�2

����������������������������������
1 � x

ExpandNumerator writes the numerator
of each term in expanded form.

In[2]:= ExpandNumerator[t]

Out[2]= 4 � 4 x � x2 �
3 x2

�����������������������������������1 � x�2
�

1 � 2 x � x2

���������������������������������������������
1 � x

Expand expands the numerator of each
term, and divides all the terms by the
appropriate denominators.

In[3]:= Expand[t]

Out[3]= 4 �
1

���������������������
1 � x

� 4 x �
2 x
���������������������
1 � x

� x2 �
x2

���������������������
1 � x

�
3 x2

�����������������������������������1 � x�2

ExpandDenominator expands out the
denominator of each term.

In[4]:= ExpandDenominator[t]

Out[4]= �2 � x�2 �
�1 � x�2

����������������������������������
1 � x

�
3 x2

���������������������������������������������
1 � 2 x � x2

ExpandAll does all possible expansions
in the numerator and denominator of
each term.

In[5]:= ExpandAll[t]

Out[5]= 4 �
1

���������������������
1 � x

� 4 x �
2 x
���������������������
1 � x

� x2 �
x2

���������������������
1 � x

�
3 x2

���������������������������������������������
1 � 2 x � x2

ExpandAll[expr, patt], etc. avoid expanding parts which contain no terms matching patt

Controlling expansion.

This avoids expanding the term which
does not contain z.

In[6]:= ExpandAll[(x + 1)^2/y^2 + (z + 1)^2/z^2, z]

Out[6]= 1 �
�1 � x�2

����������������������������������
y2

�
1
������������
z2

�
2
�������
z



802 3. Advanced Mathematics in Mathematica � 3.3 Algebraic Manipulation

Together[expr] combine all terms over a common denominator

Apart[expr] write an expression as a sum of terms with simple
denominators

Cancel[expr] cancel common factors between numerators and
denominators

Factor[expr] perform a complete factoring

Structural operations on rational expressions.

Here is a rational expression. In[7]:= u = (-4x + x^2)/(-x + x^2) + (-4 + 3x + x^2)/(-1 + x^2)

Out[7]=
�4 x � x2

�������������������������������������
�x � x2

�
�4 � 3 x � x2

��������������������������������������������������
�1 � x2

Together puts all terms over a
common denominator.

In[8]:= Together[u]

Out[8]=
2 ��4 � x2�

������������������������������������������������������������������1 � x� �1 � x�
You can use Factor to factor the
numerator and denominator of the
resulting expression.

In[9]:= Factor[%]

Out[9]=
2 ��2 � x� �2 � x�
�������������������������������������������������������������������������1 � x� �1 � x�

Apart writes the expression as a sum
of terms, with each term having as
simple a denominator as possible.

In[10]:= Apart[u]

Out[10]= 2 �
3

��������������������������
�1 � x

�
3

���������������������
1 � x

Cancel cancels any common factors
between numerators and denominators.

In[11]:= Cancel[u]

Out[11]=
�4 � x
��������������������������
�1 � x

�
4 � x
���������������������
1 � x

Factor first puts all terms over a
common denominator, then factors the
result.

In[12]:= Factor[%]

Out[12]=
2 ��2 � x� �2 � x�
�������������������������������������������������������������������������1 � x� �1 � x�

In mathematical terms, Apart decomposes a rational expression into “partial fractions”.

In expressions with several variables, you can use Apart[expr, var] to do partial fraction decom-
positions with respect to different variables.

Here is a rational expression in two
variables.

In[13]:= v = (x^2+y^2)/(x + x y)

Out[13]=
x2 � y2

�����������������������������
x � x y



3.3.4 Algebraic Operations on Polynomials 803

This gives the partial fraction
decomposition with respect to x.

In[14]:= Apart[v, x]

Out[14]=
x

���������������������
1 � y

�
y2

������������������������������������
x �1 � y�

Here is the partial fraction
decomposition with respect to y.

In[15]:= Apart[v, y]

Out[15]= �
1
�������
x
�

y
�������
x
�

1 � x2

������������������������������������
x �1 � y�

3.3.4 Algebraic Operations on Polynomials

For many kinds of practical calculations, the only operations you will need to perform on polynomials
are essentially the structural ones discussed in the preceding sections.

If you do more advanced algebra with polynomials, however, you will have to use the algebraic
operations discussed in this section.

You should realize that most of the operations discussed in this section work only on ordinary
polynomials, with integer exponents and rational-number coefficients for each term.

PolynomialQuotient[poly�, poly�, x]
find the result of dividing the polynomial poly� in x by poly�,
dropping any remainder term

PolynomialRemainder[poly�, poly�, x]
find the remainder from dividing the polynomial poly� in x
by poly�

PolynomialGCD[poly�, poly�] find the greatest common divisor of two polynomials

PolynomialLCM[poly�, poly�] find the least common multiple of two polynomials

PolynomialMod[poly, m] reduce the polynomial poly modulo m

Resultant[poly�, poly�, x] find the resultant of two polynomials

Subresultants[poly�, poly�, x] find the principal subresultant coefficients of two
polynomials

GroebnerBasis[{poly�, poly�, . . . }, {x�, x�, . . . }]
find the Gröbner basis for the polynomials polyi

GroebnerBasis[{poly�, poly�, . . . }, {x�, x�, . . . }, {y�, y�, . . . }]
find the Gröbner basis eliminating the yi

PolynomialReduce[poly, {poly�, poly�, . . . }, {x�, x�, . . . }]
find a minimal representation of poly in terms of the polyi

Reduction of polynomials.



804 3. Advanced Mathematics in Mathematica � 3.3 Algebraic Manipulation

Given two polynomials p�x� and q�x�, one can always uniquely write p�x�
q�x� � a�x� � b�x�

q�x� , where the
degree of b�x� is less than the degree of q�x�. PolynomialQuotient gives the quotient a�x�, and
PolynomialRemainder gives the remainder b�x�.

This gives the remainder from dividing
x� by � � x.

In[1]:= PolynomialRemainder[x^2, x+1, x]

Out[1]= 1

Here is the quotient of x� and x � �,
with the remainder dropped.

In[2]:= PolynomialQuotient[x^2, x+1, x]

Out[2]= �1 � x

This gives back the original expression. In[3]:= Simplify[ (x+1) % + %% ]

Out[3]= x2

Here the result depends on whether
the polynomials are considered to be in
x or y.

In[4]:= {PolynomialRemainder[x+y, x-y, x],
PolynomialRemainder[x+y, x-y, y]}

Out[4]= �2 y, 2 x�
PolynomialGCD[poly�, poly�] finds the highest degree polynomial that divides the polyi exactly. It

gives the analog for polynomials of the integer function GCD.

PolynomialGCD gives the greatest
common divisor of the two
polynomials.

In[5]:= PolynomialGCD[ (1-x)^2 (1+x) (2+x), (1-x) (2+x) (3+x) ]

Out[5]= ��1 � x� �2 � x�
PolynomialMod is essentially the analog for polynomials of the function Mod for integers. When the

modulus m is an integer, PolynomialMod[poly, m] simply reduces each coefficient in poly modulo the
integer m. If m is a polynomial, then PolynomialMod[poly, m] effectively tries to get as low degree a
polynomial as possible by subtracting from poly appropriate multiples q m of m. The multiplier q can
itself be a polynomial, but its degree is always less than the degree of poly. PolynomialMod yields a
final polynomial whose degree and leading coefficient are both as small as possible.

This reduces x� modulo x � �. The
result is simply the remainder from
dividing the polynomials.

In[6]:= PolynomialMod[x^2, x+1]

Out[6]= 1

In this case, PolynomialMod and
PolynomialRemainder do not give the
same result.

In[7]:= {PolynomialMod[x^2, a x + 1],
PolynomialRemainder[x^2, a x + 1, x]}

Out[7]= 	x2,
1
������������
a2



The main difference between PolynomialMod and PolynomialRemainder is that while the former

works simply by multiplying and subtracting polynomials, the latter uses division in getting its results.
In addition, PolynomialMod allows reduction by several moduli at the same time. A typical case is
reduction modulo both a polynomial and an integer.

This reduces the polynomial x� � �
modulo both x � � and �.

In[8]:= PolynomialMod[x^2 + 1, {x + 1, 2}]

Out[8]= 0



3.3.4 Algebraic Operations on Polynomials 805

The function Resultant[poly�, poly�, x] is used in a number of classical algebraic algorithms. The
resultant of two polynomials a and b, both with leading coefficient one, is given by the product of
all the differences ai � bj between the roots of the polynomials. It turns out that for any pair of poly-
nomials, the resultant is always a polynomial in their coefficients. By looking at when the resultant
is zero, one can tell for what values of their parameters two polynomials have a common root. Two
polynomials with leading coefficient one have k common roots if exactly the first k elements in the list
Subresultants[poly�, poly�, x] are zero.

Here is the resultant with respect to y
of two polynomials in x and y. The
original polynomials have a common
root in y only for values of x at which
the resultant vanishes.

In[9]:= Resultant[(x-y)^2-2, y^2-3, y]

Out[9]= 1 � 10 x2 � x4

Gröbner bases appear in many modern algebraic algorithms and applications. The function
GroebnerBasis[{poly�, poly�, . . . }, {x�, x�, . . . }] takes a set of polynomials, and reduces this set
to a canonical form from which many properties can conveniently be deduced. An important feature
is that the set of polynomials obtained from GroebnerBasis always has exactly the same collection of
common roots as the original set.

The �x � y�� is effectively redundant,
and so does not appear in the Gröbner
basis.

In[10]:= GroebnerBasis[{(x+y), (x+y)^2}, {x, y}]

Out[10]= �x � y�
The polynomial 1 has no roots,
showing that the original polynomials
have no common roots.

In[11]:= GroebnerBasis[{x+y,x^2-1,y^2-2x}, {x, y}]

Out[11]= �1�
The polynomials are effectively
unwound here, and can now be seen
to have exactly five common roots.

In[12]:= GroebnerBasis[{x y^2+2 x y+x^2+1, x y+y^2+1}, {x, y}]

Out[12]= �1 � y2 � y3 � y4 � y5, x � y2 � y3 � y4�
PolynomialReduce[poly, {p�, p�, . . . }, {x�, x�, . . . }] yields a list {{a�, a�, . . . }, b} of polyno-

mials with the property that b is minimal and a� p� + a� p� + . . . + b is exactly poly.

This writes x� � y� in terms of x � y
and y � a, leaving a remainder that
depends only on a.

In[13]:= PolynomialReduce[x^2 + y^2, {x - y, y + a}, {x, y}]

Out[13]= ��x � y, �2 a � 2 y�, 2 a2�



806 3. Advanced Mathematics in Mathematica � 3.3 Algebraic Manipulation

Factor[poly] factor a polynomial

FactorSquareFree[poly] write a polynomial as a product of powers of square-free
factors

FactorTerms[poly, x] factor out terms that do not depend on x

FactorList[poly], FactorSquareFreeList[poly], FactorTermsList[poly]
give results as lists of factors

Functions for factoring polynomials.

Factor, FactorTerms and FactorSquareFree perform various degrees of factoring on polynomials.
Factor does full factoring over the integers. FactorTerms extracts the “content” of the polynomial.
FactorSquareFree pulls out any multiple factors that appear.

Here is a polynomial, in expanded
form.

In[14]:= t = Expand[ 2 (1 + x)^2 (2 + x) (3 + x) ]

Out[14]= 12 � 34 x � 34 x2 � 14 x3 � 2 x4

FactorTerms pulls out only the factor
of 2 that does not depend on x.

In[15]:= FactorTerms[t, x]

Out[15]= 2 �6 � 17 x � 17 x2 � 7 x3 � x4�
FactorSquareFree factors out the 2
and the term (1 + x)^2, but leaves the
rest unfactored.

In[16]:= FactorSquareFree[t]

Out[16]= 2 �1 � x�2 �6 � 5 x � x2�
Factor does full factoring, recovering
the original form.

In[17]:= Factor[t]

Out[17]= 2 �1 � x�2 �2 � x� �3 � x�
Particularly when you write programs that work with polynomials, you will often find it convenient

to pick out pieces of polynomials in a standard form. The function FactorList gives a list of all
the factors of a polynomial, together with their exponents. The first element of the list is always the
overall numerical factor for the polynomial.

The form that FactorList returns is the analog for polynomials of the form produced by
FactorInteger for integers.

Here is a list of the factors of the
polynomial in the previous set of
examples. Each element of the list
gives the factor, together with its
exponent.

In[18]:= FactorList[t]

Out[18]= ��2, 1�, �1 � x, 2�, �2 � x, 1�, �3 � x, 1��



3.3.4 Algebraic Operations on Polynomials 807

Factor[poly, GaussianIntegers -> True]
factor a polynomial, allowing coefficients that are Gaussian
integers

Factoring polynomials with complex coefficients.

Factor and related functions usually handle only polynomials with ordinary integer or rational-
number coefficients. If you set the option GaussianIntegers -> True, however, then Factor will
allow polynomials with coefficients that are complex numbers with rational real and imaginary parts.
This often allows more extensive factorization to be performed.

This polynomial is irreducible when
only ordinary integers are allowed.

In[19]:= Factor[1 + x^2]

Out[19]= 1 � x2

When Gaussian integer coefficients are
allowed, the polynomial factors.

In[20]:= Factor[1 + x^2, GaussianIntegers -> True]

Out[20]= ��� � x� �� � x�

Cyclotomic[n, x] give the cyclotomic polynomial of order n in x

Cyclotomic polynomials.

Cyclotomic polynomials arise as “elementary polynomials” in various algebraic algorithms. The
cyclotomic polynomials are defined by Cn�x� � �k�x � e�Πik�n�, where k runs over all positive integers
less than n that are relatively prime to n.

This is the cyclotomic polynomial
C��x�.

In[21]:= Cyclotomic[6, x]

Out[21]= 1 � x � x2

C��x� appears in the factors of x� � �. In[22]:= Factor[x^6 - 1]

Out[22]= ��1 � x� �1 � x� �1 � x � x2� �1 � x � x2�

Decompose[poly, x] decompose poly, if possible, into a composition of a list of
simpler polynomials

Decomposing polynomials.

Factorization is one important way of breaking down polynomials into simpler parts. Another,
quite different, way is decomposition. When one factors a polynomial P�x�, one writes it as a product
p��x�p��x�			 of polynomials pi�x�. Decomposing a polynomial Q�x� consists of writing it as a composition
of polynomials of the form q��q��			�x�			��.



808 3. Advanced Mathematics in Mathematica � 3.3 Algebraic Manipulation

Here is a simple example of
Decompose. The original polynomial
x
 � x� � � can be written as the
polynomial x̄� � x̄ � �, where x̄ is the
polynomial x�.

In[23]:= Decompose[x^4 + x^2 + 1, x]

Out[23]= �1 � x � x2, x2�

Here are two polynomial functions. In[24]:= ( q1[x_] = 1 - 2x + x^4 ;
q2[x_] = 5x + x^3 ; )

This gives the composition of the two
functions.

In[25]:= Expand[ q1[ q2[ x ] ] ]

Out[25]= 1 � 10 x � 2 x3 � 625 x4 � 500 x6 � 150 x8 � 20 x10 � x12

Decompose recovers the original
functions.

In[26]:= Decompose[%, x]

Out[26]= �1 � 2 x � x4, 5 x � x3�
Decompose[poly, x] is set up to give a list of polynomials in x, which, if composed, reproduce the

original polynomial. The original polynomial can contain variables other than x, but the sequence of
polynomials that Decompose produces are all intended to be considered as functions of x.

Unlike factoring, the decomposition of polynomials is not completely unique. For example, the two
sets of polynomials pi and qi, related by q��x� � p��x � a� and q��x� � p��x� � a give the same result
on composition, so that p��p��x�� � q��q��x��. Mathematica follows the convention of absorbing any
constant terms into the first polynomial in the list produced by Decompose.

InterpolatingPolynomial[{f�, f�, . . . }, x]
give a polynomial in x which is equal to fi when x is the
integer i

InterpolatingPolynomial[{{x�, f�}, {x�, f�}, . . . }, x]
give a polynomial in x which is equal to fi when x is xi

Generating interpolating polynomials.

This yields a quadratic polynomial
which goes through the specified three
points.

In[27]:= InterpolatingPolynomial[{{-1, 4}, {0, 2}, {1, 6}}, x]

Out[27]= 4 � �1 � x� ��2 � 3 x�
When x is 0, the polynomial has
value 2.

In[28]:= % /. x -> 0

Out[28]= 2



3.3.6 Advanced Topic: Polynomials over Algebraic Number Fields 809

3.3.5 Polynomials Modulo Primes

Mathematica can work with polynomials whose coefficients are in the finite field Zp of integers modulo
a prime p.

PolynomialMod[poly, p] reduce the coefficients in a polynomial modulo p

Expand[poly, Modulus -> p] expand poly modulo p

Factor[poly, Modulus -> p] factor poly modulo p

PolynomialGCD[poly�, poly�, Modulus -> p]
find the GCD of the polyi modulo p

GroebnerBasis[polys, vars, Modulus -> p]
find the Gröbner basis modulo p

Functions for manipulating polynomials over finite fields.

Here is an ordinary polynomial. In[1]:= Expand[ (1 + x)^6 ]

Out[1]= 1 � 6 x � 15 x2 � 20 x3 � 15 x4 � 6 x5 � x6

This reduces the coefficients modulo 2. In[2]:= PolynomialMod[%, 2]

Out[2]= 1 � x2 � x4 � x6

Here are the factors of the resulting
polynomial over the integers.

In[3]:= Factor[%]

Out[3]= �1 � x2� �1 � x4�
If you work modulo 2, further
factoring becomes possible.

In[4]:= Factor[%, Modulus->2]

Out[4]= �1 � x�6

3.3.6 Advanced Topic: Polynomials over Algebraic Number Fields

Functions like Factor usually assume that all coefficients in the polynomials they produce must
involve only rational numbers. But by setting the option Extension you can extend the domain of
coefficients that will be allowed.

Factor[poly, Extension->{a�, a�, . . . }]
factor poly allowing coefficients that are rational
combinations of the ai

Factoring polynomials over algebraic number fields.



810 3. Advanced Mathematics in Mathematica � 3.3 Algebraic Manipulation

Allowing only rational number
coefficients, this polynomial cannot be
factored.

In[1]:= Factor[1 + x^4]

Out[1]= 1 � x4

With coefficients that can involve
 

�,
the polynomial can now be factored.

In[2]:= Factor[1 + x^4, Extension -> {Sqrt[2]}]

Out[2]= ���1 �����
2 x � x2� �1 �����

2 x � x2�
The polynomial can also be factored if
one allows coefficients involving

 

��.
In[3]:= Factor[1 + x^4, Extension -> {Sqrt[-1]}]

Out[3]= ��� � x2� �� � x2�
GaussianIntegers->True is equivalent
to Extension->Sqrt[-1] .

In[4]:= Factor[1 + x^4, GaussianIntegers -> True]

Out[4]= ��� � x2� �� � x2�
If one allows coefficients that involve
both

 

� and
 

�� the polynomial can
be factored completely.

In[5]:= Factor[1 + x^4, Extension -> {Sqrt[2], Sqrt[-1]}]

Out[5]=
1
�������
4
�����

2 � �1 � �� x� �����
2 � �1 � �� x�

�����
2 � �1 � �� x� �����

2 � �1 � �� x�
Expand gives the original polynomial
back again.

In[6]:= Expand[%]

Out[6]= 1 � x4

Factor[poly, Extension->Automatic]
factor poly allowing algebraic numbers in poly to appear in
coefficients

Factoring polynomials with algebraic number coefficients.

Here is a polynomial with a coefficient
involving

 

�.
In[7]:= t = Expand[(Sqrt[2] + x)^2]

Out[7]= 2 � 2
����

2 x � x2

By default, Factor will not factor this
polynomial.

In[8]:= Factor[t]

Out[8]= 2 � 2
����

2 x � x2

But now the field of coefficients is
extended by including

 

�, and the
polynomial is factored.

In[9]:= Factor[t, Extension -> Automatic]

Out[9]= �����
2 � x�2

Other polynomial functions work much like Factor. By default, they treat algebraic number co-
efficients just like independent symbolic variables. But with the option Extension->Automatic they
perform operations on these coefficients.

By default, Cancel does not reduce
these polynomials.

In[10]:= Cancel[t / (x^2 - 2)]

Out[10]=
2 � 2

����
2 x � x2

��������������������������������������������������������������
�2 � x2



3.3.7 Trigonometric Expressions 811

But now it does. In[11]:= Cancel[t / (x^2 - 2), Extension->Automatic]

Out[11]=
�����

2 � x
����������������������������������������

2 � x

By default, PolynomialLCM pulls out
no common factors.

In[12]:= PolynomialLCM[t, x^2 - 2]

Out[12]= ��2 � x2� �2 � 2
����

2 x � x2�
But now it does. In[13]:= PolynomialLCM[t, x^2 - 2, Extension->Automatic]

Out[13]= �2
����

2 � 2 x �����
2 x2 � x3

3.3.7 Trigonometric Expressions

TrigExpand[expr] expand trigonometric expressions out into a sum of terms

TrigFactor[expr] factor trigonometric expressions into products of terms

TrigFactorList[expr] give terms and their exponents in a list

TrigReduce[expr] reduce trigonometric expressions using multiple angles

Functions for manipulating trigonometric expressions.

This expands out a trigonometric
expression.

In[1]:= TrigExpand[Sin[2 x] Cos[2 y]]

Out[1]= 2 Cosx� Cosy�2
Sinx� � 2 Cosx� Sinx� Siny�2

This factors the expression. In[2]:= TrigFactor[%]

Out[2]= 2 Cosx� Sinx� �Cosy� � Siny�� �Cosy� � Siny��
And this reduces the expression to a
form linear in the trigonometric
functions.

In[3]:= TrigReduce[%]

Out[3]=
1
�������
2
�Sin2 x � 2 y� � Sin2 x � 2 y��

TrigExpand works on hyperbolic as
well as circular functions.

In[4]:= TrigExpand[Tanh[x + y]]

Out[4]=
Coshy� Sinhx�

���������������������������������������������������������������������������������������������������������������������������������������������������
Coshx� Coshy� � Sinhx� Sinhy� �

Coshx� Sinhy�
���������������������������������������������������������������������������������������������������������������������������������������������������
Coshx� Coshy� � Sinhx� Sinhy�

TrigReduce reproduces the original
form again.

In[5]:= TrigReduce[%]

Out[5]= Tanhx � y�
Mathematica automatically uses
functions like Tan whenever it can.

In[6]:= Sin[x]^2/Cos[x]

Out[6]= Sinx� Tanx�



812 3. Advanced Mathematics in Mathematica � 3.3 Algebraic Manipulation

With TrigFactorList, however, you
can see the parts of functions like Tan.

In[7]:= TrigFactorList[%]

Out[7]= ��1, 1�, �Sinx�, 2�, �Cosx�, �1��

TrigToExp[expr] write trigonometric functions in terms of exponentials

ExpToTrig[expr] write exponentials in terms of trigonometric functions

Converting to and from exponentials.

TrigToExp writes trigonometric
functions in terms of exponentials.

In[8]:= TrigToExp[Tan[x]]

Out[8]=
� ���� x � �� x�
����������������������������������������������������������
��� x � �� x

ExpToTrig does the reverse, getting rid
of explicit complex numbers whenever
possible.

In[9]:= ExpToTrig[%]

Out[9]= Tanx�
ExpToTrig deals with hyperbolic as
well as circular functions.

In[10]:= ExpToTrig[Exp[x] - Exp[-x]]

Out[10]= 2 Sinhx�
You can also use ExpToTrig on purely
numerical expressions.

In[11]:= ExpToTrig[(-1)^(1/17)]

Out[11]= Cos� Π
������������
17

� � � Sin� Π
������������
17

�

3.3.8 Expressions Involving Complex Variables

Mathematica usually pays no attention to whether variables like x stand for real or complex numbers.
Sometimes, however, you may want to make transformations which are appropriate only if particular
variables are assumed to be either real or complex.

The function ComplexExpand expands out algebraic and trigonometric expressions, making definite
assumptions about the variables that appear.

ComplexExpand[expr] expand expr assuming that all variables are real

ComplexExpand[expr, {x�, x�, . . . }] expand expr assuming that the xi are complex

Expanding complex expressions.

This expands the expression, assuming
that x and y are both real.

In[1]:= ComplexExpand[Tan[x + I y]]

Out[1]=
Sin2 x�

�������������������������������������������������������������������������������������
Cos2 x� � Cosh2 y� �

� Sinh2 y�
�������������������������������������������������������������������������������������
Cos2 x� � Cosh2 y�



3.3.9 Simplification 813

In this case, a is assumed to be real,
but x is assumed to be complex, and is
broken into explicit real and imaginary
parts.

In[2]:= ComplexExpand[a + x^2, {x}]

Out[2]= a � Imx�2 � 2 � Imx� Rex� � Rex�2

With several complex variables, you
quickly get quite complicated results.

In[3]:= ComplexExpand[Sin[x] Exp[y], {x, y}]

Out[3]= �Rey� CosImy�� CoshImx�� SinRex�� �
�Rey� CosRex�� SinImy�� SinhImx�� �
� ��Rey� CoshImx�� SinImy�� SinRex�� �

�Rey� CosImy�� CosRex�� SinhImx���
There are several ways to write a complex variable z in terms of real parameters. As above, for

example, z can be written in the “Cartesian form” Re[z] + I Im[z]. But it can equally well be written
in the “polar form” Abs[z] Exp[I Arg[z]].

The option TargetFunctions in ComplexExpand allows you to specify how complex variables
should be written. TargetFunctions can be set to a list of functions from the set {Re, Im, Abs, Arg,
Conjugate, Sign}. ComplexExpand will try to give results in terms of whichever of these functions
you request. The default is typically to give results in terms of Re and Im.

This gives an expansion in Cartesian
form.

In[4]:= ComplexExpand[Re[z^2], {z}]

Out[4]= �Imz�2 � Rez�2

Here is an expansion in polar form. In[5]:= ComplexExpand[Re[z^2], {z},
TargetFunctions -> {Abs, Arg}]

Out[5]= Absz�2
CosArgz��2 � Absz�2

SinArgz��2

Here is another form of expansion. In[6]:= ComplexExpand[Re[z^2], {z}, TargetFunctions -> Conjugate]

Out[6]=
z2

������������
2

�
Conjugatez�2

����������������������������������������������������������������
2

3.3.9 Simplification

Simplify[expr] try various algebraic and trigonometric transformations to
simplify an expression

FullSimplify[expr] try a much wider range of transformations

Simplifying expressions.

Mathematica does not automatically
simplify an algebraic expression like
this.

In[1]:= (1 - x)/(1 - x^2)

Out[1]=
1 � x
�������������������������
1 � x2



814 3. Advanced Mathematics in Mathematica � 3.3 Algebraic Manipulation

Simplify performs the simplification. In[2]:= Simplify[%]

Out[2]=
1

���������������������
1 � x

Simplify performs standard algebraic
and trigonometric simplifications.

In[3]:= Simplify[Sin[x]^2 + Cos[x]^2]

Out[3]= 1

It does not, however, do more
sophisticated transformations that
involve, for example, special functions.

In[4]:= Simplify[Gamma[1+n]/n]

Out[4]=
Gamma1 � n�
������������������������������������������������������

n

FullSimplify does perform such
transformations.

In[5]:= FullSimplify[%]

Out[5]= Gamman�

FullSimplify[expr, ExcludedForms -> pattern]
try to simplify expr, without touching subexpressions that
match pattern

Controlling simplification.

Here is an expression involving
trigonometric functions and square
roots.

In[6]:= t = (1 - Sin[x]^2) Sqrt[Expand[(1 + Sqrt[2])^20]]

Out[6]=
�������������������������������������������

22619537 � 15994428
����

2 �1 � Sinx�2�
By default, FullSimplify will try to
simplify everything.

In[7]:= FullSimplify[t]

Out[7]= �3363 � 2378
����

2 � Cosx�2

This makes FullSimplify avoid
simplifying the square roots.

In[8]:= FullSimplify[t, ExcludedForms->Sqrt[_]]

Out[8]=
�������������������������������������������

22619537 � 15994428
����

2 Cosx�2

FullSimplify[expr, TimeConstraint->t]
try to simplify expr, working for at most t seconds on each
transformation

FullSimplify[expr, TransformationFunctions -> {f�, f�, . . . }]
use only the functions fi in trying to transform parts of expr

FullSimplify[expr, TransformationFunctions -> {Automatic, f�, f�, . . . }]
use built-in transformations as well as the fi

Simplify[expr, ComplexityFunction->c] and FullSimplify[expr, ComplexityFunction->c]
simplify using c to determine what form is considered
simplest

Further control of simplification.



3.3.10 Using Assumptions 815

In both Simplify and FullSimplify there is always an issue of what counts as the “simplest” form of
an expression. You can use the option ComplexityFunction -> c to provide a function to determine
this. The function will be applied to each candidate form of the expression, and the one that gives
the smallest numerical value will be considered simplest.

With its default definition of simplicity,
Simplify leaves this unchanged.

In[9]:= Simplify[4 Log[10]]

Out[9]= 4 Log10�
This now tries to minimize the number
of elements in the expression.

In[10]:= Simplify[4 Log[10], ComplexityFunction -> LeafCount]

Out[10]= Log10000�

- 3.3.10 Using Assumptions

Mathematica normally makes as few assumptions as possible about the objects you ask it to manipu-
late. This means that the results it gives are as general as possible. But sometimes these results are
considerably more complicated than they would be if more assumptions were made.

, Refine[expr, assum] refine expr using assumptions

Simplify[expr, assum] simplify with assumptions

FullSimplify[expr, assum] full simplify with assumptions

FunctionExpand[expr, assum] function expand with assumptions

Doing operations with assumptions.

Simplify by default does essentially
nothing with this expression.

In[1]:= Simplify[1/Sqrt[x] - Sqrt[1/x]]

Out[1]= �������1
�������
x

�
1

����������������������
x

The reason is that its value is quite
different for different choices of x.

In[2]:= % /. x -> {-3, -2, -1, 1, 2, 3}

Out[2]= 	� 2 �
����������������������

3
, ������

2 , �2 �, 0, 0, 0

With the assumption x c �, Simplify
can immediately reduce the expression
to 0.

In[3]:= Simplify[1/Sqrt[x] - Sqrt[1/x], x > 0]

Out[3]= 0

Without making assumptions about x
and y, nothing can be done.

In[4]:= FunctionExpand[Log[x y]]

Out[4]= Logx y�
If x and y are both assumed positive,
the log can be expanded.

In[5]:= FunctionExpand[Log[x y], x > 0 && y > 0]

Out[5]= Logx� � Logy�



816 3. Advanced Mathematics in Mathematica � 3.3 Algebraic Manipulation

By applying Simplify and FullSimplify with appropriate assumptions to equations and inequal-
ities you can in effect establish a vast range of theorems.

Without making assumptions about x
the truth or falsity of this equation
cannot be determined.

In[6]:= Simplify[Abs[x] == x]

Out[6]= x � Absx�
Now Simplify can prove that the
equation is true.

In[7]:= Simplify[Abs[x] == x, x > 0]

Out[7]= True

This establishes the standard result that
the arithmetic mean is larger than the
geometric one.

In[8]:= Simplify[(x + y)/2 >= Sqrt[x y], x >= 0 && y >= 0]

Out[8]= True

This proves that erf�x� lies in the range
��� �� for all positive arguments.

In[9]:= FullSimplify[0 < Erf[x] < 1, x > 0]

Out[9]= True

Simplify and FullSimplify always try to find the simplest forms of expressions. Sometimes,
however, you may just want Mathematica to follow its ordinary evaluation process, but with certain
assumptions made. You can do this using Refine. The way it works is that Refine[expr, assum]
performs the same transformations as Mathematica would perform automatically if the variables in
expr were replaced by numerical expressions satisfying the assumptions assum.

There is no simpler form that
Simplify can find.

In[10]:= Simplify[Log[x], x < 0]

Out[10]= Logx�
Refine just evaluates Log[x] as it
would for any explicit negative
number x.

In[11]:= Refine[Log[x], x < 0]

Out[11]= � Π � Log�x�
An important class of assumptions are those which assert that some object is an element of a

particular domain. You can set up such assumptions using x � dom, where the � character can be
entered as , el , or \[Element].

x � dom or Element[x, dom] assert that x is an element of the domain dom

{x�, x�, . . . } � dom assert that all the xi are elements of the domain dom

patt � dom assert that any expression which matches patt is an element
of the domain dom

Asserting that objects are elements of domains.

This confirms that Π is an element of
the domain of real numbers.

In[12]:= Pi & Reals

Out[12]= True

These numbers are all elements of the
domain of algebraic numbers.

In[13]:= {1, Sqrt[2], 3 + Sqrt[5]} & Algebraics

Out[13]= True



3.3.10 Using Assumptions 817

Mathematica knows that Π is not an
algebraic number.

In[14]:= Pi & Algebraics

Out[14]= False

Current mathematics has not
established whether e � Π is an
algebraic number or not.

In[15]:= E + Pi & Algebraics

Out[15]= � � Π � Algebraics

This represents the assertion that the
symbol x is an element of the domain
of real numbers.

In[16]:= x & Reals

Out[16]= x � Reals

Complexes the domain of complex numbers �

Reals the domain of real numbers �

Algebraics the domain of algebraic numbers �

Rationals the domain of rational numbers �

Integers the domain of integers �

Primes the domain of primes �

Booleans the domain of booleans (True and False) �

Domains supported by Mathematica.

If n is assumed to be an integer,
sin�nΠ� is zero.

In[17]:= Simplify[Sin[n Pi], n & Integers]

Out[17]= 0

This establishes the theorem cosh�x� ! �
if x is assumed to be a real number.

In[18]:= Simplify[Cosh[x] >= 1, x & Reals]

Out[18]= True

If you say that a variable satisfies an
inequality, Mathematica will
automatically assume that it is real.

In[19]:= Simplify[x & Reals, x > 0]

Out[19]= True

By using Simplify, FullSimplify and FunctionExpand with assumptions you can access many
of Mathematica’s vast collection of mathematical facts.

This uses the periodicity of the tangent
function.

In[20]:= Simplify[Tan[x + Pi k], k & Integers]

Out[20]= Tanx�
The assumption k/2 � Integers
implies that k must be even.

In[21]:= Simplify[Tan[x + Pi k/2], k/2 & Integers]

Out[21]= Tanx�
Mathematica knows that log�x� ) exp�x�
for positive x.

In[22]:= Simplify[Log[x] < Exp[x], x > 0]

Out[22]= True



818 3. Advanced Mathematics in Mathematica � 3.3 Algebraic Manipulation

FullSimplify accesses knowledge
about special functions.

In[23]:= FullSimplify[Im[BesselJ[0, x]], x & Reals]

Out[23]= 0

Mathematica knows about discrete mathematics and number theory as well as continuous mathe-
matics.

This uses Wilson’s Theorem to simplify
the result.

In[24]:= FunctionExpand[Mod[(p - 1)!, p], p & Primes]

Out[24]= �1 � p

This uses the multiplicative property of
the Euler phi function.

In[25]:= FunctionExpand[EulerPhi[m n], {m, n} & Integers &&
GCD[m, n] == 1]

Out[25]= EulerPhim� EulerPhin�
In something like Simplify[expr, assum] or Refine[expr, assum] you explicitly give the assump-

tions you want to use. But sometimes you may want to specify one set of assumptions to use in a
whole collection of operations. You can do this by using Assuming.

, Assuming[assum, expr] use assumptions assum in the evaluation of expr

, $Assumptions the default assumptions to use

Specifying assumptions with larger scopes.

This tells Simplify to use the default
assumption x > 0.

In[26]:= Assuming[x > 0, Simplify[Sqrt[x^2]]]

Out[26]= x

This combines the two assumptions
given.

In[27]:= Assuming[x > 0,
Assuming[x & Integers, Refine[Floor[Sqrt[x^2]]]]]

Out[27]= x

Functions like Simplify and Refine take the option Assumptions, which specifies what default
assumptions they should use. By default, the setting for this option is Assumptions :> $Assumptions.
The way Assuming then works is to assign a local value to $Assumptions, much as in Block.

In addition to Simplify and Refine, a number of other functions take Assumptions options,
and thus can have assumptions specified for them by Assuming. Examples are FunctionExpand,
Integrate, Limit, LaplaceTransform.

The assumption is automatically used
in Integrate.

In[28]:= Assuming[n > 0, 1 + Integrate[x^n, {x, 0, 1}]^2]

Out[28]= 1 �
1

�����������������������������������1 � n�2



3.4.1 The Representation of Equations and Solutions 819

3.4 Manipulating Equations and Inequalities

- 3.4.1 The Representation of Equations and Solutions

Mathematica treats equations as logical statements. If you type in an equation like x^2 + 3x == 2,
Mathematica interprets this as a logical statement which asserts that x^2 + 3x is equal to 2. If you have
assigned an explicit value to x, say x = 4, then Mathematica can explicitly determine that the logical
statement x^2 + 3x == 2 is False.

If you have not assigned any explicit value to x, however, Mathematica cannot work out whether
x^2 + 3x == 2 is True or False. As a result, it leaves the equation in the symbolic form x^2 + 3x == 2.

You can manipulate symbolic equations in Mathematica in many ways. One common goal is to
rearrange the equations so as to “solve” for a particular set of variables.

Here is a symbolic equation. In[1]:= x^2 + 3x == 2

Out[1]= 3 x � x2 � 2

You can use the function Reduce to
reduce the equation so as to give
“solutions” for x. The result, like the
original equation, can be viewed as a
logical statement.

In[2]:= Reduce[%, x]

Out[2]= x �
1
�������
2
��3 �������

17 � �� x �
1
�������
2
��3 �������

17 �

The quadratic equation x^2 + 3x == 2 can be thought of as an implicit statement about the value of
x. As shown in the example above, you can use the function Reduce to get a more explicit statement
about the value of x. The expression produced by Reduce has the form x == r� || x == r�. This
expression is again a logical statement, which asserts that either x is equal to r�, or x is equal to
r�. The values of x that are consistent with this statement are exactly the same as the ones that are
consistent with the original quadratic equation. For many purposes, however, the form that Reduce
gives is much more useful than the original equation.

You can combine and manipulate equations just like other logical statements. You can use logical
connectives such as || and && to specify alternative or simultaneous conditions. You can use functions
like LogicalExpand, as well as FullSimplify, to simplify collections of equations.

For many purposes, you will find it convenient to manipulate equations simply as logical state-
ments. Sometimes, however, you will actually want to use explicit solutions to equations in other
calculations. In such cases, it is convenient to convert equations that are stated in the form lhs == rhs
into transformation rules of the form lhs -> rhs. Once you have the solutions to an equation in the
form of explicit transformation rules, you can substitute the solutions into expressions by using the
/. operator.

Reduce produces a logical statement
about the values of x corresponding to
the roots of the quadratic equation.

In[3]:= Reduce[ x^2 + 3x == 2, x ]

Out[3]= x �
1
�������
2
��3 �������

17 � �� x �
1
�������
2
��3 �������

17 �



820 3. Advanced Mathematics in Mathematica � 3.4 Manipulating Equations and Inequalities

ToRules converts the logical statement
into an explicit list of transformation
rules.

In[4]:= {ToRules[ % ]}

Out[4]= 		x �
1
�������
2
��3 �������

17 �
, 	x �
1
�������
2
��3 �������

17 �


You can now use the transformation
rules to substitute the solutions for x
into expressions involving x.

In[5]:= x^2 + a x /. %

Out[5]= 	 1
�������
4
��3 �������

17 �2
�

1
�������
2
��3 �������

17 � a,

1
�������
4
��3 �������

17 �2
�

1
�������
2
��3 �������

17 � a

The function Solve produces
transformation rules for solutions
directly.

In[6]:= Solve[ x^2 + 3x == 2, x ]

Out[6]= 		x �
1
�������
2
��3 �������

17 �
, 	x �
1
�������
2
��3 �������

17 �



- 3.4.2 Equations in One Variable

The main equations that Solve and related Mathematica functions deal with are polynomial equations.

It is easy to solve a linear equation
in x.

In[1]:= Solve[ a x + b == c , x ]

Out[1]= 		x �
�b � c
��������������������������

a




One can also solve quadratic equations
just by applying a simple formula.

In[2]:= Solve[ x^2 + a x + 2 == 0 , x ]

Out[2]= 		x �
1
�������
2
��a ���������������8 � a2 �
, 	x �

1
�������
2
��a ���������������8 � a2 �



Mathematica can also find exact
solutions to cubic equations. Here is
the first solution to a comparatively
simple cubic equation.

In[3]:= Solve[ x^3 + 34 x + 1 == 0 , x ] [[1]]

Out[3]= 	x � �34
"
#$$$

2
����������������������������������������������������������������������������
3 ��9 ���������������

471729 �
%
&'''

1�3

�

� 1������2 ��9 ���������������
471729 ��1�3

����������������������������������������������������������������������������������������������������
32�3



For cubic and quartic equations the results are often complicated, but for all equations with degrees

up to four Mathematica is always able to give explicit formulas for the solutions.

An important feature of these formulas is that they involve only radicals: arithmetic combinations
of square roots, cube roots and higher roots.

It is a fundamental mathematical fact, however, that for equations of degree five or higher, it is no
longer possible in general to give explicit formulas for solutions in terms of radicals.

There are some specific equations for which this is still possible, but in the vast majority of cases it
is not.

This constructs a degree six
polynomial.

In[4]:= Expand[ Product[x^2 - 2 i, {i, 3}] ]

Out[4]= �48 � 44 x2 � 12 x4 � x6



3.4.2 Equations in One Variable 821

For a polynomial that factors in the
way this one does, it is straightforward
for Solve to find the roots.

In[5]:= Solve[% == 0, x]

Out[5]=  �x � �2�, �x � 2�,  x � �����
2 !,

 x �����
2 !,  x � �����

6 !,  x �����
6 !!

This constructs a polynomial of degree
eight.

In[6]:= Expand[x^2 - 2 /. x -> x^2 - 3 /. x -> x^2 - 5]

Out[6]= 482 � 440 x2 � 144 x4 � 20 x6 � x8

The polynomial does not factor, but it
can be decomposed into nested
polynomials, so Solve can again find
explicit formulas for the roots.

In[7]:= Solve[% == 0, x]

Out[7]= 		x � ��������������������������5 ���������������
3 �����

2 
, 	x ��������������������������5 ���������������
3 �����

2 
,

	x � ��������������������������5 ���������������
3 �����

2 
, 	x ��������������������������5 ���������������
3 �����

2 
,

	x � ��������������������������5 ���������������
3 �����

2 
, 	x ��������������������������5 ���������������
3 �����

2 
,

	x � ��������������������������5 ���������������
3 �����

2 
, 	x ��������������������������5 ���������������
3 �����

2 



Root[f, k] the kth root of the equation f[x] == 0

Implicit representation for roots.

No explicit formulas for the solution to
this equation can be given in terms of
radicals, so Mathematica uses an
implicit symbolic representation.

In[8]:= Solve[x^5 - x + 11 == 0, x]

Out[8]=   x � Root�11 � #1 � #15 &, 1�!,

 x � Root�11 � #1 � #15 &, 2�!,

 x � Root�11 � #1 � #15 &, 3�!,

 x � Root�11 � #1 � #15 &, 4�!,

 x � Root�11 � #1 � #15 &, 5�!!
This finds a numerical approximation
to each root.

In[9]:= N[%]

Out[9]= ��x � �1.66149�, �x � �0.46194 � 1.565 ��,�x � �0.46194 � 1.565 ��, �x � 1.29268 � 0.903032 ��,�x � 1.29268 � 0.903032 ���
If what you want in the end is a
numerical solution, it is usually much
faster to use NSolve from the outset.

In[10]:= NSolve[x^5 - x + 11 == 0, x]

Out[10]= ��x � �1.66149�, �x � �0.46194 � 1.565 ��,�x � �0.46194 � 1.565 ��, �x � 1.29268 � 0.903032 ��,�x � 1.29268 � 0.903032 ���
Root objects provide an exact, though implicit, representation for the roots of a polynomial. You

can work with them much as you would work with Sqrt[2] or any other expression that represents
an exact numerical quantity.



822 3. Advanced Mathematics in Mathematica � 3.4 Manipulating Equations and Inequalities

Here is the Root object representing
the first root of the polynomial
discussed above.

In[11]:= r = Root[#^5 - # + 11 &, 1]

Out[11]= Root�11 � #1 � #15 &, 1�
This is a numerical approximation to
its value.

In[12]:= N[r]

Out[12]= �1.66149

Round does an exact computation to
find the closest integer to the root.

In[13]:= Round[r]

Out[13]= �2

If you substitute the root into the
original polynomial, and then simplify
the result, you get zero.

In[14]:= FullSimplify[ x^5 - x + 11 /. x -> r ]

Out[14]= 0

This finds the product of all the roots
of the original polynomial.

In[15]:= FullSimplify[
Product[Root[11 - # + #^5 &, k], {k, 5}] ]

Out[15]= �11

The complex conjugate of the third
root is the second root.

In[16]:= Conjugate[ Root[11 - # + #^5 &, 3] ]

Out[16]= Root�11 � #1 � #15 &, 2�
If the only symbolic parameter that exists in an equation is the variable that you are solving for,

then all the solutions to the equation will just be numbers. But if there are other symbolic parameters
in the equation, then the solutions will typically be functions of these parameters.

The solution to this equation can again
be represented by Root objects, but
now each Root object involves the
parameter a.

In[17]:= Solve[x^5 + x + a == 0, x]

Out[17]=   x � Root�a � #1 � #15 &, 1�!,

 x � Root�a � #1 � #15 &, 2�!,

 x � Root�a � #1 � #15 &, 3�!,

 x � Root�a � #1 � #15 &, 4�!,

 x � Root�a � #1 � #15 &, 5�!!
When a is replaced with 1, the Root
objects can be simplified, and some are
given as explicit radicals.

In[18]:= Simplify[ % /. a -> 1 ]

Out[18]= 	 x � Root�1 � #12 � #13 &, 1�!, 	x � �
1
�������
2
� ��� �����

3 �
,

	x �
1
�������
2
� �� �����

3 �
,  x � Root�1 � #12 � #13 &, 2�!,

 x � Root�1 � #12 � #13 &, 3�!




3.4.2 Equations in One Variable 823

This shows the behavior of the first
root as a function of a.

In[19]:= Plot[Root[#^5 + # + a &, 1], {a, -2, 2}]

-2 -1 1 2

-1

-0.5

0.5

1

This finds the derivative of the first
root with respect to a.

In[20]:= D[Root[#^5 + # + a &, 1], a]

Out[20]= �
1

�����������������������������������������������������������������������������������������������������������������������
1 � 5 Root�a � #1 � #15 &, 1�4

If you give Solve any nth-degree polynomial equation, then it will always return exactly n solutions,
although some of these may be represented by Root objects. If there are degenerate solutions, then
the number of times that each particular solution appears will be equal to its multiplicity.

Solve gives two identical solutions to
this equation.

In[21]:= Solve[(x - 1)^2 == 0, x]

Out[21]= ��x � 1�, �x � 1��
Here are the first four solutions to a
tenth degree equation. The solutions
come in pairs.

In[22]:= Take[Solve[(x^5 - x + 11)^2 == 0, x], 4]

Out[22]=   x � Root�11 � #1 � #15 &, 1�!,

 x � Root�11 � #1 � #15 &, 1�!,

 x � Root�11 � #1 � #15 &, 2�!,

 x � Root�11 � #1 � #15 &, 2�!!
Mathematica also knows how to solve equations which are not explicitly in the form of polynomials.

Here is an equation involving square
roots.

In[23]:= Solve[ Sqrt[x] + Sqrt[1 + x] == a, x]

Out[23]= 		x �
1 � 2 a2 � a4

�������������������������������������������������
4 a2




And here is one involving logarithms. In[24]:= Solve[ Log[x] + Log[1 - x] == a, x ]

Out[24]= 		x �
1
�������
2
�1 ���������������

1 � 4 �a �
, 	x �
1
�������
2
�1 ���������������

1 � 4 �a �


So long as it can reduce an equation to some kind of polynomial form, Mathematica will always be

able to represent its solution in terms of Root objects. However, with more general equations, involv-
ing say transcendental functions, there is no systematic way to use Root objects, or even necessarily
to find numerical approximations.

Here is a simple transcendental
equation for x.

In[25]:= Solve[ArcSin[x] == a, x]

Out[25]= ��x � Sina���



824 3. Advanced Mathematics in Mathematica � 3.4 Manipulating Equations and Inequalities

There is no solution to this equation in
terms of standard functions.

In[26]:= Solve[Cos[x] == x, x]

Solve::tdep:
The equations appear to involve the variables to be
solved for in an essentially non-algebraic way.

Out[26]= SolveCosx� � x, x�
Mathematica can nevertheless find a
numerical solution even in this case.

In[27]:= FindRoot[Cos[x] == x, {x, 0}]

Out[27]= �x � 0.739085�
Polynomial equations in one variable only ever have a finite number of solutions. But transcendental

equations often have an infinite number. Typically the reason for this is that functions like Sin in ef-
fect have infinitely many possible inverses. With the default option setting InverseFunctions->True ,
Solve will nevertheless assume that there is a definite inverse for any such function. Solve may then
be able to return particular solutions in terms of this inverse function.

Mathematica returns a particular
solution in terms of ArcSin, but prints
a warning indicating that other
solutions are lost.

In[28]:= Solve[Sin[x] == a, x]

Solve::ifun:
Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete
solution information.

Out[28]= ��x � ArcSina���
Here the answer comes out in terms of
ProductLog.

In[29]:= Solve[Exp[x] + x + 1 == 0, x]

InverseFunction::ifun:
Inverse functions are being used. Values may be lost
for multivalued inverses.

Solve::ifun:
Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete
solution information.

Out[29]= 		x � �1 � ProductLog� 1
�������
�
�



If you ask Solve to solve an equation involving an arbitrary function like f, it will by default try
to construct a formal solution in terms of inverse functions.

Solve by default uses a formal inverse
for the function f.

In[30]:= Solve[f[x] == a, x]

InverseFunction::ifun:
Inverse functions are being used. Values may be lost
for multivalued inverses.

Out[30]= ��x � f��1�a���
This is the structure of the inverse
function.

In[31]:= InputForm[%]

Out[31]//InputForm= {{x -> InverseFunction[f, 1, 1][a]}}



3.4.2 Equations in One Variable 825

InverseFunction[f] the inverse function of f

InverseFunction[f, k, n] the inverse function of the n-argument function f with
respect to its kth argument

Inverse functions.

This returns an explicit inverse
function.

In[32]:= InverseFunction[Tan]

Out[32]= ArcTan

Mathematica can do formal operations
on inverse functions.

In[33]:= D[InverseFunction[f][x^2], x]

Out[33]=
2 x

�����������������������������������������������������������
f<f��1�x2��

While Solve can only give specific solutions to an equation, Reduce can give a representation of a
whole solution set. For transcendental equations, it often ends up introducing new parameters, say
with values ranging over all possible integers.

This is a complete representation of the
solution set.

In[34]:= Reduce[Sin[x] == a, x]

Out[34]= C1� � Integers && �x � Π � ArcSina� � 2 Π C1� ��
x � ArcSina� � 2 Π C1��

Here again is a representation of the
general solution.

In[35]:= Reduce[Exp[x] + x + 1 == 0, x]

Out[35]= C1� � Integers && x � �1 � ProductLog�C1�,
1
�������
�
�

As discussed at more length in Section 3.4.9, Reduce allows you to restrict the domains of variables.
Sometimes this will let you generate definite solutions to transcendental equations—or show that they
do not exist.

With the domain of x restricted, this
yields definite solutions.

In[36]:= Reduce[{Sin[x] == 1/2, Abs[x] < 4}, x]

Out[36]= x � �
7 Π
��������������
6

�� x �
Π
�������
6
�� x �

5 Π
��������������
6

With x constrained to be real, only one
solution is possible.

In[37]:= Reduce[Exp[x] + x + 1 == 0, x, Reals]

Out[37]= x � �1 � ProductLog� 1
�������
�
�

Reduce knows there can be no solution
here.

In[38]:= Reduce[{Sin[x] == x, x > 1}, x]

Out[38]= False



826 3. Advanced Mathematics in Mathematica � 3.4 Manipulating Equations and Inequalities

3.4.3 Advanced Topic: Algebraic Numbers

Root[f, k] the kth root of the polynomial equation f[x] == 0

The representation of algebraic numbers.

When you enter a Root object, the
polynomial that appears in it is
automatically reduced to a minimal
form.

In[1]:= Root[24 - 2 # + 4 #^5 &, 1]

Out[1]= Root�12 � #1 � 2 #15 &, 1�

This extracts the pure function which
represents the polynomial, and applies
it to x.

In[2]:= First[%][x]

Out[2]= 12 � x � 2 x5

Root objects are the way that Mathematica represents algebraic numbers. Algebraic numbers have the
property that when you perform algebraic operations on them, you always get a single algebraic
number as the result.

Here is the square root of an algebraic
number.

In[3]:= Sqrt[Root[2 - # + #^5 &, 1]]

Out[3]= ����������������������������������������Root�2 � #1 � #15 &, 1�
RootReduce reduces this to a single
Root object.

In[4]:= RootReduce[%]

Out[4]= Root�2 � #12 � #110 &, 6�
Here is a more complicated expression
involving an algebraic number.

In[5]:= Sqrt[2] + Root[2 - # + #^5 &, 1]^2

Out[5]=
����

2 � Root�2 � #1 � #15 &, 1�2

Again this can be reduced to a single
Root object, albeit a fairly complicated
one.

In[6]:= RootReduce[%]

Out[6]= Root�14 � 72 #1 � 25 #12 � 144 #13 �
88 #14 � 8 #15 � 62 #16 � 14 #18 � #110 &, 2�

RootReduce[expr] attempt to reduce expr to a single Root object

ToRadicals[expr] attempt to transform Root objects to explicit radicals

Operations on algebraic numbers.

In this simple case the Root object is
automatically expressed in terms of
radicals.

In[7]:= Root[#^2 - # - 1 &, 1]

Out[7]=
1
�������
2
�1 �����

5 �
When cubic polynomials are involved,
Root objects are not automatically
expressed in terms of radicals.

In[8]:= Root[#^3 - 2 &, 1]

Out[8]= Root��2 � #13 &, 1�



3.4.3 Advanced Topic: Algebraic Numbers 827

ToRadicals attempts to express all
Root objects in terms of radicals.

In[9]:= ToRadicals[%]

Out[9]= 21�3

If Solve and ToRadicals do not succeed in expressing the solution to a particular polynomial equa-
tion in terms of radicals, then it is a good guess that this fundamentally cannot be done. However,
you should realize that there are some special cases in which a reduction to radicals is in principle
possible, but Mathematica cannot find it. The simplest example is the equation x� � ��x � � � �, but
here the solution in terms of radicals is very complicated. The equation x� � �x
 � 
x � ��x� � �x��
is another example, where now x � �

�
 � 

�
� is a solution.

This gives a Root object involving a
degree six polynomial.

In[10]:= RootReduce[2^(1/3) + Sqrt[3]]

Out[10]= Root��23 � 36 #1 � 27 #12 � 4 #13 � 9 #14 � #16 &, 2�
Even though a simple form in terms of
radicals does exist, ToRadicals does
not find it.

In[11]:= ToRadicals[%]

Out[11]= Root��23 � 36 #1 � 27 #12 � 4 #13 � 9 #14 � #16 &, 2�
Beyond degree four, most polynomials do not have roots that can be expressed at all in terms of

radicals. However, for degree five it turns out that the roots can always be expressed in terms of
elliptic or hypergeometric functions. The results, however, are typically much too complicated to be
useful in practice.

RootSum[f, form] the sum of form[x] for all x satisfying the polynomial
equation f[x] == 0

Normal[expr] the form of expr with RootSum replaced by explicit sums of
Root objects

Sums of roots.

This computes the sum of the
reciprocals of the roots of � � �x � x�.

In[12]:= RootSum[(1 + 2 # + #^5)&, (1/#)&]

Out[12]= �2

Now no explicit result can be given in
terms of radicals.

In[13]:= RootSum[(1 + 2 # + #^5)&, (# Log[1 + #])&]

Out[13]= RootSum�1 � 2 #1 � #15 &, Log1 � #1� #1 &�



828 3. Advanced Mathematics in Mathematica � 3.4 Manipulating Equations and Inequalities

This expands the RootSum into a
explicit sum involving Root objects.

In[14]:= Normal[%]

Out[14]= Log�1 � Root�1 � 2 #1 � #15 &, 1��
Root�1 � 2 #1 � #15 &, 1� �

Log�1 � Root�1 � 2 #1 � #15 &, 2��
Root�1 � 2 #1 � #15 &, 2� �

Log�1 � Root�1 � 2 #1 � #15 &, 3��
Root�1 � 2 #1 � #15 &, 3� �

Log�1 � Root�1 � 2 #1 � #15 &, 4��
Root�1 � 2 #1 � #15 &, 4� �

Log�1 � Root�1 � 2 #1 � #15 &, 5��
Root�1 � 2 #1 � #15 &, 5�

- 3.4.4 Simultaneous Equations

You can give Solve a list of simultaneous equations to solve. Solve can find explicit solutions for a
large class of simultaneous polynomial equations.

Here is a simple linear equation with
two unknowns.

In[1]:= Solve[ { a x + b y == 1, x - y == 2 } , {x, y} ]

Out[1]= 		x � �
�1 � 2 b
��������������������������������

a � b
, y � �

�1 � 2 a
��������������������������������

a � b




Here is a more complicated example.
The result is a list of solutions, with
each solution consisting of a list of
transformation rules for the variables.

In[2]:= Solve[{x^2 + y^2 == 1, x + y == a}, {x, y}]

Out[2]= 		x �
1
�������
2
�a ������������

2 � a2 �, y �
1
�������
2
�a ������������

2 � a2 �
,

	x �
a
�������
2
�
�����������

2 � a2

������������������������������������
2

, y �
1
�������
2
�a ������������

2 � a2 �


You can use the list of solutions with
the /. operator.

In[3]:= x^3 + y^4 /. % /. a -> 0.7

Out[3]= �0.846577, 0.901873�
Even when Solve cannot find explicit
solutions, it often can “unwind”
simultaneous equations to produce a
symbolic result in terms of Root
objects.

In[4]:= First[ Solve[{x^2 + y^3 == x y, x + y + x y == 1},
{x, y}] ]

Out[4]= 	x �
1
�������
2
�1 � Root�1 � 3 #1 � #12 � 2 #13 � 2 #14 � #15 &, 1�2

�

Root�1 � 3 #1 � #12 � 2 #13 � 2 #14 � #15 &, 1�3
�

Root�1 � 3 #1 � #12 � 2 #13 � 2 #14 � #15 &, 1�4�,

y � Root�1 � 3 #1 � #12 � 2 #13 � 2 #14 � #15 &, 1�

You can then use N to get a numerical
result.

In[5]:= N[ % ]

Out[5]= �x � �3.4875, y � �1.80402�



3.4.4 Simultaneous Equations 829

The variables that you use in Solve do not need to be single symbols. Often when you set up
large collections of simultaneous equations, you will want to use expressions like a[i] as variables.

Here is a list of three equations for the
a[i].

In[6]:= Table[ 2 a[i] + a[i-1] == a[i+1], {i, 3} ]

Out[6]= �a0� � 2 a1� � a2�,
a1� � 2 a2� � a3�, a2� � 2 a3� � a4��

This solves for some of the a[i]. In[7]:= Solve[ % , {a[1], a[2], a[3]} ]

Out[7]= 		a1� � �
1
������������
12

�5 a0� � a4��,

a2� � �
1
�������
6
��a0� � a4��,

a3� � �
1
������������
12

�a0� � 5 a4��



Solve[eqns, {x�, x�, . . . }] solve eqns for the specific objects xi

Solve[eqns] try to solve eqns for all the objects that appear in them

Solving simultaneous equations.

If you do not explicitly specify objects
to solve for, Solve will try to solve for
all the variables.

In[8]:= Solve[ { x + y == 1, x - 3 y == 2 } ]

Out[8]= 		x �
5
�������
4

, y � �
1
�������
4




Solve[{lhs�==rhs�, lhs�==rhs�, . . . }, vars]

Solve[lhs�==rhs� && lhs�==rhs� && . . . , vars]

Solve[{lhs�, lhs�, . . . } == {rhs�, rhs�, . . . }, vars]

Ways to present simultaneous equations to Solve.

If you construct simultaneous equations
from matrices, you typically get
equations between lists of expressions.

In[9]:= {{3,1},{2,-5}}.{x,y}=={7,8}

Out[9]= �3 x � y, 2 x � 5 y� � �7, 8�
Solve converts equations involving
lists to lists of equations.

In[10]:= Solve[%, {x, y}]

Out[10]= 		x �
43
������������
17

, y � �
10
������������
17




You can use LogicalExpand to do the
conversion explicitly.

In[11]:= LogicalExpand[%%]

Out[11]= 2 x � 5 y � 8 && 3 x � y � 7

In some kinds of computations, it is convenient to work with arrays of coefficients instead of explicit
equations. You can construct such arrays from equations by using CoefficientArrays.



830 3. Advanced Mathematics in Mathematica � 3.4 Manipulating Equations and Inequalities

- 3.4.5 Generic and Non-Generic Solutions

If you have an equation like 2 x == 0, it is perfectly clear that the only possible solution is x -> 0.
However, if you have an equation like a x == 0, things are not so clear. If a is not equal to zero,
then x -> 0 is again the only solution. However, if a is in fact equal to zero, then any value of x is a
solution. You can see this by using Reduce.

Solve implicitly assumes that the
parameter a does not have the special
value 0.

In[1]:= Solve[ a x == 0 , x ]

Out[1]= ��x � 0��
Reduce, on the other hand, gives you
all the possibilities, without assuming
anything about the value of a.

In[2]:= Reduce[ a x == 0 , x ]

Out[2]= a � 0 �� x � 0

A basic difference between Reduce and Solve is that Reduce gives all the possible solutions to a
set of equations, while Solve gives only the generic ones. Solutions are considered “generic” if they
involve conditions only on the variables that you explicitly solve for, and not on other parameters in
the equations. Reduce and Solve also differ in that Reduce always returns combinations of equations,
while Solve gives results in the form of transformation rules.

Solve[eqns, vars] find generic solutions to equations

Reduce[eqns, vars] reduce equations, maintaining all solutions

Solving equations.

This is the solution to an arbitrary
linear equation given by Solve.

In[3]:= Solve[a x + b == 0, x]

Out[3]= 		x � �
b
�������
a




Reduce gives the full version, which
includes the possibility a==b==0. In
reading the output, note that && has
higher precedence than ||.

In[4]:= Reduce[a x + b == 0, x]

Out[4]= b � 0 && a � 0 �� a � 0 && x � �
b
�������
a

Here is the full solution to a general
quadratic equation. There are three
alternatives. If a is non-zero, then
there are two solutions for x, given by
the standard quadratic formula. If a is
zero, however, the equation reduces to
a linear one. Finally, if a, b and c are
all zero, there is no restriction on x.

In[5]:= Reduce[a x^2 + b x + c == 0, x]

Out[5]= a � 0 &&

"
#$$$x �

�b �����������������
b2 � 4 a c

�������������������������������������������������������������������
2 a

�� x �
�b �����������������

b2 � 4 a c
�������������������������������������������������������������������

2 a
%
&''' ��

a � 0 && b � 0 && x � �
c
�������
b
�� c � 0 && b � 0 && a � 0

When you have several simultaneous equations, Reduce can show you under what conditions the
equations have solutions. Solve shows you whether there are any generic solutions.



3.4.5 Generic and Non-Generic Solutions 831

This shows there can never be any
solution to these equations.

In[6]:= Reduce[ {x == 1, x == 2}, x ]

Out[6]= False

There is a solution to these equations,
but only when a has the special
value 1.

In[7]:= Reduce[ {x == 1, x == a}, x ]

Out[7]= a � 1 && x � 1

The solution is not generic, and is
rejected by Solve.

In[8]:= Solve[ {x == 1, x == a}, x ]

Out[8]= ��
But if a is constrained to have value 1,
then Solve again returns a solution.

In[9]:= Solve[ {x == 1, x == a, a == 1}, x ]

Out[9]= ��x � 1��
This equation is true for any value
of x.

In[10]:= Reduce[ x == x , x ]

Out[10]= True

This is the kind of result Solve returns
when you give an equation that is
always true.

In[11]:= Solve[ x == x , x ]

Out[11]= ����
When you work with systems of linear equations, you can use Solve to get generic solutions, and

Reduce to find out for what values of parameters solutions exist.

Here is a matrix whose i� jth element is
i � j.

In[12]:= m = Table[i + j, {i, 3}, {j, 3}]

Out[12]= ��2, 3, 4�, �3, 4, 5�, �4, 5, 6��
The matrix has determinant zero. In[13]:= Det[ m ]

Out[13]= 0

This makes a set of three simultaneous
equations.

In[14]:= eqn = m . {x, y, z} == {a, b, c}

Out[14]= �2 x � 3 y � 4 z, 3 x � 4 y � 5 z, 4 x � 5 y � 6 z� � �a, b, c�
Solve reports that there are no generic
solutions.

In[15]:= Solve[eqn, {x, y, z}]

Out[15]= ��
Reduce, however, shows that there
would be a solution if the parameters
satisfied the special condition
a == 2b - c.

In[16]:= Reduce[eqn, {x, y, z}]

Out[16]= a � 2 b � c && y � �6 b � 5 c � 2 x && z � 5 b � 4 c � x

For nonlinear equations, the conditions for the existence of solutions can be much more complicated.

Here is a very simple pair of nonlinear
equations.

In[17]:= eqn = {x y == a, x^2 y^2 == b}

Out[17]= �x y � a, x2 y2 � b�
Solve shows that the equations have
no generic solutions.

In[18]:= Solve[eqn, {x, y}]

Out[18]= ��



832 3. Advanced Mathematics in Mathematica � 3.4 Manipulating Equations and Inequalities

Reduce gives the complete conditions
for a solution to exist.

In[19]:= Reduce[eqn, {x, y}]

Out[19]= b � 0 && a � 0 && x � 0 ��
�a � �����

b �� a �����
b � && x � 0 && y �

a
�������
x

- 3.4.6 Eliminating Variables

When you write down a set of simultaneous equations in Mathematica, you are specifying a collec-
tion of constraints between variables. When you use Solve, you are finding values for some of the
variables in terms of others, subject to the constraints represented by the equations.

Solve[eqns, vars, elims] find solutions for vars, eliminating the variables elims

Eliminate[eqns, elims] rearrange equations to eliminate the variables elims

Eliminating variables.

Here are two equations involving x, y
and the “parameters” a and b.

In[1]:= eqn = {x + y == 6a + 3b, y == 9a + 2 x}

Out[1]= �x � y � 6 a � 3 b, y � 9 a � 2 x�
If you solve for both x and y, you get
results in terms of a and b.

In[2]:= Solve[eqn, {x, y}]

Out[2]= ��x � �a � b, y � 7 a � 2 b��
Similarly, if you solve for x and a, you
get results in terms of y and b.

In[3]:= Solve[eqn, {x, a}]

Out[3]= 		x � �
1
�������
7
��9 b � y�, a � �

1
�������
7
�2 b � y�



If you only want to solve for x,
however, you have to specify whether
you want to eliminate y or a or b.
This eliminates y, and so gives the
result in terms of a and b.

In[4]:= Solve[eqn, x, y]

Out[4]= ��x � �a � b��

If you eliminate a, then you get a
result in terms of y and b.

In[5]:= Solve[eqn, x, a]

Out[5]= 		x � �
1
�������
7
��9 b � y�



In some cases, you may want to construct explicitly equations in which variables have been
eliminated. You can do this using Eliminate.

This combines the two equations in the
list eqn, by eliminating the variable a.

In[6]:= Eliminate[eqn, a]

Out[6]= 9 b � y � 7 x

This is what you get if you eliminate y
instead of a.

In[7]:= Eliminate[eqn, y]

Out[7]= b � x � a



3.4.7 Solving Logical Combinations of Equations 833

As a more sophisticated example of Eliminate, consider the problem of writing x� � y� in terms of
the “symmetric polynomials” x � y and xy.

To solve the problem, we simply have
to write f in terms of a and b,
eliminating the original variables x
and y.

In[8]:= Eliminate[ {f == x^5 + y^5, a == x + y, b == x y},
{x, y} ]

Out[8]= f � a5 � 5 a3 b � 5 a b2

In dealing with sets of equations, it is common to consider some of the objects that appear as true
“variables”, and others as “parameters”. In some cases, you may need to know for what values of
parameters a particular relation between the variables is always satisfied.

SolveAlways[eqns, vars] solve for the values of parameters for which the eqns are
satisfied for all values of the vars

Solving for parameters that make relations always true.

This finds the values of parameters
that make the equation hold for all x.

In[9]:= SolveAlways[a + b x + c x^2 == (1 + x)^2, x]

Out[9]= ��a � 1, b � 2, c � 1��
This equates two series. In[10]:= Series[a Cos[x] + b Cos[2x] + Cos[3x], {x, 0, 3}] ==

Series[Cosh[x], {x, 0, 3}]

Out[10]= �1 � a � b� � �� 9
�������
2
�

a
�������
2
� 2 b� x2 � Ox�4 � 1 �

x2

������������
2

� Ox�4

This finds values of the undetermined
coefficients.

In[11]:= SolveAlways[%, x]

Out[11]= 		a �
10
������������
3

, b � �
10
������������
3





- 3.4.7 Solving Logical Combinations of Equations

When you give a list of equations to Solve, it assumes that you want all the equations to be satisfied
simultaneously. It is also possible to give Solve more complicated logical combinations of equations.

Solve assumes that the equations
x + y == 1 and x - y == 2 are
simultaneously valid.

In[1]:= Solve[{x + y == 1, x - y == 2}, {x, y}]

Out[1]= 		x �
3
�������
2

, y � �
1
�������
2




Here is an alternative form, using the
logical connective && explicitly.

In[2]:= Solve[ x + y == 1 && x - y == 2, {x, y}]

Out[2]= 		x �
3
�������
2

, y � �
1
�������
2




This specifies that either x + y == 1 or
x - y == 2. Solve gives two solutions
for x, corresponding to these two
possibilities.

In[3]:= Solve[ x + y == 1 || x - y == 2, x ]

Out[3]= ��x � 1 � y�, �x � 2 � y��



834 3. Advanced Mathematics in Mathematica � 3.4 Manipulating Equations and Inequalities

Solve gives three solutions to this
equation.

In[4]:= Solve[x^3 == x, x]

Out[4]= ��x � �1�, �x � 0�, �x � 1��
If you explicitly include the assertion
that x != 0, one of the previous
solutions is suppressed.

In[5]:= Solve[x^3 == x && x != 0, x]

Out[5]= ��x � �1�, �x � 1��
Here is a slightly more complicated
example. Note that the precedence of
|| is lower than the precedence of &&,
so the equation is interpreted as
(x^3 == x && x != 1) || x^2 == 2, not
x^3 == x && (x != 1 || x^2 == 2).

In[6]:= Solve[x^3 == x && x != 1 || x^2 == 2 , x]

Out[6]=  �x � �1�, �x � 0�,  x � �����
2 !,  x �����

2 !!

When you use Solve, the final results you get are in the form of transformation rules. If you use
Reduce or Eliminate, on the other hand, then your results are logical statements, which you can
manipulate further.

This gives a logical statement
representing the solutions of the
equation x^2 == x.

In[7]:= Reduce[x^2 == x, x]

Out[7]= x � 0 �� x � 1

This finds values of x which satisfy
x^5 == x but do not satisfy the
statement representing the solutions of
x^2 == x.

In[8]:= Reduce[x^5 == x && !%, x]

Out[8]= x � �1 �� x � �� �� x � �

The logical statements produced by Reduce can be thought of as representations of the solution set
for your equations. The logical connectives &&, || and so on then correspond to operations on these
sets.

eqns� || eqns� union of solution sets

eqns� && eqns� intersection of solution sets

!eqns complement of a solution set

Implies[eqns�, eqns�] the part of eqns� that contains eqns�

Operations on solution sets.

You may often find it convenient to use special notations for logical connectives, as discussed on
page 1001.

The input uses special notations for
Implies and Or.

In[9]:= Reduce[x^2 == 1 ! (x == 1 # x == -1), x]

Out[9]= True



3.4.8 Inequalities 835

, 3.4.8 Inequalities

Just as the equation x^2 + 3x == 2 asserts that x^2 + 3x is equal to 2, so also the inequality x^2 + 3x > 2
asserts that x^2 + 3x is greater than 2. In Mathematica, Reduce works not only on equations, but also
on inequalities.

, Reduce[{ineq�, ineq�, . . . }, x] reduce a collection of inequalities in x

Manipulating univariate inequalities.

This pair of inequalities reduces to a
single inequality.

In[1]:= Reduce[{0 < x < 2, 1 < x < 4}, x]

Out[1]= 1 ? x ? 2

These inequalities can never
simultaneously be satisfied.

In[2]:= Reduce[{x < 1, x > 3}, x]

Out[2]= False

When applied to an equation, Reduce[eqn, x] tries to get a result consisting of simple equations for
x of the form x == r�, . . . . When applied to an inequality, Reduce[ineq, x] does the exactly analogous
thing, and tries to get a result consisting of simple inequalities for x of the form l� < x < r�, . . . .

This reduces a quadratic equation to
two simple equations for x.

In[3]:= Reduce[x^2 + 3x == 2, x]

Out[3]= x �
1
�������
2
��3 �������

17 � �� x �
1
�������
2
��3 �������

17 �
This reduces a quadratic inequality to
two simple inequalities for x.

In[4]:= Reduce[x^2 + 3x > 2, x]

Out[4]= x ?
1
�������
2
��3 �������

17 � �� x >
1
�������
2
��3 �������

17 �
You can think of the result generated by Reduce[ineq, x] as representing a series of intervals,

described by inequalities. Since the graph of a polynomial of degree n can go up and down as many
as n times, a polynomial inequality of degree n can give rise to as many as n�� � � distinct intervals.

This inequality yields three distinct
intervals.

In[5]:= Reduce[(x - 1)(x - 2)(x - 3)(x - 4) > 0, x]

Out[5]= x ? 1 �� 2 ? x ? 3 �� x > 4

The ends of the intervals are at roots
and poles.

In[6]:= Reduce[1 < (x^2 + 3x)/(x + 1) < 2, x]

Out[6]= �1 �����
2 ? x ? �2 �� �1 �����

2 ? x ? 1

Solving this inequality requires
introducing ProductLog.

In[7]:= Reduce[x - 2 < Log[x] < x, x]

Out[7]= �ProductLog�� 1
������������
�2

� ? x ? �ProductLog��1, �
1
������������
�2

�
Transcendental functions like sin�x� have graphs that go up and down infinitely many times, so

that infinitely many intervals can be generated.

The second inequality allows only
finitely many intervals.

In[8]:= Reduce[{Sin[x] > 0, 0 < x < 20}, x]

Out[8]= 0 ? x ? Π �� 2 Π ? x ? 3 Π �� 4 Π ? x ? 5 Π �� 6 Π ? x ? 20



836 3. Advanced Mathematics in Mathematica � 3.4 Manipulating Equations and Inequalities

This is how Reduce represents
infinitely many intervals.

In[9]:= Reduce[{Sin[x] > 0, 0 < x}, x]

Out[9]= C1� � Integers &&�0 ? x ? Π �� C1� � 1 && 2 Π C1� ? x ? Π � 2 Π C1��
Fairly simple inputs can give fairly
complicated results.

In[10]:= Reduce[{Sin[x]^2 + Sin[3x] > 0, x^2 + 2 < 20}, x]

Out[10]= �3
����

2 ? x ? �Π ��
2 ArcTan� 1

�������
3
��4 �����

7 �� ? x ? 2 ArcTan� 1
�������
3
��4 �����

7 �� ��
0 ? x ?

Π
�������
2
�� Π

�������
2

? x ? Π ��
2 Π � 2 ArcTan� 1

�������
3
��4 �����

7 �� ? x ? 3
����

2

If you have inequalities that involve <= as well as <, there may be isolated points where the
inequalities can be satisfied. Reduce represents such points by giving equations.

This inequality can be satisfied at just
two isolated points.

In[11]:= Reduce[(x^2 - 3x + 1)^2 <= 0, x]

Out[11]= x �
1
�������
2
�3 �����

5 � �� x �
1
�������
2
�3 �����

5 �
This yields both intervals and isolated
points.

In[12]:= Reduce[{Max[Sin[2x], Cos[3x]] <= 0, 0 < x < 10}, x]

Out[12]= x �
Π
�������
2
�� 5 Π

��������������
6

� x � Π ��
3 Π
��������������
2

� x �
11 Π
������������������

6
�� x �

5 Π
��������������
2

�� 17 Π
������������������

6
� x � 3 Π

, Reduce[{ineq� ineq�, . . . }, {x�, x�, . . . }]
reduce a collection of inequalities in several variables

Multivariate inequalities.

For inequalities involving several variables, Reduce in effect yields nested collections of interval
specifications, in which later variables have bounds that depend on earlier variables.

This represents the unit disk as nested
inequalities for x and y.

In[13]:= Reduce[x^2 + y^2 < 1, {x, y}]

Out[13]= �1 ? x ? 1 && ������������
1 � x2 ? y ?�����������

1 � x2

In geometrical terms, any linear inequality divides space into two halves. Lists of linear inequalities
thus define polyhedra, sometimes bounded, sometimes not. Reduce represents such polyhedra in
terms of nested inequalities. The corners of the polyhedra always appear among the endpoints of
these inequalities.

This defines a triangular region in the
plane.

In[14]:= Reduce[{x > 0, y > 0, x + y < 1}, {x, y}]

Out[14]= 0 ? x ? 1 && 0 ? y ? 1 � x



3.4.8 Inequalities 837

Even a single triangle may need to be
described as two components.

In[15]:= Reduce[{x > y - 1, y > 0, x + y < 1}, {x, y}]

Out[15]= �1 ? x � 0 && 0 ? y ? 1 � x �� 0 ? x ? 1 && 0 ? y ? 1 � x

Lists of inequalities in general represent regions of overlap between geometrical objects. Often the
description of these can be quite complicated.

This represents the part of the unit
disk on one side of a line.

In[16]:= Reduce[{x^2 + y^2 < 1, x + 3y > 2}, {x, y}]

Out[16]=
1
������������
10

�2 � 3
����

6 � ? x ?
1
������������
10

�2 � 3
����

6 � &&
2 � x
���������������������

3
? y ?�����������

1 � x2

Here is the intersection between two
disks.

In[17]:= Reduce[{(x - 1)^2 + y^2 < 2, x^2 + y^2 < 2}, {x, y}]

Out[17]= 1 �����
2 ? x �

1
�������
2

&& ��������������������
1 � 2 x � x2 ? y ?�������������������

1 � 2 x � x2 ��
1
�������
2

? x ?����
2 && ������������

2 � x2 ? y ?�����������
2 � x2

If the disks are too far apart, there is
no intersection.

In[18]:= Reduce[{(x - 4)^2 + y^2 < 2, x^2 + y^2 < 2}, {x, y}]

Out[18]= False

Here is an example involving a
transcendental inequality.

In[19]:= Reduce[{Sin[x y] > 1/2, x^2 + y^2 < 3/2}, {x, y}]

Out[19]= �������������������������������������3
�������
4
�

1
������������
12

����������������
81 � 4 Π2 ? x ?

�
1
�������
2
������������������������������������1

�������
3
�9 �����������������

81 � 4 Π2 � && �
��������������

3 � 2 x2

����������������������������������������������
2

? y ?
Π
��������������
6 x

��
1
�������
2
������������������������������������1

�������
3
�9 �����������������

81 � 4 Π2 � ? x ?������������������������������������3
�������
4
�

1
������������
12

����������������
81 � 4 Π2 &&

Π
��������������
6 x

? y ?
��������������

3 � 2 x2

����������������������������������������������
2

If you have inequalities that involve parameters, Reduce automatically handles the different cases
that can occur, just as it does for equations.

The form of the intervals depends on
the value of a.

In[20]:= Reduce[(x - 1)(x - a) > 0, x]

Out[20]= a � 1 && �x ? a �� x > 1� �� a > 1 && �x ? 1 �� x > a�



838 3. Advanced Mathematics in Mathematica � 3.4 Manipulating Equations and Inequalities

One gets a hyperbolic or an elliptical
region, depending on the value of a.

In[21]:= Reduce[x^2 + a y^2 < 1, {x, y}]

Out[21]= y � Reals &&

"
#
$$$$$$a ? 0 &&

"
#
$$$$$$x � �1 &&

"
#
$$$$$$y ? ���������������1 � x2

�������������������������
a

�� y >��������������1 � x2

�������������������������
a

%
&
'''''' ��

�1 ? x ? 1 ��
x � 1 &&

"
#
$$$$$$y ? ���������������1 � x2

�������������������������
a

�� y >��������������1 � x2

�������������������������
a

%
&
''''''%&
'''''' ��

a � 0 && �1 ? x ? 1 �� a > 0 && �1 ? x ? 1 &&

���������������1 � x2

�������������������������
a

? y ?��������������1 � x2

�������������������������
a

%
&
''''''

Reduce tries to give you a complete description of the region defined by a set of inequalities.
Sometimes, however, you may just want to find individual instances of values of variables that satisfy
the inequalities. You can do this using FindInstance.

, FindInstance[ineqs, {x�, x�, . . . }] try to find an instance of the xi satisfying ineqs

, FindInstance[ineqs, vars, n] try to find n instances

Finding individual points that satisfy inequalities.

This finds a specific instance that
satisfies the inequalities.

In[22]:= FindInstance[{Sin[x y] > 1/2, x^2 + y^2 < 3/2}, {x, y}]

Out[22]= 		x � �
118
�����������������
151

, y � �
149
�����������������
185




This shows that there is no way to
satisfy the inequalities.

In[23]:= FindInstance[{Sin[x y] > 1/2, x^2 + y^2 < 1/4}, {x, y}]

Out[23]= ��
FindInstance is in some ways an analog for inequalities of Solve for equations. For like Solve,

it returns a list of rules giving specific values for variables. But while for equations these values can
generically give an accurate representation of all solutions, for inequalities they can only correspond
to isolated sample points within the regions described by the inequalities.

Every time you call FindInstance with specific input, it will give the same output. And when
there are instances that correspond to special, limiting, points of some kind, it will preferentially
return these. But in general, the distribution of instances returned by FindInstance will typically
seem somewhat random. Each instance is, however, in effect a constructive proof that the inequalities
you have given can in fact be satisfied.

If you ask for one point in the unit
disk, FindInstance gives the origin.

In[24]:= FindInstance[x^2 + y^2 <= 1, {x, y}]

Out[24]= ��x � 0, y � 0��
This finds 500 points in the unit disk. In[25]:= FindInstance[x^2 + y^2 <= 1, {x, y}, 500];



3.4.9 Equations and Inequalities over Domains 839

Their distribution seems somewhat
random.

In[26]:= ListPlot[{x, y} /. %, AspectRatio->Automatic]

-1 -0.5 0.5 1

-1

-0.5

0.5

1

, 3.4.9 Equations and Inequalities over Domains

Mathematica normally assumes that variables which appear in equations can stand for arbitrary com-
plex numbers. But when you use Reduce, you can explicitly tell Mathematica that the variables stand
for objects in more restricted domains.

, Reduce[expr, vars, dom] reduce eqns over the domain dom

Complexes complex numbers �

Reals real numbers �

Integers integers �

Solving over domains.

Reduce by default assumes that x can
be complex, and gives all five complex
solutions.

In[1]:= Reduce[x^6 - x^4 - 4x^2 + 4 == 0, x]

Out[1]= x � �1 �� x � 1 �� x � �����
2 ��

x � ������
2 �� x � �����

2 �� x �����
2

But here it assumes that x is real, and
gives only the real solutions.

In[2]:= Reduce[x^6 - x^4 - 4x^2 + 4 == 0, x, Reals]

Out[2]= x � �1 �� x � 1 �� x � �����
2 �� x �����

2

And here it assumes that x is an
integer, and gives only the integer
solutions.

In[3]:= Reduce[x^6 - x^4 - 4x^2 + 4 == 0, x, Integers]

Out[3]= x � �1 �� x � 1

A single polynomial equation in one variable will always have a finite set of discrete solutions. And
in such a case one can think of Reduce[eqns, vars, dom] as just filtering the solutions by selecting the
ones that happen to lie in the domain dom.



840 3. Advanced Mathematics in Mathematica � 3.4 Manipulating Equations and Inequalities

But as soon as there are more variables, things can become more complicated, with solutions to
equations corresponding to parametric curves or surfaces in which the values of some variables can
depend on the values of others. Often this dependence can be described by some collection of equa-
tions or inequalities, but the form of these can change significantly when one goes from one domain
to another.

This gives solutions over the complex
numbers as simple formulas.

In[4]:= Reduce[x^2 + y^2 == 1, {x, y}]

Out[4]= y � ������������
1 � x2 �� y ������������

1 � x2

To represent solutions over the reals
requires introducing an inequality.

In[5]:= Reduce[x^2 + y^2 == 1, {x, y}, Reals]

Out[5]= �1 � x � 1 && �y � ������������
1 � x2 �� y ������������

1 � x2 �
Over the integers, the solution can be
represented as equations for discrete
points.

In[6]:= Reduce[x^2 + y^2 == 1, {x, y}, Integers]

Out[6]= x � �1 && y � 0 �� x � 0 && y � �1 ��
x � 0 && y � 1 �� x � 1 && y � 0

If your input involves only equations, then Reduce will by default assume that all variables are
complex. But if your input involves inequalities, then Reduce will assume that any algebraic variables
appearing in them are real, since inequalities can only compare real quantities.

Since the variables appear in an
inequality, they are assumed to be real.

In[7]:= Reduce[{x + y + z == 1, x^2 + y^2 + z^2 < 1}, {x, y, z}]

Out[7]= �
1
�������
3

? x ? 1 &&
1 � x
���������������������

2
�

1
�������
2
����������������������

1 � 2 x � 3 x2 ?

y ?
1 � x
���������������������

2
�

1
�������
2
����������������������

1 � 2 x � 3 x2 && z � 1 � x � y

Complexes polynomial != 0, xi == Root[. . . ]

Reals Root[. . . ] < xi < Root[. . . ], xi == Root[. . . ]

Integers arbitrarily complicated

Schematic building blocks for solutions to polynomial equations and inequalities.

For systems of polynomials over real and complex domains, the solutions always consist of a
finite number of components, within which the values of variables are given by algebraic numbers or
functions.

Here the components are distinguished
by equations and inequations on x.

In[8]:= Reduce[x y^3 + y == 1, {x, y}, Complexes]

Out[8]= x � 0 && y � 1 ��
x � 0 && �y � Root��1 � #1 � x #13 &, 1� ��

y � Root��1 � #1 � x #13 &, 2� ��
y � Root��1 � #1 � x #13 &, 3��



3.4.9 Equations and Inequalities over Domains 841

And here the components are
distinguished by inequalities on x.

In[9]:= Reduce[x y^3 + y == 1, {x, y}, Reals]

Out[9]= x ? �
4
������������
27

&& y � Root��1 � #1 � x #13 &, 1� ��
x � �

4
������������
27

&& �y � �3 �� y �
3
�������
2
� ��

�
4
������������
27

? x ? 0 && �y � Root��1 � #1 � x #13 &, 1� ��
y � Root��1 � #1 � x #13 &, 2� ��
y � Root��1 � #1 � x #13 &, 3�� ��

x � 0 && y � Root��1 � #1 � x #13 &, 1�
While in principle Reduce can always find the complete solution to any collection of polynomial

equations and inequalities with real or complex variables, the results are often very complicated, with
the number of components typically growing exponentially as the number of variables increases.

With 3 variables, the solution here
already involves 8 components.

In[10]:= Reduce[x^2 == y^2 == z^2 == 1, {x, y, z}]

Out[10]= z � �1 && y � �1 && x � �1 �� z � �1 && y � �1 && x � 1 ��
z � �1 && y � 1 && x � �1 �� z � �1 && y � 1 && x � 1 ��
z � 1 && y � �1 && x � �1 �� z � 1 && y � �1 && x � 1 ��
z � 1 && y � 1 && x � �1 �� z � 1 && y � 1 && x � 1

As soon as one introduces functions like Sin or Exp, even equations in single real or complex
variables can have solutions with an infinite number of components. Reduce labels these compo-
nents by introducing additional parameters. By default, the nth parameter in a given solution will be
named C[n]. In general you can specify that it should be named f[n] by giving the option setting
GeneratedParameters -> f.

The components here are labeled by
the integer parameter c1.

In[11]:= Reduce[Exp[x] == 2, x,
GeneratedParameters -> (Subscript[c, #]&)]

Out[11]= c1 � Integers && x � Log2� � 2 � Π c1

Reduce can handle equations not only over real and complex variables, but also over integers.
Solving such Diophantine equations can often be a very difficult problem.

Describing the solution to this equation
over the reals is straightforward.

In[12]:= Reduce[x y == 8, {x, y}, Reals]

Out[12]= �x ? 0 �� x > 0� && y �
8
�������
x

The solution over the integers involves
the divisors of 8.

In[13]:= Reduce[x y == 8, {x, y}, Integers]

Out[13]= x � �8 && y � �1 �� x � �4 && y � �2 ��
x � �2 && y � �4 �� x � �1 && y � �8 �� x � 1 && y � 8 ��
x � 2 && y � 4 �� x � 4 && y � 2 �� x � 8 && y � 1

Solving an equation like this effectively
requires factoring a large number.

In[14]:= Reduce[{x y == 7777777, x > y > 0}, {x, y}, Integers]

Out[14]= x � 4649 && y � 1673 �� x � 32543 && y � 239 ��
x � 1111111 && y � 7 �� x � 7777777 && y � 1



842 3. Advanced Mathematics in Mathematica � 3.4 Manipulating Equations and Inequalities

Reduce can solve any system of linear equations or inequalities over the integers. With m linear
equations in n variables, n � m parameters typically need to be introduced. But with inequalities, a
much larger number of parameters may be needed.

Three parameters are needed here, even
though there are only two variables.

In[15]:= Reduce[{3x - 2y > 1, x > 0, y > 0}, {x, y}, Integers]

Out[15]= �C1� � C2� � C3�� � Integers &&
C1� � 0 && C2� � 0 && C3� � 0 &&�x � 2 � 2 C1� � C2� � C3� && y � 2 � 3 C1� � C2� ��

x � 2 � 2 C1� � C2� � C3� && y � 1 � 3 C1� � C2��
With two variables, Reduce can solve any quadratic equation over the integers. The result can be

a Fibonacci-like sequence, represented in terms of powers of quadratic irrationals.

Here is the solution to a Pell equation. In[16]:= Reduce[{x^2 == 13 y^2 + 1, x > 0, y > 0}, {x, y}, Integers]

Out[16]= C1� � Integers && C1� � 1 &&

x �
1
�������
2
��649 � 180

������
13 �C1�

� �649 � 180
������

13 �C1�� &&

y � �
�649 � 180

������
13 �C1�

� �649 � 180
������

13 �C1�
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

2
������

13

The actual values for specific C[1] as
integers, as they should be.

In[17]:= FullSimplify[% /. Table[{C[1] -> i}, {i, 4}]]

Out[17]= �x � 649 && y � 180, x � 842401 && y � 233640,
x � 1093435849 && y � 303264540,
x � 1419278889601 && y � 393637139280�

Reduce can handle many specific classes of equations over the integers.

Here Reduce finds the solution to a
Thue equation.

In[18]:= Reduce[x^3 - 4 x y^2 + y^3 == 1, {x, y}, Integers]

Out[18]= x � �2 && y � 1 �� x � 0 && y � 1 �� x � 1 && y � 0 ��
x � 1 && y � 4 �� x � 2 && y � 1 �� x � 508 && y � 273

Changing the right-hand side to 3, the
equation now has no solution.

In[19]:= Reduce[x^3 - 4 x y^2 + y^3 == 3, {x, y}, Integers]

Out[19]= False

Equations over the integers sometimes have seemingly quite random collections of solutions. And
even small changes in equations can often lead them to have no solutions at all.

For polynomial equations over real and complex numbers, there is a definite decision procedure
for determining whether or not any solution exists. But for polynomial equations over the integers,
the unsolvability of Hilbert’s Tenth Problem demonstrates that there can never be any such general
procedure.

For specific classes of equations, however, procedures can be found, and indeed many are im-
plemented in Reduce. But handling different classes of equations can often seem to require whole
different branches of number theory, and quite different kinds of computations. And in fact it is
known that there are universal integer polynomial equations, for which filling in some variables can
make solutions for other variables correspond to the output of absolutely any possible program. This



3.4.9 Equations and Inequalities over Domains 843

then means that for such equations there can never in general be any closed-form solution built from
fixed elements like algebraic functions.

If one includes functions like Sin, then even for equations involving real and complex numbers the
same issues can arise.

Reduce here effectively has to solve an
equation over the integers.

In[20]:= Reduce[Sin[Pi x]^2 + Sin[Pi y]^2 +
(x^2 + y^2 - 25)^2 == 0, {x, y}, Reals]

Out[20]= x � �5 && y � 0 �� x � �4 && �y � �3 �� y � 3� ��
x � �3 && �y � �4 �� y � 4� ��
x � 0 && �y � �5 �� y � 5� ��
x � 3 && �y � �4 �� y � 4� ��
x � 4 && �y � �3 �� y � 3� �� x � 5 && y � 0

, Reduce[eqns, vars, Modulus->n] find solutions modulo n

Handling equations involving integers modulo n.

Since there are only ever a finite number of possible solutions for integer equations modulo n,
Reduce can systematically find them.

This finds all solutions modulo 4. In[21]:= Reduce[x^5 == y^4 + x y + 1, {x, y}, Modulus -> 4]

Out[21]= x � 1 && y � 0 �� x � 1 && y � 3 �� x � 2 && y � 1 ��
x � 2 && y � 3 �� x � 3 && y � 2 �� x � 3 && y � 3

, Reduce[expr, vars, dom] specify a default domain for all variables

, Reduce[{expr�, . . . , x��dom�, . . . }, vars]
explicitly specify individual domains for variables

Different ways to specify domains for variables.

This assumes that x is an integer, but y
is a real.

In[22]:= Reduce[{x^2 + 2y^2 == 1, x & Integers, y & Reals}, {x, y}]

Out[22]= x � �1 && y � 0 ��
x � 0 && "#$$y � �

1
����������������������

2
�� y �

1
����������������������

2

%&'' �� x � 1 && y � 0

Reduce normally treats complex variables as single objects. But in dealing with functions that are
not analytic or have branch cuts, it sometimes has to break them into pairs of real variables Re[z]
and Im[z].

The result involves separate real and
imaginary parts.

In[23]:= Reduce[Abs[z] == 1, z]

Out[23]= �1 � Rez� � 1 &&

�Imz� � ��������������������
1 � Rez�2 �� Imz� ��������������������

1 � Rez�2 �



844 3. Advanced Mathematics in Mathematica � 3.4 Manipulating Equations and Inequalities

Here again there is a separate
condition on the imaginary part.

In[24]:= Reduce[Log[z] == a, {a, z}]

Out[24]= �Π ? Ima� � Π && z � �a

Reduce by default assumes that variables that appear algebraically in inequalities are real. But you
can override this by explicitly specifying Complexes as the default domain. It is often useful in such
cases to be able to specify that certain variables are still real.

Reduce by default assumes that x is a
real.

In[25]:= Reduce[x^2 < 1, x]

Out[25]= �1 ? x ? 1

This forces Reduce to consider the case
where x can be complex.

In[26]:= Reduce[x^2 < 1, x, Complexes]

Out[26]= �1 ? Rex� ? 0 && Imx� � 0 ��
Rex� � 0 �� 0 ? Rex� ? 1 && Imx� � 0

Since x does not appear algebraically,
Reduce immediately assumes that it
can be complex.

In[27]:= Reduce[Abs[x] < 1, x]

Out[27]= �1 ? Rex� ? 1 && ��������������������
1 � Rex�2 ? Imx� ?�������������������

1 � Rex�2

Here x is a real, but y can be complex. In[28]:= Reduce[{Abs[y] < Abs[x], x & Reals}, {x, y}]

Out[28]= x ? 0 && �������
x2 ? Rey� ?������

x2 &&

����������������������
x2 � Rey�2 ? Imy� ?���������������������

x2 � Rey�2 ��
x > 0 && �������

x2 ? Rey� ?������
x2 &&

����������������������
x2 � Rey�2 ? Imy� ?���������������������

x2 � Rey�2

, FindInstance[expr, {x�, x�, . . . }, dom] try to find an instance of the xi in dom
satisfying expr

, FindInstance[expr, vars, dom, n] try to find n instances

Complexes the domain of complex numbers �

Reals the domain of real numbers �

Integers the domain of integers �

Booleans the domain of booleans (True and False) �

Finding particular solutions in domains.

Reduce always returns a complete representation of the solution to a system of equations or in-
equalities. Sometimes, however, you may just want to find particular sample solutions. You can do
this using FindInstance.



3.4.10 Advanced Topic: The Representation of Solution Sets 845

If FindInstance[expr, vars, dom] returns {} then this means that Mathematica has effectively
proved that expr cannot be satisfied for any values of variables in the specified domain. When expr
can be satisfied, FindInstance will normally pick quite arbitrarily among values that do this, as
discussed for inequalities on page 838.

Particularly for integer equations, FindInstance can often find particular solutions to equations
even when Reduce cannot find a complete solution. In such cases it usually returns one of the smallest
solutions to the equations.

This finds the smallest integer point on
an elliptic curve.

In[29]:= FindInstance[{x^2 == y^3 + 12, x > 0, y > 0},
{x, y}, Integers]

Out[29]= ��x � 47, y � 13��
One feature of FindInstance is that it also works with Boolean expressions whose variables can

have values True or False. You can use FindInstance to determine whether a particular expression
is satisfiable, so that there is some choice of truth values for its variables that makes the expression
True.

This expression cannot be satisfied for
any choice of p and q.

In[30]:= FindInstance[p && ! (p || ! q), {p, q}, Booleans]

Out[30]= ��
But this can. In[31]:= FindInstance[p && ! (! p || ! q), {p, q}, Booleans]

Out[31]= ��p � True, q � True��

, 3.4.10 Advanced Topic: The Representation of Solution Sets

One can think of any combination of equations or inequalities as implicitly defining a region in some
kind of space. The fundamental function of Reduce is to turn this type of implicit description into an
explicit one.

An implicit description in terms of equations or inequalities is sufficient if one just wants to test
whether a point specified by values of variables is in the region. But to understand the structure of
the region, or to generate points in it, one typically needs a more explicit description, of the kind
obtained from Reduce.

Here are inequalities that implicitly
define a semicircular region.

In[1]:= semi = x > 0 && x^2 + y^2 < 1

Out[1]= x > 0 && x2 � y2 ? 1

This shows that the point ����� ���� lies
in the region.

In[2]:= semi /. { x -> 1/2, y -> 1/2 }

Out[2]= True

Reduce gives a more explicit
representation of the region.

In[3]:= Reduce[semi, {x, y}]

Out[3]= 0 ? x ? 1 && ������������
1 � x2 ? y ?�����������

1 � x2



846 3. Advanced Mathematics in Mathematica � 3.4 Manipulating Equations and Inequalities

If we pick a value for x consistent with
the first inequality, we then
immediately get an explicit inequality
for y.

In[4]:= % /. x -> 1/2

Out[4]= �
����

3
������������������

2
? y ?

����
3

������������������
2

Reduce[expr, {x�, x�, . . . }] is set up to describe regions by first giving fixed conditions for x�,
then giving conditions for x� that depend on x�, then conditions for x that depend on x� and x�, and
so on. This structure has the feature that it allows one to pick points by successively choosing values
for each of the xi in turn—in much the same way as when one uses iterators in functions like Table.

This gives a representation for the
region in which one first picks a value
for y, then x.

In[5]:= Reduce[semi, {y, x}]

Out[5]= �1 ? y ? 1 && 0 ? x ?�����������
1 � y2

In some simple cases the region defined by a system of equations or inequalities will end up having
only one component. In such cases, the output from Reduce will be of the form e� && e� && . . . where
each of the ei is an equation or inequality involving variables up to xi.

In most cases, however, there will be several components, represented by output containing forms
such as u� || u� || . . . . Reduce typically tries to minimize the number of components used in de-
scribing a region. But in some cases multiple parametrizations may be needed to cover a single
connected component, and each one of these will appear as a separate component in the output from
Reduce.

In representing solution sets, it is common to find that several components can be described to-
gether by using forms such as . . . && (u� || u�) && . . . . Reduce by default does this so as to return
its results as compactly as possible. You can use LogicalExpand to generate an expanded form in
which each component appears separately.

In generating the most compact results, Reduce sometimes ends up making conditions on later
variables xi depend on more of the earlier xi than is strictly necessary. You can force Reduce to
generate results in which a particular xi only has minimal dependence on earlier xi by giving the
option Backsubstitution->True. Usually this will lead to much larger output, although sometimes
it may be easier to interpret.

By default, Reduce expresses the
condition on y in terms of x.

In[6]:= Reduce[x^2 + y == 4 && x^3 - 4y == 8, {x, y}]

Out[6]= �x � 2 �� x � �3 � �����
3 �� x � �3 � �����

3 � && y � 4 � x2

Backsubstituting allows conditions for
y to be given without involving x.

In[7]:= Reduce[x^2 + y == 4 && x^3 - 4y == 8, {x, y},
Backsubstitution -> True]

Out[7]= x � 2 && y � 0 ��
x � �� ��3 � �����

3 � && y � �2 � ��� � 3
����

3 � ��
x � � �3 � �����

3 � && y � 2 � �� � 3
����

3 �



3.4.11 Advanced Topic: Quantifiers 847

, CylindricalDecomposition[expr, {x�, x�, . . . }]
generate the cylindrical algebraic decomposition of expr

Cylindrical algebraic decomposition.

For polynomial equations or inequalities over the reals, the structure of the result returned by
Reduce is typically a cylindrical algebraic decomposition or CAD. Sometimes Reduce can yield a simpler
form. But in all cases you can get the complete CAD by using CylindricalDecomposition.

, 3.4.11 Advanced Topic: Quantifiers

In a statement like x^4 + x^2 > 0, Mathematica treats the variable x as having a definite, though
unspecified, value. Sometimes, however, it is useful to be able to make statements about whole
collections of possible values for x. You can do this using quantifiers.

, ForAll[x, expr] expr holds for all values of x

, ForAll[{x�, x�, . . . }, expr] expr holds for all values of all the xi

, ForAll[{x�, x�, . . . }, cond, expr] expr holds for all xi satisfying cond

, Exists[x, expr] there exists a value of x for which expr holds

, Exists[{x�, x�, . . . }, expr] there exist values of the xi for which expr holds

, Exists[{x�, . . . }, cond, expr] there exist values of the xi satisfying cond for which expr
holds

The structure of quantifiers.

You can work with quantifiers in Mathematica much as you work with equations, inequalities or
logical connectives. In most cases, the quantifiers will not immediately be changed by evaluation. But
they can be simplified or reduced by functions like FullSimplify and Reduce.

This asserts that an x exists that makes
the inequality true. The output here is
just a formatted version of the input.

In[1]:= Exists[x, x^4 + x^2 > 0]

Out[1]= ]x x2 � x4 > 0

FullSimplify establishes that the
assertion is true.

In[2]:= FullSimplify[%]

Out[2]= True

This gives False, since the inequality
fails when x is zero.

In[3]:= FullSimplify[ForAll[x, x^4 + x^2 > 0]]

Out[3]= False



848 3. Advanced Mathematics in Mathematica � 3.4 Manipulating Equations and Inequalities

Mathematica supports a version of the standard notation for quantifiers used in predicate logic and
pure mathematics. You can input \ as \[ForAll] or , fa ,, and you can input ] as \[Exists] or , ex ,.
To make the notation precise, however, Mathematica makes the quantified variable a subscript. The
conditions on the variable can also be given in the subscript, separated by a comma.

\x expr ForAll[x, expr]

\�x1 ,x2 ,…� expr ForAll[{x�, x�, . . . }, expr]

\x,cond expr ForAll[x, cond, expr]

]x expr Exists[x, expr]

]�x1 ,x2 ,…� expr Exists[{x�, x�, . . . }, expr]

]x,cond expr Exists[x, cond, expr]

Notation for quantifiers.

Given a statement that involves quantifiers, there are certain important cases where it is possible to
resolve it into an equivalent statement in which the quantifiers have been eliminated. Somewhat like
solving an equation, such quantifier elimination turns an implicit statement about what is true for all
x or for some x into an explicit statement about the conditions under which this holds.

, Resolve[expr] attempt to eliminate quantifiers from expr

, Resolve[expr, dom] attempt to eliminate quantifiers with all variables assumed
to be in domain dom

Quantifier elimination.

This shows that an x exists that makes
the equation true.

In[4]:= Resolve[Exists[x, x^2 == x^3]]

Out[4]= True

This shows that the equations can only
be satisfied if c obeys a certain
condition.

In[5]:= Resolve[Exists[x, x^2 == c && x^3 == c + 1]]

Out[5]= �1 � 2 c � c2 � c3 � 0

Resolve can always eliminate quantifiers from any collection of polynomial equations and inequa-
tions over complex numbers, and from any collection of polynomial equations and inequalities over
real numbers. It can also eliminate quantifiers from Boolean expressions.



3.4.11 Advanced Topic: Quantifiers 849

This finds the conditions for a
quadratic form over the reals to be
positive.

In[6]:= Resolve[ForAll[x, a x^2 + b x + c > 0], Reals]

Out[6]= c > 0 &&

"#$$b ? 0 && a >
b2

��������������
4 c

�� b � 0 && a � 0 �� b > 0 && a >
b2

��������������
4 c

%&''
This shows that there is a way of
assigning truth values to p and q that
makes the expression true.

In[7]:= Resolve[Exists[{p, q}, p || q && ! q], Booleans]

Out[7]= True

You can also use quantifiers with Reduce. If you give Reduce a collection of equations or inequali-
ties, then it will try to produce a detailed representation of the complete solution set. But sometimes
you may want to address a more global question, such as whether the solution set covers all values
of x, or whether it covers none of these values. Quantifiers provide a convenient way to specify such
questions.

This gives the complete structure of the
solution set.

In[8]:= Reduce[x^2 + x + c == 0, {c, x}, Reals]

Out[8]= c ?
1
�������
4

&&

�x � �
1
�������
2
�

1
�������
2
������������

1 � 4 c �� x � �
1
�������
2
�

1
�������
2
������������

1 � 4 c � ��
c �

1
�������
4

&& x � �
1
�������
2

This instead just gives the condition for
a solution to exist.

In[9]:= Reduce[Exists[x, x^2 + x + c == 0], {c}, Reals]

Out[9]= c �
1
�������
4

It is possible to formulate a great many mathematical questions in terms of quantifiers.

This finds the conditions for a circle to
be contained within an arbitrary conic
section.

In[10]:= Reduce[ForAll[{x, y}, x^2 + y^2 < 1, a x^2 + b y^2 < c],
{a, b, c}, Reals]

Out[10]= a � 0 && �b � 0 && c > 0 �� b > 0 && c � b� ��
a > 0 && �b ? a && c � a �� b � a && c � b�

This finds the conditions for a line to
intersect a circle.

In[11]:= Reduce[Exists[{x, y}, x^2 + y^2 < 1, r x + s y == 1],
{r, s}, Reals]

Out[11]= r ? �1 ��
�1 � r � 1 && �s ? ������������

1 � r2 �� s >�����������
1 � r2 � �� r > 1

This defines q to be a general monic
quartic.

In[12]:= q[x_] := x^4 + b x^3 + c x^2 + d x + e

This finds the condition for all pairs of
roots to the quartic to be equal.

In[13]:= Reduce[ForAll[{x, y}, q[x] == 0 && q[y] == 0, x == y],
{b, c, d, e}]

Out[13]= c �
3 b2

������������������
8

&& d �
b3

������������
16

&& e �
b4

�����������������
256

��
b � 0 && c � 0 && d � 0 && e � 0



850 3. Advanced Mathematics in Mathematica � 3.4 Manipulating Equations and Inequalities

Although quantifier elimination over the integers is in general a computationally impossible prob-
lem, Mathematica can do it in specific cases.

This shows that
 

� cannot be a
rational number.

In[14]:= Resolve[Exists[{x, y}, x^2 == 2 y^2 && y > 0], Integers]

Out[14]= False

 

��
 is, though. In[15]:= Resolve[Exists[{x, y}, 4 x^2 == 9 y^2 && y > 0], Integers]

Out[15]= True

, 3.4.12 Minimization and Maximization

, Minimize[expr, {x�, x�, . . . }] minimize expr

, Minimize[{expr, cons}, {x�, x�, . . . }]
minimize expr subject to the constraints cons

, Maximize[expr, {x�, x�, . . . }] maximize expr

, Maximize[{expr, cons}, {x�, x�, . . . }]
maximize expr subject to the constraints cons

Minimization and maximization.

Minimize and Maximize yield lists giving the value attained at the minimum or maximum, together
with rules specifying where the minimum or maximum occurs.

This finds the minimum of a quadratic
function.

In[1]:= Minimize[x^2 - 3x + 6, x]

Out[1]= 	 15
������������
4

, 	x �
3
�������
2




Applying the rule for x gives the value
at the minimum.

In[2]:= x^2 - 3x + 6 /. Last[%]

Out[2]=
15
������������
4

This maximizes with respect to x
and y.

In[3]:= Maximize[5 x y - x^4 - y^4, {x, y}]

Out[3]= 	 25
������������
8

, 	x � �
����

5
������������������

2
, y � �

����
5

������������������
2




Minimize[expr, x] minimizes expr allowing x to range over all possible values from �� to ��.

Minimize[{expr, cons}, x] minimizes expr subject to the constraints cons being satisfied. The con-
straints can consist of any combination of equations and inequalities.

This finds the minimum subject to the
constraint x ! .

In[4]:= Minimize[{x^2 - 3x + 6, x >= 3}, x]

Out[4]= �6, �x � 3��



3.4.12 Minimization and Maximization 851

This finds the maximum within the
unit circle.

In[5]:= Maximize[{5 x y - x^4 - y^4, x^2 + y^2 <= 1}, {x, y}]

Out[5]= 	2, 	x � �
1

����������������������
2

, y � �
1

����������������������
2




This finds the maximum within an
ellipse. The result is fairly complicated.

In[6]:= Maximize[{5 x y - x^4 - y^4, x^2 + 2y^2 <= 1}, {x, y}]

Out[6]=  �Root��811219 � 320160 #1 �
274624 #12 � 170240 #13 � 25600 #14 &, 1�,

 x � Root�25 � 102 #12 � 122 #14 � 70 #16 � 50 #18 &, 2�,

y � Root�
25 � 264 #12 � 848 #14 � 1040 #16 � 800 #18 &, 1�!!

This finds the maximum along a line. In[7]:= Maximize[{5 x y - x^4 - y^4, x + y == 1}, {x, y}]

Out[7]= 	 9
�������
8

, 	x �
1
�������
2

, y �
1
�������
2




Minimize and Maximize can solve any linear programming problem in which both the objective
function expr and the constraints cons involve the variables xi only linearly.

Here is a typical linear programming
problem.

In[8]:= Minimize[{x + 3 y, x - 3 y <= 7 && x + 2y >= 10}, {x, y}]

Out[8]= 	 53
������������
5

, 	x �
44
������������
5

, y �
3
�������
5




They can also in principle solve any polynomial programming problem in which the objective function
and the constraints involve arbitrary polynomial functions of the variables. There are many important
geometrical and other problems that can be formulated in this way.

This solves the simple geometrical
problem of maximizing the area of a
rectangle with fixed perimeter.

In[9]:= Maximize[{x y, x + y == 1}, {x, y}]

Out[9]= 	 1
�������
4

, 	x �
1
�������
2

, y �
1
�������
2




This finds the maximal volume of a
cuboid that fits inside the unit sphere.

In[10]:= Maximize[{8 x y z, x^2 + y^2 + z^2 <= 1}, {x, y, z}]

Out[10]= 	 8
������������������������
3
����

3
, 	x � �

1
����������������������

3
, y � �

1
����������������������

3
, z �

1
����������������������

3




An important feature of Minimize and Maximize is that they always find global minima and
maxima. Often functions will have various local minima and maxima at which derivatives vanish.
But Minimize and Maximize use global methods to find absolute minima or maxima, not just local
extrema.



852 3. Advanced Mathematics in Mathematica � 3.4 Manipulating Equations and Inequalities

Here is a function with many local
maxima and minima.

In[11]:= Plot[x + 2 Sin[x], {x, -10, 10}]

-10 -5 5 10

-10

-5

5

10

Maximize finds the global maximum. In[12]:= Maximize[{x + 2 Sin[x], -10 <= x <= 10}, x]

Out[12]= 	����
3 �

8 Π
��������������
3

, 	x �
8 Π
��������������
3




If you give functions that are unbounded, Minimize and Maximize will return -	 and +	 as the

minima and maxima. And if you give constraints that can never be satisfied, they will return +	 and
-	 as the minima and maxima, and Indeterminate as the values of variables.

One subtle issue is that Minimize and Maximize allow both non-strict inequalities of the form x <= v,
and strict ones of the form x < v. With non-strict inequalities there is no problem with a minimum or
maximum lying exactly on the boundary x -> v. But with strict inequalities, a minimum or maximum
must in principle be at least infinitesimally inside the boundary.

With a strict inequality, Mathematica
prints a warning, then returns the
point on the boundary.

In[13]:= Minimize[{x^2 - 3x + 6, x > 3}, x]

Minimize::wksol:
Warning: There is no minimum in the region described by
the contraints; returning a result on the boundary.

Out[13]= �6, �x � 3��
Minimize and Maximize normally assume that all variables you give are real. But by giving a

constraint such as x � Integers you can specify that a variable must in fact be an integer.

This does maximization only over
integer values of x and y.

In[14]:= Maximize[{x y, x^2 + y^2 < 120 &&
(x | y) & Integers}, {x, y}]

Out[14]= �56, �x � �8, y � �7��



3.5.1 Differentiation 853

3.5 Calculus

3.5.1 Differentiation

D[f, x] partial derivative ""x f

D[f, x�, x�, . . . ] multiple derivative ""x�
"
"x�
			 f

D[f, {x, n}] nth derivative "
n

"xn f

D[f, x, NonConstants -> {v�, v�, . . . }]
"
"x f with the vi taken to depend on x

Partial differentiation operations.

This gives ""x xn. In[1]:= D[x^n, x]

Out[1]= n x�1�n

This gives the third derivative. In[2]:= D[x^n, {x, 3}]

Out[2]= ��2 � n� ��1 � n� n x�3�n

You can differentiate with respect to
any expression that does not involve
explicit mathematical operations.

In[3]:= D[ x[1]^2 + x[2]^2, x[1] ]

Out[3]= 2 x1�
D does partial differentiation. It assumes
here that y is independent of x.

In[4]:= D[x^2 + y^2, x]

Out[4]= 2 x

If y does in fact depend on x, you can
use the explicit functional form y[x].
Section 3.5.4 describes how objects like
y'[x] work.

In[5]:= D[x^2 + y[x]^2, x]

Out[5]= 2 x � 2 yx� y<x�

Instead of giving an explicit function
y[x], you can tell D that y implicitly
depends on x.
D[y, x, NonConstants->{y}] then
represents "y"x , with y implicitly
depending on x.

In[6]:= D[x^2 + y^2, x, NonConstants -> {y}]

Out[6]= 2 x � 2 y Dy, x, NonConstants � �y��



854 3. Advanced Mathematics in Mathematica � 3.5 Calculus

3.5.2 Total Derivatives

Dt[f] total differential df

Dt[f, x] total derivative df
dx

Dt[f, x�, x�, . . . ] multiple total derivative d
dx�

d
dx�
			 f

Dt[f, x, Constants -> {c�, c�, . . . }] total derivative with ci constant (i.e., dci � �)

y/: Dt[y, x] = 0 set dy
dx � �

SetAttributes[c, Constant] define c to be a constant in all cases

Total differentiation operations.

When you find the derivative of some expression f with respect to x, you are effectively finding out
how fast f changes as you vary x. Often f will depend not only on x, but also on other variables, say
y and z. The results that you get then depend on how you assume that y and z vary as you change x.

There are two common cases. Either y and z are assumed to stay fixed when x changes, or they
are allowed to vary with x. In a standard partial derivative "f"x , all variables other than x are assumed

fixed. On the other hand, in the total derivative df
dx , all variables are allowed to change with x.

In Mathematica, D[f, x] gives a partial derivative, with all other variables assumed independent of
x. Dt[f, x] gives a total derivative, in which all variables are assumed to depend on x. In both cases,
you can add an argument to give more information on dependencies.

This gives the partial derivative
"
"x �x
� � y��. y is assumed to be

independent of x.

In[1]:= D[x^2 + y^2, x]

Out[1]= 2 x

This gives the total derivative d
dx �x
� � y��.

Now y is assumed to depend on x.
In[2]:= Dt[x^2 + y^2, x]

Out[2]= 2 x � 2 y Dty, x�
You can make a replacement for dy

dx . In[3]:= % /. Dt[y, x] -> yp

Out[3]= 2 x � 2 y yp

You can also make an explicit

definition for dy
dx . You need to use

y/: to make sure that the definition is
associated with y.

In[4]:= y/: Dt[y, x] = 0

Out[4]= 0

With this definition made, Dt treats y
as independent of x.

In[5]:= Dt[x^2 + y^2 + z^2, x]

Out[5]= 2 x � 2 z Dtz, x�
This removes your definition for the
derivative of y.

In[6]:= Clear[y]



3.5.3 Derivatives of Unknown Functions 855

This takes the total derivative, with z
held fixed.

In[7]:= Dt[x^2 + y^2 + z^2, x, Constants->{z}]

Out[7]= 2 x � 2 y Dty, x, Constants � �z��
This specifies that c is a constant
under differentiation.

In[8]:= SetAttributes[c, Constant]

The variable c is taken as a constant. In[9]:= Dt[a^2 + c x^2, x]

Out[9]= 2 c x � 2 a Dta, x�
The function c is also assumed to be a
constant.

In[10]:= Dt[a^2 + c[x] x^2, x]

Out[10]= 2 x cx� � 2 a Dta, x�
This gives the total differential
d�x� � cy��.

In[11]:= Dt[x^2 + c y^2]

Out[11]= 2 x Dtx� � 2 c y Dty�
You can make replacements and
assignments for total differentials.

In[12]:= % /. Dt[y] -> dy

Out[12]= 2 c dy y � 2 x Dtx�

3.5.3 Derivatives of Unknown Functions

Differentiating a known function gives
an explicit result.

In[1]:= D[Log[x]^2, x]

Out[1]=
2 Logx�
�������������������������������������

x

Differentiating an unknown function f
gives a result in terms of f'.

In[2]:= D[f[x]^2, x]

Out[2]= 2 fx� f<x�
Mathematica applies the chain rule for
differentiation, and leaves the result in
terms of f'.

In[3]:= D[x f[x^2], x]

Out[3]= fx2� � 2 x2 f<x2�
Differentiating again gives a result in
terms of f, f' and f''.

In[4]:= D[%, x]

Out[4]= 6 x f<x2� � 4 x3 f<<x2�
When a function has more than one
argument, superscripts are used to
indicate how many times each
argument is being differentiated.

In[5]:= D[g[x^2, y^2], x]

Out[5]= 2 x g�1,0�x2, y2�

This represents ""x
"
"x
"
"y g�x� y�.

Mathematica assumes that the order in
which derivatives are taken with
respect to different variables is
irrelevant.

In[6]:= D[g[x, y], x, x, y]

Out[6]= g�2,1�x, y�



856 3. Advanced Mathematics in Mathematica � 3.5 Calculus

You can find the value of the derivative
when x � � by replacing x with 0.

In[7]:= % /. x->0

Out[7]= g�2,1�0, y�

f'[x] first derivative of a function of one variable

f(n)[x] nth derivative of a function of one variable

f(n�,n�,� � � )[x] derivative of a function of several variables, ni times with
respect to variable i

Output forms for derivatives of unknown functions.

3.5.4 Advanced Topic: The Representation of Derivatives

Derivatives in Mathematica work essentially the same as in standard mathematics. The usual mathe-
matical notation, however, often hides many details. To understand how derivatives are represented
in Mathematica, we must look at these details.

The standard mathematical notation f $��� is really a shorthand for d
dt f�t�/t��, where t is a “dummy

variable”. Similarly, f $�x�� is a shorthand for d
dt f�t�/t�x� . As suggested by the notation f $, the object

d
dt f�t� can in fact be viewed as a “pure function”, to be evaluated with a particular choice of its
parameter t. You can think of the operation of differentiation as acting on a function f , to give a new
function, usually called f $.

With functions of more than one argument, the simple notation based on primes breaks down. You
cannot tell for example whether g$��� �� stands for d

dt g�t� ��/t�� or d
dt g��� t�/t��, and for almost any g,

these will have totally different values. Once again, however, t is just a dummy variable, whose sole
purpose is to show with respect to which “slot” g is to be differentiated.

In Mathematica, as in some branches of mathematics, it is convenient to think about a kind of
differentiation that acts on functions, rather than expressions. We need an operation that takes the
function f , and gives us the derivative function f $. Operations such as this that act on functions, rather
than variables, are known in mathematics as functionals.

The object f' in Mathematica is the result of applying the differentiation functional to the function
f. The full form of f' is in fact Derivative[1][f]. Derivative[1] is the Mathematica differentiation
functional.

The arguments in the functional Derivative[n�, n�, . . . ] specify how many times to differenti-
ate with respect to each “slot” of the function on which it acts. By using functionals to represent
differentiation, Mathematica avoids any need to introduce explicit “dummy variables”.

This is the full form of the derivative
of the function f.

In[1]:= f' // FullForm

Out[1]//FullForm= Derivative1�f�



3.5.4 Advanced Topic: The Representation of Derivatives 857

Here an argument x is supplied. In[2]:= f'[x] // FullForm

Out[2]//FullForm= Derivative1�f�x�
This is the second derivative. In[3]:= f''[x] // FullForm

Out[3]//FullForm= Derivative2�f�x�
This gives a derivative of the function
g with respect to its second “slot”.

In[4]:= D[g[x, y], y]

Out[4]= g�0,1�x, y�
Here is the full form. In[5]:= % // FullForm

Out[5]//FullForm= Derivative0, 1�g�x, y�
Here is the second derivative with
respect to the variable y, which
appears in the second slot of g.

In[6]:= D[g[x, y], {y, 2}] // FullForm

Out[6]//FullForm= Derivative0, 2�g�x, y�
This is a mixed derivative. In[7]:= D[g[x, y], x, y, y] // FullForm

Out[7]//FullForm= Derivative1, 2�g�x, y�
Since Derivative only specifies how
many times to differentiate with
respect to each slot, the order of the
derivatives is irrelevant.

In[8]:= D[g[x, y], y, y, x] // FullForm

Out[8]//FullForm= Derivative1, 2�g�x, y�

Here is a more complicated case, in
which both arguments of g depend on
the differentiation variable.

In[9]:= D[g[x, x], x]

Out[9]= g�0,1�x, x� � g�1,0�x, x�
This is the full form of the result. In[10]:= % // FullForm

Out[10]//FullForm= PlusDerivative0, 1�g�x, x�,
Derivative1, 0�g�x, x��

The object f' behaves essentially like any other function in Mathematica. You can evaluate the
function with any argument, and you can use standard Mathematica /. operations to change the
argument. (This would not be possible if explicit dummy variables had been introduced in the course
of the differentiation.)

This is the Mathematica representation
of the derivative of a function f,
evaluated at the origin.

In[11]:= f'[0] // FullForm

Out[11]//FullForm= Derivative1�f�0�
The result of this derivative involves
f' evaluated with the argument x^2.

In[12]:= D[f[x^2], x]

Out[12]= 2 x f<x2�
You can evaluate the result at the point
x � � by using the standard
Mathematica replacement operation.

In[13]:= % /. x->2

Out[13]= 4 f<4�
There is some slight subtlety when you need to deduce the value of f' based on definitions for

objects like f[x_].



858 3. Advanced Mathematics in Mathematica � 3.5 Calculus

Here is a definition for a function h. In[14]:= h[x_] := x^4

When you take the derivative of h[x],
Mathematica first evaluates h[x], then
differentiates the result.

In[15]:= D[h[x], x]

Out[15]= 4 x3

You can get the same result by
applying the function h' to the
argument x.

In[16]:= h'[x]

Out[16]= 4 x3

Here is the function h' on its own. In[17]:= h'

Out[17]= 4 #13 &

The function f' is completely determined by the form of the function f. Definitions for objects
like f[x_] do not immediately apply however to expressions like f'[x]. The problem is that f'[x]
has the full form Derivative[1][f][x] , which nowhere contains anything that explicitly matches
the pattern f[x_]. In addition, for many purposes it is convenient to have a representation of the
function f' itself, without necessarily applying it to any arguments.

What Mathematica does is to try and find the explicit form of a pure function which represents the
object f'. When Mathematica gets an expression like Derivative[1][f], it effectively converts it to the
explicit form D[f[#], #]& and then tries to evaluate the derivative. In the explicit form, Mathematica
can immediately use values that have been defined for objects like f[x_]. If Mathematica succeeds in
doing the derivative, it returns the explicit pure-function result. If it does not succeed, it leaves the
derivative in the original f' form.

This gives the derivative of Tan in
pure-function form.

In[18]:= Tan'

Out[18]= Sec#1�2
&

Here is the result of applying the pure
function to the specific argument y.

In[19]:= %[y]

Out[19]= Secy�2

3.5.5 Defining Derivatives

You can define the derivative in Mathematica of a function f of one argument simply by an assignment
like f'[x_] = fp[x].

This defines the derivative of f�x� to be
fp�x�. In this case, you could have
used = instead of :=.

In[1]:= f'[x_] := fp[x]

The rule for f'[x_] is used to evaluate
this derivative.

In[2]:= D[f[x^2], x]

Out[2]= 2 x fpx2�
Differentiating again gives derivatives
of fp.

In[3]:= D[%, x]

Out[3]= 2 fpx2� � 4 x2 fp<x2�



3.5.6 Indefinite Integrals 859

This defines a value for the derivative
of g at the origin.

In[4]:= g'[0] = g0

Out[4]= g0

The value for g'[0] is used. In[5]:= D[g[x]^2, x] /. x->0

Out[5]= 2 g0 g0�
This defines the second derivative of g,
with any argument.

In[6]:= g''[x_] = gpp[x]

Out[6]= gppx�
The value defined for the second
derivative is used.

In[7]:= D[g[x]^2, {x, 2}]

Out[7]= 2 gx� gppx� � 2 g<x�2

To define derivatives of functions with several arguments, you have to use the general representation
of derivatives in Mathematica.

f'[x_] := rhs define the first derivative of f

Derivative[n][f][x_] := rhs define the nth derivative of f

Derivative[m, n, . . . ][g][x_, _, . . . ] := rhs
define derivatives of g with respect to various arguments

Defining derivatives.

This defines the second derivative of g
with respect to its second argument.

In[8]:= Derivative[0, 2][g][x_, y_] := g2p[x, y]

This uses the definition just given. In[9]:= D[g[a^2, x^2], x, x]

Out[9]= 4 x2 g2pa2, x2� � 2 g�0,1�a2, x2�

3.5.6 Indefinite Integrals

The Mathematica function Integrate[f, x] gives you the indefinite integral � f dx. You can think of the
operation of indefinite integration as being an inverse of differentiation. If you take the result from
Integrate[f, x], and then differentiate it, you always get a result that is mathematically equal to the
original expression f.

In general, however, there is a whole family of results which have the property that their derivative
is f. Integrate[f, x] gives you an expression whose derivative is f. You can get other expressions by
adding an arbitrary constant of integration, or indeed by adding any function that is constant except
at discrete points.

If you fill in explicit limits for your integral, any such constants of integration must cancel out. But
even though the indefinite integral can have arbitrary constants added, it is still often very convenient
to manipulate it without filling in the limits.



860 3. Advanced Mathematics in Mathematica � 3.5 Calculus

Mathematica applies standard rules to
find indefinite integrals.

In[1]:= Integrate[x^2, x]

Out[1]=
x3

������������
3

You can add an arbitrary constant to
the indefinite integral, and still get the
same derivative. Integrate simply
gives you an expression with the
required derivative.

In[2]:= D[ % + c, x]

Out[2]= x2

This gives the indefinite integral

� dx
x���

.
In[3]:= Integrate[1/(x^2 - 1), x]

Out[3]=
1
�������
2

Log�1 � x� � 1
�������
2

Log1 � x�
Differentiating should give the original
function back again.

In[4]:= D[%, x]

Out[4]=
1

������������������������������������������
2 ��1 � x� �

1
������������������������������������
2 �1 � x�

You need to manipulate it to get it
back into the original form.

In[5]:= Simplify[%]

Out[5]=
1

������������������������������
�1 � x2

The Integrate function assumes that any object that does not explicitly contain the integration
variable is independent of it, and can be treated as a constant. As a result, Integrate is like an
inverse of the partial differentiation function D.

The variable a is assumed to be
independent of x.

In[6]:= Integrate[a x^2, x]

Out[6]=
a x3

������������������
3

The integration variable can be any
expression that does not involve
explicit mathematical operations.

In[7]:= Integrate[x b[x]^2, b[x]]

Out[7]=
1
�������
3

x bx�3

Another assumption that Integrate implicitly makes is that all the symbolic quantities in your
integrand have “generic” values. Thus, for example, Mathematica will tell you that � xn dx is xn��

n�� even
though this is not true in the special case n � ��.

Mathematica gives the standard result
for this integral, implicitly assuming
that n is not equal to -1.

In[8]:= Integrate[x^n, x]

Out[8]=
x1�n

���������������������
1 � n

If you specifically give an exponent of
-1, Mathematica produces a different
result.

In[9]:= Integrate[x^-1, x]

Out[9]= Logx�
You should realize that the result for any particular integral can often be written in many different

forms. Mathematica tries to give you the most convenient form, following principles such as avoiding
explicit complex numbers unless your input already contains them.



3.5.7 Integrals That Can and Cannot Be Done 861

This integral is given in terms of
ArcTan.

In[10]:= Integrate[1/(1 + a x^2), x]

Out[10]=
ArcTan�����

a x�
������������������������������������������������������������������

a

This integral is given in terms of
ArcTanh.

In[11]:= Integrate[1/(1 - b x^2), x]

Out[11]=
ArcTanh�����

b x�
�����������������������������������������������������������������������

b

This is mathematically equal to the first
integral, but is given in a somewhat
different form.

In[12]:= % /. b -> -a

Out[12]=
ArcTanh��������a x�
�������������������������������������������������������������������������������a

The derivative is still correct. In[13]:= D[%, x]

Out[13]=
1

�������������������������������
1 � a x2

Even though they look quite different,
both ArcTan[x] and -ArcTan[1/x] are
indefinite integrals of ���� � x��.

In[14]:= Simplify[D[{ArcTan[x], -ArcTan[1/x]}, x]]

Out[14]= 	 1
�������������������������
1 � x2

,
1

�������������������������
1 � x2



Integrate chooses to use the simpler
of the two forms.

In[15]:= Integrate[1/(1 + x^2), x]

Out[15]= ArcTanx�

3.5.7 Integrals That Can and Cannot Be Done

Evaluating integrals is much more difficult than evaluating derivatives. For derivatives, there is a
systematic procedure based on the chain rule that effectively allows any derivative to be worked out.
But for integrals, there is no such systematic procedure.

One of the main problems is that it is difficult to know what kinds of functions will be needed to
evaluate a particular integral. When you work out a derivative, you always end up with functions
that are of the same kind or simpler than the ones you started with. But when you work out integrals,
you often end up needing to use functions that are much more complicated than the ones you started
with.

This integral can be evaluated using
the same kind of functions that
appeared in the input.

In[1]:= Integrate[Log[x]^2, x]

Out[1]= x �2 � 2 Logx� � Logx�2�
But for this integral the special
function LogIntegral is needed.

In[2]:= Integrate[Log[Log[x]], x]

Out[2]= x LogLogx�� � LogIntegralx�
It is not difficult to find integrals that
require all sorts of functions.

In[3]:= Integrate[Sin[x^2], x]

Out[3]= ������Π�������
2

FresnelS�������2
�������
Π

x�



862 3. Advanced Mathematics in Mathematica � 3.5 Calculus

Simple-looking integrals can give
remarkably complicated results. Often
it is convenient to apply Simplify to
your answers.

In[4]:= Simplify[ Integrate[Log[x] Exp[-x^2], x] ]

Out[4]= �x HypergeometricPFQ�	 1
�������
2

,
1
�������
2

, 	 3

�������
2

,
3
�������
2

, �x2� �

1
�������
2
����Π Erfx� Logx�

This integral involves an incomplete
gamma function. Note that the power
is carefully set up to allow any
complex value of x.

In[5]:= Integrate[Exp[-x^a], x]

Out[5]= �
x �xa��1�a

Gamma� 1������a , xa�
������������������������������������������������������������������������������������������������������

a

Mathematica includes a very wide range of mathematical functions, and by using these functions a
great many integrals can be done. But it is still possible to find even fairly simple-looking integrals
that just cannot be done in terms of any standard mathematical functions.

Here is a fairly simple-looking integral
that cannot be done in terms of any
standard mathematical functions.

In[6]:= Integrate[Sin[x]/Log[x], x]

Out[6]= � Sinx�
�������������������������������
Logx� �7x

The main point of being able to do an integral in terms of standard mathematical functions is that
it lets one use the known properties of these functions to evaluate or manipulate the result one gets.

In the most convenient cases, integrals can be done purely in terms of elementary functions such
as exponentials, logarithms and trigonometric functions. In fact, if you give an integrand that in-
volves only such elementary functions, then one of the important capabilities of Integrate is that if
the corresponding integral can be expressed in terms of elementary functions, then Integrate will
essentially always succeed in finding it.

Integrals of rational functions are
straightforward to evaluate, and always
come out in terms of rational functions,
logarithms and inverse trigonometric
functions.

In[7]:= Integrate[x/((x - 1)(x + 2)), x]

Out[7]=
1
�������
3

Log�1 � x� � 2
�������
3

Log2 � x�

The integral here is still of the same
form, but now involves an implicit
sum over the roots of a polynomial.

In[8]:= Integrate[1/(1 + 2 x + x^3), x]

Out[8]= RootSum�1 � 2 #1 � #13 &,
Logx � #1�
�������������������������������������������������

2 � 3 #12
&�

This finds numerical approximations to
all the root objects.

In[9]:= N[%]

Out[9]= ��0.19108 � 0.088541 ��
Log��0.226699 � 1.46771 �� � x� ��0.19108 � 0.088541 ��
Log��0.226699 � 1.46771 �� � x� �

0.38216 Log0.453398 � x�
Integrals of trigonometric functions
usually come out in terms of other
trigonometric functions.

In[10]:= Integrate[Sin[x]^3 Cos[x]^2, x]

Out[10]=
1
������������
30

Cosx�3 ��7 � 3 Cos2 x��



3.5.7 Integrals That Can and Cannot Be Done 863

This is a fairly simple integral
involving algebraic functions.

In[11]:= Integrate[Sqrt[x] Sqrt[1 + x], x]

Out[11]=
1
�������
4
�����

x
���������

1 � x �1 � 2 x� � ArcSinh�����
x ��

Here is an integral involving nested
square roots.

In[12]:= Integrate[Sqrt[x + Sqrt[x]], x]

Out[12]= �������������������
x � x ���������������

1 �����
x x1�4 ��3 � 2

����
x � 8 x� �

3 ArcSinhx1�4��� > �12
��������������

1 �����
x x1�4�

By nesting elementary functions you
sometimes get integrals that can be
done in terms of elementary functions.

In[13]:= Integrate[Cos[Log[x]], x]

Out[13]=
1
�������
2

x �CosLogx�� � SinLogx���
But more often other kinds of functions
are needed.

In[14]:= Integrate[Log[Cos[x]], x]

Out[14]=
� x2

������������������
2

� x Log1 � �2 � x� �
x LogCosx�� � 1

�������
2
� PolyLog2, ��2 � x�

Integrals like this typically come out in
terms of elliptic functions.

In[15]:= Integrate[Sqrt[Cos[x]], x]

Out[15]= 2 EllipticE� x
�������
2

, 2�
But occasionally one can get results in
terms of elementary functions alone.

In[16]:= Integrate[Sqrt[Tan[x]], x]

Out[16]=
1

������������������������
2
����

2
��2 ArcTan�1 �����

2
��������������

Tanx� � �
2 ArcTan�1 �����

2
��������������

Tanx� � �
Log��1 �����

2
��������������

Tanx� � Tanx�� �
Log�1 �����

2
��������������

Tanx� � Tanx���
Beyond working with elementary functions, Integrate includes a large number of algorithms for

dealing with special functions. Sometimes it uses a direct generalization of the procedure for elemen-
tary functions. But more often its strategy is first to try to write the integrand in a form that can be
integrated in terms of certain sophisticated special functions, and then having done this to try to find
reductions of these sophisticated functions to more familiar functions.

To integrate this Bessel function
requires a generalized hypergeometric
function.

In[17]:= Integrate[BesselJ[0, x], x]

Out[17]= x HypergeometricPFQ�	 1
�������
2

, 	1,

3
�������
2

, �

x2

������������
4
�

To integrate an elliptic integral also
requires a generalized hypergeometric
function.

In[18]:= Integrate[EllipticK[x], x]

Out[18]=
1
�������
2
Π x HypergeometricPFQ�	 1

�������
2

,
1
�������
2

, �2�, x�

Sometimes the integrals can be reduced
to more familiar forms.

In[19]:= Integrate[x^3 BesselJ[0, x], x]

Out[19]= �x2 ��2 BesselJ2, x� � x BesselJ3, x��



864 3. Advanced Mathematics in Mathematica � 3.5 Calculus

A large book of integral tables will list perhaps a few thousand indefinite integrals. Mathematica
can do essentially all of these integrals. And because it contains general algorithms rather than just
specific cases, Mathematica can actually do a vastly wider range of integrals.

You could expect to find this integral
in any large book of integral tables.

In[20]:= Integrate[Log[1 - x]/x, x]

Out[20]= �PolyLog2, x�
To do this integral, however, requires a
more general algorithm, rather than
just a direct table lookup.

In[21]:= Integrate[Log[1 + 3 x + x^2]/x, x]

Out[21]= �Logx� Log�1 �
2 x

������������������������������������
�3 �����

5
� �

Logx� Log�1 �
2 x

�������������������������������
3 �����

5
� � Logx� Log1 � 3 x � x2� �

PolyLog�2,
2 x

������������������������������������
�3 �����

5
� � PolyLog�2, �

2 x
�������������������������������
3 �����

5
�

Particularly if you introduce new mathematical functions of your own, you may want to teach
Mathematica new kinds of integrals. You can do this by making appropriate definitions for Integrate.

In the case of differentiation, the chain rule allows one to reduce all derivatives to a standard
form, represented in Mathematica using Derivative. But for integration, no such similar standard
form exists, and as a result you often have to make definitions for several different versions of the
same integral. Changes of variables and other transformations can rarely be done automatically by
Integrate.

This integral cannot be done in terms
of any of the standard mathematical
functions built into Mathematica.

In[22]:= Integrate[Sin[Sin[x]], x]

Out[22]= � SinSinx���7x

Before you add your own rules for
integration, you have to remove write
protection.

In[23]:= Unprotect[Integrate]

Out[23]= �Integrate�
You can set up your own rule to
define the integral to be, say, a “Jones”
function.

In[24]:= Integrate[Sin[Sin[a_. + b_. x_]], x_] := Jones[a, x]/b

Now Mathematica can do integrals that
give Jones functions.

In[25]:= Integrate[Sin[Sin[3x]], x]

Out[25]=
1
�������
3

Jones0, x�
As it turns out, the integral � sin�sin�x�� dx can in principle be represented as an infinite sum of �F�

hypergeometric functions, or as a suitably generalized Kampé de Fériet hypergeometric function of
two variables.



3.5.8 Definite Integrals 865

3.5.8 Definite Integrals

Integrate[f, x] the indefinite integral � f dx

Integrate[f, {x, xmin, xmax}] the definite integral � xmax

xmin
f dx

Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}]
the multiple integral � xmax

xmin
dx � ymax

ymin
dy f

Integration functions.

Here is the integral � b
a

x� dx. In[1]:= Integrate[x^2, {x, a, b}]

Out[1]=
1
�������
3
��a3 � b3�

This gives the multiple integral

� a
�

dx � b
�

dy �x� � y��.

In[2]:= Integrate[x^2 + y^2, {x, 0, a}, {y, 0, b}]

Out[2]=
1
�������
3

a b �a2 � b2�
The y integral is done first. Its limits
can depend on the value of x. This
ordering is the same as is used in
functions like Sum and Table.

In[3]:= Integrate[x^2 + y^2, {x, 0, a}, {y, 0, x}]

Out[3]=
a4

������������
3

In simple cases, definite integrals can be done by finding indefinite forms and then computing appro-
priate limits. But there is a vast range of integrals for which the indefinite form cannot be expressed
in terms of standard mathematical functions, but the definite form still can be.

This indefinite integral cannot be done
in terms of standard mathematical
functions.

In[4]:= Integrate[Cos[Sin[x]], x]

Out[4]= � CosSinx���7x

This definite integral, however, can be
done in terms of a Bessel function.

In[5]:= Integrate[Cos[Sin[x]], {x, 0, 2Pi}]

Out[5]= 2 Π BesselJ0, 1�
Here is an integral where the indefinite
form can be found, but it is much
more efficient to work out the definite
form directly.

In[6]:= Integrate[Log[x] Exp[-x^2], {x, 0, Infinity}]

Out[6]= �
1
�������
4
����Π �EulerGamma � Log4��

Just because an integrand may contain
special functions, it does not mean that
the definite integral will necessarily be
complicated.

In[7]:= Integrate[BesselK[0, x]^2, {x, 0, Infinity}]

Out[7]=
Π2

������������
4

Special functions nevertheless occur in
this result.

In[8]:= Integrate[BesselK[0, x] BesselJ[0, x], {x, 0, Infinity}]

Out[8]=
Gamma� 1������4 �2

������������������������������������������������
4
�������

2 Π



866 3. Advanced Mathematics in Mathematica � 3.5 Calculus

The integrand here is simple, but the
definite integral is not.

In[9]:= Integrate[Sin[x^2] Exp[-x], {x, 0, Infinity}]

Out[9]=
1

������������������������
2
����

2
������

2 HypergeometricPFQ��1�, 	 3
�������
4

,
5
�������
4

, �

1
������������
64

� �
����Π �Cos� 1

�������
4
� � Sin� 1

�������
4
���

Even when you can find the indefinite form of an integral, you will often not get the correct answer
for the definite integral if you just subtract the values of the limits at each end point. The problem
is that within the domain of integration there may be singularities whose effects are ignored if you
follow this procedure.

Here is the indefinite integral of ��x�. In[10]:= Integrate[1/x^2, x]

Out[10]= �
1
�������
x

This subtracts the limits at each end
point.

In[11]:= Limit[%, x->2] - Limit[%, x->-2]

Out[11]= �1

The true definite integral is divergent
because of the double pole at x � �.

In[12]:= Integrate[1/x^2, {x, -2, 2}]

Out[12]= 	

Here is a more subtle example,
involving branch cuts rather than
poles.

In[13]:= Integrate[1/(1 + a Sin[x]), x]

Out[13]=
2 ArcTan� a�Tan x����2 ������������������������������������������

1�a2
�

��������������������������������������������������������������������������������������������
1 � a2

Taking limits in the indefinite integral
gives 0.

In[14]:= Limit[%, x -> 2Pi] - Limit[%, x -> 0]

Out[14]= 0

The definite integral, however, gives
the correct result which depends on a.

In[15]:= Integrate[1/(1 + a Sin[x]), {x, 0, 2Pi}]

Out[15]=
4 Π

��������������������������������������������������������
4 � 4 a2

Integrate[f, {x, xmin, xmax}, PrincipalValue -> True]
the Cauchy principal value of a definite integral

Principal value integrals.

Here is the indefinite integral of ��x. In[16]:= Integrate[1/x, x]

Out[16]= Logx�
Substituting in the limits �� and ��
yields a strange result involving iΠ.

In[17]:= Limit[%, x -> 2] - Limit[%, x -> -1]

Out[17]= �� Π � Log2�



3.5.8 Definite Integrals 867

The ordinary Riemann definite integral
is divergent.

In[18]:= Integrate[1/x, {x, -1, 2}]

Integrate::idiv:
1

Integral of - does not converge on {-1, 2}.
x

Out[18]= �
�1

2 1
�������
x
�7x

The Cauchy principal value, however,
is finite.

In[19]:= Integrate[1/x, {x, -1, 2}, PrincipalValue->True]

Out[19]= Log2�
When parameters appear in an indefinite integral, it is essentially always possible to get results that

are correct for almost all values of these parameters. But for definite integrals this is no longer the
case. The most common problem is that a definite integral may converge only when the parameters
that appear in it satisfy certain specific conditions.

This indefinite integral is correct for all
n ^ ��.

In[20]:= Integrate[x^n, x]

Out[20]=
x1�n

���������������������
1 � n

For the definite integral, however, n
must satisfy a condition in order for
the integral to be convergent.

In[21]:= Integrate[x^n, {x, 0, 1}]

Out[21]= If�Ren� > �1,
1

���������������������
1 � n

,

Integratexn, �x, 0, 1�, Assumptions � Ren� � �1��
If n is replaced by 2, the condition is
satisfied.

In[22]:= % /. n -> 2

Out[22]=
1
�������
3

option name default value

GenerateConditions Automatic whether to generate explicit conditions

Assumptions {} what relations about parameters to assume

Options for Integrate.

With the assumption n c �, the result is
always ���� � n�.

In[23]:= Integrate[x^n, {x, 0, 1}, Assumptions -> (n > 2)]

Out[23]=
1

���������������������
1 � n

Even when a definite integral is convergent, the presence of singularities on the integration path
can lead to discontinuous changes when the parameters vary. Sometimes a single formula containing
functions like Sign can be used to summarize the result. In other cases, however, an explicit If is
more convenient.



868 3. Advanced Mathematics in Mathematica � 3.5 Calculus

The If here gives the condition for the
integral to be convergent.

In[24]:= Integrate[Sin[a x]/x, {x, 0, Infinity}]

Out[24]= If�Ima� � 0,
1
�������
2
Π Signa�, Integrate�

Sina x�
�������������������������������������

x
, �x, 0, 	�, Assumptions � Ima� � 0��

Here is the result assuming that a is
real.

In[25]:= Integrate[Sin[a x]/x, {x, 0, Infinity},
Assumptions -> Im[a] == 0]

Out[25]=
1
�������
2
Π Signa�

The result is discontinuous as a
function of a. The discontinuity can be
traced to the essential singularity of
sin�x� at x � �.

In[26]:= Plot[%, {a, -5, 5}]

-4 -2 2 4

-1.5

-1

-0.5

0.5

1

1.5

There is no convenient way to
represent this answer in terms of Sign,
so Mathematica generates an explicit If.

In[27]:= Integrate[Sin[x] BesselJ[0, a x]/x, {x, 0, Infinity},
Assumptions -> Im[a] == 0]

Out[27]= If�a2 > 1,
a ArcSin� 1������a ��������������������������������������������������������

Absa� ,
Π
�������
2
�

Here is a plot of the resulting function
of a.

In[28]:= Plot[Evaluate[%], {a, -5, 5}]

-4 -2 2 4

0.25

0.5

0.75

1

1.25

1.5



3.5.10 Differential Equations 869

3.5.9 Manipulating Integrals in Symbolic Form

When Mathematica cannot give you an explicit result for an integral, it leaves the integral in a symbolic
form. It is often useful to manipulate this symbolic form.

Mathematica cannot give an explicit
result for this integral, so it leaves the
integral in symbolic form.

In[1]:= Integrate[x^2 f[x], x]

Out[1]= � x2 fx��7x

Differentiating the symbolic form gives
the integrand back again.

In[2]:= D[%, x]

Out[2]= x2 fx�
Here is a definite integral which cannot
be done explicitly.

In[3]:= Integrate[f[x], {x, a[x], b[x]}]

Out[3]= �
ax�
bx�

fx��7x

This gives the derivative of the definite
integral.

In[4]:= D[%, x]

Out[4]= �fax�� a<x� � fbx�� b<x�
Here is a definite integral with end
points that do not explicitly depend
on x.

In[5]:= defint = Integrate[f[x], {x, a, b}]

Out[5]= �
a

b

fx��7x

The partial derivative of this with
respect to u is zero.

In[6]:= D[defint, u]

Out[6]= 0

There is a non-trivial total derivative,
however.

In[7]:= Dt[defint, u]

Out[7]= �Dta, u� fa� � Dtb, u� fb�

- 3.5.10 Differential Equations

As discussed in Section 1.5.9, you can use the Mathematica function DSolve to find symbolic solutions
to ordinary and partial differential equations.

Solving a differential equation consists essentially in finding the form of an unknown function. In
Mathematica, unknown functions are represented by expressions like y[x]. The derivatives of such
functions are represented by y'[x], y''[x] and so on.

The Mathematica function DSolve returns as its result a list of rules for functions. There is a question
of how these functions are represented. If you ask DSolve to solve for y[x], then DSolve will indeed
return a rule for y[x]. In some cases, this rule may be all you need. But this rule, on its own, does
not give values for y'[x] or even y[0]. In many cases, therefore, it is better to ask DSolve to solve
not for y[x], but instead for y itself. In this case, what DSolve will return is a rule which gives y as
a pure function, in the sense discussed in Section 2.2.5.



870 3. Advanced Mathematics in Mathematica � 3.5 Calculus

If you ask DSolve to solve for y[x], it
will give a rule specifically for y[x].

In[1]:= DSolve[y'[x] + y[x] == 1, y[x], x]

Out[1]= ��yx� � 1 � ��x C1���
The rule applies only to y[x] itself,
and not, for example, to objects like
y[0] or y'[x].

In[2]:= y[x] + 2y'[x] + y[0] /. %

Out[2]= �1 � ��x C1� � y0� � 2 y<x��
If you ask DSolve to solve for y, it
gives a rule for the object y on its own
as a pure function.

In[3]:= DSolve[y'[x] + y[x] == 1, y, x]

Out[3]= ��y � Function�x�, 1 � ��x C1����
Now the rule applies to all occurrences
of y.

In[4]:= y[x] + 2y'[x] + y[0] /. %

Out[4]= �2 � C1� � ��x C1��
Substituting the solution into the
original equation yields True.

In[5]:= y'[x] + y[x] == 1 /. %%

Out[5]= �True�

DSolve[eqn, y[x], x] solve a differential equation for y[x]

DSolve[eqn, y, x] solve a differential equation for the function y

Getting solutions to differential equations in different forms.

In standard mathematical notation, one typically represents solutions to differential equations by
explicitly introducing “dummy variables” to represent the arguments of the functions that appear. If
all you need is a symbolic form for the solution, then introducing such dummy variables may be
convenient. However, if you actually intend to use the solution in a variety of other computations,
then you will usually find it better to get the solution in pure-function form, without dummy vari-
ables. Notice that this form, while easy to represent in Mathematica, has no direct analog in standard
mathematical notation.

DSolve[{eqn�, eqn�, . . . }, {y�, y�, . . . }, x]
solve a list of differential equations

Solving simultaneous differential equations.

This solves two simultaneous
differential equations.

In[6]:= DSolve[{y[x] == -z'[x], z[x] == -y'[x]}, {y, z}, x]

Out[6]= 		z � Function��x�,

1
�������
2
��x �1 � �2 x� C1� � 1

�������
2
��x ��1 � �2 x� C2��,

y � Function��x�, �
1
�������
2
��x ��1 � �2 x� C1� �

1
�������
2
��x �1 � �2 x� C2��





3.5.10 Differential Equations 871

Mathematica returns two distinct
solutions for y in this case.

In[7]:= DSolve[y[x] y'[x] == 1, y, x]

Out[7]=   y � Function��x�, �����
2
���������������

x � C1� �!,

 y � Function��x�,
����

2
���������������

x � C1� �!!
You can add constraints and boundary conditions for differential equations by explicitly giving

additional equations such as y[0] == 0.

This asks for a solution which satisfies
the condition y[0] == 1.

In[8]:= DSolve[{y'[x] == a y[x], y[0] == 1}, y[x], x]

Out[8]= ��yx� � �a x��
If you ask Mathematica to solve a set of differential equations and you do not give any constraints

or boundary conditions, then Mathematica will try to find a general solution to your equations. This
general solution will involve various undetermined constants. One new constant is introduced for
each order of derivative in each equation you give.

The default is that these constants are named C[n], where the index n starts at 1 for each
invocation of DSolve. You can override this choice, by explicitly giving a setting for the option
GeneratedParameters . Any function you give is applied to each successive index value n to get the
constants to use for each invocation of DSolve.

The general solution to this
fourth-order equation involves four
undetermined constants.

In[9]:= DSolve[y''''[x] == y[x], y[x], x]

Out[9]= ��yx� � �x C1� � ��x C3� � C2� Cosx� � C4� Sinx���
Each independent initial or boundary
condition you give reduces the number
of undetermined constants by one.

In[10]:= DSolve[{y''''[x] == y[x], y[0] == y'[0] == 0}, y[x], x]

Out[10]= ��yx� �
��x �C3� � �2 x C3� � �2 x C4� � 2 �x C3� Cosx� �

�x C4� Cosx� � �x C4� Sinx����
You should realize that finding exact formulas for the solutions to differential equations is a difficult

matter. In fact, there are only fairly few kinds of equations for which such formulas can be found, at
least in terms of standard mathematical functions.

The most widely investigated differential equations are linear ones, in which the functions you are
solving for, as well as their derivatives, appear only linearly.

This is a homogeneous first-order
linear differential equation, and its
solution is quite simple.

In[11]:= DSolve[y'[x] - x y[x] == 0, y[x], x]

Out[11]= 		yx� � �
x2
���������2 C1�



Making the equation inhomogeneous
leads to a significantly more
complicated solution.

In[12]:= DSolve[y'[x] - x y[x] == 1, y[x], x]

Out[12]= 		yx� � �
x2
���������2 C1� � � x2

���������2 ������Π�������
2

Erf� x
����������������������

2
�



If you have only a single linear differential equation, and it involves only a first derivative of the
function you are solving for, then it turns out that the solution can always be found just by doing
integrals.



872 3. Advanced Mathematics in Mathematica � 3.5 Calculus

But as soon as you have more than one differential equation, or more than a first-order derivative,
this is no longer true. However, some simple second-order linear differential equations can never-
theless be solved using various special functions from Section 3.2.10. Indeed, historically many of
these special functions were first introduced specifically in order to represent the solutions to such
equations.

This is Airy’s equation, which is solved
in terms of Airy functions.

In[13]:= DSolve[y''[x] - x y[x] == 0, y[x], x]

Out[13]= ��yx� � AiryAix� C1� � AiryBix� C2���
This equation comes out in terms of
Bessel functions.

In[14]:= DSolve[y''[x] - Exp[x] y[x] == 0, y[x], x]

Out[14]=   yx� � BesselI�0, 2
�������x � C1� �

2 BesselK�0, 2
�������x � C2�!!

This requires Mathieu functions. In[15]:= DSolve[y''[x] + Cos[x] y[x] == 0, y, x]

Out[15]= 		y � Function��x�, C1� MathieuC�0, �2,
x
�������
2
� �

C2� MathieuS�0, �2,
x
�������
2
��



Occasionally second-order linear
equations can be solved using only
elementary functions.

In[16]:= DSolve[x^2 y''[x] + y[x] == 0, y[x], x]

Out[16]= 		yx� �����
x C1� Cos� 1

�������
2
����

3 Logx�� �
����

x C2� Sin� 1
�������
2
����

3 Logx��


Beyond second order, the kinds of functions needed to solve even fairly simple linear differential

equations become extremely complicated. At third order, the generalized Meijer G function MeijerG
can sometimes be used, but at fourth order and beyond absolutely no standard mathematical functions
are typically adequate, except in very special cases.

Here is a third-order linear differential
equation which can be solved in terms
of generalized hypergeometric
functions.

In[17]:= DSolve[y'''[x] + x y[x] == 0, y[x], x]

Out[17]= 		yx� � C1� HypergeometricPFQ���, 	 1
�������
2

,
3
�������
4

, �

x4

������������
64

� �
x C2� HypergeometricPFQ���,  3������4 , 5������4 !, � x4

���������64 ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
2
����

2
�

1
�������
8

x2 C3� HypergeometricPFQ���, 	 5
�������
4

,
3
�������
2

, �

x4

������������
64

�


This requires more general Meijer G
functions.

In[18]:= DSolve[y'''[x] + Exp[x] y[x] == 0, y[x], x]

Out[18]= ��yx� � C1� HypergeometricPFQ��, �1, 1�, ��x� �
C2� MeijerG���, ���, ��0, 0�, �0��, ��x� �
C3� MeijerG���, ���, ��0, 0, 0�, ���, �x���

For nonlinear differential equations, only rather special cases can usually ever be solved in terms
of standard mathematical functions. Nevertheless, DSolve includes fairly general procedures which
allow it to handle almost all nonlinear differential equations whose solutions are found in standard
reference books.



3.5.10 Differential Equations 873

First-order nonlinear differential
equations in which x does not appear
on its own are fairly easy to solve.

In[19]:= DSolve[y'[x] - y[x]^2 == 0, y[x], x]

Out[19]= 		yx� � 1
����������������������������������������
�x � C1� 



This Riccati equation already gives a
significantly more complicated solution.

In[20]:= DSolve[y'[x] - y[x]^2 == x, y[x], x] // FullSimplify

Out[20]= 		yx� �
"#$$
����

x "#$$�BesselJ�� 2
�������
3

,
2 x3�2

�������������������������
3

� � BesselJ� 2
�������
3

,
2 x3�2

�������������������������
3

�
C1�%&''%&'' > "#$$BesselJ� 1

�������
3

,
2 x3�2

�������������������������
3

� �
BesselJ�� 1

�������
3

,
2 x3�2

�������������������������
3

� C1�%&''


This Bernoulli equation, however, has a
fairly simple solution.

In[21]:= DSolve[y'[x] - x y[x]^2 - y[x] == 0, y[x], x]

Out[21]= 		yx� � �
�x

��������������������������������������������������������������������
��x � �x x � C1� 



This Abel equation can be solved but
only implicitly.

In[22]:= DSolve[y'[x] + x y[x]^3 + y[x]^2 == 0, y[x], x]

Solve::tdep:
The equations appear to involve the variables to be
solved for in an essentially non-algebraic way.

Out[22]= Solve� 1
�������
2

"
#
$$$$$$

2 ArcTanh� �1�2 x yx����������������������������������������
5

�
���������������������������������������������������������������������������������������������

5
�

Log� �1 � x yx� ��1 � x yx��
�����������������������������������������������������������������������������������������������������

x2 yx�2
�%&
'''''' �

C1� � Logx�, yx��
Beyond ordinary differential equations, one can consider differential-algebraic equations that involve a

mixture of differential and algebraic equations.

This solves a differential-algebraic
equation.

In[23]:= DSolve[{y'[x] + 3z'[x] == 4 y[x] + 1/x, y[x] + z[x] == 1},
{y[x], z[x]}, x]

Out[23]= 		yx� � 3
�������
2
�

1
������������
18����2 x C1� � 9 ��2 x �3 �2 x � ExpIntegralEi2 x���,

zx� � �
1
�������
2
�

1
������������
18

���2 x C1� �
9 ��2 x �3 �2 x � ExpIntegralEi2 x���





874 3. Advanced Mathematics in Mathematica � 3.5 Calculus

DSolve[eqn, y[x�, x�, . . . ], {x�, x�, . . . }]
solve a partial differential equation for y[x�, x�, . . . ]

DSolve[eqn, y, {x�, x�, . . . }] solve a partial differential equation for the function y

Solving partial differential equations.

DSolve is set up to handle not only ordinary differential equations in which just a single independent
variable appears, but also partial differential equations in which two or more independent variables
appear.

This finds the general solution to a
simple partial differential equation with
two independent variables.

In[24]:= DSolve[D[y[x1, x2], x1] + D[y[x1, x2], x2] == 1/(x1 x2),
y[x1, x2], {x1, x2}]

Out[24]= 		yx1, x2� � 1
������������������������������
x1 � x2

��Logx1� � Logx2� �
x1 C1��x1 � x2� � x2 C1��x1 � x2��



Here is the result represented as a pure
function.

In[25]:= DSolve[D[y[x1, x2], x1] + D[y[x1, x2], x2] == 1/(x1 x2),
y, {x1, x2}]

Out[25]= 		y � Function��x1, x2�,
1

������������������������������
x1 � x2

��Logx1� � Logx2� �
x1 C1��x1 � x2� � x2 C1��x1 � x2���



The basic mathematics of partial differential equations is considerably more complicated than that
of ordinary differential equations. One feature is that whereas the general solution to an ordinary
differential equation involves only arbitrary constants, the general solution to a partial differential
equation, if it can be found at all, must involve arbitrary functions. Indeed, with m independent
variables, arbitrary functions of m � � arguments appear. DSolve by default names these functions
C[n].

Here is a simple PDE involving three
independent variables.

In[26]:= (D[#, x1] + D[#, x2] + D[#, x3])& [y[x1, x2, x3]] == 0

Out[26]= y�0,0,1�x1, x2, x3� � y�0,1,0�x1, x2, x3� �
y�1,0,0�x1, x2, x3� � 0

The solution involves an arbitrary
function of two variables.

In[27]:= DSolve[%, y[x1, x2, x3], {x1, x2, x3}]

Out[27]= ��yx1, x2, x3� � C1��x1 � x2, �x1 � x3���
Here is the one-dimensional wave
equation.

In[28]:= (c^2 D[#, x, x] - D[#, t, t])& [y[x, t]] == 0

Out[28]= �y�0,2�x, t� � c2 y�2,0�x, t� � 0

The solution to this second-order
equation involves two arbitrary
functions.

In[29]:= DSolve[%, y[x, t], {x, t}]

Out[29]= 		yx, t� � C1��t �
������

c2 x
�����������������������������

c2
� � C2��t �

������
c2 x

�����������������������������
c2

�





3.5.11 Integral Transforms and Related Operations 875

For an ordinary differential equation, it is guaranteed that a general solution must exist, with the
property that adding initial or boundary conditions simply corresponds to forcing specific choices for
arbitrary constants in the solution. But for partial differential equations this is no longer true. Indeed,
it is only for linear partial differential and a few other special types that such general solutions exist.

Other partial differential equations can be solved only when specific initial or boundary values
are given, and in the vast majority of cases no solutions can be found as exact formulas in terms of
standard mathematical functions.

Since y and its derivatives appear only
linearly here, a general solution exists.

In[30]:= DSolve[x1 D[y[x1, x2], x1] + x2 D[y[x1, x2], x2]
== Exp[x1 x2], y[x1, x2], {x1, x2}]

Out[30]= 		yx1, x2� �
1
�������
2
�ExpIntegralEix1 x2� � 2 C1�� x2

������������
x1

��


This weakly nonlinear PDE turns out
to have a general solution.

In[31]:= DSolve[D[y[x1, x2], x1] + D[y[x1, x2], x2]
== Exp[y[x1, x2]], y[x1, x2], {x1, x2}]

Out[31]= ��yx1, x2� � �Log�x1 � C1��x1 � x2����
Here is a nonlinear PDE which has no
general solution.

In[32]:= DSolve[D[y[x1, x2], x1] D[y[x1, x2], x2] == a,
y[x1, x2], {x1, x2}]

Out[32]= DSolvey�0,1�x1, x2� y�1,0�x1, x2� � a,
yx1, x2�, �x1, x2��

3.5.11 Integral Transforms and Related Operations

Laplace Transforms

LaplaceTransform[expr, t, s] the Laplace transform of expr

InverseLaplaceTransform[expr, s, t] the inverse Laplace transform of expr

One-dimensional Laplace transforms.

The Laplace transform of a function f�t� is given by � �� f�t�e�st dt. The inverse Laplace transform of

F�s� is given for suitable Γ by �
�Πi � Γ�i�Γ�i� F�s�est ds.

Here is a simple Laplace transform. In[1]:= LaplaceTransform[t^4 Sin[t], t, s]

Out[1]=
24 �1 � 5 s2 ��2 � s2��
��������������������������������������������������������������������������������������������1 � s2�5



876 3. Advanced Mathematics in Mathematica � 3.5 Calculus

Here is the inverse. In[2]:= InverseLaplaceTransform[%, s, t]

Out[2]= t4 Sint�
Even simple transforms often involve
special functions.

In[3]:= LaplaceTransform[1/(1 + t^2), t, s]

Out[3]= CosIntegrals� Sins� �
1
�������
2

Coss� �Π � 2 SinIntegrals��
Here the result involves a Meijer G
function.

In[4]:= LaplaceTransform[1/(1 + t^3), t, s]

Out[4]=
MeijerG�  2������3 !, ��!,   0, 1������3 , 2������3 , 2������3 !, ��!, s3

���������27 �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
2
����

3 Π

The Laplace transform of a Bessel
function involves a hypergeometric
function.

In[5]:= LaplaceTransform[BesselJ[n, t], t, s]

Out[5]=
�s ������������

1 � s2 ��n

�����������������������������������������������������������������������������
1 � s2

Laplace transforms have the property that they turn integration and differentiation into essentially
algebraic operations. They are therefore commonly used in studying systems governed by differential
equations.

Integration becomes multiplication by
��s when one does a Laplace
transform.

In[6]:= LaplaceTransform[Integrate[f[u], {u, 0, t}], t, s]

Out[6]=
LaplaceTransformft�, t, s�
�����������������������������������������������������������������������������������������������������������������������������������

s

LaplaceTransform[expr, {t�, t�, . . . }, {s�, s�, . . . }]
the multidimensional Laplace transform of expr

InverseLaplaceTransform[expr, {s�, s�, . . . }, {t�, t�, . . . }]
the multidimensional inverse Laplace transform
of expr

Multidimensional Laplace transforms.

Fourier Transforms

FourierTransform[expr, t, Ω] the Fourier transform of expr

InverseFourierTransform[expr, Ω, t] the inverse Fourier transform of expr

One-dimensional Fourier transforms.



3.5.11 Integral Transforms and Related Operations 877

Here is a Fourier transform. In[1]:= FourierTransform[1/(1 + t^4), t, Ω]

Out[1]= � 1
�������
4
�
�
�������
4
� �� �1��� Ω�����������������������

2
����Π ������

2 Ω ��� � ������
2 Ω� UnitStep�Ω� �

�1 � � ��
����

2 Ω� UnitStepΩ��
This finds the inverse. In[2]:= InverseFourierTransform[%, Ω, t]

Out[2]=
1

�������������������������
1 � t4

In Mathematica the Fourier transform of a function f�t� is by default defined to be �
 

�Π
� ��� f�t� eiΩt dt.

The inverse Fourier transform of F�Ω� is similarly defined as �
 

�Π
� ��� F�Ω� e�iΩt dΩ.

In different scientific and technical fields different conventions are often used for defining Fourier
transforms. The option FourierParameters in Mathematica allows you to choose any of these con-
ventions you want.

common convention setting Fourier transform inverse Fourier transform

Mathematica default {0, 1} �
 

�Π
� ��� f�t� eiΩt dt �

 

�Π
� ��� F�Ω� e�iΩt dΩ

pure mathematics {1, -1} � ��� f�t� e�iΩt dt �
�Π � ��� F�Ω� eiΩt dΩ

classical physics {-1, 1} �
�Π � ��� f�t� eiΩt dt � ��� F�Ω� e�iΩt dΩ

modern physics {0, 1} �
 

�Π
� ��� f�t� eiΩt dt �

 

�Π
� ��� F�Ω� e�iΩt dΩ

systems engineering {1, -1} � ��� f�t� e�iΩt dt �
�Π � ��� F�Ω� eiΩt dΩ

signal processing {0, -2 Pi} � ��� f�t� e��ΠiΩt dt � ��� F�Ω� e�ΠiΩt dΩ

general case {a, b}

"

/b/
��Π���a � ��� f�t� eibΩt dt

"

/b/
��Π���a � ��� F�Ω� e�ibΩt dΩ

Typical settings for FourierParameters with various conventions.

Here is a Fourier transform with the
default choice of parameters.

In[3]:= FourierTransform[Exp[-t^2], t, Ω]

Out[3]=
��

Ω2
���������4

�������������������������
2

Here is the same Fourier transform
with the choice of parameters typically
used in signal processing.

In[4]:= FourierTransform[Exp[-t^2], t, Ω,
FourierParameters->{0, -2 Pi}]

Out[4]= ��Π2 Ω2 ����Π



878 3. Advanced Mathematics in Mathematica � 3.5 Calculus

FourierSinTransform[expr, t, Ω] Fourier sine transform

FourierCosTransform[expr, t, Ω] Fourier cosine transform

InverseFourierSinTransform[expr, Ω, t]
inverse Fourier sine transform

InverseFourierCosTransform[expr, Ω, t]
inverse Fourier cosine transform

Fourier sine and cosine transforms.

In some applications of Fourier transforms, it is convenient to avoid ever introducing complex
exponentials. Fourier sine and cosine transforms correspond to integrating respectively with sin�Ωt�
and cos�Ωt� instead of exp�iΩt�, and using limits 0 and � rather than �� and �.

Here are the Fourier sine and cosine
transforms of e�t.

In[5]:= {FourierSinTransform[Exp[-t], t, Ω],
FourierCosTransform[Exp[-t], t, Ω]}

Out[5]= 	 �����2������Π Ω
�����������������������������
1 � Ω2

,
�����2������Π�������������������������
1 � Ω2




FourierTransform[expr, {t�, t�, . . . }, {Ω�, Ω�, . . . }]
the multidimensional Fourier transform of expr

InverseFourierTransform[expr, {Ω�, Ω�, . . . }, {t�, t�, . . . }]
the multidimensional inverse Fourier transform of expr

FourierSinTransform[expr, {t�, t�, . . . }, {Ω�, Ω�, . . . }],
FourierCosTransform[expr, {t�, t�, . . . }, {Ω�, Ω�, . . . }]

the multidimensional sine and cosine Fourier transforms
of expr

InverseFourierSinTransform[expr, {Ω�, Ω�, . . . }, {t�, t�, . . . }],
InverseFourierCosTransform[expr, {Ω�, Ω�, . . . }, {t�, t�, . . . }]

the multidimensional inverse Fourier sine and cosine
transforms of expr

Multidimensional Fourier transforms.

This evaluates a two-dimensional
Fourier transform.

In[6]:= FourierTransform[(u v)^2 Exp[-u^2-v^2], {u, v}, {a, b}]

Out[6]=
1
������������
32

��2 � a2� ��2 � b2� �� 1����4 �a2 �b2 �



3.5.12 Generalized Functions and Related Objects 879

This inverts the transform. In[7]:= InverseFourierTransform[%, {a, b}, {u, v}]

Out[7]= ��u2 �v2

u2 v2

Z Transforms

ZTransform[expr, n, z] Z transform of expr

InverseZTransform[expr, z, n] inverse Z transform of expr

Z transforms.

The Z transform of a function f�n� is given by ��n�� f�n�z�n. The inverse Z transform of F�z� is given
by the contour integral ��Πi ) F�z�zn�� dz. Z transforms are effectively discrete analogs of Laplace trans-
forms. They are widely used for solving difference equations, especially in digital signal processing
and control theory. They can be thought of as producing generating functions, of the kind commonly
used in combinatorics and number theory.

This computes the Z transform of ��n. In[1]:= ZTransform[2^-n, n, z]

Out[1]=
2 z

��������������������������������
�1 � 2 z

Here is the inverse Z transform. In[2]:= InverseZTransform[%, z, n]

Out[2]= 2�n

The generating function for ��nd is an
exponential function.

In[3]:= ZTransform[1/n!, n, z]

Out[3]= �
1����z

3.5.12 Generalized Functions and Related Objects

In many practical situations it is convenient to consider limits in which a fixed amount of something
is concentrated into an infinitesimal region. Ordinary mathematical functions of the kind normally
encountered in calculus cannot readily represent such limits. However, it is possible to introduce
generalized functions or distributions which can represent these limits in integrals and other types of
calculations.

DiracDelta[x] Dirac delta function ∆�x�

UnitStep[x] unit step function, equal to 0 for x ) � and 1 for x c �

Dirac delta and unit step functions.



880 3. Advanced Mathematics in Mathematica � 3.5 Calculus

Here is a function concentrated around
x � �.

In[1]:= Plot[Sqrt[50/Pi] Exp[-50 x^2], {x, -2, 2}, PlotRange->All]

-2 -1 1 2

1

2

3

4

As n gets larger, the functions become
progressively more concentrated.

In[2]:= Plot[Evaluate[Sqrt[n/Pi] Exp[-n x^2] /. n -> {1, 10, 100}],
{x, -2, 2}, PlotRange->All];

-2 -1 1 2

1

2

3

4

5

For any n c �, their integrals are
nevertheless always equal to 1.

In[3]:= Integrate[Sqrt[n/Pi] Exp[-n x^2], {x, -Infinity, Infinity},
Assumptions -> n > 0]

Out[3]= 1

The limit of the functions for infinite n
is effectively a Dirac delta function,
whose integral is again 1.

In[4]:= Integrate[DiracDelta[x], {x, -Infinity, Infinity}]

Out[4]= 1

DiracDelta evaluates to 0 at all real
points except x � �.

In[5]:= Table[DiracDelta[x], {x, -3, 3}]

Out[5]= �0, 0, 0, DiracDelta0�, 0, 0, 0�
Inserting a delta function in an integral effectively causes the integrand to be sampled at discrete

points where the argument of the delta function vanishes.

This samples the function f with
argument 2.

In[6]:= Integrate[DiracDelta[x - 2] f[x], {x, -4, 4}]

Out[6]= f2�
Here is a slightly more complicated
example.

In[7]:= Integrate[DiracDelta[x^2 - x - 1], {x, 0, 2}]

Out[7]=
1

����������������������
5



3.5.12 Generalized Functions and Related Objects 881

This effectively counts the number of
zeros of cos�x� in the region of
integration.

In[8]:= Integrate[DiracDelta[Cos[x]], {x, -30, 30}]

Out[8]= 20

The unit step function UnitStep[x] is effectively the indefinite integral of the delta function. It
is sometimes known as the Heaviside function, and is variously denoted H�x�, Θ�x�, Μ�x�, and U�x�.
It does not need to be considered as a generalized function, though it has a discontinuity at x � �.
The unit step function is often used in setting up piecewise continuous functions, and in representing
signals and other quantities that become non-zero only beyond some point.

The indefinite integral of the delta
function is the unit step function.

In[9]:= Integrate[DiracDelta[x], x]

Out[9]= UnitStepx�
This generates a square wave. In[10]:= Plot[UnitStep[Sin[x]], {x, 0, 30}]

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

Here is the integral of the square wave. In[11]:= Integrate[UnitStep[Sin[x]], {x, 0, 30}]

Out[11]= 5 Π

The value of the integral depends on
whether a lies in the interval ���� ��.

In[12]:= Integrate[f[x] DiracDelta[x - a], {x, -2, 2}]

Out[12]= fa� UnitStep2 � a� UnitStep2 � a�
DiracDelta and UnitStep often arise in doing integral transforms.

The Fourier transform of a constant
function is a delta function.

In[13]:= FourierTransform[1, t, Ω]

Out[13]=
�������

2 Π DiracDeltaΩ�
The Fourier transform of cos�t� involves
the sum of two delta functions.

In[14]:= FourierTransform[Cos[t], t, Ω]

Out[14]= ������Π�������
2

DiracDelta�1 � Ω� �������Π�������
2

DiracDelta1 � Ω�
Dirac delta functions can be used in DSolve to find the impulse response or Green’s function of

systems represented by linear and certain other differential equations.

This finds the behavior of a harmonic
oscillator subjected to an impulse at
t � �.

In[15]:= DSolve[{x''[t] + r x[t] == DiracDelta[t],
x[0]==0, x'[0]==1}, x[t], t]

Out[15]= 		xt� � Sin�����
r t� UnitStept�

����������������������������������������������������������������������������������������������������������
r







882 3. Advanced Mathematics in Mathematica � 3.5 Calculus

DiracDelta[x�, x�, . . . ] multidimensional Dirac delta function equal to 0 unless all
the xi are zero

UnitStep[x�, x�, . . . ] multidimensional unit step function, equal to 0 if any of the
xi are negative

Multidimensional Dirac delta and unit step functions.

Related to the multidimensional Dirac delta function are two integer functions: discrete delta and
Kronecker delta. Discrete delta ∆�n�� n�� � � �� is 1 if all the ni � �, and is zero otherwise. Kronecker delta
∆n�n�� � � is 1 if all the ni are equal, and is zero otherwise.

DiscreteDelta[n�, n�, . . . ] discrete delta ∆�n�� n�� � � ��

KroneckerDelta[n�, n�, . . . ] Kronecker delta ∆n�n�� � �

Integer delta functions.



3.6.1 Making Power Series Expansions 883

3.6 Series, Limits and Residues

3.6.1 Making Power Series Expansions

Series[expr, {x, x�, n}] find the power series expansion of expr about the point
x � x� to order at most �x � x��n

Series[expr, {x, x�, nx}, {y, y�, ny}]
find series expansions with respect to y then x

Functions for creating power series.

Here is the power series expansion for
exp�x� about the point x � � to
order x
.

In[1]:= Series[ Exp[x], {x, 0, 4} ]

Out[1]= 1 � x �
x2

������������
2

�
x3

������������
6

�
x4

������������
24

� Ox�5

Here is the series expansion of exp�x�
about the point x � �.

In[2]:= Series[ Exp[x], {x, 1, 4} ]

Out[2]= � � � �x � 1� � 1
�������
2
� �x � 1�2 �

1
�������
6
� �x � 1�3 �

1
������������
24

� �x � 1�4 � Ox � 1�5

If Mathematica does not know the series
expansion of a particular function, it
writes the result symbolically in terms
of derivatives.

In[3]:= Series[ f[x], {x, 0, 3} ]

Out[3]= f0� � f<0� x �
1
�������
2

f<<0� x2 �
1
�������
6

f�3�0� x3 � Ox�4

In mathematical terms, Series can be viewed as a way of constructing Taylor series for functions.

The standard formula for the Taylor series expansion about the point x � x� of a function g�x�

with kth derivative g�k��x� is g�x� � ��k�� g�k��x��
�x�x��k

kd . Whenever this formula applies, it gives the
same results as Series. (For common functions, Series nevertheless internally uses somewhat more
efficient algorithms.)

Series can also generate some power series that involve fractional and negative powers, not
directly covered by the standard Taylor series formula.

Here is a power series that contains
negative powers of x.

In[4]:= Series[ Exp[x]/x^2, {x, 0, 4} ]

Out[4]=
1
������������
x2

�
1
�������
x
�

1
�������
2
�

x
�������
6
�

x2

������������
24

�
x3

�����������������
120

�
x4

�����������������
720

� Ox�5

Here is a power series involving
fractional powers of x.

In[5]:= Series[ Exp[Sqrt[x]], {x, 0, 2} ]

Out[5]= 1 �����
x �

x
�������
2
�

x3�2

������������������
6

�
x2

������������
24

� Ox�5�2



884 3. Advanced Mathematics in Mathematica � 3.6 Series, Limits and Residues

Series can also handle series that
involve logarithmic terms.

In[6]:= Series[ Exp[2x] Log[x], {x, 0, 2} ]

Out[6]= Logx� � 2 Logx� x � 2 Logx� x2 � Ox�3

There are, of course, mathematical functions for which no standard power series exist. Mathematica
recognizes many such cases.

Series sees that exp� �x � has an
essential singularity at x � �, and does
not produce a power series.

In[7]:= Series[ Exp[1/x], {x, 0, 2} ]

Series::esss:
1 3

Essential singularity encountered in Exp[- + O[x] ].
x

Out[7]= �
1����x

Series can nevertheless give you the
power series for exp� �x � about the point
x � �.

In[8]:= Series[ Exp[1/x], {x, Infinity, 3} ]

Out[8]= 1 �
1
�������
x
�

1
�������
2
� 1
�������
x
�2

�
1
�������
6
� 1
�������
x
�3

� O� 1
�������
x
�4

Especially when negative powers occur, there is some subtlety in exactly how many terms of a
particular power series the function Series will generate.

One way to understand what happens is to think of the analogy between power series taken to a
certain order, and real numbers taken to a certain precision. Power series are “approximate formulas”
in much the same sense as finite-precision real numbers are approximate numbers.

The procedure that Series follows in constructing a power series is largely analogous to the pro-
cedure that N follows in constructing a real-number approximation. Both functions effectively start
by replacing the smallest pieces of your expression by finite-order, or finite-precision, approximations,
and then evaluating the resulting expression. If there are, for example, cancellations, this procedure
may give a final result whose order or precision is less than the order or precision that you originally
asked for. Like N, however, Series has some ability to retry its computations so as to get results
to the order you ask for. In cases where it does not succeed, you can usually still get results to a
particular order by asking for a higher order than you need.

Series compensates for cancellations
in this computation, and succeeds in
giving you a result to order x.

In[9]:= Series[ Sin[x]/x^2, {x, 0, 3} ]

Out[9]=
1
�������
x
�

x
�������
6
�

x3

�����������������
120

� Ox�4

When you make a power series expansion in a variable x, Mathematica assumes that all objects
that do not explicitly contain x are in fact independent of x. Series thus does partial derivatives
(effectively using D) to build up Taylor series.

Both a and n are assumed to be
independent of x.

In[10]:= Series[ (a + x)^n , {x, 0, 2} ]

Out[10]= an � a�1�n n x � �� 1
�������
2

a�2�n n �
1
�������
2

a�2�n n2� x2 � Ox�3



3.6.2 Advanced Topic: The Representation of Power Series 885

a[x] is now given as an explicit
function of x.

In[11]:= Series[ (a[x] + x)^n, {x, 0, 2} ]

Out[11]= a0�n � n a0��1�n �1 � a<0�� x �

� 1
�������
2
��1 � n� n a0��2�n �1 � a<0��2 �

1
�������
2

n a0��1�n
a<<0�� x2 � Ox�3

You can use Series to generate power series in a sequence of different variables. Series works
like Integrate, Sum and so on, and expands first with respect to the last variable you specify.

Series performs a series expansion
successively with respect to each
variable. The result in this case is a
series in x, whose coefficients are series
in y.

In[12]:= Series[Exp[x y], {x, 0, 3}, {y, 0, 3}]

Out[12]= 1 � �y � Oy�4� x �

"#$$
y2

������������
2

� Oy�4%&'' x2 � "#$$
y3

������������
6

� Oy�4%&'' x3 � Ox�4

3.6.2 Advanced Topic: The Representation of Power Series

Power series are represented in Mathematica as SeriesData objects.

The power series is printed out as a
sum of terms, ending with O[x] raised
to a power.

In[1]:= Series[Cos[x], {x, 0, 4}]

Out[1]= 1 �
x2

������������
2

�
x4

������������
24

� Ox�5

Internally, however, the series is stored
as a SeriesData object.

In[2]:= InputForm[%]

Out[2]//InputForm= SeriesData[x, 0, {1, 0, -1/2, 0, 1/24}, 0, 5, 1]

By using SeriesData objects, rather than ordinary expressions, to represent power series, Mathe-
matica can keep track of the order and expansion point, and do operations on the power series
appropriately. You should not normally need to know the internal structure of SeriesData objects.

You can recognize a power series that is printed out in standard output form by the presence of an
O[x] term. This term mimics the standard mathematical notation O�x�, and represents omitted terms
of order x. For various reasons of consistency, Mathematica uses the notation O[x]^n for omitted terms
of order xn, corresponding to the mathematical notation O�x�n, rather than the slightly more familiar,
though equivalent, form O�xn�.

Any time that an object like O[x] appears in a sum of terms, Mathematica will in fact convert the
whole sum into a power series.

The presence of O[x] makes
Mathematica convert the whole sum to
a power series.

In[3]:= a x + Exp[x] + O[x]^3

Out[3]= 1 � �1 � a� x �
x2

������������
2

� Ox�3



886 3. Advanced Mathematics in Mathematica � 3.6 Series, Limits and Residues

3.6.3 Operations on Power Series

Mathematica allows you to perform many operations on power series. In all cases, Mathematica gives
results only to as many terms as can be justified from the accuracy of your input.

Here is a power series accurate to
fourth order in x.

In[1]:= Series[ Exp[x], {x, 0, 4} ]

Out[1]= 1 � x �
x2

������������
2

�
x3

������������
6

�
x4

������������
24

� Ox�5

When you square the power series,
you get another power series, also
accurate to fourth order.

In[2]:= %^2

Out[2]= 1 � 2 x � 2 x2 �
4 x3

������������������
3

�
2 x4

������������������
3

� Ox�5

Taking the logarithm gives you the
result 2x, but only to order x
.

In[3]:= Log[%]

Out[3]= 2 x � Ox�5

Mathematica keeps track of the orders of power series in much the same way as it keeps track of
the precision of approximate real numbers. Just as with numerical calculations, there are operations
on power series which can increase, or decrease, the precision (or order) of your results.

Here is a power series accurate to
order x��.

In[4]:= Series[ Cos[x], {x, 0, 10} ]

Out[4]= 1 �
x2

������������
2

�
x4

������������
24

�
x6

�����������������
720

�
x8

��������������������������
40320

�
x10

������������������������������������
3628800

� Ox�11

This gives a power series that is
accurate only to order x�.

In[5]:= 1 / (1 - %)

Out[5]=
2
������������
x2

�
1
�������
6
�

x2

�����������������
120

�
x4

����������������������
3024

�
x6

��������������������������
86400

� Ox�7

Mathematica also allows you to do calculus with power series.

Here is a power series for tan�x�. In[6]:= Series[Tan[x], {x, 0, 10}]

Out[6]= x �
x3

������������
3

�
2 x5

������������������
15

�
17 x7

�����������������������
315

�
62 x9

�����������������������
2835

� Ox�11

Here is its derivative with respect to x. In[7]:= D[%, x]

Out[7]= 1 � x2 �
2 x4

������������������
3

�
17 x6

�����������������������
45

�
62 x8

�����������������������
315

� Ox�10

Integrating with respect to x gives back
the original power series.

In[8]:= Integrate[%, x]

Out[8]= x �
x3

������������
3

�
2 x5

������������������
15

�
17 x7

�����������������������
315

�
62 x9

�����������������������
2835

� Ox�11

When you perform an operation that involves both a normal expression and a power series,
Mathematica “absorbs” the normal expression into the power series whenever possible.

The 1 is automatically absorbed into
the power series.

In[9]:= 1 + Series[Exp[x], {x, 0, 4}]

Out[9]= 2 � x �
x2

������������
2

�
x3

������������
6

�
x4

������������
24

� Ox�5



3.6.4 Advanced Topic: Composition and Inversion of Power Series 887

The x^2 is also absorbed into the
power series.

In[10]:= % + x^2

Out[10]= 2 � x �
3 x2

������������������
2

�
x3

������������
6

�
x4

������������
24

� Ox�5

If you add Sin[x], Mathematica
generates the appropriate power series
for Sin[x], and combines it with the
power series you have.

In[11]:= % + Sin[x]

Out[11]= 2 � 2 x �
3 x2

������������������
2

�
x4

������������
24

� Ox�5

Mathematica also absorbs expressions
that multiply power series. The symbol
a is assumed to be independent of x.

In[12]:= (a + x) %^2

Out[12]= 4 a � �4 � 8 a� x � �8 � 10 a� x2 �

�10 � 6 a� x3 � �6 �
29 a
������������������
12

� x4 � Ox�5

Mathematica knows how to apply a wide variety of functions to power series. However, if you
apply an arbitrary function to a power series, it is impossible for Mathematica to give you anything
but a symbolic result.

Mathematica does not know how to
apply the function f to a power series,
so it just leaves the symbolic result.

In[13]:= f[ Series[ Exp[x], {x, 0, 3} ] ]

Out[13]= f�1 � x �
x2

������������
2

�
x3

������������
6

� Ox�4�

3.6.4 Advanced Topic: Composition and Inversion of Power Series

When you manipulate power series, it is sometimes convenient to think of the series as representing
functions, which you can, for example, compose or invert.

ComposeSeries[series�, series�, . . . ] compose power series

InverseSeries[series, x] invert a power series

Composition and inversion of power series.

Here is the power series for exp�x� to
order x�.

In[1]:= Series[Exp[x], {x, 0, 5}]

Out[1]= 1 � x �
x2

������������
2

�
x3

������������
6

�
x4

������������
24

�
x5

�����������������
120

� Ox�6

This replaces the variable x in the
power series for exp�x� by a power
series for sin�x�.

In[2]:= ComposeSeries[%, Series[Sin[x], {x, 0, 5}]]

Out[2]= 1 � x �
x2

������������
2

�
x4

������������
8

�
x5

������������
15

� Ox�6

The result is the power series for
exp�sin�x��.

In[3]:= Series[Exp[Sin[x]], {x, 0, 5}]

Out[3]= 1 � x �
x2

������������
2

�
x4

������������
8

�
x5

������������
15

� Ox�6



888 3. Advanced Mathematics in Mathematica � 3.6 Series, Limits and Residues

If you have a power series for a function f�y�, then it is often possible to get a power series
approximation to the solution for y in the equation f�y� � x. This power series effectively gives the
inverse function f���x� such that f�f���x�� � x. The operation of finding the power series for an inverse
function is sometimes known as reversion of power series.

Here is the series for sin�y�. In[4]:= Series[Sin[y], {y, 0, 5}]

Out[4]= y �
y3

������������
6

�
y5

�����������������
120

� Oy�6

Inverting the series gives the series for
sin���x�.

In[5]:= InverseSeries[%, x]

Out[5]= x �
x3

������������
6

�
3 x5

������������������
40

� Ox�6

Composing the two series gives the
identity function.

In[6]:= ComposeSeries[%, %%]

Out[6]= y � Oy�6

3.6.5 Converting Power Series to Normal Expressions

Normal[expr] convert a power series to a normal expression

Converting power series to normal expressions.

As discussed above, power series in Mathematica are represented in a special internal form, which
keeps track of such attributes as their expansion order.

For some purposes, you may want to convert power series to normal expressions. From a mathemat-
ical point of view, this corresponds to truncating the power series, and assuming that all higher-order
terms are zero.

This generates a power series, with
four terms.

In[1]:= t = Series[ ArcTan[x], {x, 0, 8} ]

Out[1]= x �
x3

������������
3

�
x5

������������
5

�
x7

������������
7

� Ox�9

Squaring the power series gives you
another power series, with the
appropriate number of terms.

In[2]:= t^2

Out[2]= x2 �
2 x4

������������������
3

�
23 x6

�����������������������
45

�
44 x8

�����������������������
105

� Ox�10

Normal truncates the power series,
giving a normal expression.

In[3]:= Normal[%]

Out[3]= x2 �
2 x4

������������������
3

�
23 x6

�����������������������
45

�
44 x8

�����������������������
105

You can now apply standard algebraic
operations.

In[4]:= Factor[%]

Out[4]= �
1

�����������������
315

x2 ��315 � 210 x2 � 161 x4 � 132 x6�



3.6.6 Solving Equations Involving Power Series 889

SeriesCoefficient[series, n] give the coefficient of the nth order term in a power series

Extracting coefficients of terms in power series.

This gives the coefficient of x� in the
original power series.

In[5]:= SeriesCoefficient[t, 7]

Out[5]= �
1
�������
7

3.6.6 Solving Equations Involving Power Series

LogicalExpand[series� == series�] give the equations obtained by equating
corresponding coefficients in the power series

Solve[series� == series�, {a�, a�, . . . }] solve for coefficients in power series

Solving equations involving power series.

Here is a power series. In[1]:= y = 1 + Sum[a[i] x^i, {i, 3}] + O[x]^4

Out[1]= 1 � a1� x � a2� x2 � a3� x3 � Ox�4

This gives an equation involving the
power series.

In[2]:= D[y, x]^2 - y == x

Out[2]= ��1 � a1�2� � ��a1� � 4 a1� a2�� x �
��a2� � 4 a2�2 � 6 a1� a3�� x2 � Ox�3 � x

LogicalExpand generates a sequence of
equations for each power of x.

In[3]:= LogicalExpand[ % ]

Out[3]= �1 � a1�2 � 0 && �1 � a1� � 4 a1� a2� � 0 &&

�a2� � 4 a2�2 � 6 a1� a3� � 0

This solves the equations for the
coefficients a[i]. You can also feed
equations involving power series
directly to Solve.

In[4]:= Solve[ % ]

Out[4]= 		a3� � �
1
������������
12

, a1� � 1, a2� � 1
�������
2

,

�a3� � 0, a1� � �1, a2� � 0�

Some equations involving power series can also be solved using the InverseSeries function discussed
on page 888.



890 3. Advanced Mathematics in Mathematica � 3.6 Series, Limits and Residues

3.6.7 Summation of Series

Sum[expr, {n, nmin, nmax}] find the sum of expr as n goes from nmin to nmax

Evaluating sums.

Mathematica recognizes this as the
power series expansion of ex.

In[1]:= Sum[x^n/n!, {n, 0, Infinity}]

Out[1]= �x

This sum comes out in terms of a
Bessel function.

In[2]:= Sum[x^n/(n!^2), {n, 0, Infinity}]

Out[2]= BesselI�0, 2
����

x �
Here is another sum that can be done
in terms of common special functions.

In[3]:= Sum[n! x^n/(2n)!, {n, 1, Infinity}]

Out[3]=
1
�������
2
�x�4 ����Π ����

x Erf� ����
x

������������������
2

�
Generalized hypergeometric functions
are not uncommon in sums.

In[4]:= Sum[x^n/(n!^4), {n, 0, Infinity}]

Out[4]= HypergeometricPFQ��, �1, 1, 1�, x�
There are many analogies between sums and integrals. And just as it is possible to have indefinite
integrals, so indefinite sums can be set up by using symbolic variables as upper limits.

This is effectively an indefinite sum. In[5]:= Sum[k, {k, 0, n}]

Out[5]=
1
�������
2

n �1 � n�
This sum comes out in terms of
incomplete gamma functions.

In[6]:= Sum[x^k/k!, {k, 0, n}]

Out[6]=
�x �1 � n� Gamma1 � n, x�
����������������������������������������������������������������������������������������������������������

Gamma2 � n�
This sum involves polygamma
functions.

In[7]:= Sum[1/(k+1)^4, {k, 0, n}]

Out[7]=
Π4

������������
90

�
1
�������
6

PolyGamma3, 2 � n�
Taking the difference between results
for successive values of n gives back
the original summand.

In[8]:= FullSimplify[ % - (% /. n->n-1) ]

Out[8]=
1

�����������������������������������1 � n�4

Mathematica can do essentially all sums that are found in books of tables. Just as with indefinite
integrals, indefinite sums of expressions involving simple functions tend to give answers that involve
more complicated functions. Definite sums, like definite integrals, often, however, come out in terms
of simpler functions.



3.6.8 Solving Recurrence Equations 891

This indefinite sum gives a quite
complicated result.

In[9]:= Sum[Binomial[2k, k]/3^(2k), {k, 0, n}]

Out[9]=
3

����������������������
5

�

"
#$$$�

9
�������
4
��1�n

Gamma� 3
�������
2
� n� Hypergeometric2F1�1,

3
�������
2
� n,

2 � n,
4
�������
9
�%&''' > �����Π Gamma2 � n��

The definite form is much simpler. In[10]:= Sum[Binomial[2k, k]/3^(2k), {k, 0, Infinity}]

Out[10]=
3

����������������������
5

Here is a slightly more complicated
definite sum.

In[11]:= Sum[PolyGamma[k]/k^2, {k, 1, Infinity}]

Out[11]=
1
�������
6
��EulerGammaΠ2 � 6 Zeta3��

, 3.6.8 Solving Recurrence Equations

If you represent the nth term in a sequence as a[n], you can use a recurrence equation to specify how
it is related to other terms in the sequence.

RSolve takes recurrence equations and solves them to get explicit formulas for a[n].

This solves a simple recurrence
equation.

In[1]:= RSolve[{a[n] == 2 a[n-1], a[1] == 1}, a[n], n]

Out[1]= ��an� � 2�1�n��
This takes the solution and makes an
explicit table of the first ten a[n].

In[2]:= Table[a[n] /. First[%], {n, 10}]

Out[2]= �1, 2, 4, 8, 16, 32, 64, 128, 256, 512�

, RSolve[eqn, a[n], n] solve a recurrence equation

Solving a recurrence equation.

This solves a recurrence equation for a
geometric series.

In[3]:= RSolve[{a[n] == r a[n-1] + 1, a[1] == 1}, a[n], n]

Out[3]= 		an� � �1 � rn

������������������������������
�1 � r




This gives the same result. In[4]:= RSolve[{a[n+1] == r a[n] + 1, a[1] == 1}, a[n], n]

Out[4]= 		an� � �1 � rn

������������������������������
�1 � r




This gives an algebraic solution to the
Fibonacci recurrence equation.

In[5]:= RSolve[{a[n] == a[n-1] + a[n-2], a[1] == a[2] == 1}, a[n], n]

Out[5]= 		an� � �
��5 �����

5 � ��� 1������2 �
����

5��������������2 �n

� � 1������2 �
����

5��������������2 �n�
���������������������������������������������������������������������������������������������������������������������������������������������������������������������

5 ��1 �����
5 � 





892 3. Advanced Mathematics in Mathematica � 3.6 Series, Limits and Residues

RSolve can be thought of as a discrete analog of DSolve. Many of the same functions generated in
solving differential equations also appear in finding symbolic solutions to recurrence equations.

This generates a gamma function,
which generalizes the factorial.

In[6]:= RSolve[{a[n] == n a[n-1], a[1] == 1}, a[n], n]

Out[6]= ��an� � Gamma1 � n���
This second-order recurrence equation
comes out in terms of Bessel functions.

In[7]:= RSolve[{a[n + 1] == n a[n] + a[n - 1],
a[1] == 0, a[2] == 1}, a[n], n]

Out[7]= ��an� � �BesselIn, �2� BesselK1, 2� �
BesselI1, �2� BesselKn, 2����BesselI2, �2� BesselK1, 2� �
BesselI1, �2� BesselK2, 2����

RSolve does not require you to specify explicit values for terms such as a[1]. Like DSolve, it
automatically introduces undetermined constants C[i] to give a general solution.

This gives a general solution with one
undetermined constant.

In[8]:= RSolve[a[n] == n a[n-1], a[n], n]

Out[8]= ��an� � C1� Gamma1 � n���
RSolve can solve equations that do not depend only linearly on a[n]. For nonlinear equations,

however, there are sometimes several distinct solutions that must be given. Just as for differential
equations, it is a difficult matter to find symbolic solutions to recurrence equations, and standard
mathematical functions only cover a limited set of cases.

Here is the general solution to a
nonlinear recurrence equation.

In[9]:= RSolve[{a[n] == a[n + 1] a[n - 1]}, a[n], n]

Out[9]=   an� � �C1� Cos n Π��������3 ��C2� Sin n Π��������3 �!!
This gives two distinct solutions. In[10]:= RSolve[a[n] == (a[n + 1] a[n - 1])^2, a[n], n]

Out[10]=   an� � �C2� Cos�n ArcTan�������
15 ���C1� Sin�n ArcTan�������

15 ��!,

 an� � �
2 � Π������������3 �C2� Cos�n ArcTan�������

15 ���C1� Sin�n ArcTan�������
15 ��!!

RSolve can solve not only ordinary difference equations in which the arguments of a differ by inte-
gers, but also q-difference equations in which the arguments of a are related by multiplicative factors.

This solves the q-difference analog of
the factorial equation.

In[11]:= RSolve[a[q n] == n a[n], a[n], n]

Out[11]=   an� � n
1����2 ��1� Logn�������������������Logq� � C1�!!

Here is a second-order q-difference
equation.

In[12]:= RSolve[a[n] == a[q n] + a[n/q], a[n], n]

Out[12]= 		an� � C1� Cos� Π Logn�
�������������������������������������
3 Logq� � � C2� Sin� Π Logn�

�������������������������������������
3 Logq� �



, RSolve[{eqn�, eqn�, . . . }, {a�[n], a�[n], . . . }, n]
solve a coupled system of recurrence equations

Solving systems of recurrence equations.



3.6.9 Finding Limits 893

This solves a system of two coupled
recurrence equations.

In[13]:= RSolve[{a[n] == b[n - 1] + n, b[n] == a[n - 1] - n,
a[1] == b[1] == 1}, {a[n], b[n]}, n]

Out[13]= 		an� � 1
�������
4
�4 � 3 ��1�n � ��1�2 n � 2 ��1�2 n

n�,

bn� � 1
�������
4
�4 � 3 ��1�n � ��1�2 n � 2 ��1�2 n

n�



, RSolve[eqns, a[n�, n�, . . . ], {n�, n�, . . . }]
solve partial recurrence equations

Solving partial recurrence equations.

Just as one can set up partial differential equations that involve functions of several variables, so one
can also set up partial recurrence equations that involve multidimensional sequences. Just as in the
differential equations case, general solutions to partial recurrence equations can involve undetermined
functions.

This gives the general solution to a
simple partial recurrence equation.

In[14]:= RSolve[a[i + 1, j + 1] == i j a[i, j], a[i, j], {i, j}]

Out[14]= 		ai, j� � Gammai� Gammaj� C1�i � j�
��������������������������������������������������������������������������������������������������������������������������������

Gamma1 � i � j� 



3.6.9 Finding Limits

In doing many kinds of calculations, you need to evaluate expressions when variables take on partic-
ular values. In many cases, you can do this simply by applying transformation rules for the variables
using the /. operator.

You can get the value of cos�x�� at 0
just by explicitly replacing x with 0,
and then evaluating the result.

In[1]:= Cos[x^2] /. x -> 0

Out[1]= 1

In some cases, however, you have to be more careful.

Consider, for example, finding the value of the expression sin�x�
x when x � �. If you simply replace

x by � in this expression, you get the indeterminate result �� . To find the correct value of sin�x�
x when

x � �, you need to take the limit.

Limit[expr, x -> x�] find the limit of expr when x approaches x�

Finding limits.

This gives the correct value for the
limit of sin�x�

x as x # �.
In[2]:= Limit[ Sin[x]/x, x -> 0 ]

Out[2]= 1



894 3. Advanced Mathematics in Mathematica � 3.6 Series, Limits and Residues

No finite limit exists in this case. In[3]:= Limit[ Sin[x]/x^2, x -> 0 ]

Out[3]= 	

Limit can find this limit, even though
you cannot get an ordinary power
series for x log�x� at x � �.

In[4]:= Limit[ x Log[x], x -> 0 ]

Out[4]= 0

The same is true here. In[5]:= Limit[ ( 1 + 2 x ) ^ (1/x), x -> 0 ]

Out[5]= �2

The value of Sign[x] at x=0 is 0. In[6]:= Sign[0]

Out[6]= 0

Its limit, however, is 1. The limit is by
default taken from above.

In[7]:= Limit[Sign[x], x -> 0]

Out[7]= 1

Not all functions have definite limits at particular points. For example, the function sin���x� oscil-
lates infinitely often near x � �, so it has no definite limit there. Nevertheless, at least so long as x
remains real, the values of the function near x � � always lie between �� and 1. Limit represents val-
ues with bounded variation using Interval objects. In general, Interval[{xmin, xmax}] represents
an uncertain value which lies somewhere in the interval xmin to xmax.

Limit returns an Interval object,
representing the range of possible
values of sin���x� near its essential
singularity at x � �.

In[8]:= Limit[ Sin[1/x], x -> 0 ]

Out[8]= Interval��1, 1��

Mathematica can do arithmetic with
Interval objects.

In[9]:= (1 + %)^3

Out[9]= Interval�0, 8��
Mathematica represents this limit
symbolically in terms of an Interval
object.

In[10]:= Limit[ Exp[Sin[x]], x -> Infinity ]

Out[10]= Interval�	 1
�������
�

, �
�
Some functions may have different limits at particular points, depending on the direction from

which you approach those points. You can use the Direction option for Limit to specify the
direction you want.

Limit[expr, x -> x�, Direction -> 1]
find the limit as x approaches x� from below

Limit[expr, x -> x�, Direction -> -1]
find the limit as x approaches x� from above

Directional limits.



3.6.10 Residues 895

The function ��x has a different limiting
value at x � �, depending on whether
you approach from above or below.

In[11]:= Plot[1/x, {x, -1, 1}]

-1 -0.5 0.5 1

-100

-75

-50

-25

25

50

75

Approaching from below gives a
limiting value of ��.

In[12]:= Limit[ 1/x, x -> 0, Direction -> 1 ]

Out[12]= �	

Approaching from above gives a
limiting value of �.

In[13]:= Limit[ 1/x, x -> 0, Direction -> -1 ]

Out[13]= 	

Limit makes no assumptions about functions like f[x] about which it does not have definite
knowledge. As a result, Limit remains unevaluated in most cases involving symbolic functions.

Limit has no definite knowledge about
f, so it leaves this limit unevaluated.

In[14]:= Limit[ x f[x], x -> 0 ]

Out[14]= Limit[x f[x], x� 0]

3.6.10 Residues

Limit[expr, x -> x�] tells you what the value of expr is when x tends to x�. When this value is
infinite, it is often useful instead to know the residue of expr when x equals x�. The residue is given
by the coefficient of �x � x���� in the power series expansion of expr about the point x�.

Residue[expr, {x, x�}] the residue of expr when x equals x�

Computing residues.

The residue here is equal to 1. In[1]:= Residue[1/x, {x, 0}]

Out[1]= 1

The residue here is zero. In[2]:= Residue[1/x^2, {x, 0}]

Out[2]= 0



896 3. Advanced Mathematics in Mathematica � 3.7 Linear Algebra

3.7 Linear Algebra

- 3.7.1 Constructing Matrices

Table[f, {i, m}, {j, n}] build an m � n matrix where f is a function of i and j that
gives the value of the i� jth entry

Array[f, {m, n}] build an m � n matrix whose i� jth entry is f[i, j]

DiagonalMatrix[list] generate a diagonal matrix with the elements of list on the
diagonal

IdentityMatrix[n] generate an n � n identity matrix

, Normal[SparseArray[{{i�, j�}->v�, {i�, j�}->v�, . . . }, {m, n}]]
make a matrix with non-zero values vk at positions {ik, jk}

Functions for constructing matrices.

This generates a � � � matrix whose
i� jth entry is a[i, j].

In[1]:= Table[a[i, j], {i, 2}, {j, 2}]

Out[1]= ��a1, 1�, a1, 2��, �a2, 1�, a2, 2���
Here is another way to produce the
same matrix.

In[2]:= Array[a, {2, 2}]

Out[2]= ��a1, 1�, a1, 2��, �a2, 1�, a2, 2���
DiagonalMatrix makes a matrix with
zeros everywhere except on the leading
diagonal.

In[3]:= DiagonalMatrix[{a, b, c}]

Out[3]= ��a, 0, 0�, �0, b, 0�, �0, 0, c��
IdentityMatrix[n] produces an n � n
identity matrix.

In[4]:= IdentityMatrix[3]

Out[4]= ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��
This makes a  � 
 matrix with two
non-zero values filled in.

In[5]:= Normal[SparseArray[{{2, 3}->a, {3, 2}->b}, {3, 4}]]

Out[5]= ��0, 0, 0, 0�, �0, 0, a, 0�, �0, b, 0, 0��
MatrixForm prints the matrix in a
two-dimensional form.

In[6]:= MatrixForm[%]

Out[6]//MatrixForm=
"
#
$$$$$$$

0 0 0 0

0 0 a 0

0 b 0 0

%
&
'''''''



3.7.1 Constructing Matrices 897

Table[0, {m}, {n}] a zero matrix

Table[Random[ ], {m}, {n}] a matrix with random numerical entries

Table[If[i >= j, 1, 0], {i, m}, {j, n}] a lower-triangular matrix

Constructing special types of matrices with Table.

Table evaluates Random[ ] separately
for each element, to give a different
pseudorandom number in each case.

In[7]:= Table[Random[ ], {2}, {2}]

Out[7]= ��0.0560708, 0.6303�, �0.359894, 0.871377��

, SparseArray[{}, {n, n}] a zero matrix

, SparseArray[{i_, i_} -> 1, {n, n}] an n � n identity matrix

, SparseArray[{i_, j_} /; i >= j -> 1, {n, n}] a lower-triangular matrix

Constructing special types of matrices with SparseArray.

This sets up a general lower-triangular
matrix.

In[8]:= SparseArray[{i_, j_}/;i>=j -> f[i, j], {3, 3}] // MatrixForm

Out[8]//MatrixForm=
"
#
$$$$$$$

f1, 1� 0 0

f2, 1� f2, 2� 0

f3, 1� f3, 2� f3, 3�
%
&
'''''''



898 3. Advanced Mathematics in Mathematica � 3.7 Linear Algebra

- 3.7.2 Getting and Setting Pieces of Matrices

m[[i, j]] the i� jth entry

m[[i]] the ith row

m[[All, i]] the ith column

Take[m, {i�, i�}, {j�, j�}] the submatrix with rows i� through i� and columns j�
through j�

m[[{i�, . . . , ir}, {j�, . . . , js}]] the r � s submatrix with elements having row indices ik
and column indices jk

Tr[m, List] elements on the diagonal

, ArrayRules[m] positions of non-zero elements

Ways to get pieces of matrices.

Matrices in Mathematica are represented as lists of lists. You can use all the standard Mathematica
list-manipulation operations on matrices.

Here is a sample  �  matrix. In[1]:= t = Array[a, {3, 3}]

Out[1]= ��a1, 1�, a1, 2�, a1, 3��,�a2, 1�, a2, 2�, a2, 3��,�a3, 1�, a3, 2�, a3, 3���
This picks out the second row of the
matrix.

In[2]:= t[[2]]

Out[2]= �a2, 1�, a2, 2�, a2, 3��
Here is the second column of the
matrix.

In[3]:= t[[All, 2]]

Out[3]= �a1, 2�, a2, 2�, a3, 2��
This picks out a submatrix. In[4]:= Take[t, {1, 2}, {2, 3}]

Out[4]= ��a1, 2�, a1, 3��, �a2, 2�, a2, 3���



3.7.3 Scalars, Vectors and Matrices 899

m = {{a��, a��, . . . }, {a��, a��, . . . }, . . . }
assign m to be a matrix

m[[i, j]] = v reset element {i, j} to be v

m[[i]] = v reset all elements in row i to be v

m[[i]] = {v�, v�, . . . } reset elements in row i to be {v�, v�, . . . }

m[[All, j]] = v reset all elements in column j to be v

m[[All, j]] = {v�, v�, . . . } reset elements in column j to be {v�, v�, . . . }

Resetting parts of matrices.

Here is a � � � matrix. In[5]:= m = {{a, b}, {c, d}}

Out[5]= ��a, b�, �c, d��
This resets the 2, 2 element to be x,
then shows the whole matrix.

In[6]:= m[[2, 2]] = x; m

Out[6]= ��a, b�, �c, x��
This resets all elements in the second
column to be z.

In[7]:= m[[All, 2]] = z; m

Out[7]= ��a, z�, �c, z��
This separately resets the two elements
in the second column.

In[8]:= m[[All, 2]] = {i, j}; m

Out[8]= ��a, i�, �c, j��
This increments all the values in the
second column.

In[9]:= m[[All, 2]]++; m

Out[9]= ��a, 1 � i�, �c, 1 � j��

3.7.3 Scalars, Vectors and Matrices

Mathematica represents matrices and vectors using lists. Anything that is not a list Mathematica con-
siders as a scalar.

A vector in Mathematica consists of a list of scalars. A matrix consists of a list of vectors, represent-
ing each of its rows. In order to be a valid matrix, all the rows must be the same length, so that the
elements of the matrix effectively form a rectangular array.



900 3. Advanced Mathematics in Mathematica � 3.7 Linear Algebra

VectorQ[expr] give True if expr has the form of a vector, and False
otherwise

MatrixQ[expr] give True if expr has the form of a matrix, and False
otherwise

Dimensions[expr] a list of the dimensions of a vector or matrix

Functions for testing the structure of vectors and matrices.

The list {a, b, c} has the form of a
vector.

In[1]:= VectorQ[ {a, b, c} ]

Out[1]= True

Anything that is not manifestly a list is
treated as a scalar, so applying
VectorQ gives False.

In[2]:= VectorQ[ x + y ]

Out[2]= False

This is a � �  matrix. In[3]:= Dimensions[ {{a, b, c}, {ap, bp, cp}} ]

Out[3]= �2, 3�
For a vector, Dimensions gives a list
with a single element equal to the
result from Length.

In[4]:= Dimensions[ {a, b, c} ]

Out[4]= �3�
This object does not count as a matrix
because its rows are of different
lengths.

In[5]:= MatrixQ[ {{a, b, c}, {ap, bp}} ]

Out[5]= False

3.7.4 Operations on Scalars, Vectors and Matrices

Most mathematical functions in Mathematica are set up to apply themselves separately to each element
in a list. This is true in particular of all functions that carry the attribute Listable.

A consequence is that most mathematical functions are applied element by element to matrices and
vectors.

The Log applies itself separately to
each element in the vector.

In[1]:= Log[ {a, b, c} ]

Out[1]= �Loga�, Logb�, Logc��
The same is true for a matrix, or, for
that matter, for any nested list.

In[2]:= Log[ {{a, b}, {c, d}} ]

Out[2]= ��Loga�, Logb��, �Logc�, Logd���
The differentiation function D also
applies separately to each element in a
list.

In[3]:= D[ {x, x^2, x^3}, x ]

Out[3]= �1, 2 x, 3 x2�
The sum of two vectors is carried out
element by element.

In[4]:= {a, b} + {ap, bp}

Out[4]= �a � ap, b � bp�



3.7.5 Multiplying Vectors and Matrices 901

If you try to add two vectors with
different lengths, you get an error.

In[5]:= {a, b, c} + {ap, bp}

Thread::tdlen:
Objects of unequal length in {a, b, c} + {ap, bp}

cannot be combined.

Out[5]= �ap, bp� � �a, b, c�
This adds the scalar 1 to each element
of the vector.

In[6]:= 1 + {a, b}

Out[6]= �1 � a, 1 � b�
Any object that is not manifestly a list
is treated as a scalar. Here c is treated
as a scalar, and added separately to
each element in the vector.

In[7]:= {a, b} + c

Out[7]= �a � c, b � c�

This multiplies each element in the
vector by the scalar k.

In[8]:= k {a, b}

Out[8]= �a k, b k�
It is important to realize that Mathematica treats an object as a vector in a particular operation only

if the object is explicitly a list at the time when the operation is done. If the object is not explicitly a
list, Mathematica always treats it as a scalar. This means that you can get different results, depending
on whether you assign a particular object to be a list before or after you do a particular operation.

The object p is treated as a scalar, and
added separately to each element in
the vector.

In[9]:= {a, b} + p

Out[9]= �a � p, b � p�
This is what happens if you now
replace p by the list {c, d}.

In[10]:= % /. p -> {c, d}

Out[10]= ��a � c, a � d�, �b � c, b � d��
You would have got a different result
if you had replaced p by {c, d} before
you did the first operation.

In[11]:= {a, b} + {c, d}

Out[11]= �a � c, b � d�

3.7.5 Multiplying Vectors and Matrices

c v, c m, etc. multiply each element by a scalar

v.v, v.m, m.v, m.m, etc. vector and matrix multiplication

Cross[v, v] vector cross product (also input as v � v)

Outer[Times, t, u] outer product

Different kinds of vector and matrix multiplication.

This multiplies each element of the
vector by the scalar k.

In[1]:= k {a, b, c}

Out[1]= �a k, b k, c k�



902 3. Advanced Mathematics in Mathematica � 3.7 Linear Algebra

The “dot” operator gives the scalar
product of two vectors.

In[2]:= {a, b, c} . {ap, bp, cp}

Out[2]= a ap � b bp � c cp

You can also use dot to multiply a
matrix by a vector.

In[3]:= {{a, b}, {c, d}} . {x, y}

Out[3]= �a x � b y, c x � d y�
Dot is also the notation for matrix
multiplication in Mathematica.

In[4]:= {{a, b}, {c, d}} . {{1, 2}, {3, 4}}

Out[4]= ��a � 3 b, 2 a � 4 b�, �c � 3 d, 2 c � 4 d��
It is important to realize that you can use “dot” for both left- and right-multiplication of vectors by
matrices. Mathematica makes no distinction between “row” and “column” vectors. Dot carries out
whatever operation is possible. (In formal terms, a.b contracts the last index of the tensor a with the
first index of b.)

Here are definitions for a matrix m and
a vector v.

In[5]:= m = {{a, b}, {c, d}} ; v = {x, y}

Out[5]= �x, y�
This left-multiplies the vector v by m.
The object v is effectively treated as a
column vector in this case.

In[6]:= m . v

Out[6]= �a x � b y, c x � d y�
You can also use dot to right-multiply
v by m. Now v is effectively treated as
a row vector.

In[7]:= v . m

Out[7]= �a x � c y, b x � d y�
You can multiply m by v on both sides,
to get a scalar.

In[8]:= v . m . v

Out[8]= x �a x � c y� � y �b x � d y�
For some purposes, you may need to represent vectors and matrices symbolically, without explicitly

giving their elements. You can use dot to represent multiplication of such symbolic objects.

Dot effectively acts here as a
non-commutative form of
multiplication.

In[9]:= a . b . a

Out[9]= a.b.a

It is, nevertheless, associative. In[10]:= (a . b) . (a . b)

Out[10]= a.b.a.b

Dot products of sums are not
automatically expanded out.

In[11]:= (a + b) . c . (d + e)

Out[11]= �a � b�.c.�d � e�
You can apply the distributive law in
this case using the function
Distribute, as discussed on page 255.

In[12]:= Distribute[ % ]

Out[12]= a.c.d � a.c.e � b.c.d � b.c.e

The “dot” operator gives “inner products” of vectors, matrices, and so on. In more advanced
calculations, you may also need to construct outer or Kronecker products of vectors and matrices. You
can use the general function Outer to do this.



3.7.6 Matrix Inversion 903

The outer product of two vectors is a
matrix.

In[13]:= Outer[Times, {a, b}, {c, d}]

Out[13]= ��a c, a d�, �b c, b d��
The outer product of a matrix and a
vector is a rank three tensor.

In[14]:= Outer[Times, {{1, 2}, {3, 4}}, {x, y, z}]

Out[14]= ���x, y, z�, �2 x, 2 y, 2 z��,��3 x, 3 y, 3 z�, �4 x, 4 y, 4 z���
Outer products will be discussed in more detail in Section 3.7.11.

3.7.6 Matrix Inversion

Inverse[m] find the inverse of a square matrix

Matrix inversion.

Here is a simple � � � matrix. In[1]:= m = {{a, b}, {c, d}}

Out[1]= ��a, b�, �c, d��
This gives the inverse of m. In
producing this formula, Mathematica
implicitly assumes that the determinant
a d - b c is non-zero.

In[2]:= Inverse[ m ]

Out[2]= 		 d
���������������������������������������
�b c � a d

, �
b

���������������������������������������
�b c � a d


, 	� c
���������������������������������������
�b c � a d

,
a

���������������������������������������
�b c � a d




Multiplying the inverse by the original
matrix should give the identity matrix.

In[3]:= % . m

Out[3]= 		� b c
���������������������������������������
�b c � a d

�
a d

���������������������������������������
�b c � a d

, 0
,

	0, �
b c

���������������������������������������
�b c � a d

�
a d

���������������������������������������
�b c � a d




You have to use Together to clear the
denominators, and get back a standard
identity matrix.

In[4]:= Together[ % ]

Out[4]= ��1, 0�, �0, 1��
Here is a matrix of rational numbers. In[5]:= hb = Table[1/(i + j), {i, 4}, {j, 4}]

Out[5]= 		 1
�������
2

,
1
�������
3

,
1
�������
4

,
1
�������
5

, 	 1

�������
3

,
1
�������
4

,
1
�������
5

,
1
�������
6

,

	 1
�������
4

,
1
�������
5

,
1
�������
6

,
1
�������
7

, 	 1

�������
5

,
1
�������
6

,
1
�������
7

,
1
�������
8




Mathematica finds the exact inverse of
the matrix.

In[6]:= Inverse[hb]

Out[6]= ��200, �1200, 2100, �1120�,��1200, 8100, �15120, 8400�,�2100, �15120, 29400, �16800�,��1120, 8400, �16800, 9800��
Multiplying by the original matrix
gives the identity matrix.

In[7]:= % . hb

Out[7]= ��1, 0, 0, 0�, �0, 1, 0, 0�, �0, 0, 1, 0�, �0, 0, 0, 1��



904 3. Advanced Mathematics in Mathematica � 3.7 Linear Algebra

If you try to invert a singular matrix,
Mathematica prints a warning message,
and returns the inverse undone.

In[8]:= Inverse[ {{1, 2}, {1, 2}} ]

Inverse::sing: Matrix {{1, 2}, {1, 2}} is singular.

Out[8]= Inverse��1, 2�, �1, 2���
If you give a matrix with exact symbolic or numerical entries, Mathematica gives the exact inverse. If,
on the other hand, some of the entries in your matrix are approximate real numbers, then Mathematica
finds an approximate numerical result.

Here is a matrix containing
approximate real numbers.

In[9]:= m = {{1.2, 5.7}, {4.2, 5.6}}

Out[9]= ��1.2, 5.7�, �4.2, 5.6��
This finds the numerical inverse. In[10]:= Inverse[ % ]

Out[10]= ���0.325203, 0.33101�, �0.243902, �0.0696864��
Multiplying by the original matrix
gives you an identity matrix with small
numerical errors.

In[11]:= % . m

Out[11]=   1., �1.25442�10�16!,  1.00831�10�17, 1.!!
You can get rid of the small
off-diagonal terms using Chop.

In[12]:= Chop[ % ]

Out[12]= ��1., 0�, �0, 1.��
When you try to invert a matrix with exact numerical entries, Mathematica can always tell whether

or not the matrix is singular. When you invert an approximate numerical matrix, Mathematica can
usually not tell for certain whether or not the matrix is singular: all it can tell is for example that the
determinant is small compared to the entries of the matrix. When Mathematica suspects that you are
trying to invert a singular numerical matrix, it prints a warning.

Mathematica prints a warning if you
invert a numerical matrix that it
suspects is singular.

In[13]:= Inverse[ {{1., 2.}, {1., 2.}} ]

Inverse::sing: Matrix {{1., 2.}, {1., 2.}} is singular.

Out[13]= Inverse��1., 2.�, �1., 2.���
If you work with high-precision approximate numbers, Mathematica will keep track of the precision

of matrix inverses that you generate.

This generates a � � � numerical matrix
with entries of 20-digit precision.

In[14]:= m = N [ Table[ GCD[i, j] + 1, {i, 6}, {j, 6} ], 20 ] ;

This takes the matrix, multiplies it by
its inverse, and shows the first row of
the result.

In[15]:= (m . Inverse[m]) [[1]]

Out[15]=  1.000000000000000000, 0.�10�19,

0.�10�19, 0.�10�20, 0.�10�20, 0.�10�20!
This generates a 20-digit numerical
approximation to a � � � Hilbert matrix.
Hilbert matrices are notoriously hard to
invert numerically.

In[16]:= m = N[Table[1/(i + j - 1), {i, 6}, {j, 6}], 20] ;



3.7.7 Basic Matrix Operations 905

The result is still correct, but the zeros
now have lower accuracy.

In[17]:= (m . Inverse[m]) [[1]]

Out[17]=  1.000000000000000, �0.�10�15,

0.�10�14, �0.�10�14, 0.�10�14, �0.�10�14!
Inverse works only on square matrices. Section 3.7.10 discusses the function PseudoInverse,

which can also be used with non-square matrices.

- 3.7.7 Basic Matrix Operations

Transpose[m] transpose

Inverse[m] matrix inverse

Det[m] determinant

Minors[m] matrix of minors

Minors[m, k] kth minors

Tr[m] trace

, CharacteristicPolynomial[m, x] characteristic polynomial

Some basic matrix operations.

Transposing a matrix interchanges the rows and columns in the matrix. If you transpose an m � n
matrix, you get an n �m matrix as the result.

Transposing a � �  matrix gives a  � �
result.

In[1]:= Transpose[ {{a, b, c}, {ap, bp, cp}} ]

Out[1]= ��a, ap�, �b, bp�, �c, cp��
Det[m] gives the determinant of a square matrix m. Minors[m] is the matrix whose �i� j�th element

gives the determinant of the submatrix obtained by deleting the �n � i � ��th row and the �n � j � ��th

column of m. The �i� j�th cofactor of m is ����i�j times the �n� i� �� n � j � ��th element of the matrix of
minors.

Minors[m, k] gives the determinants of the k � k submatrices obtained by picking each possible set
of k rows and k columns from m. Note that you can apply Minors to rectangular, as well as square,
matrices.

Here is the determinant of a simple
� � � matrix.

In[2]:= Det[ {{a, b}, {c, d}} ]

Out[2]= �b c � a d



906 3. Advanced Mathematics in Mathematica � 3.7 Linear Algebra

This generates a  �  matrix, whose
i� jth entry is a[i, j].

In[3]:= m = Array[a, {3, 3}]

Out[3]= ��a1, 1�, a1, 2�, a1, 3��,�a2, 1�, a2, 2�, a2, 3��,�a3, 1�, a3, 2�, a3, 3���
Here is the determinant of m. In[4]:= Det[ m ]

Out[4]= �a1, 3� a2, 2� a3, 1� � a1, 2� a2, 3� a3, 1� �
a1, 3� a2, 1� a3, 2� � a1, 1� a2, 3� a3, 2� �
a1, 2� a2, 1� a3, 3� � a1, 1� a2, 2� a3, 3�

The trace or spur of a matrix Tr[m] is the sum of the terms on the leading diagonal.

This finds the trace of a simple � � �
matrix.

In[5]:= Tr[{{a, b}, {c, d}}]

Out[5]= a � d

MatrixPower[m, n] nth matrix power

MatrixExp[m] matrix exponential

Powers and exponentials of matrices.

Here is a � � � matrix. In[6]:= m = {{0.4, 0.6}, {0.525, 0.475}}

Out[6]= ��0.4, 0.6�, �0.525, 0.475��
This gives the third matrix power of m. In[7]:= MatrixPower[m, 3]

Out[7]= ��0.465625, 0.534375�, �0.467578, 0.532422��
It is equivalent to multiplying three
copies of the matrix.

In[8]:= m . m . m

Out[8]= ��0.465625, 0.534375�, �0.467578, 0.532422��
Here is the millionth matrix power. In[9]:= MatrixPower[m, 10^6]

Out[9]= ��0.466667, 0.533333�, �0.466667, 0.533333��
This gives the matrix exponential of m. In[10]:= MatrixExp[m]

Out[10]= ��1.7392, 0.979085�, �0.8567, 1.86158��
Here is an approximation to the
exponential of m, based on a power
series approximation.

In[11]:= Sum[MatrixPower[m, i]/i!, {i, 0, 5}]

Out[11]= ��1.73844, 0.978224�, �0.855946, 1.86072��



3.7.8 Solving Linear Systems 907

- 3.7.8 Solving Linear Systems

Many calculations involve solving systems of linear equations. In many cases, you will find it conve-
nient to write down the equations explicitly, and then solve them using Solve.

In some cases, however, you may prefer to convert the system of linear equations into a matrix
equation, and then apply matrix manipulation operations to solve it. This approach is often useful
when the system of equations arises as part of a general algorithm, and you do not know in advance
how many variables will be involved.

A system of linear equations can be stated in matrix form as m	x � b, where x is the vector of
variables.

Note that if your system of equations is sparse, so that most of the entries in the matrix m are zero,
then it is best to represent the matrix as a SparseArray object. As discussed on page 922, you can
convert from symbolic equations to SparseArray objects using CoefficientArrays. All the functions
described in this section work on SparseArray objects as well as ordinary matrices.

LinearSolve[m, b] a vector x which solves the matrix equation m.x == b

NullSpace[m] a list of basis vectors whose linear combinations satisfy the
matrix equation m.x == 0

, MatrixRank[m] the number of linearly independent rows of m

RowReduce[m] a simplified form of m obtained by making linear
combinations of rows

Solving and analyzing linear systems.

Here is a � � � matrix. In[1]:= m = {{1, 5}, {2, 1}}

Out[1]= ��1, 5�, �2, 1��
This gives two linear equations. In[2]:= m . {x, y} == {a, b}

Out[2]= �x � 5 y, 2 x � y� � �a, b�
You can use Solve directly to solve
these equations.

In[3]:= Solve[ %, {x, y} ]

Out[3]= 		x � �
1
�������
9
�a � 5 b�, y � �

1
�������
9
��2 a � b�



You can also get the vector of solutions
by calling LinearSolve. The result is
equivalent to the one you get from
Solve.

In[4]:= LinearSolve[m, {a, b}]

Out[4]= 	 1
�������
9
��a � 5 b�,

1
�������
9
�2 a � b�




908 3. Advanced Mathematics in Mathematica � 3.7 Linear Algebra

Another way to solve the equations is
to invert the matrix m, and then
multiply {a, b} by the inverse. This is
not as efficient as using LinearSolve.

In[5]:= Inverse[m] . {a, b}

Out[5]= 	� a
�������
9
�

5 b
��������������
9

,
2 a
��������������
9

�
b
�������
9



RowReduce performs a version of
Gaussian elimination and can also be
used to solve the equations.

In[6]:= RowReduce[{{1, 5, a}, {2, 1, b}}]

Out[6]= 		1, 0,
1
�������
9
��a � 5 b�
, 	0, 1,

1
�������
9
�2 a � b�



If you have a square matrix m with a non-zero determinant, then you can always find a unique
solution to the matrix equation m	x � b for any b. If, however, the matrix m has determinant zero,
then there may be either no vector, or an infinite number of vectors x which satisfy m	x � b for a
particular b. This occurs when the linear equations embodied in m are not independent.

When m has determinant zero, it is nevertheless always possible to find non-zero vectors x that
satisfy m	x � 0. The set of vectors x satisfying this equation form the null space or kernel of the matrix
m. Any of these vectors can be expressed as a linear combination of a particular set of basis vectors,
which can be obtained using NullSpace[m].

Here is a simple matrix, corresponding
to two identical linear equations.

In[7]:= m = {{1, 2}, {1, 2}}

Out[7]= ��1, 2�, �1, 2��
The matrix has determinant zero. In[8]:= Det[ m ]

Out[8]= 0

LinearSolve cannot find a solution to
the equation m	x � b in this case.

In[9]:= LinearSolve[m, {a, b}]

LinearSolve::nosol:
Linear equation encountered which has no solution.

Out[9]= LinearSolve��1, 2�, �1, 2��, �a, b��
There is a single basis vector for the
null space of m.

In[10]:= NullSpace[ m ]

Out[10]= ���2, 1��
Multiplying the basis vector for the
null space by m gives the zero vector.

In[11]:= m . %[[1]]

Out[11]= �0, 0�
There is only 1 linearly independent
row in m.

In[12]:= MatrixRank[ m ]

Out[12]= 1

NullSpace and MatrixRank have to determine whether particular combinations of matrix elements
are zero. For approximate numerical matrices, the Tolerance option can be used to specify how
close to zero is considered good enough. For exact symbolic matrices, you may sometimes need to
specify something like ZeroTest->(FullSimplify[#]==0&) to force more to be done to test whether
symbolic expressions are zero.

Here is a simple symbolic matrix with
determinant zero.

In[13]:= m = {{a, b, c}, {2 a, 2 b, 2 c}, {3 a, 3 b, 3 c}}

Out[13]= ��a, b, c�, �2 a, 2 b, 2 c�, �3 a, 3 b, 3 c��



3.7.8 Solving Linear Systems 909

The basis for the null space of m
contains two vectors.

In[14]:= NullSpace[m]

Out[14]= 		� c
�������
a

, 0, 1
, 	� b
�������
a

, 1, 0


Multiplying m by any linear
combination of these vectors gives
zero.

In[15]:= Simplify[m . (x %[[1]] + y %[[2]])]

Out[15]= �0, 0, 0�
An important feature of functions like LinearSolve and NullSpace is that they work with rectan-

gular, as well as square, matrices.

When you represent a system of linear equations by a matrix equation of the form m	x � b, the
number of columns in m gives the number of variables, and the number of rows gives the number of
equations. There are a number of cases.

Underdetermined number of equations less than the number of variables; no
solutions or many solutions may exist

Overdetermined number of equations more than the number of variables;
solutions may or may not exist

Nonsingular number of independent equations equal to the number of
variables, and determinant non-zero; a unique solution exists

Consistent at least one solution exists

Inconsistent no solutions exist

Classes of linear systems represented by rectangular matrices.

This asks for the solution to the
inconsistent set of equations x � � and
x � �.

In[16]:= LinearSolve[{{1}, {1}}, {1, 0}]

LinearSolve::nosol:
Linear equation encountered which has no solution.

Out[16]= LinearSolve��1�, �1��, �1, 0��
This matrix represents two equations,
for three variables.

In[17]:= m = {{1, 3, 4}, {2, 1, 3}}

Out[17]= ��1, 3, 4�, �2, 1, 3��
LinearSolve gives one of the possible
solutions to this underdetermined set
of equations.

In[18]:= v = LinearSolve[m, {1, 1}]

Out[18]= 	 2
�������
5

,
1
�������
5

, 0

When a matrix represents an
underdetermined system of equations,
the matrix has a non-trivial null space.
In this case, the null space is spanned
by a single vector.

In[19]:= NullSpace[m]

Out[19]= ���1, �1, 1��



910 3. Advanced Mathematics in Mathematica � 3.7 Linear Algebra

If you take the solution you get from
LinearSolve, and add any linear
combination of the basis vectors for the
null space, you still get a solution.

In[20]:= m . (v + 4 %[[1]])

Out[20]= �1, 1�

The number of independent equations is the rank of the matrix MatrixRank[m]. The number of
redundant equations is Length[NullSpace[m]]. Note that the sum of these quantities is always equal
to the number of columns in m.

, LinearSolve[m] generate a function for solving equations of the form
m . x == b

Generating LinearSolveFunction objects.

In some applications, you will want to solve equations of the form m	x � b many times with the
same m, but different b. You can do this efficiently in Mathematica by using LinearSolve[m] to create
a single LinearSolveFunction that you can apply to as many vectors as you want.

This creates a LinearSolveFunction . In[21]:= f = LinearSolve[{{1, 4}, {2, 3}}]

Out[21]= LinearSolveFunction�2, 2�, ?>�
You can apply this to a vector. In[22]:= f[{5, 7}]

Out[22]= 	 13
������������
5

,
3
�������
5



You get the same result by giving the
vector as an explicit argument to
LinearSolve.

In[23]:= LinearSolve[{{1, 4}, {2, 3}}, {5, 7}]

Out[23]= 	 13
������������
5

,
3
�������
5



But you can apply f to any vector you
want.

In[24]:= f[{-5, 9}]

Out[24]= 	 51
������������
5

, �
19
������������
5




- 3.7.9 Eigenvalues and Eigenvectors

Eigenvalues[m] a list of the eigenvalues of m

Eigenvectors[m] a list of the eigenvectors of m

Eigensystem[m] a list of the form {eigenvalues, eigenvectors}

Eigenvalues[ N[m] ], etc. numerical eigenvalues

Eigenvalues[ N[m, p] ], etc. numerical eigenvalues, starting with p-digit precision

, CharacteristicPolynomial[m, x] the characteristic polynomial of m

Eigenvalues and eigenvectors.



3.7.9 Eigenvalues and Eigenvectors 911

The eigenvalues of a matrix m are the values Λi for which one can find non-zero vectors vi such that
m	vi � Λivi. The eigenvectors are the vectors vi.

The characteristic polynomial CharacteristicPolynomial[m, x] for an n � n matrix is given by
Det[m - x IdentityMatrix[n]]. The eigenvalues are the roots of this polynomial.

Finding the eigenvalues of an n � n matrix in general involves solving an nth-degree polynomial
equation. For n ! �, therefore, the results cannot in general be expressed purely in terms of explicit
radicals. Root objects can nevertheless always be used, although except for fairly sparse or otherwise
simple matrices the expressions obtained are often unmanageably complex.

Even for a matrix as simple as this, the
explicit form of the eigenvalues is quite
complicated.

In[1]:= Eigenvalues[ {{a, b}, {-b, 2a}} ]

Out[1]= 	 1
�������
2
�3 a �����������������

a2 � 4 b2 �,
1
�������
2
�3 a �����������������

a2 � 4 b2 �

If you give a matrix of approximate real numbers, Mathematica will find the approximate numerical

eigenvalues and eigenvectors.

Here is a � � � numerical matrix. In[2]:= m = {{2.3, 4.5}, {6.7, -1.2}}

Out[2]= ��2.3, 4.5�, �6.7, �1.2��
The matrix has two eigenvalues, in this
case both real.

In[3]:= Eigenvalues[ m ]

Out[3]= �6.31303, �5.21303�
Here are the two eigenvectors of m. In[4]:= Eigenvectors[ m ]

Out[4]= ��0.746335, 0.66557�, ��0.513839, 0.857886��
Eigensystem computes the eigenvalues
and eigenvectors at the same time. The
assignment sets vals to the list of
eigenvalues, and vecs to the list of
eigenvectors.

In[5]:= {vals, vecs} = Eigensystem[m]

Out[5]= ��6.31303, �5.21303�,��0.746335, 0.66557�, ��0.513839, 0.857886���

This verifies that the first eigenvalue
and eigenvector satisfy the appropriate
condition.

In[6]:= m . vecs[[1]] == vals[[1]] vecs[[1]]

Out[6]= True

This finds the eigenvalues of a random

 � 
 matrix. For non-symmetric
matrices, the eigenvalues can have
imaginary parts.

In[7]:= Eigenvalues[ Table[Random[ ], {4}, {4}] ]

Out[7]= �2.30022, 0.319764 � 0.547199 �,
0.319764 � 0.547199 �, 0.449291�

The function Eigenvalues always gives you a list of n eigenvalues for an n � n matrix. The eigen-
values correspond to the roots of the characteristic polynomial for the matrix, and may not necessarily
be distinct. Eigenvectors, on the other hand, gives a list of eigenvectors which are guaranteed to
be independent. If the number of such eigenvectors is less than n, then Eigenvectors appends zero
vectors to the list it returns, so that the total length of the list is always n.

Here is a  �  matrix. In[8]:= mz = {{0, 1, 0}, {0, 0, 1}, {0, 0, 0}}

Out[8]= ��0, 1, 0�, �0, 0, 1�, �0, 0, 0��



912 3. Advanced Mathematics in Mathematica � 3.7 Linear Algebra

The matrix has three eigenvalues, all
equal to zero.

In[9]:= Eigenvalues[mz]

Out[9]= �0, 0, 0�
There is, however, only one
independent eigenvector for the matrix.
Eigenvectors appends two zero
vectors to give a total of three vectors
in this case.

In[10]:= Eigenvectors[mz]

Out[10]= ��1, 0, 0�, �0, 0, 0�, �0, 0, 0��

, Eigenvalues[m, k] the largest k eigenvalues of m

, Eigenvectors[m, k] the corresponding eigenvectors of m

, Eigenvalues[m, -k] the smallest k eigenvalues of m

, Eigenvectors[m, -k] the corresponding eigenvectors of m

Finding largest and smallest eigenvalues.

Eigenvalues sorts numeric eigenvalues so that the ones with large absolute value come first. In
many situations, you may be interested only in the largest or smallest eigenvalues of a matrix. You
can get these efficiently using Eigenvalues[m, k] and Eigenvalues[m, -k].

This computes the exact eigenvalues of
an integer matrix.

In[11]:= Eigenvalues[{{1, 2}, {3, 4}}]

Out[11]= 	 1
�������
2
�5 �������

33 �,
1
�������
2
�5 �������

33 �

The eigenvalues are sorted in
decreasing order of size.

In[12]:= N[%]

Out[12]= �5.37228, �0.372281�
This gives the three eigenvalues with
largest absolute value.

In[13]:= Eigenvalues[Table[N[Tan[i/j]], {i, 10}, {j, 10}], 3]

Out[13]= �10.044, 2.94396 � 6.03728 �, 2.94396 � 6.03728 ��

, Eigenvalues[{m, a}] the generalized eigenvalues of m with respect to a

, Eigenvectors[{m, a}] the generalized eigenvectors of m

, CharacteristicPolynomial[{m, a}, x]
the generalized characteristic polynomial of m

Generalized eigenvalues and eigenvectors.

The generalized eigenvalues for a matrix m with respect to a matrix a are defined to be those Λi for
which m	vi � Λia	vi.



3.7.10 Advanced Matrix Operations 913

The generalized eigenvalues correspond to zeros of the generalized characteristic polynomial
Det[m - x a].

Note that while ordinary matrix eigenvalues always have definite values, some generalized eigen-
values will always be Indeterminate if the generalized characteristic polynomial vanishes, which
happens if m and a share a null space. Note also that generalized eigenvalues can be infinite.

These two matrices share a
one-dimensional null space, so one
generalized eigenvalue is
Indeterminate.

In[14]:= Eigenvalues[{{{1.5, 0}, {0, 0}}, {{2, 0}, {1, 0}}}]

Out[14]= �0., Indeterminate�

, 3.7.10 Advanced Matrix Operations

, SingularValueList[m] the list of non-zero singular values of m

, SingularValueList[m, k] the k largest singular values of m

, SingularValueList[{m, a}] the generalized singular values of m with respect to a

, Norm[m, p] the p-norm of m

Finding singular values and norms of matrices.

The singular values of a matrix m are the square roots of the eigenvalues of m	m�, where � denotes
Hermitian transpose. The number of such singular values is the smaller dimension of the matrix.
SingularValueList sorts the singular values from largest to smallest. Very small singular values are
usually numerically meaningless. With the option setting Tolerance -> t, SingularValueList drops
singular values that are less than a fraction t of the largest singular value. For approximate numerical
matrices, the tolerance is by default slightly greater than zero.

If you multiply the vector for each point in a unit sphere in n-dimensional space by an m�n matrix
m, then you get an m-dimensional ellipsoid, whose principal axes have lengths given by the singular
values of m.

The 2-norm of a matrix Norm[m, 2] is the largest principal axis of the ellipsoid, equal to the largest
singular value of the matrix. This is also the maximum 2-norm length of m	v for any possible unit
vector v.

The p-norm of a matrix Norm[m, p] is in general the maximum p-norm length of m	v that can be
attained. The cases most often considered are p � �, p � � and p � �. Also sometimes considered is
the Frobenius norm, whose square is the trace of m	m�.



914 3. Advanced Mathematics in Mathematica � 3.7 Linear Algebra

LUDecomposition[m] the LU decomposition

, CholeskyDecomposition[m] the Cholesky decomposition

Decomposing matrices into triangular forms.

When you create a LinearSolveFunction using LinearSolve[m], this often works by decom-
posing the matrix m into triangular forms, and sometimes it is useful to be able to get such forms
explicitly.

LU decomposition effectively factors any square matrix into a product of lower- and upper-triangular
matrices. Cholesky decomposition effectively factors any Hermitian positive-definite matrix into a prod-
uct of a lower-triangular matrix and its Hermitian conjugate, which can be viewed as the analog of
finding a square root of a matrix.

PseudoInverse[m] the pseudoinverse

QRDecomposition[m] the QR decomposition

, SingularValueDecomposition[m] the singular value decomposition

, SingularValueDecomposition[{m, a}] the generalized singular value decomposition

Orthogonal decompositions of matrices.

The standard definition for the inverse of a matrix fails if the matrix is not square or is singular.
The pseudoinverse m���� of a matrix m can however still be defined. It is set up to minimize the
sum of the squares of all entries in m	m���� � I, where I is the identity matrix. The pseudoinverse is
sometimes known as the generalized inverse, or the Moore-Penrose inverse. It is particularly used in
doing problems related to least-squares fitting.

QR decomposition writes any matrix m as a product q�r, where q is an orthonormal matrix, � denotes
Hermitian transpose, and r is a triangular matrix, in which all entries below the leading diagonal are
zero.

Singular value decomposition, or SVD, is an underlying element in many numerical matrix algorithms.
The basic idea is to write any matrix m in the form usv�, where s is a matrix with the singular values
of m on its diagonal, u and v are orthonormal matrices, and v� is the Hermitian transpose of v.



3.7.11 Advanced Topic: Tensors 915

JordanDecomposition[m] the Jordan decomposition

SchurDecomposition[m] the Schur decomposition

, SchurDecomposition[{m, a}] the generalized Schur decomposition

Functions related to eigenvalue problems.

Most matrices can be reduced to a diagonal matrix of eigenvalues by applying a matrix of their
eigenvectors as a similarity transformation. But even when there are not enough eigenvectors to do
this, one can still reduce a matrix to a Jordan form in which there are both eigenvalues and Jordan
blocks on the diagonal. Jordan decomposition in general writes any matrix in the form as sjs��.

Numerically more stable is the Schur decomposition, which writes any matrix m in the form qtq�,
where q is an orthonormal matrix, and t is block upper triangular.

- 3.7.11 Advanced Topic: Tensors

Tensors are mathematical objects that give generalizations of vectors and matrices. In Mathematica, a
tensor is represented as a set of lists, nested to a certain number of levels. The nesting level is the
rank of the tensor.

rank 0 scalar

rank 1 vector

rank 2 matrix

rank k rank k tensor

Interpretations of nested lists.

A tensor of rank k is essentially a k-dimensional table of values. To be a true rank k tensor, it must
be possible to arrange the elements in the table in a k-dimensional cuboidal array. There can be no
holes or protrusions in the cuboid.

The indices that specify a particular element in the tensor correspond to the coordinates in the
cuboid. The dimensions of the tensor correspond to the side lengths of the cuboid.

One simple way that a rank k tensor can arise is in giving a table of values for a function of
k variables. In physics, the tensors that occur typically have indices which run over the possible
directions in space or spacetime. Notice, however, that there is no built-in notion of covariant and
contravariant tensor indices in Mathematica: you have to set these up explicitly using metric tensors.



916 3. Advanced Mathematics in Mathematica � 3.7 Linear Algebra

Table[f, {i�, n�}, {i�, n�}, . . . , {ik, nk}]
create an n� � n� � 			 � nk tensor whose elements are the
values of f

Array[a, {n�, n�, . . . , nk}] create an n� � n� � 			 � nk tensor with elements given by
applying a to each set of indices

, ArrayQ[t, n] test whether t is a tensor of rank n

Dimensions[t] give a list of the dimensions of a tensor

, ArrayDepth[t] find the rank of a tensor

MatrixForm[t] print with the elements of t arranged in a
two-dimensional array

Functions for creating and testing the structure of tensors.

Here is a � �  � � tensor. In[1]:= t = Table[i1+i2 i3, {i1, 2}, {i2, 3}, {i3, 2}]

Out[1]= ���2, 3�, �3, 5�, �4, 7��, ��3, 4�, �4, 6�, �5, 8���
This is another way to produce the
same tensor.

In[2]:= Array[(#1 + #2 #3)&, {2, 3, 2}]

Out[2]= ���2, 3�, �3, 5�, �4, 7��, ��3, 4�, �4, 6�, �5, 8���
MatrixForm displays the elements of
the tensor in a two-dimensional array.
You can think of the array as being a
� �  matrix of column vectors.

In[3]:= MatrixForm[ t ]

Out[3]//MatrixForm=

"

#

$$$$$$$$$$$$
� 2

3
� � 3

5
� � 4

7
�

� 3

4
� � 4

6
� � 5

8
�
%

&

''''''''''''
Dimensions gives the dimensions of
the tensor.

In[4]:= Dimensions[ t ]

Out[4]= �2, 3, 2�
Here is the ��� element of the tensor. In[5]:= t[[1, 1, 1]]

Out[5]= 2

ArrayDepth gives the rank of the
tensor.

In[6]:= ArrayDepth[ t ]

Out[6]= 3

The rank of a tensor is equal to the number of indices needed to specify each element. You can
pick out subtensors by using a smaller number of indices.



3.7.11 Advanced Topic: Tensors 917

Transpose[t] transpose the first two indices in a tensor

Transpose[t, {p�, p�, . . . }] transpose the indices in a tensor so that the kth becomes the
pk

th

Tr[t, f] form the generalized trace of the tensor t

Outer[f, t�, t�] form the generalized outer product of the tensors t� and t�
with “multiplication operator” f

t� . t� form the dot product of t� and t� (last index of t� contracted
with first index of t�)

Inner[f, t�, t�, g] form the generalized inner product, with “multiplication
operator” f and “addition operator” g

Tensor manipulation operations.

You can think of a rank k tensor as having k “slots” into which you insert indices. Applying
Transpose is effectively a way of reordering these slots. If you think of the elements of a tensor
as forming a k-dimensional cuboid, you can view Transpose as effectively rotating (and possibly
reflecting) the cuboid.

In the most general case, Transpose allows you to specify an arbitrary reordering to apply to the
indices of a tensor. The function Transpose[T, {p�, p�, . . . , pk}], gives you a new tensor T$ such
that the value of T$i�i�			ik is given by Tip� ip� 			ipk

.

If you originally had an np� � np� � 			 � npk tensor, then by applying Transpose, you will get an
n� � n� � 			 � nk tensor.

Here is a matrix that you can also
think of as a � �  tensor.

In[7]:= m = {{a, b, c}, {ap, bp, cp}}

Out[7]= ��a, b, c�, �ap, bp, cp��
Applying Transpose gives you a  � �
tensor. Transpose effectively
interchanges the two “slots” for tensor
indices.

In[8]:= mt = Transpose[m]

Out[8]= ��a, ap�, �b, bp�, �c, cp��

The element m[[2, 3]] in the original
tensor becomes the element m[[3, 2]]
in the transposed tensor.

In[9]:= { m[[2, 3]], mt[[3, 2]] }

Out[9]= �cp, cp�
This produces a � �  � � � � tensor. In[10]:= t = Array[a, {2, 3, 1, 2}]

Out[10]= ����a1, 1, 1, 1�, a1, 1, 1, 2���,��a1, 2, 1, 1�, a1, 2, 1, 2���,��a1, 3, 1, 1�, a1, 3, 1, 2����,���a2, 1, 1, 1�, a2, 1, 1, 2���,��a2, 2, 1, 1�, a2, 2, 1, 2���,��a2, 3, 1, 1�, a2, 3, 1, 2�����



918 3. Advanced Mathematics in Mathematica � 3.7 Linear Algebra

This transposes the first two levels
of t.

In[11]:= tt1 = Transpose[t]

Out[11]= ����a1, 1, 1, 1�, a1, 1, 1, 2���,��a2, 1, 1, 1�, a2, 1, 1, 2����,���a1, 2, 1, 1�, a1, 2, 1, 2���,��a2, 2, 1, 1�, a2, 2, 1, 2����,���a1, 3, 1, 1�, a1, 3, 1, 2���,��a2, 3, 1, 1�, a2, 3, 1, 2�����
The result is a  � � � � � � tensor. In[12]:= Dimensions[ tt1 ]

Out[12]= �3, 2, 1, 2�
If you have a tensor that contains lists of the same length at different levels, then you can use

Transpose to effectively collapse different levels.

This collapses all three levels, giving a
list of the elements on the “main
diagonal”.

In[13]:= Transpose[Array[a, {3, 3, 3}], {1, 1, 1}]

Out[13]= �a1, 1, 1�, a2, 2, 2�, a3, 3, 3��
This collapses only the first two levels. In[14]:= Transpose[Array[a, {2, 2, 2}], {1, 1}]

Out[14]= ��a1, 1, 1�, a1, 1, 2��, �a2, 2, 1�, a2, 2, 2���
You can also use Tr to extract diagonal elements of a tensor.

This forms the ordinary trace of a rank
3 tensor.

In[15]:= Tr[Array[a, {3, 3, 3}]]

Out[15]= a1, 1, 1� � a2, 2, 2� � a3, 3, 3�
Here is a generalized trace, with
elements combined into a list.

In[16]:= Tr[Array[a, {3, 3, 3}], List]

Out[16]= �a1, 1, 1�, a2, 2, 2�, a3, 3, 3��
This combines diagonal elements only
down to level 2.

In[17]:= Tr[Array[a, {3, 3, 3}], List, 2]

Out[17]= ��a1, 1, 1�, a1, 1, 2�, a1, 1, 3��,�a2, 2, 1�, a2, 2, 2�, a2, 2, 3��,�a3, 3, 1�, a3, 3, 2�, a3, 3, 3���
Outer products, and their generalizations, are a way of building higher-rank tensors from lower-rank

ones. Outer products are also sometimes known as direct, tensor or Kronecker products.

From a structural point of view, the tensor you get from Outer[f, t, u] has a copy of the structure
of u inserted at the “position” of each element in t. The elements in the resulting structure are obtained
by combining elements of t and u using the function f.

This gives the “outer f” of two vectors.
The result is a matrix.

In[18]:= Outer[ f, {a, b}, {ap, bp} ]

Out[18]= ��fa, ap�, fa, bp��, �fb, ap�, fb, bp���
If you take the “outer f” of a length 3
vector with a length 2 vector, you get a
 � � matrix.

In[19]:= Outer[ f, {a, b, c}, {ap, bp} ]

Out[19]= ��fa, ap�, fa, bp��,�fb, ap�, fb, bp��, �fc, ap�, fc, bp���



3.7.11 Advanced Topic: Tensors 919

The result of taking the “outer f” of a
� � � matrix and a length  vector is a
� � � �  tensor.

In[20]:= Outer[ f, {{m11, m12}, {m21, m22}}, {a, b, c} ]

Out[20]= ���fm11, a�, fm11, b�, fm11, c��,�fm12, a�, fm12, b�, fm12, c���,��fm21, a�, fm21, b�, fm21, c��,�fm22, a�, fm22, b�, fm22, c����
Here are the dimensions of the tensor. In[21]:= Dimensions[ % ]

Out[21]= �2, 2, 3�
If you take the generalized outer product of an m� �m� � 			 �mr tensor and an n� �n� � 			 �ns tensor,

you get an m� � 			 �mr � n� � 			 � ns tensor. If the original tensors have ranks r and s, your result will
be a rank r � s tensor.

In terms of indices, the result of applying Outer to two tensors Ti�i�			ir and Uj�j�			js is the tensor
Vi�i�			irj�j�			js with elements f[Ti�i�			ir,Uj�j�			js].

In doing standard tensor calculations, the most common function f to use in Outer is Times,
corresponding to the standard outer product.

Particularly in doing combinatorial calculations, however, it is often convenient to take f to be List.
Using Outer, you can then get combinations of all possible elements in one tensor, with all possible
elements in the other.

In constructing Outer[f, t, u] you effectively insert a copy of u at every point in t. To form
Inner[f, t, u], you effectively combine and collapse the last dimension of t and the first dimension
of u. The idea is to take an m� �m� � 			 � mr tensor and an n� � n� � 			 � ns tensor, with mr � n�, and
get an m� �m� � 			 �mr�� � n� � 			 � ns tensor as the result.

The simplest examples are with vectors. If you apply Inner to two vectors of equal length, you
get a scalar. Inner[f, v�, v�, g] gives a generalization of the usual scalar product, with f playing the
role of multiplication, and g playing the role of addition.

This gives a generalization of the
standard scalar product of two vectors.

In[22]:= Inner[f, {a, b, c}, {ap, bp, cp}, g]

Out[22]= gfa, ap�, fb, bp�, fc, cp��
This gives a generalization of a matrix
product.

In[23]:= Inner[f, {{1, 2}, {3, 4}}, {{a, b}, {c, d}}, g]

Out[23]= ��gf1, a�, f2, c��, gf1, b�, f2, d���,�gf3, a�, f4, c��, gf3, b�, f4, d����
Here is a  � � � � tensor. In[24]:= a = Array[1&, {3, 2, 2}]

Out[24]= ���1, 1�, �1, 1��, ��1, 1�, �1, 1��, ��1, 1�, �1, 1���
Here is a � �  � � tensor. In[25]:= b = Array[2&, {2, 3, 1}]

Out[25]= ���2�, �2�, �2��, ��2�, �2�, �2���
This gives a  � � �  � � tensor. In[26]:= a . b

Out[26]= ����4�, �4�, �4��, ��4�, �4�, �4���,���4�, �4�, �4��, ��4�, �4�, �4���,���4�, �4�, �4��, ��4�, �4�, �4����



920 3. Advanced Mathematics in Mathematica � 3.7 Linear Algebra

Here are the dimensions of the result. In[27]:= Dimensions[ % ]

Out[27]= �3, 2, 3, 1�
You can think of Inner as performing a “contraction” of the last index of one tensor with the first

index of another. If you want to perform contractions across other pairs of indices, you can do so by
first transposing the appropriate indices into the first or last position, then applying Inner, and then
transposing the result back.

In many applications of tensors, you need to insert signs to implement antisymmetry. The function
Signature[{i�, i�, . . . }], which gives the signature of a permutation, is often useful for this purpose.

Outer[f, t�, t�, . . . ] form a generalized outer product by combining the
lowest-level elements of t�, t�, . . .

Outer[f, t�, t�, . . . , n] treat only sublists at level n as separate elements

Outer[f, t�, t�, . . . , n�, n�, . . . ] treat only sublists at level ni in ti as separate elements

Inner[f, t�, t�, g] form a generalized inner product using the lowest-level
elements of t�

Inner[f, t�, t�, g, n] treat only sublists at level n in t� as separate elements

Treating only certain sublists in tensors as separate elements.

Here every single symbol is treated as
a separate element.

In[28]:= Outer[f, {{i, j}, {k, l}}, {x, y}]

Out[28]= ���fi, x�, fi, y��, �fj, x�, fj, y���,��fk, x�, fk, y��, �fl, x�, fl, y����
But here only sublists at level 1 are
treated as separate elements.

In[29]:= Outer[f, {{i, j}, {k, l}}, {x, y}, 1]

Out[29]= ��f�i, j�, x�, f�i, j�, y��,�f�k, l�, x�, f�k, l�, y���

, 3.7.12 Sparse Arrays

Many large-scale applications of linear algebra involve matrices that have many elements, but com-
paratively few that are non-zero. You can represent such sparse matrices efficiently in Mathematica
using SparseArray objects, as discussed in Section 2.4.5. SparseArray objects work by having lists
of rules that specify where non-zero values appear.



3.7.12 Sparse Arrays 921

, SparseArray[list] a SparseArray version of an ordinary list

, SparseArray[{{i�, j�} -> v�, {i�, j�} -> v�, . . . }, {m, n}]
an m � n sparse array with element {ik, jk} having value vk

, SparseArray[{{i�, j�}, {i�, j�}, . . . } -> {v�, v�, . . . }, {m, n}]
the same sparse array

, Normal[array] the ordinary list corresponding to a SparseArray

Specifying sparse arrays.

As discussed in Section 2.4.5, you can use patterns to specify collections of elements in sparse
arrays. You can also have sparse arrays that correspond to tensors of any rank.

This makes a �� � �� sparse numerical
matrix, with 148 non-zero elements.

In[1]:= m = SparseArray[{{30, _} -> 11.5, {_, 30} -> 21.5,
{i_, i_} -> i}, {50, 50}]

Out[1]= SparseArray?148>, �50, 50��
This shows a visual representation of
the matrix elements.

In[2]:= ListDensityPlot[-m]

0 10 20 30 40 50
0

10

20

30

40

50

Here are the four largest eigenvalues of
the matrix.

In[3]:= Eigenvalues[m, 4]

Out[3]= �129.846, �92.6878, 12.8319, 2.42012�
Dot gives a SparseArray result. In[4]:= m . m

Out[4]= SparseArray?2500>, �50, 50��
You can extract parts just like in an
ordinary array.

In[5]:= %[[20, 20]]

Out[5]= 647.25

You can apply most standard structural operations directly to SparseArray objects, just as you
would to ordinary lists. When the results are sparse, they typically return SparseArray objects.



922 3. Advanced Mathematics in Mathematica � 3.7 Linear Algebra

Dimensions[m] the dimensions of an array

, ArrayRules[m] the rules for non-zero elements in an array

m[[i, j]] element i, j

m[[i]] the ith row

m[[All, j]] the ith column

m[[i, j]] = v reset element i, j

A few structural operations that can be done directly on SparseArray objects.

This gives the first column of m. It has
only 2 non-zero elements.

In[6]:= m[[All, 1]]

Out[6]= SparseArray?2>, �50��
This adds 3 to each element in the first
column of m.

In[7]:= m[[All, 1]] = 3 + m[[All, 1]]

Out[7]= SparseArray?2>, �50�, 3�
Now all the elements in the first
column are non-zero.

In[8]:= m[[All, 1]]

Out[8]= SparseArray?50>, �50��
This gives the rules for the non-zero
elements on the second row.

In[9]:= ArrayRules[m[[2]]]

Out[9]= ��1� � 3, �2� � 2, �30� � 21.5, �_� � 0�

, SparseArray[rules] generate a sparse array from rules

, CoefficientArrays[{eqns�, eqns�, . . . }, {x�, x�, . . . }]
get arrays of coefficients from equations

, Import["file.mtx"] import a sparse array from a file

Typical ways to get sparse arrays.

This generates a tridiagonal random
matrix.

In[10]:= SparseArray[{i_, j_} /; Abs[i-j] <= 1 :> Random[],
{100, 100}]

Out[10]= SparseArray?298>, �100, 100��
Even the tenth power of the matrix is
still fairly sparse.

In[11]:= MatrixPower[%, 10]

Out[11]= SparseArray?1990>, �100, 100��
This extracts the coefficients as sparse
arrays.

In[12]:= s = CoefficientArrays[{c + x - z == 0, x + 2 y + z == 0},
{x, y, z}]

Out[12]= �SparseArray?1>, �2��, SparseArray?5>, �2, 3���



3.7.12 Sparse Arrays 923

Here are the corresponding ordinary
arrays.

In[13]:= Normal[%]

Out[13]= ��c, 0�, ��1, 0, �1�, �1, 2, 1���
This reproduces the original forms. In[14]:= s[[1]] + s[[2]] . {x, y, z}

Out[14]= �c � x � z, x � 2 y � z�
CoefficientArrays can handle general
polynomial equations.

In[15]:= s = CoefficientArrays[
{c + x^2 - z == 0, x^2 + 2 y + z^2 == 0},

{x, y, z}]

Out[15]= �SparseArray?1>, �2��, SparseArray?2>, �2, 3��,
SparseArray?3>, �2, 3, 3���

The coefficients of the quadratic part
are given in a rank 3 tensor.

In[16]:= Normal[%]

Out[16]= ��c, 0�, ��0, 0, �1�, �0, 2, 0��,���1, 0, 0�, �0, 0, 0�, �0, 0, 0��,��1, 0, 0�, �0, 0, 0�, �0, 0, 1����
This reproduces the original forms. In[17]:= s[[1]] + s[[2]] . {x, y, z} + s[[3]] . {x, y, z} . {x, y, z}

Out[17]= �c � x2 � z, x2 � 2 y � z2�
For machine-precision numerical sparse matrices, Mathematica supports standard file formats such

as Matrix Market (.mtx) and Harwell-Boeing. You can import and export matrices in these formats
using Import and Export.



924 3. Advanced Mathematics in Mathematica � 3.8 Numerical Operations on Data

3.8 Numerical Operations on Data

, 3.8.1 Basic Statistics

, Mean[list] mean (average)

, Median[list] median (central value)

Max[list] maximum value

, Variance[list] variance

, StandardDeviation[list] standard deviation

, Quantile[list, q] qth quantile

, Total[list] total

Basic descriptive statistics operations.

Given a list with n elements xi, the mean Mean[list] is defined to be Μ�x� � x̄ � � xi�n.

The variance Variance[list] is defined to be var�x� � Σ��x� � � �xi � Μ�x����n.

The standard deviation StandardDeviation[list] is defined to be Σ�x� �
 

var�x�.

If the elements in list are thought of as being selected at random according to some probability
distribution, then the mean gives an estimate of where the center of the distribution is located, while
the standard deviation gives an estimate of how wide the dispersion in the distribution is.

The median Median[list] effectively gives the value at the halfway point in the sorted list Sort[list].
It is often considered a more robust measure of the center of a distribution than the mean, since it
depends less on outlying values.

The qth quantile Quantile[list, q] effectively gives the value that is q of the way through the
sorted list Sort[list].

For a list of length n, Mathematica defines Quantile[list, q] to be Sort[list][[Ceiling[n q]]].

There are, however, about ten other definitions of quantile in use, all potentially giving slightly
different results. Mathematica covers the common cases by introducing four quantile parameters in the
form Quantile[list, q, {{a, b}, {c, d}}]. The parameters a and b in effect define where in the list
should be considered a fraction q of the way through. If this corresponds to an integer position, then
the element at that position is taken to be the qth quantile. If it is not an integer position, then a linear
combination of the elements on either side is used, as specified by c and d.



3.8.1 Basic Statistics 925

The position in a sorted list s for the qth quantile is taken to be k � a � �n � b� q. If k is an integer,
then the quantile is sk. Otherwise, it is s$k% � �s&k' � s$k%��c� d�k� $k%��, with the indices taken to be � or
n if they are out of range.

{{0, 0}, {1, 0}} inverse empirical CDF (default)

{{0, 0}, {0, 1}} linear interpolation (California method)

{{1/2, 0}, {0, 0}} element numbered closest to qn

{{1/2, 0}, {0, 1}} linear interpolation (hydrologist method)

{{0, 1}, {0, 1}} mean-based estimate (Weibull method)

{{1, -1}, {0, 1}} mode-based estimate

{{1/3, 1/3}, {0, 1}} median-based estimate

{{3/8, 1/4}, {0, 1}} normal distribution estimate

Common choices for quantile parameters.

Whenever d � �, the value of the qth quantile is always equal to some actual element in list, so that
the result changes discontinuously as q varies. For d � �, the qth quantile interpolates linearly between
successive elements in list. Median is defined to use such an interpolation.

Note that Quantile[list, q] yields quartiles when q � m�
 and percentiles when q � m����.

, Mean[{x�, x�, . . . }] the mean of the xi

, Mean[{{x�, y�, . . . }, {x�, y�, . . . }, . . . }]
a list of the means of the xi, yi, . . .

Handling multidimensional data.

Sometimes each item in your data may involve a list of values. The basic statistics functions in
Mathematica automatically apply to all corresponding elements in these lists.

This separately finds the mean of each
“column” of data.

In[1]:= Mean[{{x1, y1}, {x2, y2}, {x3, y3}}]

Out[1]= 	 1
�������
3
�x1 � x2 � x3�,

1
�������
3
�y1 � y2 � y3�


Note that you can extract the elements in the ith “column” of a multidimensional list using
list[[All, i]].



926 3. Advanced Mathematics in Mathematica � 3.8 Numerical Operations on Data

The standard set of packages distributed with Mathematica includes several for doing more sophis-
ticated statistical analyses, as mentioned on page 109.

- 3.8.2 Curve Fitting

There are many situations where one wants to find a formula that best fits a given set of data. One
way to do this in Mathematica is to use Fit.

Fit[{f�, f�, . . . }, {fun�, fun�, . . . }, x] find a linear combination of the funi that best fits
the values fi

Basic linear fits.

Here is a table of the first 20 primes. In[1]:= fp = Table[Prime[x], {x, 20}]

Out[1]= �2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71�

Here is a plot of this “data”. In[2]:= gp = ListPlot[ fp ]

5 10 15 20

10

20

30

40

50

60

70

This gives a linear fit to the list of
primes. The result is the best linear
combination of the functions 1 and x.

In[3]:= Fit[fp, {1, x}, x]

Out[3]= �7.67368 � 3.77368 x



3.8.2 Curve Fitting 927

Here is a plot of the fit. In[4]:= Plot[%, {x, 0, 20}]

5 10 15 20

10

20

30

40

50

60

Here is the fit superimposed on the
original data.

In[5]:= Show[%, gp]

5 10 15 20

20

40

60

This gives a quadratic fit to the data. In[6]:= Fit[fp, {1, x, x^2}, x]

Out[6]= �1.92368 � 2.2055 x � 0.0746753 x2

Here is a plot of the quadratic fit. In[7]:= Plot[%, {x, 0, 20}]

5 10 15 20

10

20

30

40

50

60

70



928 3. Advanced Mathematics in Mathematica � 3.8 Numerical Operations on Data

This shows the fit superimposed on the
original data. The quadratic fit is
better than the linear one.

In[8]:= Show[%, gp]

5 10 15 20

10

20

30

40

50

60

70

{f�, f�, . . . } data points obtained when a single coordinate takes on
values 1, 2, . . .

{{x�, f�}, {x�, f�}, . . . } data points obtained when a single coordinate takes on
values x�, x�, . . .

{{x�, y�, . . . , f�}, {x�, y�, . . . , f�}, . . . }
data points obtained with values xi, yi, . . . of a sequence of
coordinates

Ways of specifying data.

If you give data in the form {f�, f�, . . . } then Fit will assume that the successive fi correspond
to values of a function at successive integer points 1, 2, . . . . But you can also give Fit data that
corresponds to the values of a function at arbitrary points, in one or more dimensions.

Fit[data, {fun�, fun�, . . . }, {x, y, . . . }]
fit to a function of several variables

Multivariate fits.

This gives a table of the values of x, y
and � � �x � xy. You need to use
Flatten to get it in the right form for
Fit.

In[9]:= Flatten[ Table[ {x, y, 1 + 5x - x y},
{x, 0, 1, 0.4}, {y, 0, 1, 0.4} ], 1]

Out[9]= ��0, 0, 1�, �0, 0.4, 1�, �0, 0.8, 1�,�0.4, 0, 3.�, �0.4, 0.4, 2.84�, �0.4, 0.8, 2.68�,�0.8, 0, 5.�, �0.8, 0.4, 4.68�, �0.8, 0.8, 4.36��
This produces a fit to a function of two
variables.

In[10]:= Fit[ % , {1, x, y, x y}, {x, y} ]

Out[10]= 1. � 5. x � 4.53999�10�15 y � 1. x y



3.8.2 Curve Fitting 929

Fit takes a list of functions, and uses a definite and efficient procedure to find what linear combi-
nation of these functions gives the best least-squares fit to your data. Sometimes, however, you may
want to find a nonlinear fit that does not just consist of a linear combination of specified functions.
You can do this using FindFit, which takes a function of any form, and then searches for values of
parameters that yield the best fit to your data.

, FindFit[data, form, {par�, par�, . . . }, x]
search for values of the pari that make form best fit data

, FindFit[data, form, pars, {x, y, . . . }]
fit multivariate data

Searching for general fits to data.

This fits the list of primes to a simple
linear combination of terms.

In[11]:= FindFit[fp, a + b x + c Exp[x], {a, b, c}, x]

Out[11]=  a � �6.78932, b � 3.64309, c � 1.26883�10�8!
The result is the same as from Fit. In[12]:= Fit[fp, {1, x, Exp[x]}, x]

Out[12]= �6.78932 � 1.26883�10�8 �x � 3.64309 x

This fits to a nonlinear form, which
cannot be handled by Fit.

In[13]:= FindFit[fp, a x Log[b + c x], {a, b, c}, x]

Out[13]= �a � 1.42076, b � 1.65558, c � 0.534645�
By default, both Fit and FindFit produce least-squares fits, which are defined to minimize the

quantity Χ� � �i /ri/
�, where the ri are residuals giving the difference between each original data point

and its fitted value. One can, however, also consider fits based on other norms. If you set the option
NormFunction -> u, then FindFit will attempt to find the fit that minimizes the quantity u[r], where
r is the list of residuals. The default is NormFunction -> Norm, corresponding to a least-squares fit.

This uses the �-norm, which
minimizes the maximum distance
between the fit and the data. The
result is slightly different from
least-squares.

In[14]:= FindFit[fp, a x Log[b + c x], {a, b, c}, x,
NormFunction -> (Norm[#, Infinity] &)]

Out[14]= �a � 1.15077, b � 1.0023, c � 1.04686�

FindFit works by searching for values of parameters that yield the best fit. Sometimes you may
have to tell it where to start in doing this search. You can do this by giving parameters in the form
{{a, a�}, {b, b�}, . . . }. FindFit also has various options that you can set to control how it does its
search.



930 3. Advanced Mathematics in Mathematica � 3.8 Numerical Operations on Data

option name default value

, NormFunction Norm the norm to use

AccuracyGoal Automatic number of digits of accuracy to try to get

PrecisionGoal Automatic number of digits of precision to try to get

WorkingPrecision MachinePrecision precision to use in internal computations

MaxIterations 100 maximum number of iterations to use

, StepMonitor None expression to evaluate whenever a step is
taken

, EvaluationMonitor None expression to evaluate whenever form is
evaluated

Method Automatic method to use

Options for FindFit.

3.8.3 Approximate Functions and Interpolation

In many kinds of numerical computations, it is convenient to introduce approximate functions. Approx-
imate functions can be thought of as generalizations of ordinary approximate real numbers. While
an approximate real number gives the value to a certain precision of a single numerical quantity,
an approximate function gives the value to a certain precision of a quantity which depends on one
or more parameters. Mathematica uses approximate functions, for example, to represent numerical
solutions to differential equations obtained with NDSolve, as discussed in Section 1.6.4.

Approximate functions in Mathematica are represented by InterpolatingFunction objects. These
objects work like the pure functions discussed in Section 2.2.5. The basic idea is that when given
a particular argument, an InterpolatingFunction object finds the approximate function value that
corresponds to that argument.

The InterpolatingFunction object contains a representation of the approximate function based
on interpolation. Typically it contains values and possibly derivatives at a sequence of points. It
effectively assumes that the function varies smoothly between these points. As a result, when you
ask for the value of the function with a particular argument, the InterpolatingFunction object can
interpolate to find an approximation to the value you want.



3.8.3 Approximate Functions and Interpolation 931

Interpolation[{f�, f�, . . . }] construct an approximate function with values fi at
successive integers

Interpolation[{{x�, f�}, {x�, f�}, . . . }]
construct an approximate function with values fi at points xi

Constructing approximate functions.

Here is a table of the values of the sine
function.

In[1]:= Table[{x, Sin[x]}, {x, 0, 2, 0.25}]

Out[1]= ��0, 0�, �0.25, 0.247404�, �0.5, 0.479426�,�0.75, 0.681639�, �1., 0.841471�, �1.25, 0.948985�,�1.5, 0.997495�, �1.75, 0.983986�, �2., 0.909297��
This constructs an approximate function
which represents these values.

In[2]:= sin = Interpolation[%]

Out[2]= InterpolatingFunction��0., 2.��, ?>�
The approximate function reproduces
each of the values in the original table.

In[3]:= sin[0.25]

Out[3]= 0.247404

It also allows you to get approximate
values at other points.

In[4]:= sin[0.3]

Out[4]= 0.2955

In this case the interpolation is a fairly
good approximation to the true sine
function.

In[5]:= Sin[0.3]

Out[5]= 0.29552

You can work with approximate functions much as you would with any other Mathematica func-
tions. You can plot approximate functions, or perform numerical operations such as integration or
root finding.

If you give a non-numerical argument,
the approximate function is left in
symbolic form.

In[6]:= sin[x]

Out[6]= InterpolatingFunction��0., 2.��, ?>�x�
Here is a numerical integral of the
approximate function.

In[7]:= NIntegrate[sin[x]^2, {x, 0, Pi/2}]

Out[7]= 0.78531

Here is the same numerical integral for
the true sine function.

In[8]:= NIntegrate[Sin[x]^2, {x, 0, Pi/2}]

Out[8]= 0.785398



932 3. Advanced Mathematics in Mathematica � 3.8 Numerical Operations on Data

A plot of the approximate function is
essentially indistinguishable from the
true sine function.

In[9]:= Plot[sin[x], {x, 0, 2}]

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

If you differentiate an approximate function, Mathematica will return another approximate function
that represents the derivative.

This finds the derivative of the
approximate sine function, and
evaluates it at Π��.

In[10]:= sin'[Pi/6]

Out[10]= 0.865372

The result is close to the exact one. In[11]:= N[Cos[Pi/6]]

Out[11]= 0.866025

InterpolatingFunction objects contain all the information Mathematica needs about approximate
functions. In standard Mathematica output format, however, only the part that gives the domain of
the InterpolatingFunction object is printed explicitly. The lists of actual parameters used in the
InterpolatingFunction object are shown only in iconic form.

In standard output format, the only
part of an InterpolatingFunction
object printed explicitly is its domain.

In[12]:= sin

Out[12]= InterpolatingFunction��0., 2.��, ?>�
If you ask for a value outside of the
domain, Mathematica prints a warning,
then uses extrapolation to find a result.

In[13]:= sin[3]

InterpolatingFunction::dmval:
Input value {3} lies outside the range of data in the

interpolating function. Extrapolation will be used.

Out[13]= 0.0155471

The more information you give about the function you are trying to approximate, the better the
approximation Mathematica constructs can be. You can, for example, specify not only values of the
function at a sequence of points, but also derivatives.

Interpolation[{{x�, {f�, df�, ddf�, . . . }}, . . . }]
construct an approximate function with specified derivatives
at points xi

Constructing approximate functions with specified derivatives.



3.8.3 Approximate Functions and Interpolation 933

Interpolation works by fitting polynomial curves between the points you specify. You can use
the option InterpolationOrder to specify the degree of these polynomial curves. The default setting
is InterpolationOrder -> 3, yielding cubic curves.

This makes a table of values of the
cosine function.

In[14]:= tab = Table[{x, Cos[x]}, {x, 0, 6}] ;

This creates an approximate function
using linear interpolation between the
values in the table.

In[15]:= Interpolation[tab, InterpolationOrder -> 1]

Out[15]= InterpolatingFunction��0, 6��, ?>�
The approximate function consists of a
collection of straight-line segments.

In[16]:= Plot[%[x], {x, 0, 6}]

1 2 3 4 5 6

-1

-0.5

0.5

1

With the default setting
InterpolationOrder -> 3, cubic
curves are used, and the function looks
smooth.

In[17]:= Plot[Evaluate[Interpolation[tab]][x], {x, 0, 6}]

1 2 3 4 5 6

-1

-0.5

0.5

1

Increasing the setting for InterpolationOrder typically leads to smoother approximate functions.
However, if you increase the setting too much, spurious wiggles may develop.



934 3. Advanced Mathematics in Mathematica � 3.8 Numerical Operations on Data

ListInterpolation[{{f��, f��, . . . }, {f��, . . . }, . . . }]
construct an approximate function from a two-dimensional
grid of values at integer points

ListInterpolation[list, {{xmin, xmax}, {ymin, ymax}}]
assume the values are from an evenly spaced grid with the
specified domain

ListInterpolation[list, {{x�, x�, . . . }, {y�, y�, . . . }}]
assume the values are from a grid with the specified grid
lines

Interpolating multidimensional arrays of data.

This interpolates an array of values
from integer grid points.

In[18]:= ListInterpolation[
Table[1.5/(x^2 + y^3), {x, 10}, {y, 15}]]

Out[18]= InterpolatingFunction��1., 10.�, �1., 15.��, ?>�
Here is the value at a particular
position.

In[19]:= %[6.5, 7.2]

Out[19]= 0.00360759

Here is another array of values. In[20]:= tab = Table[1.5/(x^2 + y^3),
{x, 5.5, 7.2, .2}, {y, 2.3, 8.9, .1}] ;

To interpolate this array you explicitly
have to tell Mathematica the domain it
covers.

In[21]:= ListInterpolation[tab, {{5.5, 7.2}, {2.3, 8.9}}]

Out[21]= InterpolatingFunction��5.5, 7.2�, �2.3, 8.9��, ?>�
ListInterpolation works for arrays of any dimension, and in each case it produces an

InterpolatingFunction object which takes the appropriate number of arguments.

This interpolates a three-dimensional
array.

In[22]:= ListInterpolation[
Array[#1^2 + #2^2 - #3^2 &, {10, 10, 10}]] ;

The resulting InterpolatingFunction
object takes three arguments.

In[23]:= %[3.4, 7.8, 2.6]

Out[23]= 65.64

Mathematica can handle not only purely numerical approximate functions, but also ones which
involve symbolic parameters.

This generates an
InterpolatingFunction that depends
on the parameters a and b.

In[24]:= sfun = ListInterpolation[{1 + a, 2, 3, 4 + b, 5}]

Out[24]= InterpolatingFunction��1, 5��, ?>�
This shows how the interpolated value
at 2.2 depends on the parameters.

In[25]:= sfun[2.2] // Simplify

Out[25]= 2.2 � 0.048 a � 0.032 b

With the default setting for
InterpolationOrder used, the value
at this point no longer depends on a.

In[26]:= sfun[3.8] // Simplify

Out[26]= 3.8 � 0.864 b



3.8.4 Fourier Transforms 935

In working with approximate functions, you can quite often end up with complicated combi-
nations of InterpolatingFunction objects. You can always tell Mathematica to produce a single
InterpolatingFunction object valid over a particular domain by using FunctionInterpolation.

This generates a new
InterpolatingFunction object valid in
the domain 0 to 1.

In[27]:= FunctionInterpolation[x + sin[x^2], {x, 0, 1}]

Out[27]= InterpolatingFunction��0., 1.��, ?>�
This generates a nested
InterpolatingFunction object.

In[28]:= ListInterpolation[{3, 4, 5, sin[a], 6}]

Out[28]= InterpolatingFunction��1, 5��, ?>�
This produces a pure two-dimensional
InterpolatingFunction object.

In[29]:= FunctionInterpolation[a^2 + %[x], {x, 1, 3}, {a, 0, 1.5}]

Out[29]= InterpolatingFunction��1., 3.�, �0., 1.5��, ?>�

FunctionInterpolation[expr, {x, xmin, xmax}]
construct an approximate function by evaluating expr with x
ranging from xmin to xmax

FunctionInterpolation[expr, {x, xmin, xmax}, {y, ymin, ymax}, . . . ]
construct a higher-dimensional approximate function

Constructing approximate functions by evaluating expressions.

3.8.4 Fourier Transforms

A common operation in analyzing various kinds of data is to find the Fourier transform, or spectrum,
of a list of values. The idea is typically to pick out components of the data with particular frequencies,
or ranges of frequencies.

Fourier[{u�, u�, . . . , un}] Fourier transform

InverseFourier[{v�, v�, . . . , vn}] inverse Fourier transform

Fourier transforms.

Here is some data, corresponding to a
square pulse.

In[1]:= {-1, -1, -1, -1, 1, 1, 1, 1}

Out[1]= ��1, �1, �1, �1, 1, 1, 1, 1�
Here is the Fourier transform of the
data. It involves complex numbers.

In[2]:= Fourier[%]

Out[2]= �0. � 0. �, �0.707107 � 1.70711 �,
0. � 0. �, �0.707107 � 0.292893 �,
0. � 0. �, �0.707107 � 0.292893 �,
0. � 0. �, �0.707107 � 1.70711 ��



936 3. Advanced Mathematics in Mathematica � 3.8 Numerical Operations on Data

Here is the inverse Fourier transform. In[3]:= InverseFourier[%]

Out[3]= ��1., �1., �1., �1., 1., 1., 1., 1.�
Fourier works whether or not your
list of data has a length which is a
power of two.

In[4]:= Fourier[{1, -1, 1}]

Out[4]= �0.57735 � 0. �, 0.57735 � 1. �, 0.57735 � 1. ��
This generates a length-200 list
containing a periodic signal with
random noise added.

In[5]:= data = Table[ N[Sin[30 2 Pi n/200] + (Random[ ] - 1/2)],
{n, 200} ] ;

The data looks fairly random if you
plot it directly.

In[6]:= ListPlot[ data, PlotJoined -> True ]

50 100 150 200

-1

-0.5

0.5

1

1.5

The Fourier transform, however, shows
a strong peak at � � �, and a
symmetric peak at ��� � �, reflecting
the frequency component of the
original signal near �����.

In[7]:= ListPlot[ Abs[Fourier[data]], PlotJoined -> True,
PlotRange -> All ]

50 100 150 200

1

2

3

4

5

6

7

In Mathematica, the discrete Fourier transform vs of a list ur of length n is by default defined to be
�
 

n
�n

r�� ure�Πi�r����s����n. Notice that the zero frequency term appears at position 1 in the resulting list.

The inverse discrete Fourier transform ur of a list vs of length n is by default defined to be
�
 

n
�n

s�� vse��Πi�r����s����n .

In different scientific and technical fields different conventions are often used for defining discrete
Fourier transforms. The option FourierParameters in Mathematica allows you to choose any of these
conventions you want.



3.8.5 Convolutions and Correlations 937

common convention setting discrete Fourier transform inverse discrete Fourier transform

Mathematica default {0, 1} �
n��� �n

r�� ure�Πi�r����s����n �
n��� �n

s�� vse��Πi�r����s����n

data analysis {-1, 1} �
n �n

r�� ure�Πi�r����s����n �n
s�� vse��Πi�r����s����n

signal processing {1, -1} �n
r�� ure��Πi�r����s����n �

n �n
s�� vse�Πi�r����s����n

general case {a, b} �
n���a��� �n

r�� ure�Πib�r����s����n �
n���a��� �n

s�� vse��Πib�r����s����n

Typical settings for FourierParameters with various conventions.

Fourier[{{u��, u��, . . . }, {u��, u��, . . . }, . . . }]
two-dimensional Fourier transform

Two-dimensional Fourier transform.

Mathematica can find Fourier transforms for data in any number of dimensions. In n dimensions,
the data is specified by a list nested n levels deep. Two-dimensional Fourier transforms are often used
in image processing.

3.8.5 Convolutions and Correlations

Convolution and correlation are central to many kinds of operations on lists of data. They are used
in such areas as signal and image processing, statistical data analysis, approximations to partial
differential equations, as well as operations on digit sequences and power series.

In both convolution and correlation the basic idea is to combine a kernel list with successive sublists
of a list of data. The convolution of a kernel Kr with a list us has the general form krKrus�r, while the
correlation has the general form krKrus�r.

ListConvolve[kernel, list] form the convolution of kernel with list

ListCorrelate[kernel, list] form the correlation of kernel with list

Convolution and correlation of lists.

This forms the convolution of the
kernel {x, y} with a list of data.

In[1]:= ListConvolve[{x,y}, {a,b,c,d,e}]

Out[1]= �b x � a y, c x � b y, d x � c y, e x � d y�
This forms the correlation. In[2]:= ListCorrelate[{x,y}, {a,b,c,d,e}]

Out[2]= �a x � b y, b x � c y, c x � d y, d x � e y�



938 3. Advanced Mathematics in Mathematica � 3.8 Numerical Operations on Data

In this case reversing the kernel gives
exactly the same result as
ListConvolve.

In[3]:= ListCorrelate[{y, x}, {a,b,c,d,e}]

Out[3]= �b x � a y, c x � b y, d x � c y, e x � d y�
This forms successive differences of the
data.

In[4]:= ListCorrelate[{-1,1}, {a,b,c,d,e}]

Out[4]= ��a � b, �b � c, �c � d, �d � e�
In forming sublists to combine with a kernel, there is always an issue of what to do at the ends

of the list of data. By default, ListConvolve and ListCorrelate never form sublists which would
“overhang” the ends of the list of data. This means that the output you get is normally shorter than
the original list of data.

With an input list of length 6, the
output is in this case of length 4.

In[5]:= ListCorrelate[{1,1,1}, Range[6]]

Out[5]= �6, 9, 12, 15�
In practice one often wants to get output that is as long as the original list of data. To do this

requires including sublists that overhang one or both ends of the list of data. The additional elements
needed to form these sublists must be filled in with some kind of “padding”. By default, Mathematica
takes copies of the original list to provide the padding, thus effectively treating the list as being cyclic.

ListCorrelate[kernel, list] do not allow overhangs on either side (result shorter
than list)

ListCorrelate[kernel, list, 1] allow an overhang on the right (result same length
as list)

ListCorrelate[kernel, list, -1] allow an overhang on the left (result same length
as list)

ListCorrelate[kernel, list, {-1, 1}] allow overhangs on both sides (result longer than list)

ListCorrelate[kernel, list, {kL, kR}] allow particular overhangs on left and right

Controlling how the ends of the list of data are treated.

The default involves no overhangs. In[6]:= ListCorrelate[{x, y}, {a, b, c, d}]

Out[6]= �a x � b y, b x � c y, c x � d y�
The last term in the last element now
comes from the beginning of the list.

In[7]:= ListCorrelate[{x, y}, {a, b, c, d}, 1]

Out[7]= �a x � b y, b x � c y, c x � d y, d x � a y�
Now the first term of the first element
and the last term of the last element
both involve wraparound.

In[8]:= ListCorrelate[{x, y}, {a, b, c, d}, {-1, 1}]

Out[8]= �d x � a y, a x � b y, b x � c y, c x � d y, d x � a y�
In the general case ListCorrelate[kernel, list, {kL, kR}] is set up so that in the first element of

the result, the first element of list appears multiplied by the element at position kL in kernel, and in
the last element of the result, the last element of list appears multiplied by the element at position



3.8.5 Convolutions and Correlations 939

kR in kernel. The default case in which no overhang is allowed on either side thus corresponds to
ListCorrelate[kernel, list, {1, -1}].

With a kernel of length 3, alignments
{-1, 2} always make the first and last
elements of the result the same.

In[9]:= ListCorrelate[{x, y, z}, {a, b, c, d}, {-1, 2}]

Out[9]= �c x � d y � a z, d x � a y � b z,
a x � b y � c z, b x � c y � d z, c x � d y � a z�

For many kinds of data, it is convenient to assume not that the data is cyclic, but rather that it is
padded at either end by some fixed element, often 0, or by some sequence of elements.

ListCorrelate[kernel, list, klist, p] pad with element p

ListCorrelate[kernel, list, klist, {p�, p�, . . . }]
pad with cyclic repetitions of the pi

ListCorrelate[kernel, list, klist, list] pad with cyclic repetitions of the original data

ListCorrelate[kernel, list, klist, {}] include no padding

Controlling the padding for a list of data.

This pads with element p. In[10]:= ListCorrelate[{x, y}, {a, b, c, d}, {-1, 1}, p]

Out[10]= �p x � a y, a x � b y, b x � c y, c x � d y, d x � p y�
A common case is to pad with zero. In[11]:= ListCorrelate[{x, y}, {a, b, c, d}, {-1, 1}, 0]

Out[11]= �a y, a x � b y, b x � c y, c x � d y, d x�
In this case q appears at one end, and
p at the other.

In[12]:= ListCorrelate[{x, y}, {a, b, c, d}, {-1, 1}, {p, q}]

Out[12]= �q x � a y, a x � b y, b x � c y, c x � d y, d x � p y�
Different choices of kernel allow ListConvolve and ListCorrelate to be used for different kinds

of computations.

This finds a moving average of data. In[13]:= ListCorrelate[{1,1,1}/3, {a,b,c,d,e}, {-1,1}]

Out[13]= 	 a
�������
3
�

d
�������
3
�

e
�������
3

,
a
�������
3
�

b
�������
3
�

e
�������
3

,
a
�������
3
�

b
�������
3
�

c
�������
3

,

b
�������
3
�

c
�������
3
�

d
�������
3

,
c
�������
3
�

d
�������
3
�

e
�������
3

,
a
�������
3
�

d
�������
3
�

e
�������
3

,
a
�������
3
�

b
�������
3
�

e
�������
3



Here is a Gaussian kernel. In[14]:= kern = Table[Exp[-n^2/100]/Sqrt[2. Pi], {n, -10, 10}] ;

This generates some “data”. In[15]:= data = Table[BesselJ[1, x] + 0.2 Random[ ], {x, 0, 10, .1}] ;



940 3. Advanced Mathematics in Mathematica � 3.8 Numerical Operations on Data

Here is a plot of the data. In[16]:= ListPlot[data];

20 40 60 80 100

-0.2

0.2

0.4

0.6

This convolves the kernel with the
data.

In[17]:= ListConvolve[kern, data, {-1, 1}] ;

The result is a smoothed version of the
data.

In[18]:= ListPlot[%]

20 40 60 80

-1

1

2

3

4

You can use ListConvolve and ListCorrelate to handle symbolic as well as numerical data.

This forms the convolution of two
symbolic lists.

In[19]:= ListConvolve[{a,b,c}, {u,v,w}, {1, -1}, 0]

Out[19]= �a u, b u � a v, c u � b v � a w, c v � b w, c w�
The result corresponds exactly with the
coefficients in the expanded form of
this product of polynomials.

In[20]:= Expand[(a + b x + c x^2)(u + v x + w x^2)]

Out[20]= a u � b u x � a v x � c u x2 �
b v x2 � a w x2 � c v x3 � b w x3 � c w x4

ListConvolve and ListCorrelate work on data in any number of dimensions.

This imports image data from a file. In[21]:= g = ReadList["fish.data", Number, RecordLists->True];



3.8.5 Convolutions and Correlations 941

Here is the image. In[22]:= Show[Graphics[Raster[g], AspectRatio->Automatic]]

This convolves the data with a
two-dimensional kernel.

In[23]:= ListConvolve[{{1,1,1},{1,-8,1},{1,1,1}}, g] ;

This shows the image corresponding to
the data.

In[24]:= Show[Graphics[Raster[%], AspectRatio->Automatic]]

RotateLeft[list, {d�, d�, . . . }], RotateRight[list, {d�, d�, . . . }]
rotate elements cyclically by di positions at level i

PadLeft[list, {n�, n�, . . . }], PadRight[list, {n�, n�, . . . }]
pad with zeros to create an n� � n� � � � � array

Take[list, m�, m�, . . . ], Drop[list, m�, m�, . . . ]
take or drop mi elements at level i

Other functions for manipulating multidimensional data.



942 3. Advanced Mathematics in Mathematica � 3.8 Numerical Operations on Data

, 3.8.6 Cellular Automata

Cellular automata provide a convenient way to represent many kinds of systems in which the values
of cells in an array are updated in discrete steps according to a local rule.

, CellularAutomaton[rnum, init, t] evolve rule rnum from init for t steps

Generating a cellular automaton evolution.

This starts with the list given, then
evolves rule 30 for four steps.

In[1]:= CellularAutomaton[30, {0, 0, 0, 1, 0, 0, 0}, 4]

Out[1]= ��0, 0, 0, 1, 0, 0, 0�,�0, 0, 1, 1, 1, 0, 0�, �0, 1, 1, 0, 0, 1, 0�,�1, 1, 0, 1, 1, 1, 1�, �0, 0, 0, 1, 0, 0, 0��
This defines a simple function for
displaying cellular automaton
evolution.

In[2]:= CAPlot[data_] := ListDensityPlot[Reverse[Max[data] - data],
AspectRatio->Automatic, Mesh->False, FrameTicks->None]

This shows 100 steps of rule 30
evolution from random initial
conditions.

In[3]:= CAPlot[CellularAutomaton[30, Table[Random[Integer], {250}],
100]]

{a�, a�, . . . } explicit list of values ai

{{a�, a�, . . . }, b} values ai superimposed on a b background

{{a�, a�, . . . }, blist} values ai superimposed on a background of
repetitions of blist

{{{a��, a��, . . . }, {d�}}, . . . }, blist values aij at offsets di

Ways of specifying initial conditions for one-dimensional cellular automata.

If you give an explicit list of initial values, CellularAutomaton will take the elements in this list
to correspond to all the cells in the system, arranged cyclically.



3.8.6 Cellular Automata 943

The right neighbor of the cell at the
end is the cell at the beginning.

In[4]:= CellularAutomaton[30, {1, 0, 0, 0, 0}, 1]

Out[4]= ��1, 0, 0, 0, 0�, �1, 1, 0, 0, 1��
It is often convenient to set up initial conditions in which there is a small “seed” region, super-

imposed on a constant “background”. By default, CellularAutomaton automatically fills in enough
background to cover the size of the pattern that can be produced in the number of steps of evolution
you specify.

This shows rule 30 evolving from an
initial condition containing a single
black cell.

In[5]:= CAPlot[CellularAutomaton[30, {{1}, 0}, 100]]

This shows rule 30 evolving from an
initial condition consisting of a {1,1}
seed on a background of repeated
{1,0,1,1} blocks.

In[6]:= CAPlot[CellularAutomaton[30, {{1, 1}, {1, 0, 1, 1}}, 100]]

Particularly in studying interactions between structures, you may sometimes want to specify initial
conditions for cellular automata in which certain blocks are placed at particular offsets.

This sets up an initial condition with
black cells at offsets M
�.

In[7]:= CAPlot[CellularAutomaton[30,
{{{ {1}, {-40} }, {{1}, {40}}}, 0}, 100]]



944 3. Advanced Mathematics in Mathematica � 3.8 Numerical Operations on Data

n k = 2, r = 1, elementary rule

{n, k} general nearest-neighbor rule with k colors

{n, k, r} general rule with k colors and range r

{n, {k, 1}} k-color nearest-neighbor totalistic rule

{n, {k, 1}, r} k-color range r totalistic rule

{n, {k, {wt�, wt�, . . . ,}}, r} rule in which neighbor i is assigned weight wti

{n, kspec, {{off�}, {off�}, . . . , {offs}}} rule with neighbors at specified offsets

{fun, {}, rspec} rule obtained by applying function fun to each
neighbor list

Specifying rules for one-dimensional cellular automata.

In the simplest cases, a cellular automaton allows k possible values or “colors” for each cell, and
has rules that involve up to r neighbors on each side. The digits of the “rule number” n then specify
what the color of a new cell should be for each possible configuration of the neighborhood.

This evolves a single neighborhood for
1 step.

In[8]:= CellularAutomaton[30, {1,1,0}, 1]

Out[8]= ��1, 1, 0�, �1, 0, 0��
Here are the 8 possible neighborhoods
for a k � �, r � � cellular automaton.

In[9]:= Table[IntegerDigits[i,2,3],{i,7,0,-1}]

Out[9]= ��1, 1, 1�, �1, 1, 0�, �1, 0, 1�, �1, 0, 0�,�0, 1, 1�, �0, 1, 0�, �0, 0, 1�, �0, 0, 0��
This shows the new color of the center
cell for each of the 8 neighborhoods.

In[10]:= Map[CellularAutomaton[30, #, 1][[2,2]]&, %]

Out[10]= �0, 0, 0, 1, 1, 1, 1, 0�
For rule 30, this sequence corresponds
to the base-2 digits of the number 30.

In[11]:= FromDigits[%, 2]

Out[11]= 30

This runs the general k � , r � � rule
with rule number 921408.

In[12]:= CAPlot[CellularAutomaton[{921408, 3, 1}, {{1}, 0}, 100]]



3.8.6 Cellular Automata 945

For a general cellular automaton rule, each digit of the rule number specifies what color a different
possible neighborhood of �r � � cells should yield. To find out which digit corresponds to which
neighborhood, one effectively treats the cells in a neighborhood as digits in a number. For an r � �
cellular automaton, the number is obtained from the list of elements neig in the neighborhood by
neig . {k^2, k, 1}.

It is sometimes convenient to consider totalistic cellular automata, in which the new value of a
cell depends only on the total of the values in its neighborhood. One can specify totalistic cellular
automata by rule numbers or “codes” in which each digit refers to neighborhoods with a given total
value, obtained for example from neig . {1, 1, 1}.

In general, CellularAutomaton allows one to specify rules using any sequence of weights. Another
choice sometimes convenient is {k, 1, k}, which yields outer totalistic rules.

This runs the k � , r � � totalistic rule
with code number 867.

In[13]:= CAPlot[CellularAutomaton[{867, {3, 1}, 1}, {{1}, 0}, 100]]

Rules with range r involve all cells with offsets �r through �r. Sometimes it is convenient to think
about rules that involve only cells with specific offsets. You can do this by replacing a single r with a
list of offsets.

Any k � � cellular automaton rule can be thought of as corresponding to a Boolean function. In the
simplest case, basic Boolean functions like And or Nor take two arguments. These are conveniently
specified in a cellular automaton rule as being at offsets {{0}, {1}}. Note that for compatibility
with handling higher-dimensional cellular automata, offsets must always be given in lists, even for
one-dimensional cellular automata.

This generates the truth table for
2-cell-neighborhood rule number 7,
which turns out to be the Boolean
function NAND.

In[14]:= Map[CellularAutomaton[{7, 2, {{0}, {1}}}, #, 1][[2, 2]] &,
{{1, 1}, {1, 0}, {0, 1}, {0, 0}}]

Out[14]= �0, 1, 1, 1�
Rule numbers provide a highly compact way to specify cellular automaton rules. But sometimes

it is more convenient to specify rules by giving an explicit function that should be applied to each
possible neighborhood.



946 3. Advanced Mathematics in Mathematica � 3.8 Numerical Operations on Data

This runs an additive cellular
automaton whose rule adds all values
in each neighborhood modulo 4.

In[15]:= CAPlot[CellularAutomaton[
{Mod[Apply[Plus, #], 4]&, {}, 1}, {{1}, 0}, 100]]

The function is given a second
argument, equal to the step number.

In[16]:= CAPlot[CellularAutomaton[
{Mod[Apply[Plus, #] + #2, 4]&, {}, 1}, {{1}, 0}, 100]]

When you specify rules by functions,
the values of cells need not be integers.

In[17]:= CAPlot[CellularAutomaton[
{Mod[1/2 Apply[Plus, #], 1] &, {}, 1}, {{1}, 0}, 100]]

They can even be symbolic. In[18]:= Simplify[CellularAutomaton[{Mod[Apply[Plus, #], 2] &,
{}, 1}, {{a}, 0}, 2], a & Integers]

Out[18]= ��0, 0, a, 0, 0�,�0, Moda, 2�, Moda, 2�, Moda, 2�, 0�,�ModModa, 2�, 2�, 0,
Mod3 Moda, 2�, 2�, 0, ModModa, 2�, 2���



3.8.6 Cellular Automata 947

, CellularAutomaton[rnum, init, t] evolve for t steps, keeping all steps

, CellularAutomaton[rnum, init, t, -1] evolve for t steps, keeping only the last step

, CellularAutomaton[rnum, init, t, {spect}] keep only steps specified by spect

Selecting which steps to keep.

This runs rule 30 for 5 steps, keeping
only the last step.

In[19]:= CellularAutomaton[30, {{1}, 0}, 5, -1]

Out[19]= ��1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1��
This keeps the last 2 steps. In[20]:= CellularAutomaton[30, {{1}, 0}, 5, -2]

Out[20]= ��0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0�,�1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1��
The step specification spect works very much like taking elements from a list with Take. One

difference, though, is that the initial condition for the cellular automaton is considered to be step 0.
Note that any step specification of the form { . . . } must be enclosed in an additional list.

All all steps 0 through t (default)

u steps 0 through u

-u the last u steps

{u} step u

{u�, u�} steps u� through u�

{u�, u�, d} steps u�, u� + d, . . .

Cellular automaton step specifications.

This evolves for 100 steps, but keeps
only every other step.

In[21]:= CAPlot[CellularAutomaton[30, {{1}, 0}, 100, {{1, -1, 2}}]]



948 3. Advanced Mathematics in Mathematica � 3.8 Numerical Operations on Data

, CellularAutomaton[rnum, init, t] keep all steps, and all relevant cells

, CellularAutomaton[rnum, init, t, {spect, specx}] keep only specified steps and cells

Selecting steps and cells to keep.

Much as you can specify which steps to keep in a cellular automaton evolution, so also you can
specify which cells to keep. If you give an initial condition such as {a�, a�, . . . }, blist, then ai is
taken to have offset 0 for the purpose of specifying which cells to keep.

All all cells that can be affected by the specified initial condition

Automatic all cells in the region that differs from the background
(default)

0 cell aligned with beginning of aspec

x cells at offsets up to x on the right

-x cells at offsets up to x on the left

{x} cell at offset x to the right

{-x} cell at offset x to the left

{x�, x�} cells at offsets x� through x�

{x�, x�, dx} cells x�, x� + dx, . . .

Cellular automaton cell specifications.

This keeps all steps, but drops cells at
offsets more than 20 on the left.

In[22]:= CAPlot[CellularAutomaton[30, {{1}, 0}, 100,
{All, {-20, 100}}]]



3.8.6 Cellular Automata 949

This keeps just the center column of
cells.

In[23]:= CellularAutomaton[30, {{1}, 0}, 20, {All, {0}}]

Out[23]= ��1�, �1�, �0�, �1�, �1�, �1�,�0�, �0�, �1�, �1�, �0�, �0�, �0�,�1�, �0�, �1�, �1�, �0�, �0�, �1�, �0��
If you give an initial condition such as {{a�, a�, . . . }, blist}, then CellularAutomaton will always

effectively do the cellular automaton as if there were an infinite number of cells. By using a specx such
as {x�, x�} you can tell CellularAutomaton to include only cells at specific offsets x� through x� in
its output. CellularAutomaton by default includes cells out just far enough that their values never
simply stay the same as in the background blist.

In general, given a cellular automaton rule with range r, cells out to distance r t on each side
could in principle be affected in the evolution of the system. With specx being All, all these cells are
included; with the default setting of Automatic, cells whose values effectively stay the same as in blist
are trimmed off.

By default, only the parts that are not
constant black are kept.

In[24]:= CAPlot[CellularAutomaton[225, {{1}, 0}, 100]]

Using All for specx includes all cells
that could be affected by a cellular
automaton with this range.

In[25]:= CAPlot[CellularAutomaton[225, {{1}, 0}, 100, {All, All}]]

CellularAutomaton generalizes quite directly to any number of dimensions.



950 3. Advanced Mathematics in Mathematica � 3.8 Numerical Operations on Data

{n, k, {r�, r�, . . . , rd}} d-dimensional rule with ��r� � �� � ��r� � �� � � � � � ��rd � ��
neighborhood

{n, {k, 1}, {1, 1}} two-dimensional 9-neighbor totalistic rule

{n, {k, {{0, 1, 0}, {1, 1, 1}, {0, 1, 0}}}, {1, 1}}
two-dimensional 5-neighbor totalistic rule

{n, {k, {{0, k, 0}, {k, 1, k}, {0, k, 0}}}, {1, 1}}
two-dimensional 5-neighbor outer totalistic rule

{n + k^5 (k - 1), {k, {{0, 1, 0}, {1, 4 k + 1, 1}, {0, 1, 0}}}, {1, 1}}
two-dimensional 5-neighbor growth rule

Higher-dimensional rule specifications.

This is the rule specification for the
two-dimensional 9-neighbor totalistic
cellular automaton with code 797.

In[26]:= code797 = {797, {2, 1}, {1, 1}};

This gives steps 0 and 1 in its
evolution.

In[27]:= CellularAutomaton[code797, {{{1}}, 0}, 1]

Out[27]= ���0, 0, 0�, �0, 1, 0�, �0, 0, 0��,��0, 0, 0�, �0, 0, 0�, �0, 0, 0���
This shows step 70 in the evolution. In[28]:= CAPlot[First[CellularAutomaton[code797, {{{1}}, 0},

70, -1]]]

This shows all steps in a slice along
the x axis.

In[29]:= CAPlot[Map[First,
CellularAutomaton[code797, {{{1}}, 0}, 70,

{All, {0}, All}]]]



3.9.1 Numerical Mathematics in Mathematica 951

3.9 Numerical Operations on Functions

3.9.1 Numerical Mathematics in Mathematica

One of the important features of Mathematica is its ability to give you exact, symbolic, results for
computations. There are, however, computations where it is just mathematically impossible to get
exact “closed form” results. In such cases, you can still often get approximate numerical results.

There is no “closed form” result for

� �� sin�sin�x�� dx. Mathematica returns
the integral in symbolic form.

In[1]:= Integrate[Sin[Sin[x]], {x, 0, 1}]

Out[1]= �
0

1

SinSinx���7x

You can now take the symbolic form of
the integral, and ask for its
approximate numerical value.

In[2]:= N[%]

Out[2]= 0.430606

When Mathematica cannot find an explicit result for something like a definite integral, it returns a
symbolic form. You can take this symbolic form, and try to get an approximate numerical value by
applying N.

By giving a second argument to N, you
can specify the numerical precision to
use.

In[3]:= N[ Integrate[Sin[Sin[x]], {x, 0, 1}], 40 ]

Out[3]= 0.4306061031206906049123773552484657864336

If you want to evaluate an integral numerically in Mathematica, then using Integrate and applying
N to the result is not the most efficient way to do it. It is better instead to use the function NIntegrate,
which immediately gives a numerical answer, without first trying to get an exact, symbolic, result.
You should realize that even when Integrate does not in the end manage to give you an exact result,
it may spend a lot of time trying to do so.

NIntegrate evaluates numerical
integrals directly, without first trying to
get a symbolic result.

In[4]:= NIntegrate[ Sin[Sin[x]], {x, 0, 1} ]

Out[4]= 0.430606

Integrate NIntegrate definite integrals

Sum NSum sums

Product NProduct products

Solve NSolve solutions of algebraic equations

DSolve NDSolve solutions of differential equations

Maximize NMaximize maximization

Symbolic and numerical versions of some Mathematica functions.



952 3. Advanced Mathematics in Mathematica � 3.9 Numerical Operations on Functions

3.9.2 The Uncertainties of Numerical Mathematics

Mathematica does operations like numerical integration very differently from the way it does their
symbolic counterparts.

When you do a symbolic integral, Mathematica takes the functional form of the integrand you have
given, and applies a sequence of exact symbolic transformation rules to it, to try and evaluate the
integral.

When you do a numerical integral, however, Mathematica does not look directly at the functional
form of the integrand you have given. Instead, it simply finds a sequence of numerical values of
the integrand at particular points, then takes these values and tries to deduce from them a good
approximation to the integral.

An important point to realize is that when Mathematica does a numerical integral, the only informa-
tion it has about your integrand is a sequence of numerical values for it. To get a definite result for the
integral, Mathematica then effectively has to make certain assumptions about the smoothness and other
properties of your integrand. If you give a sufficiently pathological integrand, these assumptions may
not be valid, and as a result, Mathematica may simply give you the wrong answer for the integral.

This problem may occur, for example, if you try to integrate numerically a function which has a
very thin spike at a particular position. Mathematica samples your function at a number of points,
and then assumes that the function varies smoothly between these points. As a result, if none of the
sample points come close to the spike, then the spike will go undetected, and its contribution to the
numerical integral will not be correctly included.

Here is a plot of the function exp��x��. In[1]:= Plot[Exp[-x^2], {x, -10, 10}, PlotRange->All]

-10 -5 5 10

0.2

0.4

0.6

0.8

1

NIntegrate gives the correct answer
for the numerical integral of this
function from ��� to +10.

In[2]:= NIntegrate[Exp[-x^2], {x, -10, 10}]

Out[2]= 1.77245



3.9.2 The Uncertainties of Numerical Mathematics 953

If, however, you ask for the integral
from ����� to 1000, NIntegrate will
miss the peak near x � �, and give the
wrong answer.

In[3]:= NIntegrate[Exp[-x^2], {x, -1000, 1000}]

NIntegrate::ploss:
Numerical integration stopping due to loss of
precision. Achieved neither the requested
PrecisionGoal nor AccuracyGoal; suspect one of the
following: highly oscillatory integrand or the true
value of the integral is 0. If your integrand is
oscillatory try using the option Method->Oscillatory
in NIntegrate.

Out[3]= 1.34946�10�26

Although NIntegrate follows the principle of looking only at the numerical values of your inte-
grand, it nevertheless tries to make the best possible use of the information that it can get. Thus, for
example, if NIntegrate notices that the estimated error in the integral in a particular region is large,
it will take more samples in that region. In this way, NIntegrate tries to “adapt” its operation to the
particular integrand you have given.

The kind of adaptive procedure that NIntegrate uses is similar, at least in spirit, to what Plot does
in trying to draw smooth curves for functions. In both cases, Mathematica tries to go on taking more
samples in a particular region until it has effectively found a smooth approximation to the function in
that region.

The kinds of problems that can appear in numerical integration can also arise in doing other
numerical operations on functions.

For example, if you ask for a numerical approximation to the sum of an infinite series, Mathematica
samples a certain number of terms in the series, and then does an extrapolation to estimate the
contributions of other terms. If you insert large terms far out in the series, they may not be detected
when the extrapolation is done, and the result you get for the sum may be incorrect.

A similar problem arises when you try to find a numerical approximation to the minimum of a
function. Mathematica samples only a finite number of values, then effectively assumes that the actual
function interpolates smoothly between these values. If in fact the function has a sharp dip in a
particular region, then Mathematica may miss this dip, and you may get the wrong answer for the
minimum.

If you work only with numerical values of functions, there is simply no way to avoid the kinds of
problems we have been discussing. Exact symbolic computation, of course, allows you to get around
these problems.

In many calculations, it is therefore worthwhile to go as far as you can symbolically, and then resort
to numerical methods only at the very end. This gives you the best chance of avoiding the problems
that can arise in purely numerical computations.



954 3. Advanced Mathematics in Mathematica � 3.9 Numerical Operations on Functions

3.9.3 Numerical Integration

N[Integrate[expr, {x, xmin, xmax}]] try to perform an integral exactly, then find
numerical approximations to the parts that remain

NIntegrate[expr, {x, xmin, xmax}] find a numerical approximation to an integral

NIntegrate[expr, {x, xmin, xmax}, {y, ymin, ymax}, . . . ]
multidimensional numerical integral

� xmax

xmin
dx � ymax

ymin
dy 			 expr

NIntegrate[expr, {x, xmin, x�, x�, . . . , xmax}]
do a numerical integral along a line, starting at xmin,
going through the points xi, and ending at xmax

Numerical integration functions.

This finds a numerical approximation

to the integral � �� e�x


dx.

In[1]:= NIntegrate[Exp[-x^3], {x, 0, Infinity}]

Out[1]= 0.89298

Here is the numerical value of the

double integral � ��� dx � ��� dy �x� � y��.
In[2]:= NIntegrate[x^2 + y^2, {x, -1, 1}, {y, -1, 1}]

Out[2]= 2.66667

An important feature of NIntegrate is its ability to deal with functions that “blow up” at known
points. NIntegrate automatically checks for such problems at the end points of the integration region.

The function ��
 

x blows up at x � �,
but NIntegrate still succeeds in getting
the correct value for the integral.

In[3]:= NIntegrate[1/Sqrt[x], {x, 0, 1}]

Out[3]= 2.

Mathematica can find the integral of
��
 

x exactly.
In[4]:= Integrate[1/Sqrt[x], {x, 0, 1}]

Out[4]= 2

NIntegrate detects that the singularity
in ��x at x � � is not integrable.

In[5]:= NIntegrate[1/x, {x, 0, 1}]

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect
one of the following: singularity, value of the
integration being 0, oscillatory integrand, or
insufficient WorkingPrecision. If your integrand is
oscillatory try using the option Method->Oscillatory
in NIntegrate.

NIntegrate::ncvb:
NIntegrate failed to converge to prescribed accuracy

after 7 recursive bisections in x near x =
-57

4.36999 10 .

Out[5]= 23953.1



3.9.3 Numerical Integration 955

NIntegrate does not automatically look for singularities except at the end points of your integra-
tion region. When other singularities are present, NIntegrate may not give you the right answer
for the integral. Nevertheless, in following its adaptive procedure, NIntegrate will often detect the
presence of potentially singular behavior, and will warn you about it.

NIntegrate does not handle the
singularity in ��

 

/x/ in the middle of
the integration region. However, it
warns you of a possible problem. In
this case, the final result is numerically
quite close to the correct answer.

In[6]:= NIntegrate[1/Sqrt[Abs[x]], {x, -1, 2}]

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect
one of the following: singularity, value of the
integration being 0, oscillatory integrand, or
insufficient WorkingPrecision. If your integrand is
oscillatory try using the option Method->Oscillatory
in NIntegrate.

NIntegrate::ncvb:
NIntegrate failed to converge to prescribed accuracy

after 7 recursive bisections in x near x =
-0.00390625.

Out[6]= 4.79343

If you know that your integrand has singularities at particular points, you can explicitly tell
NIntegrate to deal with them. NIntegrate[expr, {x, xmin, x�, x�, . . . , xmax}] integrates expr
from xmin to xmax, looking for possible singularities at each of the intermediate points xi.

This again gives the integral

� ��� ��
 

/x/ dx, but now explicitly deals
with the singularity at x � �.

In[7]:= NIntegrate[1/Sqrt[Abs[x]], {x, -1, 0, 2}]

Out[7]= 4.82843

You can also use the list of intermediate points xi in NIntegrate to specify an integration contour
to follow in the complex plane. The contour is taken to consist of a sequence of line segments, starting
at xmin, going through each of the xi, and ending at xmax.

This integrates ��x around a closed
contour in the complex plane, going
from ��, through the points �i, 1 and
i, then back to ��.

In[8]:= NIntegrate[1/x, {x, -1, -I, 1, I, -1}]

Out[8]= 1.11022�10�16 � 6.28319 �

The integral gives �Πi, as expected
from Cauchy’s Theorem.

In[9]:= N[ 2 Pi I ]

Out[9]= 0. � 6.28319 �



956 3. Advanced Mathematics in Mathematica � 3.9 Numerical Operations on Functions

option name default value

MinRecursion 0 minimum number of recursive subdivisions
of the integration region

MaxRecursion 6 maximum number of recursive subdivisions
of the integration region

SingularityDepth 4 number of recursive subdivisions to use
before doing a change of variables at the end
points

MaxPoints Automatic maximum total number of times to sample
the integrand

Special options for NIntegrate.

When NIntegrate tries to evaluate a numerical integral, it samples the integrand at a sequence
of points. If it finds that the integrand changes rapidly in a particular region, then it recursively
takes more sample points in that region. The parameters MinRecursion and MaxRecursion specify
the minimum and maximum number of levels of recursive subdivision to use. Increasing the value of
MinRecursion guarantees that NIntegrate will use a larger number of sample points. MaxRecursion
limits the number of sample points which NIntegrate will ever try to use. Increasing MinRecursion
or MaxRecursion will make NIntegrate work more slowly. SingularityDepth specifies how many
levels of recursive subdivision NIntegrate should try before it concludes that the integrand is “blow-
ing up” at one of the endpoints, and does a change of variables.

With the default settings for all
options, NIntegrate misses the peak in
exp��x�� near x � �, and gives the
wrong answer for the integral.

In[10]:= NIntegrate[Exp[-x^2], {x, -1000, 1000}]

NIntegrate::ploss:
Numerical integration stopping due to loss of
precision. Achieved neither the requested
PrecisionGoal nor AccuracyGoal; suspect one of the
following: highly oscillatory integrand or the true
value of the integral is 0. If your integrand is
oscillatory try using the option Method->Oscillatory
in NIntegrate.

Out[10]= 1.34946�10�26

With the option MinRecursion->3,
NIntegrate samples enough points
that it notices the peak around x � �.
With the default setting of
MaxRecursion, however, NIntegrate
cannot use enough sample points to be
able to expect an accurate answer.

In[11]:= NIntegrate[Exp[-x^2], {x, -1000, 1000},
MinRecursion->3]

NIntegrate::ncvb:
NIntegrate failed to converge to prescribed accuracy

after 7 recursive bisections in x near x = 7.8125.

Out[11]= 0.99187



3.9.4 Numerical Evaluation of Sums and Products 957

With this setting of MaxRecursion,
NIntegrate can get an accurate answer
for the integral.

In[12]:= NIntegrate[Exp[-x^2], {x, -1000, 1000},
MinRecursion->3, MaxRecursion->10]

Out[12]= 1.77245

Another way to solve the problem is to
make NIntegrate break the integration
region into several pieces, with a small
piece that explicitly covers the
neighborhood of the peak.

In[13]:= NIntegrate[Exp[-x^2], {x, -1000, -10, 10, 1000}]

Out[13]= 1.77245

For integrals in many dimensions, it can take a long time for NIntegrate to get a precise answer.
However, by setting the option MaxPoints, you can tell NIntegrate to give you just a rough estimate,
sampling the integrand only a limited number of times.

This gives an estimate of the volume of
the unit sphere in three dimensions.

In[14]:= NIntegrate[If[x^2 + y^2 + z^2 < 1, 1, 0], {x, -1, 1},
{y, -1, 1}, {z, -1, 1}, MaxPoints->10000]

Out[14]= 4.18106

Here is the precise result. In[15]:= N[4/3 Pi]

Out[15]= 4.18879

3.9.4 Numerical Evaluation of Sums and Products

NSum[f, {i, imin, imax}] find a numerical approximation to the sum �imax
i�imin f

NSum[f, {i, imin, imax, di}] use step di in the sum

NProduct[f, {i, imin, imax}] find a numerical approximation to the product �imax
i�imin f

Numerical sums and products.

This gives a numerical approximation
to ��i�� �i�id

.
In[1]:= NSum[1/(i^3 + i!), {i, 1, Infinity}]

Out[1]= 0.64703

There is no exact result for this sum,
so Mathematica leaves it in a symbolic
form.

In[2]:= Sum[1/(i^3 + i!), {i, 1, Infinity}]

Out[2]= �
i=1

	
1

�������������������������������
i3 � i9



958 3. Advanced Mathematics in Mathematica � 3.9 Numerical Operations on Functions

You can apply N explicitly to get a
numerical result.

In[3]:= N[%]

Out[3]= 0.64703

The way NSum works is to include a certain number of terms explicitly, and then to try and estimate
the contribution of the remaining ones. There are two approaches to estimating this contribution. The
first uses the Euler-Maclaurin method, and is based on approximating the sum by an integral. The
second method, known as the Wynn epsilon method, samples a number of additional terms in the
sum, and then tries to fit them to a polynomial multiplied by a decaying exponential.

option name default value

Method Automatic Integrate (Euler-Maclaurin method) or Fit
(Wynn epsilon method)

NSumTerms 15 number of terms to include explicitly

NSumExtraTerms 12 number of terms to use for extrapolation in
the Wynn epsilon method

Special options for NSum.

If you do not explicitly specify the method to use, NSum will try to choose between the methods
it knows. In any case, some implicit assumptions about the functions you are summing have to be
made. If these assumptions are not correct, you may get inaccurate answers.

The most common place to use NSum is in evaluating sums with infinite limits. You can, however,
also use it for sums with finite limits. By making implicit assumptions about the objects you are
evaluating, NSum can often avoid doing as many function evaluations as an explicit Sum computation
would require.

This finds the numerical value of
����n�� e�n by extrapolation techniques.

In[4]:= NSum[Exp[-n], {n, 0, 100}]

Out[4]= 1.58198

You can also get the result, albeit much
less efficiently, by constructing the
symbolic form of the sum, then
evaluating it numerically.

In[5]:= Sum[Exp[-n], {n, 0, 100}] //N

Out[5]= 1.58198

NProduct works in essentially the same way as NSum, with analogous options.



3.9.5 Numerical Solution of Polynomial Equations 959

3.9.5 Numerical Solution of Polynomial Equations

When Solve cannot find explicit
solutions to polynomial equations, it
returns a symbolic form of the result in
terms of Root objects.

In[1]:= Solve[x^5 + 7x + 1 == 0, x]

Out[1]=   x � Root�1 � 7 #1 � #15 &, 1�!,

 x � Root�1 � 7 #1 � #15 &, 2�!,

 x � Root�1 � 7 #1 � #15 &, 3�!,

 x � Root�1 � 7 #1 � #15 &, 4�!,

 x � Root�1 � 7 #1 � #15 &, 5�!!
You can get numerical solutions by
applying N.

In[2]:= N[%]

Out[2]= ��x � �0.142849�, �x � �1.11308 � 1.15173 ��,�x � �1.11308 � 1.15173 ��,�x � 1.1845 � 1.15139 ��, �x � 1.1845 � 1.15139 ���
This gives the numerical solutions to
25-digit precision.

In[3]:= N[%%, 25]

Out[3]= ��x � �0.1428486455250044341134116�,�x � �1.113077976547710735600398�
1.151734362151674305046770��,�x � �1.113077976547710735600398�
1.151734362151674305046770��,�x � 1.184502299310212952657104�
1.151390075408837074699147��,�x � 1.184502299310212952657104�
1.151390075408837074699147���

You can use NSolve to get numerical
solutions to polynomial equations
directly, without first trying to find
exact results.

In[4]:= NSolve[x^7 + x + 1 == 0, x]

Out[4]= ��x � �0.796544�, �x � �0.705298 � 0.637624 ��,�x � �0.705298 � 0.637624 ��,�x � 0.123762 � 1.05665 ��,�x � 0.123762 � 1.05665 ��,�x � 0.979808 � 0.516677 ��,�x � 0.979808 � 0.516677 ���

NSolve[poly==0, x] get approximate numerical solutions to a polynomial
equation

NSolve[poly==0, x, n] get solutions to n-digit precision

Numerical solution of polynomial equations.

NSolve will always give you the complete set of numerical solutions to any polynomial equation in
one variable.

You can also get numerical solutions to sets of simultaneous polynomial equations. You can use
Solve to “unwind” the simultaneous equations, and then apply N to get numerical results.



960 3. Advanced Mathematics in Mathematica � 3.9 Numerical Operations on Functions

Solve writes the solution in terms of
roots of a polynomial in one variable.

In[5]:= First[
Solve[{x^2 + y^2 == 1, x^3 + y^3 == 2}, {x, y}]]

Out[5]= 	x �
1
�������
3

Root�3 � 3 #12 � 4 #13 � 3 #14 � 2 #16 &, 1�
��3 � 6 Root�3 � 3 #12 � 4 #13 � 3 #14 � 2 #16 &, 1� �

Root�3 � 3 #12 � 4 #13 � 3 #14 � 2 #16 &, 1�2
�

4 Root�3 � 3 #12 � 4 #13 � 3 #14 � 2 #16 &, 1�3
�

2 Root�3 � 3 #12 � 4 #13 � 3 #14 � 2 #16 &, 1�4�,

y � Root�3 � 3 #12 � 4 #13 � 3 #14 � 2 #16 &, 1�

You can apply N to get a numerical
result.

In[6]:= N[%]

Out[6]= �x � �1.09791 � 0.839887 �, y � �1.09791 � 0.839887 ��

- 3.9.6 Numerical Root Finding

NSolve gives you a general way to find numerical approximations to the solutions of polynomial
equations. Finding numerical solutions to more general equations, however, can be much more diffi-
cult, as discussed in Section 3.4.2. FindRoot gives you a way to search for a numerical solution to an
arbitrary equation, or set of equations.

FindRoot[lhs==rhs, {x, x�}] search for a numerical solution to the equation lhs==rhs,
starting with x = x�

- FindRoot[{eqn�, eqn�, . . . }, {{x, x�}, {y, y�}, . . . }]
search for a numerical solution to the simultaneous
equations eqni

Numerical root finding.

The curves for cos�x� and x intersect at
one point.

In[1]:= Plot[{Cos[x], x}, {x, -1, 1}]

-1 -0.5 0.5 1

-1

-0.5

0.5

1



3.9.7 Numerical Solution of Differential Equations 961

This finds a numerical approximation
to the value of x at which the
intersection occurs. The 0 tells
FindRoot what value of x to try first.

In[2]:= FindRoot[Cos[x] == x, {x, 0}]

Out[2]= �x � 0.739085�

In trying to find a solution to your equation, FindRoot starts at the point you specify, and then
progressively tries to get closer and closer to a solution. Even if your equations have several solutions,
FindRoot always returns the first solution it finds. Which solution this is will depend on what starting
point you chose. If you start sufficiently close to a particular solution, FindRoot will usually return
that solution.

The equation sin�x� � � has an infinite
number of solutions of the form
x � nΠ. If you start sufficiently close to
a particular solution, FindRoot will
give you that solution.

In[3]:= FindRoot[Sin[x] == 0, {x, 3}]

Out[3]= �x � 3.14159�

If you start with x � �, you get a
numerical approximation to the
solution x � �Π.

In[4]:= FindRoot[Sin[x] == 0, {x, 6}]

Out[4]= �x � 6.28319�
If you want FindRoot to search for
complex solutions, then you have to
give a complex starting value.

In[5]:= FindRoot[Sin[x] == 2, {x, I}]

Out[5]= �x � 1.5708 � 1.31696 ��
This finds a zero of the Riemann zeta
function.

In[6]:= FindRoot[Zeta[1/2 + I t] == 0, {t, 12}]

Out[6]=  t � 14.1347 � 9.35323�10�15 �!
This finds a solution to a set of
simultaneous equations.

In[7]:= FindRoot[{Sin[x] == Cos[y], x + y == 1},
{{x, 1}, {y, 1}}]

Out[7]= �x � �1.85619, y � 2.85619�
The variables used by FindRoot can have values that are lists. This allows you to find roots of

functions that take vectors as arguments.

This is a way to solve a linear equation
for the variable x.

In[8]:= FindRoot[{{1, 2}, {3, 4}} . x == {5, 6}, {x, {1, 1}}]

Out[8]= �x � ��4., 4.5��
This finds a normalized eigenvector x
and eigenvalue a.

In[9]:= FindRoot[{{{1, 2}, {3, 4}} . x == a x, x.x == 1},
{{x, {1, 1}}, {a, 1}}]

Out[9]= �x � �0.415974, 0.909377�, a � 5.37228�

- 3.9.7 Numerical Solution of Differential Equations

The function NDSolve discussed in Section 1.6.4 allows you to find numerical solutions to differential
equations. NDSolve handles both single differential equations, and sets of simultaneous differential
equations. It can handle a wide range of ordinary differential equations as well as some partial differ-
ential equations. In a system of ordinary differential equations there can be any number of unknown



962 3. Advanced Mathematics in Mathematica � 3.9 Numerical Operations on Functions

functions yi, but all of these functions must depend on a single “independent variable” x, which is
the same for each function. Partial differential equations involve two or more independent variables.
NDSolve can also handle differential-algebraic equations that mix differential equations with algebraic
ones.

NDSolve[{eqn�, eqn�, . . . }, y, {x, xmin, xmax}]
find a numerical solution for the function y with x in the
range xmin to xmax

NDSolve[{eqn�, eqn�, . . . }, {y�, y�, . . . }, {x, xmin, xmax}]
find numerical solutions for several functions yi

Finding numerical solutions to ordinary differential equations.

NDSolve represents solutions for the functions yi as InterpolatingFunction objects. The
InterpolatingFunction objects provide approximations to the yi over the range of values xmin to
xmax for the independent variable x.

NDSolve finds solutions iteratively. It starts at a particular value of x, then takes a sequence of
steps, trying eventually to cover the whole range xmin to xmax.

In order to get started, NDSolve has to be given appropriate initial or boundary conditions for the
yi and their derivatives. These conditions specify values for yi[x], and perhaps derivatives yi'[x], at
particular points x. In general, at least for ordinary differential equations, the conditions you give can
be at any x: NDSolve will automatically cover the range xmin to xmax.

This finds a solution for y with x in
the range 0 to 2, using an initial
condition for y[0].

In[1]:= NDSolve[{y'[x] == y[x], y[0] == 1}, y, {x, 0, 2}]

Out[1]= ��y � InterpolatingFunction��0., 2.��, ?>���
This still finds a solution with x in the
range 0 to 2, but now the initial
condition is for y[3].

In[2]:= NDSolve[{y'[x] == y[x], y[3] == 1}, y, {x, 0, 2}]

Out[2]= ��y � InterpolatingFunction��0., 2.��, ?>���
Here is a simple boundary value
problem.

In[3]:= NDSolve[{y''[x] + x y[x] == 0, y[0] == 1, y[1] == -1},
y, {x, 0, 1}]

Out[3]= ��y � InterpolatingFunction��0., 1.��, ?>���
When you use NDSolve, the initial or boundary conditions you give must be sufficient to determine

the solutions for the yi completely. When you use DSolve to find symbolic solutions to differential
equations, you can get away with specifying fewer initial conditions. The reason is that DSolve
automatically inserts arbitrary constants C[i] to represent degrees of freedom associated with initial
conditions that you have not specified explicitly. Since NDSolve must give a numerical solution, it
cannot represent these kinds of additional degrees of freedom. As a result, you must explicitly give
all the initial or boundary conditions that are needed to determine the solution.



3.9.7 Numerical Solution of Differential Equations 963

In a typical case, if you have differential equations with up to nth derivatives, then you need to
give initial conditions for up to �n � ��th derivatives, or give boundary conditions at n points.

With a third-order equation, you need
to give initial conditions for up to
second derivatives.

In[4]:= NDSolve[
{ y'''[x] + 8 y''[x] + 17 y'[x] + 10 y[x] == 0,

y[0] == 6, y'[0] == -20, y''[0] == 84},
y, {x, 0, 1} ]

Out[4]= ��y � InterpolatingFunction��0., 1.��, ?>���
This plots the solution obtained. In[5]:= Plot[Evaluate[ y[x] /. % ], {x, 0, 1}]

0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

With a third-order equation, you can
also give boundary conditions at three
points.

In[6]:= NDSolve[
{ y'''[x] + Sin[x] == 0,

y[0] == 4, y[1] == 7, y[2] == 0 }, y, {x, 0, 2}]

Out[6]= ��y � InterpolatingFunction��0., 2.��, ?>���
Mathematica allows you to use any
appropriate linear combination of
function values and derivatives as
boundary conditions.

In[7]:= NDSolve[{ y''[x] + y[x] == 12 x,
2 y[0] - y'[0] == -1, 2 y[1] + y'[1] == 9},

y, {x, 0, 1}]

Out[7]= ��y � InterpolatingFunction��0., 1.��, ?>���
In most cases, all the initial conditions you give must involve the same value of x, say x�. As a

result, you can avoid giving both xmin and xmax explicitly. If you specify your range of x as {x, x�},
then Mathematica will automatically generate a solution over the range x� to x�.

This generates a solution over the
range 0 to 2.

In[8]:= NDSolve[{y'[x] == y[x], y[0] == 1}, y, {x, 2}]

Out[8]= ��y � InterpolatingFunction��0., 2.��, ?>���
You can give initial conditions as equations of any kind. In some cases, these equations may have

multiple solutions. In such cases, NDSolve will correspondingly generate multiple solutions.

The initial conditions in this case lead
to multiple solutions.

In[9]:= NDSolve[{y'[x]^2 - y[x]^2 == 0, y[0]^2 == 4},
y[x], {x, 1}]

Out[9]= ��yx� � InterpolatingFunction��0., 1.��, ?>�x��,�yx� � InterpolatingFunction��0., 1.��, ?>�x��,�yx� � InterpolatingFunction��0., 1.��, ?>�x��,�yx� � InterpolatingFunction��0., 1.��, ?>�x���



964 3. Advanced Mathematics in Mathematica � 3.9 Numerical Operations on Functions

Here is a plot of all the solutions. In[10]:= Plot[Evaluate[ y[x] /. % ], {x, 0, 1}]

0.2 0.4 0.6 0.8 1

-4

-2

2

4

You can use NDSolve to solve systems of coupled differential equations.

This finds a numerical solution to a
pair of coupled equations.

In[11]:= sol = NDSolve[
{x'[t] == -y[t] - x[t]^2, y'[t] == 2 x[t] - y[t],

x[0] == y[0] == 1}, {x, y}, {t, 10}]

Out[11]= ��x � InterpolatingFunction��0., 10.��, ?>�,
y � InterpolatingFunction��0., 10.��, ?>���

This plots the solution for y from these
equations.

In[12]:= Plot[Evaluate[y[t] /. sol], {t, 0, 10}]

2 4 6 8 10

-0.5

-0.25

0.25

0.5

0.75

1

This generates a parametric plot using
both x and y.

In[13]:= ParametricPlot[Evaluate[{x[t], y[t]} /. sol],
{t, 0, 10}, PlotRange -> All]

-0.4 -0.2 0.2 0.4 0.6 0.8 1

-0.5

-0.25

0.25

0.5

0.75

1



3.9.7 Numerical Solution of Differential Equations 965

Unknown functions in differential equations do not necessarily have to be represented by single
symbols. If you have a large number of unknown functions, you will often find it more convenient,
for example, to give the functions names like y[i].

This constructs a set of five coupled
differential equations and initial
conditions.

In[14]:= eqns = Join[
Table[ y[i]'[x] == y[i-1][x] - y[i][x], {i, 2, 4} ],
{y[1]'[x] == -y[1][x], y[5]'[x] == y[4][x],

y[1][0] == 1},
Table[ y[i][0] == 0, {i, 2, 5}]

]

Out[14]= �y2�<x� � y1�x� � y2�x�,

y3�<x� � y2�x� � y3�x�,

y4�<x� � y3�x� � y4�x�, y1�<x� � �y1�x�,

y5�<x� � y4�x�, y1�0� � 1, y2�0� � 0,
y3�0� � 0, y4�0� � 0, y5�0� � 0�

This solves the equations. In[15]:= NDSolve[eqns, Table[y[i], {i, 5}], {x, 10}]

Out[15]= ��y1� � InterpolatingFunction��0., 10.��, ?>�,
y2� � InterpolatingFunction��0., 10.��, ?>�,
y3� � InterpolatingFunction��0., 10.��, ?>�,
y4� � InterpolatingFunction��0., 10.��, ?>�,
y5� � InterpolatingFunction��0., 10.��, ?>���

Here is a plot of the solutions. In[16]:= Plot[ Evaluate[Table[y[i][x], {i, 5}] /. %],
{x, 0, 10} ]

2 4 6 8 10

0.2

0.4

0.6

0.8

1

NDSolve can handle functions whose values are lists or arrays. If you give initial conditions like
y[0] == {v�, v�, . . . , vn}], then NDSolve will assume that y is a function whose values are lists of
length n.

This solves a system of four coupled
differential equations.

In[17]:= NDSolve[{y''[x] == -Table[Random[], {4}, {4}] . y[x],
y[0] == y'[0] == Table[1, {4}]}, y, {x, 0, 8}]

Out[17]= ��y � InterpolatingFunction��0., 8.��, ?>���



966 3. Advanced Mathematics in Mathematica � 3.9 Numerical Operations on Functions

Here are the solutions. In[18]:= With[{s = y[x] /. First[%]},
Plot[{s[[1]], s[[2]], s[[3]], s[[4]]}, {x, 0, 8},

PlotRange -> All]]

2 4 6 8

-6

-4

-2

2

4

6

option name default value

MaxSteps Automatic maximum number of steps in x to take

StartingStepSize Automatic starting size of step in x to use

MaxStepSize Infinity maximum size of step in x to use

NormFunction Automatic the norm to use for error estimation

Special options for NDSolve.

NDSolve has many methods for solving equations, but essentially all of them at some level work
by taking a sequence of steps in the independent variable x, and using an adaptive procedure to
determine the size of these steps. In general, if the solution appears to be varying rapidly in a
particular region, then NDSolve will reduce the step size or change the method so as to be able to
track the solution better.

This solves a differential equation in
which the derivative has a
discontinuity.

In[19]:= NDSolve[
{y'[x] == If[x < 0, 1/(x-1), 1/(x+1)],
y[-5] == 5},

y, {x, -5, 5}]

Out[19]= ��y � InterpolatingFunction���5., 5.��, ?>���



3.9.7 Numerical Solution of Differential Equations 967

NDSolve reduced the step size around
x � � so as to reproduce the kink
accurately.

In[20]:= Plot[Evaluate[y[x] /. %], {x, -5, 5}]

-4 -2 2 4

3.25

3.5

3.75

4.25

4.5

4.75

5

Through its adaptive procedure, NDSolve is able to solve “stiff” differential equations in which
there are several components which vary with x at very different rates.

In these equations, y varies much more
rapidly than z.

In[21]:= sol = NDSolve[
{y'[x] == -40 y[x], z'[x] == -z[x]/10,

y[0] == z[0] == 1},
{y, z}, {x, 0, 1}]

Out[21]= ��y � InterpolatingFunction��0., 1.��, ?>�,
z � InterpolatingFunction��0., 1.��, ?>���

NDSolve nevertheless tracks both
components successfully.

In[22]:= Plot[Evaluate[{y[x], z[x]} /. sol], {x, 0, 1},
PlotRange -> All]

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

NDSolve follows the general procedure of reducing step size until it tracks solutions accurately.
There is a problem, however, when the true solution has a singularity. In this case, NDSolve might go
on reducing the step size forever, and never terminate. To avoid this problem, the option MaxSteps
specifies the maximum number of steps that NDSolve will ever take in attempting to find a solution.
For ordinary differential equations the default setting is MaxSteps -> 10000.



968 3. Advanced Mathematics in Mathematica � 3.9 Numerical Operations on Functions

NDSolve stops after taking 10000 steps. In[23]:= NDSolve[{y'[x] == -1/x^2, y[-1] == -1}, y[x], {x, -1, 0}]

NDSolve::mxst:
Maximum number of 10000 steps reached at the point x

-172
== -1.00413 10 .

Out[23]=   yx� � InterpolatingFunction�
  �1., �1.00413�10�172!!, ?>�x�!!

There is in fact a singularity in the
solution at x � �.

In[24]:= Plot[Evaluate[y[x] /. %], {x, -1, 0}]

-1 -0.8 -0.6 -0.4 -0.2

-250

-200

-150

-100

-50

The default setting for MaxSteps should be sufficient for most equations with smooth solutions.
When solutions have a complicated structure, however, you may occasionally have to choose larger
settings for MaxSteps. With the setting MaxSteps -> Infinity there is no upper limit on the number
of steps used.

To take the solution to the Lorenz
equations this far, you need to remove
the default bound on MaxSteps.

In[25]:= NDSolve[ {x'[t] == -3 (x[t] - y[t]),
y'[t] == -x[t] z[t] + 26.5 x[t] - y[t],
z'[t] == x[t] y[t] - z[t],
x[0] == z[0] == 0, y[0] == 1},

{x, y, z}, {t, 0, 200}, MaxSteps->Infinity ]

Out[25]= ��x � InterpolatingFunction��0., 200.��, ?>�,
y � InterpolatingFunction��0., 200.��, ?>�,
z � InterpolatingFunction��0., 200.��, ?>���



3.9.7 Numerical Solution of Differential Equations 969

Here is a parametric plot of the
solution in three dimensions.

In[26]:= ParametricPlot3D[Evaluate[{x[t], y[t], z[t]} /. %],
{t, 0, 200}, PlotPoints -> 10000]

-10
-5

0
5

10

-10

0

10

20

0

10

20

30

40

-10
-5

0
5

10

-10

0

10

20

When NDSolve solves a particular set of differential equations, it always tries to choose a step size
appropriate for those equations. In some cases, the very first step that NDSolve makes may be too
large, and it may miss an important feature in the solution. To avoid this problem, you can explicitly
set the option StartingStepSize to specify the size to use for the first step.

NDSolve[{eqn�, eqn�, . . . }, y, {x, xmin, xmax}]
find a numerical solution for y with x in the range xmin to
xmax

NDSolve[{eqn�, eqn�, . . . }, {y�, y�, . . . }, {x, xmin, xmax}]
find numerical solutions for all the yi

Finding numerical solutions to differential-algebraic equations.

The equations you give to NDSolve do not necessarily all have to involve derivatives; they can also
just be algebraic. You can use NDSolve to solve many such differential-algebraic equations.

This solves a system of
differential-algebraic equations.

In[27]:= NDSolve[{x'[t] == y[t]^2 + x[t] y[t],
2 x[t]^2 + y[t]^2 == 1,
x[0] == 0, y[0] == 1}, {x, y}, {t, 0, 5}]

Out[27]= ��x � InterpolatingFunction��0., 5.��, ?>�,
y � InterpolatingFunction��0., 5.��, ?>���



970 3. Advanced Mathematics in Mathematica � 3.9 Numerical Operations on Functions

Here is the solution. In[28]:= Plot[Evaluate[{x[t], y[t]} /. %], {t, 0, 5}]

1 2 3 4 5

-0.5

-0.25

0.25

0.5

0.75

1

NDSolve[{eqn�, eqn�, . . . }, u, {t, tmin, tmax}, {x, xmin, xmax}, . . . ]
solve a system of partial differential equations for u

NDSolve[{eqn�, eqn�, . . . }, {u�, u�, . . . }, {t, tmin, tmax}, {x, xmin, xmax}, . . . ]
solve a system of partial differential equations for several
functions ui

Finding numerical solutions to partial differential equations.

This finds a numerical solution to the
wave equation. The result is a
two-dimensional interpolating function.

In[29]:= NDSolve[{D[u[t, x], t, t] == D[u[t, x], x, x],
u[0, x] == Exp[-x^2], Derivative[1,0][u][0, x] == 0,

u[t, -6] == u[t, 6]}, u, {t, 0, 6}, {x, -6, 6}]

Out[29]= ��u � InterpolatingFunction��0., 6.�, �..., �6., 6., ...��, ?>���
This generates a plot of the result. In[30]:= Plot3D[Evaluate[u[t, x] /. First[%]],

{t, 0, 6}, {x, -6, 6}, PlotPoints->50]

0

2

4

6

-5

-2.5

0

2.5

5

0

0.25

0.5

0.75

1

0

2

4



3.9.7 Numerical Solution of Differential Equations 971

This finds a numerical solution to a
nonlinear wave equation.

In[31]:= NDSolve[
{D[u[t, x], t, t] ==

D[u[t, x], x, x] + (1 - u[t, x]^2)(1 + 2u[t, x]),
u[0, x] == Exp[-x^2], Derivative[1, 0][u][0, x] == 0,

u[t, -10] == u[t, 10]}, u, {t, 0, 10}, {x, -10, 10}]

Out[31]= ��u � InterpolatingFunction��0., 10.�, �..., �10., 10., ...��, ?>���
Here is a 3D plot of the result. In[32]:= Plot3D[Evaluate[u[t, x] /. First[%]],

{t, 0, 10}, {x, -10, 10}, PlotPoints->80]

0

2

4

6

8

10 -10

-5

0

5

10

-1

0

1

0

2

4

6

8

This is a higher-resolution density plot
of the solution.

In[33]:= DensityPlot[Evaluate[u[10 - t, x] /. First[%%]],
{x, -10, 10}, {t, 0, 10},
PlotPoints -> 200, Mesh -> False]

-10 -5 0 5 10
0

2

4

6

8

10



972 3. Advanced Mathematics in Mathematica � 3.9 Numerical Operations on Functions

Here is a version of the equation in
2+1 dimensions.

In[34]:= eqn = D[u[t, x, y], t, t] == D[u[t, x, y], x, x] +
D[u[t, x, y], y, y]/2 + (1 - u[t, x, y]^2)(1 + 2u[t, x, y])

Out[34]= u�2,0,0�t, x, y� � �1 � 2 ut, x, y�� �1 � ut, x, y�2� �
1
�������
2

u�0,0,2�t, x, y� � u�0,2,0�t, x, y�
This solves the equation. In[35]:= NDSolve[{eqn, u[0, x, y] == Exp[-(x^2 + y^2)],

u[t, -5, y] == u[t, 5, y], u[t, x, -5] == u[t, x, 5],
Derivative[1, 0, 0][u][0, x, y] == 0}, u,

{t, 0, 4}, {x, -5, 5}, {y, -5, 5}]

Out[35]= ��u � InterpolatingFunction��0., 4.�, �..., �5., 5., ...�,�..., �5., 5., ...��, ?>���
This generates an array of plots of the
solution.

In[36]:= Show[GraphicsArray[
Partition[

Table[ Plot3D[Evaluate[u[t, x, y] /. First[%]],
{x, -5, 5}, {y, -5, 5}, PlotRange -> All,
PlotPoints -> 100, Mesh -> False,
DisplayFunction -> Identity], {t, 1, 4}], 2]]]

-4
-2

0
2

4
-4

-2

0

2
4

0.2

0.4

-4
-2

0
2

4

-4
-2

0
2

4
-4

-2

0

2
4

0
0.25
0.5

0.75

-4
-2

0
2

4

-4
-2

0
2

4
-4

-2

0

2
4

0.6
0.7
0.8
0.9

1

-4
-2

0
2

4

-4
-2

0
2

4
-4

-2

0

2
4

1.2
1.3
1.4

-4
-2

0
2

4



3.9.8 Numerical Optimization 973

, 3.9.8 Numerical Optimization

FindMinimum[f, {x, x�}] search for a local minimum in f, starting from the point
x = x�

- FindMinimum[f, {{x, x�}, {y, y�}, . . . }]
search for a local minimum in a function of several variables

, FindMaximum[f, {x, x�}] search for a local maximum in f, starting from the point
x = x�

, FindMaximum[f, {{x, x�}, {y, y�}, . . . }]
search for a local maximum in a function of several variables

Searching for minima and maxima.

This finds the value of x which
minimizes ��x�, starting from x � �.

In[1]:= FindMinimum[Gamma[x], {x, 2}]

Out[1]= �0.885603, �x � 1.46163��
The last element of the list gives the
value at which the minimum is
achieved.

In[2]:= Gamma[x] /. Last[%]

Out[2]= 0.885603

Like FindRoot, FindMinimum and FindMaximum work by starting from a point, then progressively
searching for a minimum or maximum. But since they return a result as soon as they find anything,
they may give only a local minimum or maximum of your function, not a global one.

This curve has two local minima. In[3]:= Plot[x^4 - 3x^2 + x, {x, -3, 2}]

-3 -2 -1 1 2

-2

2

4

Starting at x � �, you get the local
minimum on the right.

In[4]:= FindMinimum[x^4 - 3 x^2 + x, {x, 1}]

Out[4]= ��1.07023, �x � 1.1309��
This gives the local minimum on the
left, which in this case is also the
global minimum.

In[5]:= FindMinimum[x^4 - 3 x^2 + x, {x, -1}]

Out[5]= ��3.51391, �x � �1.30084��



974 3. Advanced Mathematics in Mathematica � 3.9 Numerical Operations on Functions

, NMinimize[f, x] try to find the global minimum of f

, NMinimize[f, {x, y, . . . }] try to find the global minimum over several variables

, NMaximize[f, x] try to find the global maximum of f

, NMaximize[f, {x, y, . . . }] try to find the global maximum over several variables

Finding global minima and maxima.

This immediately finds the global
minimum.

In[6]:= NMinimize[x^4 - 3x^2 + x, x]

Out[6]= ��3.51391, �x � �1.30084��
NMinimize and NMaximize are numerical analogs of Minimize and Maximize. But unlike Minimize

and Maximize they usually cannot guarantee to find absolute global minima and maxima. Neverthe-
less, they typically work well when the function f is fairly smooth, and has a limited number of local
minima and maxima.

, NMinimize[{f, cons}, {x, y, . . . }] try to find the global minimum of f subject to
constraints cons

, NMaximize[{f, cons}, {x, y, . . . }] try to find the global maximum of f subject to
constraints cons

Finding global minima and maxima subject to constraints.

With the constraint x > 0, NMinimize
will give the local minimum on the
right.

In[7]:= NMinimize[{x^4 - 3x^2 + x, x > 0}, x]

Out[7]= ��1.07023, �x � 1.1309��
This finds the minimum of x + 2y
within the unit circle.

In[8]:= NMinimize[{x + 2y, x^2 + y^2 <= 1}, {x, y}]

Out[8]= ��2.23607, �x � �0.447214, y � �0.894427��
In this case Minimize can give an exact
result.

In[9]:= Minimize[{x + 2y, x^2 + y^2 <= 1}, {x, y}]

Out[9]= 	�����
5 , 	x � �

1
����������������������

5
, y � �

2
����������������������

5




But in this case it cannot. In[10]:= Minimize[{Cos[x + 2y], x^2 + y^2 <= 1}, {x, y}]

Out[10]= Minimize�Cosx � 2 y�, x2 � y2 � 1�, �x, y��
This gives a numerical approximation,
effectively using NMinimize.

In[11]:= N[%]

Out[11]= ��0.617273, �x � 0.447214, y � 0.894427��



3.9.9 Advanced Topic: Controlling the Precision of Results 975

If both the objective function f and the constraints cons are linear in all variables, then minimization
and maximization correspond to a linear programming problem. Sometimes it is convenient to state such
problems not in terms of explicit equations, but instead in terms of matrices and vectors.

LinearProgramming[c, m, b] find the vector x which minimizes c	x subject to the
constraints m	x ! b and x ! �

, LinearProgramming[c, m, b, l] use the constraints m	x ! b and x ! l

Linear programming in matrix form.

Here is a linear programming problem
in equation form.

In[12]:= Minimize[{2x + 3y, x + 5y >= 10, x - y >= 2, x >= 1}, {x, y}]

Out[12]= 	 32
������������
3

, 	x �
10
������������
3

, y �
4
�������
3




Here is the corresponding problem in
matrix form.

In[13]:= LinearProgramming[{2, 3}, {{1, 5}, {1, -1}, {1, 0}},
{10, 2, 1}]

Out[13]= 	 10
������������
3

,
4
�������
3



You can specify a mixture of equality and inequality constraints by making the list b be a sequence
of pairs {bi, si}. If si is 1, then the ith constraint is mi . x � bi. If si is 0 then it is mi . x == bi, and if
si is -1 then it is mi . x � bi.

This makes the first inequality use *. In[14]:= LinearProgramming[{2, 3}, {{1, 5}, {1, -1}, {1, 0}},
{{10, -1}, {2, 1}, {1, 1}}]

Out[14]= �2, 0�
In LinearProgramming[c, m, b, l], you can make l be a list of pairs {{l�, u�}, {l�, u�}, . . . }

representing lower and upper bounds on the xi.

In doing large linear programming problems, it is often convenient to give the matrix m as a
SparseArray object.

, 3.9.9 Advanced Topic: Controlling the Precision of Results

In doing numerical operations like NDSolve and NMinimize, Mathematica by default uses machine
numbers. But by setting the option WorkingPrecision -> n you can tell it to use arbitrary-precision
numbers with n-digit precision.

This does a machine-precision
computation of a numerical integral.

In[1]:= NIntegrate[Sin[Sin[x]], {x, 0, 1}]

Out[1]= 0.430606

This does the computation with
30-digit arbitrary-precision numbers.

In[2]:= NIntegrate[Sin[Sin[x]], {x, 0, 1}, WorkingPrecision -> 30]

Out[2]= 0.430606103120690604912377



976 3. Advanced Mathematics in Mathematica � 3.9 Numerical Operations on Functions

When you give a setting for WorkingPrecision, this typically defines an upper limit on the pre-
cision of the results from a computation. But within this constraint you can tell Mathematica how
much precision and accuracy you want it to try to get. You should realize that for many kinds of
numerical operations, increasing precision and accuracy goals by only a few digits can greatly increase
the computation time required. Nevertheless, there are many cases where it is important to ensure
that high precision and accuracy are obtained.

WorkingPrecision the number of digits to use for computations

PrecisionGoal the number of digits of precision to try to get

AccuracyGoal the number of digits of accuracy to try to get

Options for controlling precision and accuracy.

This gives a result to 25-digit precision. In[3]:= NIntegrate[Sin[Sin[x]], {x, 0, 1}, WorkingPrecision -> 30,
PrecisionGoal -> 25]

Out[3]= 0.430606103120690604912377355248

50-digit precision cannot be achieved
with 30-digit working precision.

In[4]:= NIntegrate[Sin[Sin[x]], {x, 0, 1}, WorkingPrecision -> 30,
PrecisionGoal -> 50]

NIntegrate::tmap:
NIntegrate is unable to achieve the tolerances
specified by the PrecisionGoal and AccuracyGoal
options because the working precision is insufficient.
Try increasing the setting of the WorkingPrecision

option.

Out[4]= 0.430606103120690604912377355248

Giving a particular setting for WorkingPrecision, each of the functions for numerical operations
in Mathematica uses certain default settings for PrecisionGoal and AccuracyGoal. Typical is the case
of NDSolve, in which these default settings are equal to half the setting given for WorkingPrecision.

The precision and accuracy goals normally apply both to the final results returned, and to various
norms or error estimates for them. Functions for numerical operations in Mathematica typically try to
refine their results until either the specified precision goal or accuracy goal is reached. If the setting
for either of these goals is Infinity, then only the other goal is considered.

In doing ordinary numerical evaluation with N[expr, n], Mathematica automatically adjusts its in-
ternal computations to achieve n-digit precision in the result. But in doing numerical operations on
functions, it is in practice usually necessary to specify WorkingPrecision and PrecisionGoal more
explicitly.



3.9.10 Advanced Topic: Monitoring and Selecting Algorithms 977

, 3.9.10 Advanced Topic: Monitoring and Selecting Algorithms

Functions in Mathematica are carefully set up so that you normally do not have to know how they
work inside. But particularly for numerical functions that use iterative algorithms, it is sometimes
useful to be able to monitor the internal progress of these algorithms.

, StepMonitor an expression to evaluate whenever a successful step is
taken

, EvaluationMonitor an expression to evaluate whenever functions from the input
are evaluated

Options for monitoring progress of numerical functions.

This prints the value of x every time a
step is taken.

In[1]:= FindRoot[Cos[x] == x, {x, 1}, StepMonitor :> Print[x]]

0.750364

0.739113

0.739085

0.739085

Out[1]= �x � 0.739085�
Note the importance of using option :> expr rather than option -> expr. You need a delayed rule :>

to make expr be evaluated each time it is used, rather than just when the rule is given.

Reap and Sow provide a convenient
way to make a list of the steps taken.

In[2]:= Reap[FindRoot[Cos[x] == x, {x, 1}, StepMonitor :> Sow[x]]]

Out[2]= ��x � 0.739085�,��0.750364, 0.739113, 0.739085, 0.739085���
This counts the steps. In[3]:= Block[{ct = 0}, {FindRoot[Cos[x] == x, {x, 1},

StepMonitor :> ct++], ct}]

Out[3]= ��x � 0.739085�, 4�
To take a successful step towards an answer, iterative numerical algorithms sometimes have to

do several evaluations of the functions they have been given. Sometimes this is because each step
requires, say, estimating a derivative from differences between function values, and sometimes it is
because several attempts are needed to achieve a successful step.

This shows the successful steps taken
in reaching the answer.

In[4]:= Reap[FindRoot[Cos[x] == x, {x, 5}, StepMonitor :> Sow[x]]]

Out[4]= ��x � 0.739085�,���0.741028, �0.285946, 0.526451, 0.751511,
0.739119, 0.739085, 0.739085���



978 3. Advanced Mathematics in Mathematica � 3.9 Numerical Operations on Functions

This shows every time the function
was evaluated.

In[5]:= Reap[FindRoot[Cos[x] == x, {x, 5},
EvaluationMonitor :> Sow[x]]]

Out[5]= ��x � 0.739085�,��5., �109.821, �6.48206, �0.741028,
3.80979, �0.285946, 1.44867, 0.526451,
0.751511, 0.739119, 0.739085, 0.739085���

The pattern of evaluations done by
algorithms in Mathematica can be quite
complicated.

In[6]:= ListPlot[Reap[NIntegrate[1/Sqrt[x], {x, -1, 0, 1},
EvaluationMonitor :> Sow[x]]][[2, 1]]]

100 200 300 400

-0.3

-0.2

-0.1

0.1

0.2

0.3

Method -> Automatic pick methods automatically (default)

Method -> "name" specify an explicit method to use

Method -> {"name", {"par�" -> val�, . . . }}
specify more details of a method

Method options.

There are often several different methods known for doing particular types of numerical computa-
tions. Typically Mathematica supports most generally successful ones that have been discussed in the
literature, as well as many that have not. For any specific problem, it goes to considerable effort to
pick the best method automatically. But if you have sophisticated knowledge of a problem, or are
studying numerical methods for their own sake, you may find it useful to tell Mathematica explicitly
what method it should use. The Reference Guide lists some of the methods built into Mathematica;
others are discussed in Section A.9.4 or in advanced or online documentation.

This solves a differential equation using
method m, and returns the number of
steps and evaluations needed.

In[7]:= try[m_] := Block[{s=e=0}, NDSolve[{y''[x] + Sin[y[x]] == 0,
y'[0] == y[0] == 1}, y, {x, 0, 100}, StepMonitor :> s++,
EvaluationMonitor :> e++, Method -> m]; {s, e}]

With the method selected automatically,
this is the number of steps and
evaluations that are needed.

In[8]:= try[Automatic]

Out[8]= �1118, 2329�



3.9.11 Advanced Topic: Functions with Sensitive Dependence on Their Input 979

This shows what happens with several
other possible methods. The Adams
method that is selected automatically is
the fastest.

In[9]:= try /@ {"Adams", "BDF", "ExplicitRungeKutta",
"ImplicitRungeKutta", "Extrapolation"}

Out[9]= ��1118, 2329�, �2415, 2861�,�474, 4749�, �277, 7200�, �83, 4650��
This shows what happens with the
explicit Runge-Kutta method when the
difference order parameter is changed.

In[10]:= Table[try[{"ExplicitRungeKutta", "DifferenceOrder" -> n}],
{n, 4, 9}]

Out[10]= ��3522, 14090�, �617, 4321�, �851, 6810�,�474, 4742�, �291, 3785�, �289, 4626��

3.9.11 Advanced Topic: Functions with Sensitive Dependence on Their Input

Functions that are specified by simple algebraic formulas tend to be such that when their input is
changed only slightly, their output also changes only slightly. But functions that are instead based on
executing procedures quite often show almost arbitrarily sensitive dependence on their input. Typi-
cally the reason this happens is that the procedure “excavates” progressively less and less significant
digits in the input.

This shows successive steps in a simple
iterative procedure with input 0.1111.

In[1]:= NestList[FractionalPart[2 #]&, 0.1111, 10]

Out[1]= �0.1111, 0.2222, 0.4444, 0.8888, 0.7776,
0.5552, 0.1104, 0.2208, 0.4416, 0.8832, 0.7664�

Here is the result with input 0.1112.
Progressive divergence from the result
with input 0.1111 is seen.

In[2]:= NestList[FractionalPart[2 #]&, 0.1112, 10]

Out[2]= �0.1112, 0.2224, 0.4448, 0.8896, 0.7792,
0.5584, 0.1168, 0.2336, 0.4672, 0.9344, 0.8688�

The action of FractionalPart[2 x] is particularly simple in terms of the binary digits of the
number x: it justs drops the first one, and shifts the remaining ones to the left. After several steps,
this means that the results one gets are inevitably sensitive to digits that are far to the right, and have
an extremely small effect on the original value of x.

This shows the shifting process
achieved by FractionalPart[2 x] in
the first 8 binary digits of x.

In[3]:= RealDigits[Take[%, 5], 2, 8, -1]

Out[3]= ���0, 0, 0, 1, 1, 1, 0, 0�, 0�,��0, 0, 1, 1, 1, 0, 0, 1�, 0�,��0, 1, 1, 1, 0, 0, 1, 0�, 0�,��1, 1, 1, 0, 0, 1, 0, 0�, 0�,��1, 1, 0, 0, 0, 1, 1, 1�, 0��
If you give input only to a particular precision, you are effectively specifying only a certain number

of digits. And once all these digits have been “excavated” you can no longer get accurate results, since
to do so would require knowing more digits of your original input. So long as you use arbitrary-
precision numbers, Mathematica automatically keeps track of this kind of degradation in precision,
indicating a number with no remaining significant digits by 0.�10e, as discussed on page 734.



980 3. Advanced Mathematics in Mathematica � 3.9 Numerical Operations on Functions

Successive steps yield numbers of
progressively lower precision, and
eventually no precision at all.

In[4]:= NestList[FractionalPart[40 #]&, N[1/9, 20], 20]

Out[4]=  0.11111111111111111111, 0.4444444444444444444,
0.77777777777777778, 0.1111111111111111,
0.44444444444444, 0.777777777778, 0.11111111111,
0.444444444, 0.77777778, 0.111111, 0.4444,

0.778, 0.1, 0.�10�1, 0.�101, 0.�103,

0.�104, 0.�106, 0.�107, 0.�109, 0.�1011!
This asks for the precision of each
number. Zero precision indicates that
there are no correct significant digits.

In[5]:= Map[Precision, %]

Out[5]= �20., 19., 17.641, 15.1938, 14.1938, 12.8348,
10.3876, 9.38764, 8.02862, 5.58146, 4.58146,
3.22244, 0.77528, 0., 0., 0., 0., 0., 0., 0., 0.�

This shows that the exact result is a
periodic sequence.

In[6]:= NestList[FractionalPart[40 #]&, 1/9, 10]

Out[6]= 	 1
�������
9

,
4
�������
9

,
7
�������
9

,
1
�������
9

,
4
�������
9

,
7
�������
9

,
1
�������
9

,
4
�������
9

,
7
�������
9

,
1
�������
9

,
4
�������
9



It is important to realize that if you use approximate numbers of any kind, then in an example
like the one above you will always eventually run out of precision. But so long as you use arbitrary-
precision numbers, Mathematica will explicitly show you any decrease in precision that is occurring.
However, if you use machine-precision numbers, then Mathematica will not keep track of precision,
and you cannot tell when your results become meaningless.

If you use machine-precision numbers,
Mathematica will no longer keep track
of any degradation in precision.

In[7]:= NestList[FractionalPart[40 #]&, N[1/9], 20]

Out[7]= �0.111111, 0.444444, 0.777778, 0.111111,
0.444444, 0.777778, 0.111111, 0.444445, 0.77781,
0.112405, 0.496185, 0.847383, 0.89534, 0.813599,
0.543945, 0.757813, 0.3125, 0.5, 0., 0., 0.�

By iterating the operation FractionalPart[2 x] you extract successive binary digits in whatever
number you start with. And if these digits are apparently random—as in a number like Π—then the
results will be correspondingly random. But if the digits have a simple pattern—as in any rational
number—then the results you get will be correspondingly simple.

By iterating an operation such as FractionalPart[3/2 x] it turns out however to be possible to
get seemingly random sequences even from very simple input. This is an example of a very general
phenomenon first identified by me in the mid-1980s, which has nothing directly to do with sensitive
dependence on input.

This generates a seemingly random
sequence, even starting from simple
input.

In[8]:= NestList[FractionalPart[3/2 #]&, 1, 15]

Out[8]= 	1,
1
�������
2

,
3
�������
4

,
1
�������
8

,
3
������������
16

,
9
������������
32

,
27
������������
64

,
81
�����������������
128

,
243
�����������������
256

,
217
�����������������
512

,

651
����������������������
1024

,
1953
����������������������
2048

,
1763
����������������������
4096

,
5289
����������������������
8192

,
15867
��������������������������
16384

,
14833
��������������������������
32768



After the values have been computed,
one can safely find numerical
approximations to them.

In[9]:= N[%]

Out[9]= �1., 0.5, 0.75, 0.125, 0.1875, 0.28125, 0.421875,
0.632813, 0.949219, 0.423828, 0.635742,
0.953613, 0.43042, 0.64563, 0.968445, 0.452667�



3.9.11 Advanced Topic: Functions with Sensitive Dependence on Their Input 981

Here are the last 5 results after 1000
iterations, computed using exact
numbers.

In[10]:= Take[N[NestList[FractionalPart[3/2 #]&, 1, 1000]], -5]

Out[10]= �0.0218439, 0.0327659,
0.0491488, 0.0737233, 0.110585�

Using machine-precision numbers gives
completely incorrect results.

In[11]:= Take[NestList[FractionalPart[3/2 #]&, 1., 1000], -5]

Out[11]= �0.670664, 0.0059966,
0.0089949, 0.0134924, 0.0202385�

Many kinds of iterative procedures yield functions that depend sensitively on their input. Such
functions also arise when one looks at solutions to differential equations. In effect, varying the inde-
pendent parameter in the differential equation is a continuous analog of going from one step to the
next in an iterative procedure.

This finds a solution to the Duffing
equation with initial condition 1.

In[12]:= NDSolve[{x''[t] + 0.15 x'[t] - x[t] + x[t]^3 == 0.3 Cos[t],
x[0] == -1, x'[0] == 1}, x, {t, 0, 50}]

Out[12]= ��x � InterpolatingFunction��0., 50.��, ?>���
Here is a plot of the solution. In[13]:= Plot[Evaluate[x[t] /. %], {t, 0, 50}]

10 20 30 40 50

-1.5

-1

-0.5

0.5

1

1.5

Here is the same equation with initial
condition 1.001.

In[14]:= NDSolve[{x''[t] + 0.15 x'[t] - x[t] + x[t]^3 == 0.3 Cos[t],
x[0] == -1, x'[0] == 1.001}, x, {t, 0, 50}]

Out[14]= ��x � InterpolatingFunction��0., 50.��, ?>���
The solution progressively diverges
from the one shown above.

In[15]:= Plot[Evaluate[x[t] /. %], {t, 0, 50}]

10 20 30 40 50

-1

-0.5

0.5

1

1.5



982 3. Advanced Mathematics in Mathematica � 3.10 Mathematical and Other Notation

3.10 Mathematical and Other Notation

- 3.10.1 Special Characters

Built into Mathematica are a large number of special characters intended for use in mathematical and
other notation. Pages 1354–1401 give a complete listing.

Each special character is assigned a full name such as \[Infinity]. More common special charac-
ters are also assigned aliases, such as , inf ,, where H stands for the � key. You can set up additional
aliases using the InputAliases notebook option discussed on page 613.

For special characters that are supported in standard dialects of TEX, Mathematica also allows you
to use aliases based on TEX names. Thus, for example, you can enter \[Infinity] using the alias
, \infty ,. Mathematica also supports aliases such as , &infin , based on names used in SGML and
HTML.

Standard system software on many computer systems also supports special key combinations for
entering certain special characters. On a Macintosh, for example, OPTION-5 will produce � in most
fonts. With the notebook front end Mathematica automatically allows you to use special key combina-
tions when these are available, and with a text-based interface you can get Mathematica to accept such
key combinations if you set an appropriate value for $CharacterEncoding.

Use a full name such as \[Infinity]

Use an alias such as �inf�

Use a TEX alias such as �\infty�

Use an SGML or HTML alias such as �&infin�

Click on a button in a palette

Use a special key combination supported by your computer system

Ways to enter special characters.

In a Mathematica notebook, you can use special characters just like you use standard keyboard
characters. You can include special characters both in ordinary text and in input that you intend to
give to Mathematica.

Some special characters are set up to have an immediate meaning to Mathematica. Thus, for exam-
ple, Π is taken to be the symbol Pi. Similarly, ! is taken to be the operator >=, while � is equivalent
to the function Union.



3.10.1 Special Characters 983

Π and � have immediate meanings in
Mathematica.

In[1]:= Π � 3

Out[1]= True

� or \[Union] is immediately
interpreted as the Union function.

In[2]:= {a, b, c} 	 {c, d, e}

Out[2]= �a, b, c, d, e�
? or \[SquareUnion] has no
immediate meaning to Mathematica.

In[3]:= {a, b, c} $ {c, d, e}

Out[3]= �a, b, c� ? �c, d, e�
Among ordinary characters such as E and i, some have an immediate meaning to Mathematica, but

most do not. And the same is true of special characters.

Thus, for example, while Π and � have an immediate meaning to Mathematica, Λ and � do not.

This allows you to set up your own definitions for Λ and �.

Λ has no immediate meaning in
Mathematica.

In[4]:= Λ[2] + Λ[3]

Out[4]= Λ2� � Λ3�
This defines a meaning for Λ. In[5]:= Λ�x_� :�%&&&&&&&&&&x2 � 1

Now Mathematica evaluates Λ just as it
would any other function.

In[6]:= Λ[2] + Λ[3]

Out[6]= 2
����

2 �����
3

Characters such as Λ and � are treated by Mathematica as letters—just like ordinary keyboard letters
like a or b.

But characters such as K and * are treated by Mathematica as operators. And although these partic-
ular characters are not assigned any built-in meaning by Mathematica, they are nevertheless required
to follow a definite syntax.

? is an infix operator. In[7]:= {a, b, c} $ {c, d, e}

Out[7]= �a, b, c� ? �c, d, e�
The definition assigns a meaning to the? operator.

In[8]:= x_ $ y_ := Join[x, y]

Now ? can be evaluated by
Mathematica.

In[9]:= {a, b, c} $ {c, d, e}

Out[9]= �a, b, c, c, d, e�
The details of how input you give to Mathematica is interpreted depends on whether you are

using StandardForm or TraditionalForm , and on what additional information you supply in
InterpretationBox and similar constructs.

But unless you explicitly override its built-in rules by giving your own definitions for
MakeExpression, Mathematica will always assign the same basic syntactic properties to any particular
special character.



984 3. Advanced Mathematics in Mathematica � 3.10 Mathematical and Other Notation

These properties not only affect the interpretation of the special characters in Mathematica input, but
also determine the structure of expressions built with these special characters. They also affect various
aspects of formatting; operators, for example, have extra space left around them, while letters do not.

Letters a, E, Π, l, �, etc.

Letter-like forms �, Z, �, �, etc.

Operators K, ", N, �, etc.

Types of special characters.

In using special characters, it is important to make sure that you have the correct character for a
particular purpose. There are quite a few examples of characters that look similar, yet are in fact quite
different.

A common issue is operators whose forms are derived from letters. An example is � or \[Sum],
which looks very similar to C or \[CapitalSigma].

As is typical, however, the operator form � is slightly less elaborate and more stylized than the
letter form C. In addition, � is an extensible character which grows depending on the summand,
while C has a size determined only by the current font.

� C \[Sum], \[CapitalSigma]

� B \[Product], \[CapitalPi]

� U \[Union], keyboard U

U Ε \[Element], \[Epsilon]

( d \[DifferentialD], keyboard d

� Μ \[Micro], \[Mu]

� Å \[Angstrom], \[CapitalARing]

Z Ø \[EmptySet], \[CapitalOSlash]

m A \[CapitalAlpha], keyboard A

� i \[ImaginaryI], keyboard i

Different characters that look similar.

In cases such as \[CapitalAlpha] versus A, both characters are letters. However, Mathematica treats
these characters as different, and in some fonts, for example, they may look quite different.

The result contains four distinct
characters.

In[10]:= Union[ {\[CapitalAlpha], A, A, \[Mu], \[Mu], \[Micro]} ]

Out[10]= �A, B, Μ, ��
Traditional mathematical notation occasionally uses ordinary letters as operators. An example is

the d in a differential such as dx that appears in an integral.

To make Mathematica have a precise and consistent syntax, it is necessary at least in StandardForm
to distinguish between an ordinary d and the 7 used as a differential operator.



3.10.1 Special Characters 985

The way Mathematica does this is to use a special character 7 or \[DifferentialD] as the differential
operator. This special character can be entered using the alias , dd ,.

Mathematica uses a special character for
the differential operator, so there is no
conflict with an ordinary d.

In[11]:= � xd ��x

Out[11]=
x1�d

���������������������
1 � d

When letters and letter-like forms appear in Mathematica input, they are typically treated as names
of symbols. But when operators appear, functions must be constructed that correspond to these oper-
ators. In almost all cases, what Mathematica does is to create a function whose name is the full name
of the special character that appears as the operator.

Mathematica constructs a CirclePlus
function to correspond to the operator
O, whose full name is \[CirclePlus].

In[12]:= a � b � c // FullForm

Out[12]//FullForm= CirclePlusa, b, c�
This constructs an And function, which
happens to have built-in evaluation
rules in Mathematica.

In[13]:= a ' b ' c // FullForm

Out[13]//FullForm= Anda, b, c�
Following the correspondence between operator names and function names, special characters such

as � that represent built-in Mathematica functions have names that correspond to those functions.
Thus, for example, J is named \[Divide] to correspond to the built-in Mathematica function Divide,
and n is named \[Implies] to correspond to the built-in function Implies.

In general, however, special characters in Mathematica are given names that are as generic as possi-
ble, so as not to prejudice different uses. Most often, characters are thus named mainly according to
their appearance. The character K is therefore named \[CirclePlus], rather than, say \[DirectSum],
and N is named \[TildeTilde] rather than, say, \[ApproximatelyEqual].

b � \[Times], \[Cross]

+ � \[And], \[Wedge]

, � \[Or], \[Vee]

# # \[Rule], \[RightArrow]

n n \[Implies], \[DoubleRightArrow]

� � \[LongEqual], keyboard =

� � \[Star], keyboard *

� � \[Backslash], keyboard \

& . \[CenterDot], keyboard .

� ^ \[Wedge], keyboard ^


 
 \[VerticalBar], keyboard |

	 	 \[VerticalSeparator], keyboard |

Different operator characters that look similar.

There are sometimes characters that look similar but which are used to represent different opera-
tors. An example is \[Times] and \[Cross]. \[Times] corresponds to the ordinary Times function
for multiplication; \[Cross] corresponds to the Cross function for vector cross products. The �
for \[Cross] is drawn slightly smaller than b for Times, corresponding to usual careful usage in
mathematical typography.



986 3. Advanced Mathematics in Mathematica � 3.10 Mathematical and Other Notation

The \[Times] operator represents
ordinary multiplication.

In[14]:= {5, 6, 7} \[Times] {2, 3, 1}

Out[14]= �10, 18, 7�
The \[Cross] operator represents
vector cross products.

In[15]:= {5, 6, 7} \[Cross] {2, 3, 1}

Out[15]= ��15, 9, 3�
The two operators display in a similar
way—with \[Times] slightly larger
than \[Cross].

In[16]:= {a " b, a ( b}

Out[16]= �a b, a�b�
In the example of \[And] and \[Wedge], the \[And] operator—which happens to be drawn slightly

larger—corresponds to the built-in Mathematica function And, while the \[Wedge] operator has a
generic name based on the appearance of the character and has no built-in meaning.

You can mix \[Wedge] and \[And]
operators. Each has a definite
precedence.

In[17]:= a \[Wedge] b \[And] c \[Wedge] d // FullForm

Out[17]//FullForm= AndWedgea, b�, Wedgec, d��
Some of the special characters commonly used as operators in mathematical notation look similar

to ordinary keyboard characters. Thus, for example, � or \[Wedge] looks similar to the ^ character
on a standard keyboard.

Mathematica interprets a raw ^ as a power. But it interprets � as a generic Wedge function. In cases
such as this where there is a special character that looks similar to an ordinary keyboard character,
the convention is to use the ordinary keyboard character as the alias for the special character. Thus,
for example, , ^ , is the alias for \[Wedge].

The raw ^ is interpreted as a power,
but the , ^ , is a generic wedge
operator.

In[18]:= {x ^ y, x H^ H y}

Out[18]= �xy, x.y�
A related convention is that when a special character is used to represent an operator that can

be typed using ordinary keyboard characters, those characters are used in the alias for the special
character. Thus, for example, , -> , is the alias for # or \[Rule], while , && , is the alias for + or
\[And].

, -> , is the alias for \[Rule], and , && ,
for \[And].

In[19]:= {x H-> H y, x H&& H y} // FullForm

Out[19]//FullForm= ListRulex, y�, Andx, y��
The most extreme case of characters that look alike but work differently occurs with vertical bars.



3.10.1 Special Characters 987

, form character name alias interpretation

x | y keyboard | Alternatives[x, y]

x � y \[VerticalSeparator] , | , VerticalSeparator[x, y]

x 3 y \[VerticalBar] , �| , VerticalBar[x, y]

@ x A \[LeftBracketingBar] , l| , BracketingBar[x]

\[RightBracketingBar] , r| ,

Different types of vertical bars.

Notice that the alias for \[VerticalBar] is , �| ,, while the alias for the somewhat more common
\[VerticalSeparator] is , | ,. Mathematica often gives similar-looking characters similar aliases; it
is a general convention that the aliases for the less commonly used characters are distinguished by
having spaces at the beginning.

HnnnH built-in alias for a common character

H�nnnH built-in alias for similar but less common character

H.nnnH alias globally defined in a Mathematica session

H,nnnH alias defined in a specific notebook

Conventions for special character aliases.

The notebook front end for Mathematica often allows you to set up your own aliases for special
characters. If you want to, you can overwrite the built-in aliases. But the convention is to use aliases
that begin with a dot or comma.

Note that whatever aliases you may use to enter special characters, the full names of the characters
will always be used when the characters are stored in files.



988 3. Advanced Mathematics in Mathematica � 3.10 Mathematical and Other Notation

3.10.2 Names of Symbols and Mathematical Objects

Mathematica by default interprets any sequence of letters or letter-like forms as the name of a symbol.

All these are treated by Mathematica as
symbols.

In[1]:= �Ξ, *Α, R#, �, �, +ABC, 
X, m…n�
Out[1]= �Ξ, IΑ, R	, �, Z, RABC, �X, m…n�

form character name alias interpretation

Π \[Pi] , p ,, , pi , equivalent to Pi

� \[Infinity] , inf , equivalent to Infinity

� \[ExponentialE] , ee , equivalent to E

� \[ImaginaryI] , ii , equivalent to I

� \[ImaginaryJ] , jj , equivalent to I

Symbols with built-in meanings whose names do not start with capital English letters.

Essentially all symbols with built-in meanings in Mathematica have names that start with capital
English letters. Among the exceptions are � and �, which correspond to E and I respectively.

Forms such as � are used for both
input and output in StandardForm.

In[2]:= {, ^ (2 Π -), , ^ Π}

Out[2]= �1, �Π�
In OutputForm � is output as E. In[3]:= OutputForm[%]

Out[3]//OutputForm=
Pi

{1, E }

In written material, it is standard to use very short names—often single letters—for most of the
mathematical objects that one considers. But in Mathematica, it is usually better to use longer and
more explicit names.

In written material you can always explain that a particular single-letter name means one thing in
one place and another in another place. But in Mathematica, unless you use different contexts, a global
symbol with a particular name will always be assumed to mean the same thing.

As a result, it is typically better to use longer names, which are more likely to be unique, and
which describe more explicitly what they mean.

For variables to which no value will be assigned, or for local symbols, it is nevertheless convenient
and appropriate to use short, often single-letter, names.

It is sensible to give the global function
LagrangianL a long and explicit name.
The local variables can be given short
names.

In[4]:= LagrangianL�Φ_, Μ_� � �	Φ�2 � Μ2 �Φ2

Out[4]= Μ2 Φ2 � ��Φ�2



3.10.2 Names of Symbols and Mathematical Objects 989

form input interpretation

xn x��@�n���� or x\_n Subscript[x, n]

x� x��@�+���� or x\_+ SubPlus[x]

x� x��@�-���� or x\_- SubMinus[x]

x[ x��@�*���� or x\_* SubStar[x]

x� x��^�+���� or x\^+ SuperPlus[x]

x� x��^�-���� or x\^- SuperMinus[x]

x[ x��^�*���� or x\^* SuperStar[x]

x† x��^� H dg H���� or x\^\[Dagger] SuperDagger[x]

x̄ x��&�_���� or x\&_ OverBar[x]

�x x��&� H vec H���� or x\&\[RightVector] OverVector[x]

x̃ x��&�M���� or x\&M OverTilde[x]

x̂ x��&�^���� or x\&^ OverHat[x]

ẋ x��&�.���� or x\&. OverDot[x]

¯
x x��+�_���� or x\+_ UnderBar[x]

x StyleBox[x, FontWeight->"Bold"] x

Creating objects with annotated names.

Note that with a notebook front end, you can typically change the style of text using menu items.
Internally the result will be to insert StyleBox objects, but you do not need to do this explicitly.

option typical default value

SingleLetterItalics Automatic whether to use italics for single-letter symbol names

An option for cells in a notebook.

It is conventional in traditional mathematical notation that names consisting of single ordinary
English letters are normally shown in italics, while other names are not. If you use TraditionalForm,
then Mathematica will by default follow this convention. You can explicitly specify whether you want
the convention followed by setting the SingleLetterItalics option for particular cells or cell styles.



990 3. Advanced Mathematics in Mathematica � 3.10 Mathematical and Other Notation

- 3.10.3 Letters and Letter-like Forms

Greek Letters

form full name aliases
Α �[Alpha] ,a , , ,alpha ,

Β �[Beta] ,b , , ,beta ,

Γ �[Gamma] ,g , , ,gamma ,

∆ �[Delta] ,d , , ,delta ,

Ε �[Epsilon] ,e , , ,epsilon ,

� �[CurlyEpsilon] ,ce , , ,cepsilon ,

Ζ �[Zeta] ,z , , ,zeta ,

Η �[Eta] ,h , , ,et , , ,eta ,

Θ �[Theta] ,q , , ,th , , ,theta ,

i �[CurlyTheta] ,cq , , ,cth , , ,ctheta ,

Ι �[Iota] ,i , , ,iota ,

Κ �[Kappa] ,k , , ,kappa ,

� �[CurlyKappa] ,ck , , ,ckappa ,

Λ �[Lambda] ,l , , ,lambda ,

Μ �[Mu] ,m , , ,mu ,

Ν �[Nu] ,n , , ,nu ,

Ξ �[Xi] ,x , , ,xi ,

Ο �[Omicron] ,om , , ,omicron ,

Π �[Pi] ,p , , ,pi ,

q �[CurlyPi] ,cp , , ,cpi ,

Ρ �[Rho] ,r , , ,rho ,

� �[CurlyRho] ,cr , , ,crho ,

Σ �[Sigma] ,s , , ,sigma ,

r �[FinalSigma] ,fs ,

Τ �[Tau] ,t , , ,tau ,

Υ �[Upsilon] ,u , , ,upsilon ,

Φ �[Phi] ,f , , ,ph , , ,phi ,

� �[CurlyPhi] ,j , , ,cph , , ,cphi ,

Χ �[Chi] ,c , , ,ch , , ,chi ,

Ψ �[Psi] ,y , , ,ps , , ,psi ,

Ω �[Omega] ,o , , ,w , , ,omega ,

� �[Digamma] ,di , , ,digamma ,

� �[Koppa] ,ko , , ,koppa ,

� �[Stigma] ,sti , , ,stigma ,

� �[Sampi] ,sa , , ,sampi ,

form full name aliases
m �[CapitalAlpha] ,A , , ,Alpha ,

h �[CapitalBeta] ,B , , ,Beta ,

� �[CapitalGamma] ,G , , ,Gamma ,

? �[CapitalDelta] ,D , , ,Delta ,

t �[CapitalEpsilon] ,E , , ,Epsilon ,

u �[CapitalZeta] ,Z , , ,Zeta ,

v �[CapitalEta] ,H , , ,Et , , ,Eta ,

@ �[CapitalTheta] ,Q , , ,Th , , ,Theta ,

w �[CapitalIota] ,I , , ,Iota ,

x �[CapitalKappa] ,K , , ,Kappa ,

A �[CapitalLambda] ,L , , ,Lambda ,

y �[CapitalMu] ,M , , ,Mu ,

z �[CapitalNu] ,N , , ,Nu ,

l �[CapitalXi] ,X , , ,Xi ,

{ �[CapitalOmicron] ,Om , , ,Omicron ,

B �[CapitalPi] ,P , , ,Pi ,

| �[CapitalRho] ,R , , ,Rho ,

C �[CapitalSigma] ,S , , ,Sigma ,

} �[CapitalTau] ,T , , ,Tau ,

D �[CapitalUpsilon] ,U , , ,Upsilon ,

~ �[CurlyCapitalUpsilon] ,cU , , ,cUpsilon ,

E �[CapitalPhi] ,F , , ,Ph , , ,Phi ,

F �[CapitalChi] ,C , , ,Ch , , ,Chi ,

G �[CapitalPsi] ,Y , , ,Ps , , ,Psi ,

H �[CapitalOmega] ,O , , ,W , , ,Omega ,

� �[CapitalDigamma] ,Di , , ,Digamma ,

� �[CapitalKoppa] ,Ko , , ,Koppa ,

� �[CapitalStigma] ,Sti , , ,Stigma ,

� �[CapitalSampi] ,Sa , , ,Sampi ,

The complete collection of Greek letters in Mathematica.



3.10.3 Letters and Letter-like Forms 991

You can use Greek letters as the names of symbols. The only Greek letter with a built-in meaning in
StandardForm is Π, which Mathematica takes to stand for the symbol Pi.

Note that even though Π on its own is assigned a built-in meaning, combinations such as Π� or xΠ
have no built-in meanings.

The Greek letters C and B look very much like the operators for sum and product. But as discussed
above, these operators are different characters, entered as \[Sum] and \[Product] respectively.

Similarly, Ε is different from the U operator \[Element], and Μ is different from � or \[Micro].

Some capital Greek letters such as \[CapitalAlpha] look essentially the same as capital English
letters. Mathematica however treats them as different characters, and in TraditionalForm it uses
\[CapitalBeta], for example, to denote the built-in function Beta.

Following common convention, lower-case Greek letters are rendered slightly slanted in the standard
fonts provided with Mathematica, while capital Greek letters are unslanted.

Almost all Greek letters that do not look similar to English letters are widely used in science and
mathematics. The capital xi l is rare, though it is used to denote the cascade hyperon particles, the
grand canonical partition function and regular language complexity. The capital upsilon D is also
rare, though it is used to denote bb̄ particles, as well as the vernal equinox.

Curly Greek letters are often assumed to have different meanings from their ordinary counterparts.
Indeed, in pure mathematics a single formula can sometimes contain both curly and ordinary forms
of a particular letter. The curly pi q is rare, except in astronomy.

The final sigma r is used for sigmas that appear at the ends of words in written Greek; it is not
commonly used in technical notation.

The digamma �, koppa �, stigma � and sampi � are archaic Greek letters. These letters provide a
convenient extension to the usual set of Greek letters. They are sometimes needed in making corre-
spondences with English letters. The digamma corresponds to an English w, and koppa to an English
q. Digamma is occasionally used to denote the digamma function PolyGamma[x].



992 3. Advanced Mathematics in Mathematica � 3.10 Mathematical and Other Notation

Variants of English Letters

form full name alias

� �[ScriptL] ,scl ,

� �[ScriptCapitalE] ,scE ,

� �[ScriptCapitalH] ,scH ,

� �[ScriptCapitalL] ,scL ,

� �[GothicCapitalC] ,goC ,

� �[GothicCapitalH] ,goH ,

� �[GothicCapitalI] ,goI ,

X �[GothicCapitalR] ,goR ,

form full name alias

� �[DoubleStruckCapitalC] ,dsC ,

� �[DoubleStruckCapitalR] ,dsR ,

� �[DoubleStruckCapitalQ] ,dsQ ,

� �[DoubleStruckCapitalZ] ,dsZ ,

� �[DoubleStruckCapitalN] ,dsN ,

 �[DotlessI]

! �[DotlessJ]

j �[WeierstrassP] ,wp ,

Some commonly used variants of English letters.

By using menu items in the notebook front end, or explicit StyleBox objects, you can make changes
in the font and style of ordinary text. However, such changes are usually discarded whenever you
send input to the Mathematica kernel.

Script, gothic and double-struck characters are however treated as fundamentally different from
their ordinary forms. This means that even though a C that is italic or a different size will be
considered equivalent to an ordinary C when fed to the kernel, a double-struck � will not.

Different styles and sizes of C are
treated as the same by the kernel. But
gothic and double-struck characters are
treated as different.

In[1]:= C � C �C � � � �
Out[1]= 3 C � � � �

In standard mathematical notation, capital script and gothic letters are sometimes used interchange-
ably. The double-struck letters, sometimes called blackboard or openface letters, are conventionally
used to denote specific sets. Thus, for example, � conventionally denotes the set of complex numbers,
and � the set of integers.

Dotless i and j are not usually taken to be different in meaning from ordinary i and j; they are
simply used when overscripts are being placed on the ordinary characters.

\[WeierstrassP] is a notation specifically used for the Weierstrass P function WeierstrassP.



3.10.3 Letters and Letter-like Forms 993

full names aliases

\[ScriptA] – \[ScriptZ] ,sca , – ,scz , lower-case script letters

\[ScriptCapitalA] – \[ScriptCapitalZ] ,scA , – ,scZ , upper-case script letters

\[GothicA] – \[GothicZ] ,goa , – ,goz , lower-case gothic letters

\[GothicCapitalA] – \[GothicCapitalZ] ,goA , – ,goZ , upper-case gothic letters

\[DoubleStruckA] – \[DoubleStruckZ] ,dsa , – ,dsz , lower-case double-struck letters

\[DoubleStruckCapitalA] – \[DoubleStruckCapitalZ] ,dsA , – ,dsZ , upper-case double-struck letters

Complete alphabets of variant English letters.

Hebrew Letters

form full name alias

Y �[Aleph] ,al ,

" �[Bet]

form full name

# �[Gimel]

$ �[Dalet]

Hebrew characters.

Hebrew characters are used in mathematics in the theory of transfinite sets; Y� is for example used to
denote the total number of integers.



994 3. Advanced Mathematics in Mathematica � 3.10 Mathematical and Other Notation

- Units and Letter-like Mathematical Symbols

form full name alias

� �[Micro] ,mi ,

� �[Mho] ,mho ,

� �[Angstrom] ,Ang ,

 �[HBar] ,hb ,

% �[Cent] ,cent ,

� �[Sterling]

€ �[Euro]

& �[Yen]

form full name alias

� �[Degree] ,deg ,

Z �[EmptySet] ,es ,

� �[Infinity] ,inf ,

� �[ExponentialE] ,ee ,

� �[ImaginaryI] ,ii ,

� �[ImaginaryJ] ,jj ,

' �[DoubledPi] ,pp ,

( �[DoubledGamma] ,gg ,

Units and letter-like mathematical symbols.

Mathematica treats � or \[Degree] as the symbol Degree, so that, for example, 30� is equivalent to
30 Degree.

Note that �, � and Z are all distinct from the ordinary letters Μ (\[Mu]), Å (\[CapitalARing]) and
Ø (\[CapitalOSlash]).

Mathematica interprets � as Infinity, � as E, and both � and � as I. The characters �, � and � are
provided as alternatives to the usual upper-case letters E and I.

' and ( are not by default assigned meanings in StandardForm. You can therefore use ' to
represent a pi that will not automatically be treated as Pi. In TraditionalForm ( is interpreted as
EulerGamma.

form full name alias

" �[PartialD] ,pd ,

( �[DifferentialD] ,dd ,

) �[CapitalDifferentialD] ,DD ,

form full name alias

% �[Del] ,del ,

� �[Sum] ,sum ,

� �[Product] ,prod ,

Operators that look like letters.

Y is an operator while �, � and  are
ordinary symbols.

In[1]:= {0 f, �^2, 45�, 5000�} // FullForm

Out[1]//FullForm= ListDelf�, Power\[HBar], 2�,
Times45, Degree�, Times5000, \[Yen]��



3.10.3 Letters and Letter-like Forms 995

Shapes, Icons and Geometrical Constructs

form full name alias

* �[FilledVerySmallSquare] ,fvssq ,

+ �[EmptySmallSquare] ,essq ,

� �[FilledSmallSquare] ,fssq ,

, �[EmptySquare] ,esq ,

�[GraySquare] ,gsq ,

- �[FilledSquare] ,fsq ,

� �[DottedSquare]

. �[EmptyRectangle]

/ �[FilledRectangle]

0 �[EmptyDiamond]

1 �[FilledDiamond]

form full name alias

� �[EmptySmallCircle] ,esci ,

2 �[FilledSmallCircle] ,fsci ,

3 �[EmptyCircle] ,eci ,

�[GrayCircle] ,gci ,

4 �[FilledCircle] ,fci ,

5 �[EmptyUpTriangle]

6 �[FilledUpTriangle]

7 �[EmptyDownTriangle]

8 �[FilledDownTriangle]

9 �[FivePointedStar] ,*5 ,

: �[SixPointedStar] ,*6 ,

Shapes.

Shapes are most often used as “dingbats” to emphasize pieces of text. But Mathematica treats them as
letter-like forms, and also allows them to appear in the names of symbols.

In addition to shapes such as \[EmptySquare], there are characters such as \[Square] which are
treated by Mathematica as operators rather than letter-like forms.

form full name alias

� �[MathematicaIcon] ,math ,

� �[KernelIcon]

� �[LightBulb]

� �[WarningSign]

� �[WatchIcon]

form full name aliases

	 �[HappySmiley] ,:) , , ,:-) ,


 �[NeutralSmiley] ,:-| ,

� �[SadSmiley] ,:-( ,

� �[FreakedSmiley] ,:-@ ,

� �[Wolf] ,wf , , ,wolf ,

Icons.

You can use icon characters just like
any other letter-like forms.

In[1]:= Expand[(� + 1)^4]

Out[1]= �4 � 4 �3 l � 6 �2 l2 � 4 �l3 � l4



996 3. Advanced Mathematics in Mathematica � 3.10 Mathematical and Other Notation

form full name

[ �[Angle]

; �[RightAngle]

< �[MeasuredAngle]

form full name

= �[SphericalAngle]

5 �[EmptyUpTriangle]

> �[Diameter]

Notation for geometrical constructs.

Since Mathematica treats characters like [ as letter-like forms, constructs like [BC are treated in
Mathematica as single symbols.

Textual Elements

form full name alias

 �[Dash] ,- ,

� �[LongDash] ,-- ,

� �[Bullet] ,bu ,

? �[Paragraph]

@ �[Section]

A �[DownQuestion] ,d? ,

B �[DownExclamation] ,d! ,

form full name alias

$ �[Prime] ,' ,

� �[DoublePrime] ,'' ,

� �[ReversePrime] ,` ,

� �[ReverseDoublePrime] ,`` ,

« �[LeftGuillemet] ,g<< ,

» �[RightGuillemet] ,g>> ,

� �[Ellipsis] ,... ,

Characters used for punctuation and annotation.

form full name

� �[Copyright]

� �[RegisteredTrademark]

� �[Trademark]

C �[Flat]

� �[Natural]

D �[Sharp]

form full name alias

� �[Dagger] ,dg ,

E �[DoubleDagger] ,ddg ,

� �[ClubSuit]

� �[DiamondSuit]

� �[HeartSuit]

� �[SpadeSuit]

Other characters used in text.



3.10.3 Letters and Letter-like Forms 997

form full name alias

� �[HorizontalLine] ,hline ,

� �[VerticalLine] ,vline ,

� �[Ellipsis] ,... ,

� �[CenterEllipsis]

� �[VerticalEllipsis]

� �[AscendingEllipsis]

� �[DescendingEllipsis]

form full name alias

� �[UnderParenthesis] ,u( ,

� �[OverParenthesis] ,o( ,

� �[UnderBracket] ,u[ ,

� �[OverBracket] ,o[ ,

� �[UnderBrace] ,u{ ,

� �[OverBrace] ,o{ ,

Characters used in building sequences and arrays.

The under and over braces grow to
enclose the whole expression.

In[1]:= Underoverscript[Expand[(1 + x)^4],
\[UnderBrace], \[OverBrace]]

Out[1]= 1 � 4 x � 6 x2 � 4 x3 � x4
��������������������������������� �����������������������������
���������������������������������� �����������������������������

Extended Latin Letters

Mathematica supports all the characters commonly used in Western European languages based on Latin
scripts.



998 3. Advanced Mathematics in Mathematica � 3.10 Mathematical and Other Notation

form full name alias
à �[AGrave] ,a` ,

á �[AAcute] ,a' ,

â �[AHat] ,a^ ,

ã �[ATilde] ,aM ,
ä �[ADoubleDot] ,a" ,

å �[ARing] ,ao ,

ā �[ABar] ,a- ,

ă �[ACup] ,au ,

æ �[AE] ,ae ,

ć �[CAcute] ,c' ,

ç �[CCedilla] ,c, ,

č �[CHacek] ,cv ,

è �[EGrave] ,e` ,

é �[EAcute] ,e' ,

ē �[EBar] ,e- ,

ê �[EHat] ,e^ ,

ë �[EDoubleDot] ,e" ,

ĕ �[ECup] ,eu ,

ı̀ �[IGrave] ,i` ,

ı́ �[IAcute] ,i' ,

ı̂ �[IHat] ,i^ ,

ı̈ �[IDoubleDot] ,i" ,

ı̆ �[ICup] ,iu ,

Ð �[Eth] ,d- ,

F �[LSlash] ,l/ ,

ñ �[NTilde] ,nM ,
ò �[OGrave] ,o` ,

ó �[OAcute] ,o' ,

ô �[OHat] ,o^ ,

õ �[OTilde] ,oM ,
ö �[ODoubleDot] ,o" ,

ő �[ODoubleAcute] ,o'' ,

ø �[OSlash] ,o/ ,

š �[SHacek] ,sv ,

ù �[UGrave] ,u` ,

ú �[UAcute] ,u' ,

û �[UHat] ,u^ ,

ü �[UDoubleDot] ,u" ,

ű �[UDoubleAcute] ,u'' ,

G �[YAcute] ,y' ,

Þ �[Thorn] ,thn ,

ß �[SZ] ,sz , , ,ss ,

form full name alias
À �[CapitalAGrave] ,A` ,

Á �[CapitalAAcute] ,A' ,

Â �[CapitalAHat] ,A^ ,

Ã �[CapitalATilde] ,AM ,
Ä �[CapitalADoubleDot] ,A" ,

Å �[CapitalARing] ,Ao ,

Ā �[CapitalABar] ,A- ,

Ă �[CapitalACup] ,Au ,

Æ �[CapitalAE] ,AE ,

Ć �[CapitalCAcute] ,C' ,

Ç �[CapitalCCedilla] ,C, ,

Č �[CapitalCHacek] ,Cv ,

È �[CapitalEGrave] ,E` ,

É �[CapitalEAcute] ,E' ,

Ē �[CapitalEBar] ,E- ,

Ê �[CapitalEHat] ,E^ ,

Ë �[CapitalEDoubleDot] ,E" ,

Ĕ �[CapitalECup] ,Eu ,

Ì �[CapitalIGrave] ,I` ,

Í �[CapitalIAcute] ,I' ,

Î �[CapitalIHat] ,I^ ,

Ï �[CapitalIDoubleDot] ,I" ,

Ĭ �[CapitalICup] ,Iu ,

H �[CapitalEth] ,D- ,

I �[CapitalLSlash] ,L/ ,

Ñ �[CapitalNTilde] ,NM ,
Ò �[CapitalOGrave] ,O` ,

Ó �[CapitalOAcute] ,O' ,

Ô �[CapitalOHat] ,O^ ,

Õ �[CapitalOTilde] ,OM ,
Ö �[CapitalODoubleDot] ,O" ,

Ő �[CapitalODoubleAcute] ,O'' ,

Ø �[CapitalOSlash] ,O/ ,

Š �[CapitalSHacek] ,Sv ,

Ù �[CapitalUGrave] ,U` ,

Ú �[CapitalUAcute] ,U' ,

Û �[CapitalUHat] ,U^ ,

Ü �[CapitalUDoubleDot] ,U" ,

Ű �[CapitalUDoubleAcute] ,U'' ,

J �[CapitalYAcute] ,Y' ,

K �[CapitalThorn] ,Thn ,

Variants of English letters.



3.10.3 Letters and Letter-like Forms 999

Most of the characters shown are formed by adding diacritical marks to ordinary English letters.
Exceptions include \[SZ] ß, used in German, and \[Thorn] Þ and \[Eth] Ð, used primarily in Old
English.

You can make additional characters by explicitly adding diacritical marks yourself.

char ��&� mark ���� or \(char\&mark\) add a mark above a character

char ��+� mark ���� or \(char\+mark\) add a mark below a character

Adding marks above and below characters.

form alias full name

’ (keyboard character) \[RawQuote] acute accent

$ ,' , \[Prime] acute accent

‘ (keyboard character) \[RawBackquote] grave accent

� ,` , \[ReversePrime] grave accent

	 	 (keyboard characters) umlaut or diaeresis

^ (keyboard character) \[RawWedge] circumflex or hat

� ,esci , \[EmptySmallCircle] ring

. (keyboard character) \[RawDot] dot

~ (keyboard character) \[RawTilde] tilde

_ (keyboard character) \[RawUnderscore] bar or macron

ˇ ,hc , \[Hacek] hacek or check

˘ ,bv , \[Breve] breve

- ,dbv , \[DownBreve] tie accent

� ,'' , \[DoublePrime] long umlaut

� ,cd , \[Cedilla] cedilla

Diacritical marks to add to characters.



1000 3. Advanced Mathematics in Mathematica � 3.10 Mathematical and Other Notation

- 3.10.4 Operators

Basic Mathematical Operators

form full name alias

b �[Times] ,* ,

J �[Divide] ,div ,

. �[Sqrt] ,sqrt ,

form full name alias

� �[Cross] ,cross ,

M �[PlusMinus] ,+- ,

L �[MinusPlus] ,-+ ,

Some operators used in basic arithmetic and algebra.

Note that the � for \[Cross] is distinguished by being drawn slightly smaller than the b for \[Times].

x � y Times[x, y] multiplication

x 
 y Divide[x, y] division

2 x Sqrt[x] square root

x � y Cross[x, y] vector cross product

m x PlusMinus[x] (no built-in meaning)

x m y PlusMinus[x, y] (no built-in meaning)

� x MinusPlus[x] (no built-in meaning)

x � y MinusPlus[x, y] (no built-in meaning)

Interpretation of some operators in basic arithmetic and algebra.

Operators in Calculus

form full name alias

% �[Del] ,del ,

" �[PartialD] ,pd ,

( �[DifferentialD] ,dd ,

� �[Sum] ,sum ,

� �[Product] ,prod ,

form full name alias

� �[Integral] ,int ,

) �[ContourIntegral] ,cint ,

/ �[DoubleContourIntegral]

0 �[CounterClockwiseContourIntegral] ,cccint ,

1 �[ClockwiseContourIntegral] ,ccint ,

Operators used in calculus.



3.10.4 Operators 1001

- Logical and Other Connectives

form full name aliases

+ �[And] ,&& , , ,and ,

, �[Or] ,|| , , ,or ,

a �[Not] ,! , , ,not ,

U �[Element] ,el ,

� �[ForAll] ,fa ,

� �[Exists] ,ex ,

M �[NotExists] ,!ex ,

	 �[Xor] ,xor ,


 �[Nand] ,nand ,

� �[Nor] ,nor ,

form full name alias

n �[Implies] ,=> ,

N �[RoundImplies]

W �[Therefore] ,tf ,

O �[Because]

	 �[RightTee]

P �[LeftTee]

Q �[DoubleRightTee]

R �[DoubleLeftTee]

� �[SuchThat] ,st ,

	 �[VerticalSeparator] ,| ,

: �[Colon] ,: ,

Operators used as logical connectives.

The operators +, , and a are interpreted as corresponding to the built-in functions And, Or and Not,
and are equivalent to the keyboard operators &&, || and !. The operators 	, 
 and � correspond to
the built-in functions Xor, Nand and Nor. Note that a is a prefix operator.

x�y and x!y are both taken to give the built-in function Implies[x, y]. x�y gives the built-in
function Element[x, y].

This is interpreted using the built-in
functions And and Implies.

In[1]:= 3 < 4 ' x > 5 ! y < 7

Out[1]= Impliesx > 5, y ? 7�
Mathematica supports most of the standard syntax used in mathematical logic. In Mathematica, how-

ever, the variables that appear in the quantifiers �, � and M must appear as subscripts. If they appeared
directly after the quantifier symbols then there could be a conflict with multiplication operations.

\ and ] are essentially prefix operators
like 8.

In[2]:= �x �y Φ�x, y� �� FullForm

Out[2]//FullForm= ForAllx, Existsy, \[Phi]x, y���



1002 3. Advanced Mathematics in Mathematica � 3.10 Mathematical and Other Notation

Operators Used to Represent Actions

form full name alias


 �[SmallCircle] ,sc ,

K �[CirclePlus] ,c+ ,

S �[CircleMinus] ,c- ,

L �[CircleTimes] ,c* ,

T �[CircleDot] ,c. ,

� �[Diamond] ,dia ,

& �[CenterDot] ,. ,

� �[Star] ,star ,

U �[VerticalTilde]

� �[Backslash] ,\ ,

form full name alias

� �[Wedge] ,^ ,

� �[Vee] ,v ,

� �[Union] ,un ,

� �[UnionPlus]

V �[Intersection] ,inter ,

� �[SquareIntersection]

* �[SquareUnion]

2 �[Coproduct] ,coprod ,

W �[Cap]

X �[Cup]

� �[Square] ,sq ,

Operators typically used to represent actions. All the operators except \[Square] are infix.

Following Mathematica’s usual convention, all the operators in the table above are interpreted to give
functions whose names are exactly the names of the characters that appear in the operators.

The operators are interpreted as
functions with corresponding names.

In[1]:= x � y  z // FullForm

Out[1]//FullForm= CirclePlusx, Capy, z��
All the operators in the table above, except for �, are infix, so that they must appear in between

their operands.

Bracketing Operators

form full name alias

$ �[LeftFloor] ,lf ,

% �[RightFloor] ,rf ,

& �[LeftCeiling] ,lc ,

' �[RightCeiling] ,rc ,

3 �[LeftDoubleBracket] ,[[ ,

4 �[RightDoubleBracket] ,]] ,

form full name alias

� �[LeftAngleBracket] ,< ,

� �[RightAngleBracket] ,> ,

@ �[LeftBracketingBar] ,l| ,

A �[RightBracketingBar] ,r| ,

B �[LeftDoubleBracketingBar] ,l|| ,

C �[RightDoubleBracketingBar] ,r|| ,

Characters used as bracketing operators.



3.10.4 Operators 1003

DxE Floor[x]

FxG Ceiling[x]

m+i,j, . . . , Part[m, i, j, . . . ]

/x,y, . . . 0 AngleBracket[x, y, . . . ]

@x,y, . . . A BracketingBar[x, y, . . . ]

Bx,y, . . . C DoubleBracketingBar[x, y, . . . ]

Interpretations of bracketing operators.

- Operators Used to Represent Relations

form full name alias

� �[Equal] ,== ,

� �[LongEqual] ,l= ,

Q �[Congruent] ,=== ,

O �[Tilde] ,K ,

N �[TildeTilde] ,KK ,

� �[TildeEqual] ,K= ,

� �[TildeFullEqual] ,K== ,

Y �[EqualTilde] ,=K ,

Z �[HumpEqual] ,h= ,

[ �[HumpDownHump]

\ �[CupCap]

] �[DotEqual]

form full name alias

^ �[NotEqual] ,!= ,

^ �[NotCongruent] ,!=== ,

_ �[NotTilde] ,!K ,

` �[NotTildeTilde] ,!KK ,

a �[NotTildeEqual] ,!K= ,

b �[NotTildeFullEqual] ,!K== ,

c �[NotEqualTilde] ,!=K ,

d �[NotHumpEqual] ,!h= ,

e �[NotHumpDownHump]

f �[NotCupCap]

P �[Proportional] ,prop ,

g �[Proportion]

Operators usually used to represent similarity or equivalence.

The special character � (or \[Equal])
is an alternative input form for ==.
� is used both for input and output.

In[1]:= {a == b, a 2 b, a != b, a  b}

Out[1]= �a � b, a � b, a � b, a � b�



1004 3. Advanced Mathematics in Mathematica � 3.10 Mathematical and Other Notation

form full name alias

! �[GreaterEqual] ,>= ,

* �[LessEqual] ,<= ,

h �[GreaterSlantEqual] ,>/ ,

i �[LessSlantEqual] ,</ ,

j �[GreaterFullEqual]

k �[LessFullEqual]

� �[GreaterTilde] ,>K ,

l �[LessTilde] ,<K ,

� �[GreaterGreater]

m �[LessLess]

n �[NestedGreaterGreater]

o �[NestedLessLess]

p �[GreaterLess]

q �[LessGreater]

r �[GreaterEqualLess]

s �[LessEqualGreater]

form full name alias

t �[NotGreaterEqual] ,!>= ,

u �[NotLessEqual] ,!<= ,

v �[NotGreaterSlantEqual] ,!>/ ,

w �[NotLessSlantEqual] ,!</ ,

x �[NotGreaterFullEqual]

y �[NotLessFullEqual]

z �[NotGreaterTilde] ,!>K ,

{ �[NotLessTilde] ,!<K ,

| �[NotGreaterGreater]

} �[NotLessLess]

~ �[NotNestedGreaterGreater]

� �[NotNestedLessLess]

� �[NotGreaterLess]

� �[NotLessGreater]

� �[NotGreater] ,!> ,

� �[NotLess] ,!< ,

Operators usually used for ordering by magnitude.

form full name alias

� �[Subset] ,sub ,

T �[Superset] ,sup ,

� �[SubsetEqual] ,sub= ,

� �[SupersetEqual] ,sup= ,

U �[Element] ,el ,

� �[ReverseElement] ,mem ,

form full name alias

� �[NotSubset] ,!sub ,

� �[NotSuperset] ,!sup ,

� �[NotSubsetEqual] ,!sub= ,

� �[NotSupersetEqual] ,!sup= ,

V �[NotElement] ,!el ,

� �[NotReverseElement] ,!mem ,

Operators used for relations in sets.



3.10.4 Operators 1005

form full name

� �[Succeeds]

� �[Precedes]

� �[SucceedsEqual]

� �[PrecedesEqual]

� �[SucceedsSlantEqual]

� �[PrecedesSlantEqual]

� �[SucceedsTilde]

� �[PrecedesTilde]

� �[RightTriangle]

� �[LeftTriangle]

� �[RightTriangleEqual]

� �[LeftTriangleEqual]

� �[RightTriangleBar]

� �[LeftTriangleBar]

� �[SquareSuperset]

� �[SquareSubset]

� �[SquareSupersetEqual]

� �[SquareSubsetEqual]

form full name

� �[NotSucceeds]

� �[NotPrecedes]

� �[NotSucceedsEqual]

� �[NotPrecedesTilde]

� �[NotSucceedsSlantEqual]

� �[NotPrecedesSlantEqual]

� �[NotSucceedsTilde]

  �[NotPrecedesEqual]

¡ �[NotRightTriangle]

¢ �[NotLeftTriangle]

£ �[NotRightTriangleEqual]

¤ �[NotLeftTriangleEqual]

¥ �[NotRightTriangleBar]

¦ �[NotLeftTriangleBar]

§ �[NotSquareSuperset]

¨ �[NotSquareSubset]

© �[NotSquareSupersetEqual]

ª �[NotSquareSubsetEqual]

Operators usually used for other kinds of orderings.

form full name alias


 �[VerticalBar] ,�| ,

5 �[DoubleVerticalBar] ,�|| ,

form full name alias

« �[NotVerticalBar] ,!| ,

¬ �[NotDoubleVerticalBar] ,!|| ,

Relational operators based on vertical bars.



1006 3. Advanced Mathematics in Mathematica � 3.10 Mathematical and Other Notation

Operators Based on Arrows and Vectors

Operators based on arrows are often used in pure mathematics and elsewhere to represent various
kinds of transformations or changes.

� is equivalent to ->. In[1]:= x + y /. x � 3

Out[1]= 3 � y

form full name alias

# �[Rule] ,-> ,

� �[RuleDelayed] ,:> ,

form full name alias

n �[Implies] ,=> ,

N �[RoundImplies]

Arrow-like operators with built-in meanings in Mathematica.

form full name alias

# �[RightArrow] ,�-> ,

I �[LeftArrow] ,<- ,

R �[LeftRightArrow] ,<-> ,

 �[LongRightArrow] ,--> ,

� �[LongLeftArrow] ,<-- ,

� �[LongLeftRightArrow] ,<--> ,

� �[ShortRightArrow]

� �[ShortLeftArrow]

 �[RightTeeArrow]

! �[LeftTeeArrow]

" �[RightArrowBar]

# �[LeftArrowBar]

n �[DoubleRightArrow] ,�=> ,

� �[DoubleLeftArrow] ,�<= ,

� �[DoubleLeftRightArrow] ,<=> ,

� �[DoubleLongRightArrow] ,==> ,

� �[DoubleLongLeftArrow] ,<== ,

� �[DoubleLongLeftRightArrow] ,<==> ,

form full name

S �[UpArrow]

� �[DownArrow]

� �[UpDownArrow]

$ �[UpTeeArrow]

% �[DownTeeArrow]

& �[UpArrowBar]

' �[DownArrowBar]

� �[DoubleUpArrow]

  �[DoubleDownArrow]

¡ �[DoubleUpDownArrow]

( �[RightArrowLeftArrow]

) �[LeftArrowRightArrow]

* �[UpArrowDownArrow]

+ �[DownArrowUpArrow]

, �[LowerRightArrow]

- �[LowerLeftArrow]

. �[UpperLeftArrow]

/ �[UpperRightArrow]

Ordinary arrows.



3.10.4 Operators 1007

form full name alias

0 �[RightVector] ,vec ,

1 �[LeftVector]

2 �[LeftRightVector]

3 �[DownRightVector]

4 �[DownLeftVector]

5 �[DownLeftRightVector]

6 �[RightTeeVector]

7 �[LeftTeeVector]

8 �[DownRightTeeVector]

9 �[DownLeftTeeVector]

: �[RightVectorBar]

; �[LeftVectorBar]

< �[DownRightVectorBar]

= �[DownLeftVectorBar]

� �[Equilibrium] ,equi ,

> �[ReverseEquilibrium]

form full name

? �[LeftUpVector]

@ �[LeftDownVector]

A �[LeftUpDownVector]

B �[RightUpVector]

C �[RightDownVector]

D �[RightUpDownVector]

E �[LeftUpTeeVector]

F �[LeftDownTeeVector]

G �[RightUpTeeVector]

H �[RightDownTeeVector]

I �[LeftUpVectorBar]

J �[LeftDownVectorBar]

K �[RightUpVectorBar]

L �[RightDownVectorBar]

M �[UpEquilibrium]

N �[ReverseUpEquilibrium]

Vectors and related arrows.

All the arrow and vector-like operators
in Mathematica are infix.

In[2]:= x � y � z

Out[2]= x 
 y����z

form full name alias

	 �[RightTee] ,rT ,

P �[LeftTee] ,lT ,

 �[UpTee] ,uT ,

® �[DownTee] ,dT ,

form full name

Q �[DoubleRightTee]

R �[DoubleLeftTee]

Tees.



1008 3. Advanced Mathematics in Mathematica � 3.10 Mathematical and Other Notation

- 3.10.5 Structural Elements and Keyboard Characters

full name alias

�[InvisibleComma] ,, ,

�[InvisibleApplication] ,@ ,

�[InvisibleSpace] ,is ,

full name alias

�[AlignmentMarker] ,am ,

�[NoBreak] ,nb ,

�[Null] ,null ,

Invisible characters.

In the input there is an invisible
comma between the 1 and 2.

In[1]:= m12

Out[1]= m1,2

Here there is an invisible space
between the x and y, interpreted as
multiplication.

In[2]:= FullForm�xy�
Out[2]//FullForm= Timesx, y�

\[Null] does not display, but can take
modifications such as superscripts.

In[3]:= \!\(f[x, \[Null]\^a]\)

Out[3]= fx, a�
The \[AlignmentMarker] does not
display, but shows how to line up the
elements of the column.

In[4]:= GridBox[{{"b \[AlignmentMarker]+ c + d"},
{"a + b \[AlignmentMarker]+ c"}},

ColumnAlignments->"\[AlignmentMarker]"] // DisplayForm

Out[4]//DisplayForm=
b� � c � d

a � b� � c

full name alias

�[VeryThinSpace] ,� ,

�[ThinSpace] ,�� ,

�[MediumSpace] ,��� ,

�[ThickSpace] ,���� ,

�[InvisibleSpace] ,is ,

�[NewLine]

full name alias

�[NegativeVeryThinSpace] ,-� ,

�[NegativeThinSpace] ,-�� ,

�[NegativeMediumSpace] ,-��� ,

�[NegativeThickSpace] ,-���� ,

�[NonBreakingSpace] ,nbs ,

�[IndentingNewLine] ,nl ,

Spacing and newline characters.

form full name alias

� �[SelectionPlaceholder] ,spl ,

form full name alias

� �[Placeholder] ,pl ,

Characters used in buttons.



3.10.5 Structural Elements and Keyboard Characters 1009

In the buttons in a palette, you often want to set up a template with placeholders to indicate where ex-
pressions should be inserted. \[SelectionPlaceholder] marks the position where an expression that
is currently selected should be inserted when the contents of the button are pasted. \[Placeholder]
marks other positions where subsequent expressions can be inserted. The TAB key will take you from
one such position to the next.

form full name alias

� �[SpaceIndicator] ,space ,

` �[ReturnIndicator] ,ret ,

O �[ReturnKey] ,�ret ,

P �[EnterKey] ,ent ,

� �[EscapeKey] ,�esc ,

, �[AliasIndicator] ,esc ,

form full name alias

� �[RoundSpaceIndicator]

Q �[ControlKey] ,ctrl ,

R �[CommandKey] ,cmd ,

S �[LeftModified] ,[ ,

T �[RightModified] ,] ,

U �[CloverLeaf] ,cl ,

Representations of keys on a keyboard.

In describing how to enter input into Mathematica, it is sometimes useful to give explicit represen-
tations for keys you should press. You can do this using characters like ` and �. Note that _ and V
are actually treated as spacing characters by Mathematica.

This string shows how to type Α2 . In[5]:= "\[EscapeKey]a\[EscapeKey]
\[ControlKey]\[LeftModified]^\[RightModified]2
\[ControlKey]\[LeftModified]\[SpaceIndicator]\[RightModified]"

Out[5]= �a���^�2 ����

form full name

¢ �[Continuation]

£ �[LeftSkeleton]

¤ �[RightSkeleton]

form full name

¥ �[SkeletonIndicator]

¯ �[ErrorIndicator]

Characters generated in Mathematica output.

Mathematica uses a \[Continuation]
character to indicate that the number
continues onto the next line.

In[6]:= 60!

Out[6]= 8320987112741390144276341183223364380754172606361�
245952449277696409600000000000000



1010 3. Advanced Mathematics in Mathematica � 3.10 Mathematical and Other Notation

form full name

�[RawTab]

�[NewLine]

�[RawReturn]

�[RawSpace]

d �[RawExclamation]

" �[RawDoubleQuote]

# �[RawNumberSign]

$ �[RawDollar]

% �[RawPercent]

& �[RawAmpersand]

’ �[RawQuote]

( �[RawLeftParenthesis]

) �[RawRightParenthesis]

* �[RawStar]

+ �[RawPlus]

, �[RawComma]

− �[RawDash]

. �[RawDot]

form full name

/ �[RawSlash]

: �[RawColon]

; �[RawSemicolon]

< �[RawLess]

= �[RawEqual]

> �[RawGreater]

? �[RawQuestion]

@ �[RawAt]

[ �[RawLeftBracket]

\ �[RawBackslash]

] �[RawRightBracket]

^ �[RawWedge]

_ �[RawUnderscore]

‘ �[RawBackquote]

{ �[RawLeftBrace]

| �[RawVerticalBar]

} �[RawRightBrace]

~ �[RawTilde]

Raw keyboard characters.

The fonts that are distributed with Mathematica contain their own renderings of many ordinary key-
board characters. The reason for this is that standard system fonts often do not contain appropriate
renderings. For example, ^ and M are often drawn small and above the centerline, while for clarity in
Mathematica they must be drawn larger and centered on the centerline.



Appendix

This appendix gives a definitive summary of the complete Mathematica

system. Most of what it contains you will never need to know for any

particular application of Mathematica.

You should realize that this appendix describes all the features of

Mathematica, independent of their importance in typical usage.

Other parts of this book are organized along pedagogical lines,

emphasizing important points, and giving details only when they 

are needed.

This appendix gives all the details of every feature. As a result, you

will often find obscure details discussed alongside very common and

important functions. Just remember that this appendix is intended for

reference purposes, not for sequential reading. Do not be put off by

the complexity of some of what you see; you will almost certainly never

have to use it. But if you do end up having to use it, you will probably

be happy that it is there.

By experimenting with Mathematica, you may find features that 

go beyond what is described in this appendix. You should not use

any such features: there is no certainty that features which are not

documented will continue to be supported in future versions of

Mathematica.



AppendixAppendix



Mathematica Reference Guide

A.1 Basic Objects . . . . . . . . . . . . . . . . . . . . . . . 1014

A.2 Input Syntax . . . . . . . . . . . . . . . . . . . . . . . 1018

A.3 Some General Notations and Conventions . . . . . . 1039

A.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 1045

A.5 Patterns and Transformation Rules . . . . . . . . . . 1049

A.6 Files and Streams . . . . . . . . . . . . . . . . . . . . . 1053

A.7 Mathematica Sessions . . . . . . . . . . . . . . . . . . 1055

A.8 Mathematica File Organization . . . . . . . . . . . . . 1061

A.9 Some Notes on Internal Implementation . . . . . . . 1066

A.10 Listing of Major Built-in Mathematica Objects . . . . 1073

A.11 Listing of C Functions in the MathLink Library . . . . 1340

A.12 Listing of Named Characters . . . . . . . . . . . . . . 1351

A.13 Incompatible Changes since Mathematica Version 1 1402



1014 Mathematica Reference Guide

A.1 Basic Objects

A.1.1 Expressions

Expressions are the main type of data in Mathematica.

Expressions can be written in the form h[e�, e�, . . . ]. The object h is known generically as the head
of the expression. The ei are termed the elements of the expression. Both the head and the elements
may themselves be expressions.

The parts of an expression can be referred to by numerical indices. The head has index 0; element
ei has index i. Part[expr, i] or expr[[i]] gives the part of expr with index i. Negative indices count
from the end.

Part[expr, i�, i�, . . . ], expr[[i�, i�, . . . ]] or Extract[expr, {i�, i�, . . . }] gives the piece of expr
found by successively extracting parts of subexpressions with indices i�, i�, . . . . If you think of
expressions as trees, the indices specify which branch to take at each node as you descend from the
root.

The pieces of an expression that are specified by giving a sequence of exactly n indices are defined
to be at level n in the expression. You can use levels to determine the domain of application of
functions like Map. Level 0 corresponds to the whole expression.

The depth of an expression is defined to be the maximum number of indices needed to specify any
part of the expression, plus one. A negative level number -n refers to all parts of an expression that
have depth n.

A.1.2 Symbols

Symbols are the basic named objects in Mathematica.

The name of a symbol must be a sequence of letters, letter-like forms and digits, not starting with
a digit. Upper- and lower-case letters are always distinguished in Mathematica.

aaaaa user-defined symbol

Aaaaa system-defined symbol

$Aaaa global or internal system-defined symbol

aaaa$ symbol renamed in a scoping construct

aa$nn unique local symbol generated in a module

Conventions for symbol names.



A.1 Basic Objects 1015

Essentially all system-defined symbols have names that contain only ordinary English letters, to-
gether with numbers and $. The exceptions are Π, 	, �, � and ".

System-defined symbols conventionally have names that consist of one or more complete English
words. The first letter of each word is capitalized, and the words are run together.

Once created, an ordinary symbol in Mathematica continues to exist unless it is explicitly removed
using Remove. However, symbols created automatically in scoping constructs such as Module carry
the attribute Temporary which specifies that they should automatically be removed as soon as they
no longer appear in any expression.

When a new symbol is to be created, Mathematica first applies any value that has been assigned to
$NewSymbol to strings giving the name of the symbol, and the context in which the symbol would be
created.

If the message General::newsym is switched on, then Mathematica reports new symbols that are
created. This message is switched off by default. Symbols created automatically in scoping constructs
are not reported.

If the message General::spell is switched on, then Mathematica prints a warning if the name of a
new symbol is close to the names of one or more existing symbols.

A.1.3 Contexts

The full name of any symbol in Mathematica consists of two parts: a context, and a short name. The
full name is written in the form context`name. The context context` can contain the same characters as
the short name. It may also contain any number of context mark characters `, and must end with a
context mark.

At any point in a Mathematica session, there is a current context $Context and a context search path
$ContextPath consisting of a list of contexts. Symbols in the current context, or in contexts on the
context search path can be specified by giving only their short names.

name search $Context , then $ContextPath ; create in $Context if
necessary

`name search $Context only; create there if necessary

context`name search context only; create there if necessary

`context`name search $Context`context only; create there if necessary

Contexts used for various specifications of symbols.



1016 Mathematica Reference Guide

With Mathematica packages, it is conventional to associate contexts whose names correspond to the
names of the packages. Packages typically use BeginPackage and EndPackage to define objects in
the appropriate context, and to add the context to the global $ContextPath . EndPackage prints a
warning about any symbols that were created in a package but which are “shadowed” by existing
symbols on the context search path.

The context is included in the printed form of a symbol only if it would be needed to specify the
symbol at the time of printing.

A.1.4 Atomic Objects

All expressions in Mathematica are ultimately made up from a small number of basic or atomic types
of objects.

These objects have heads which are symbols that can be thought of as “tagging” their types. The
objects contain “raw data”, which can usually be accessed only by functions specific to the particular
type of object. You can extract the head of the object using Head, but you cannot directly extract any
of its other parts.

Symbol symbol (extract name using SymbolName)

String character string "cccc" (extract characters using Characters)

Integer integer (extract digits using IntegerDigits)

Real approximate real number (extract digits using RealDigits)

Rational rational number (extract parts using Numerator and
Denominator)

Complex complex number (extract parts using Re and Im)

Atomic objects.

Atomic objects in Mathematica are considered to have depth 0 and yield True when tested with
AtomQ.

As an optimization for some special kinds of computations, the raw data in Mathematica atomic
objects can be given explicitly using Raw[head, "hexstring"]. The data is specified as a string of hex-
adecimal digits, corresponding to an array of bytes. When no special output form exists, InputForm
prints special objects using Raw. The behavior of Raw differs from one implementation of Mathematica to
another; its general use is strongly discouraged.



A.1 Basic Objects 1017

A.1.5 Numbers

Integer integer nnnn

Real approximate real number nnn.nnn

Rational rational number nnn/nnn

Complex complex number nnn + nnn I

Basic types of numbers.

All numbers in Mathematica can contain any number of digits. Mathematica does exact computa-
tions when possible with integers and rational numbers, and with complex numbers whose real and
imaginary parts are integers or rational numbers.

There are two types of approximate real numbers in Mathematica: arbitrary precision and machine pre-
cision. In manipulating arbitrary-precision numbers, Mathematica always tries to modify the precision
so as to ensure that all digits actually given are correct.

With machine-precision numbers, all computations are done to the same fixed precision, so some
digits given may not be correct.

Unless otherwise specified, Mathematica treats as machine-precision numbers all approximate real
numbers that lie between $MinMachineNumber and $MaxMachineNumber and that are input with less
than $MachinePrecision digits.

In InputForm, Mathematica prints machine-precision numbers with $MachinePrecision digits, ex-
cept when trailing digits are zero.

In any implementation of Mathematica, the magnitudes of numbers (except 0) must lie between
$MinNumber and $MaxNumber. Numbers with magnitudes outside this range are represented by
Underflow[ ] and Overflow[ ].

A.1.6 Character Strings

Character strings in Mathematica can contain any sequence of characters. They are input in the form
"ccccc".

The individual characters can be printable ASCII (with character codes between 32 and 126), or
in general any 8- or 16-bit characters. Mathematica uses the Unicode character encoding for 16-bit
characters.

In input form, 16-bit characters are represented when possible in the form \[name], and otherwise
as \:nnnn.

Null bytes can appear at any point within Mathematica strings.



1018 Mathematica Reference Guide

A.2 Input Syntax

A.2.1 Entering Characters

, Enter it directly (e.g. +)

Enter it by full name (e.g. \[Alpha])

Enter it by alias (e.g. H a H) (notebook front end only)

Enter it by choosing from a palette (notebook front end only)

Enter it by character code (e.g. \053)

Typical ways to enter characters.

All printable ASCII characters can be entered directly. Those that are not alphanumeric are assigned
explicit names in Mathematica, allowing them to be entered even on keyboards where they do not
explicitly appear.

\[RawSpace]

! \[RawExclamation]

" \[RawDoubleQuote]

# \[RawNumberSign]

$ \[RawDollar]

% \[RawPercent]

& \[RawAmpersand]

' \[RawQuote]

( \[RawLeftParenthesis]

) \[RawRightParenthesis]

* \[RawStar]

+ \[RawPlus]

, \[RawComma]

- \[RawDash]

. \[RawDot]

/ \[RawSlash]

: \[RawColon]

; \[RawSemicolon]

< \[RawLess]

= \[RawEqual]

> \[RawGreater]

? \[RawQuestion]

@ \[RawAt]

[ \[RawLeftBracket]

\ \[RawBackslash]

] \[RawRightBracket]

^ \[RawWedge]

_ \[RawUnderscore]

` \[RawBackquote]

{ \[RawLeftBrace]

| \[RawVerticalBar]

} \[RawRightBrace]

M \[RawTilde]

Full names for non-alphanumeric printable ASCII characters.



A.2 Input Syntax 1019

All characters which are entered into the Mathematica kernel are interpreted according to the setting
for the CharacterEncoding option for the stream from which they came.

In the Mathematica front end, characters entered on the keyboard are interpreted according to the
current setting of the CharacterEncoding option for the current notebook.

\[Name] a character with the specified full name

\nnn a character with octal code nnn

\.nn a character with hexadecimal code nn

\:nnnn a character with hexadecimal code nnnn

Ways to enter characters.

Codes for characters can be generated using ToCharacterCode. The Unicode standard is followed,
with various extensions.

8-bit characters have codes less than 256; 16-bit characters have codes between 256 and 65535.
Approximately 750 characters are assigned explicit names in Mathematica. Other characters must be
entered using their character codes.

\\ single backslash (decimal code 92)

\b backspace or CONTROL-H (decimal code 8)

\t tab or CONTROL-I (decimal code 9)

\n newline or CONTROL-J (decimal code 10; full name
\[NewLine])

\f form feed or CONTROL-L (decimal code 12)

\r carriage return or CONTROL-M (decimal code 13)

\000 null byte (code 0)

Some special 8-bit characters.

A.2.2 Types of Input Syntax

This appendix describes the standard input syntax used by Mathematica. This input syntax is the one
used by default in InputForm and StandardForm . You can modify the syntax by making definitions
for MakeExpression[expr, form].



1020 Mathematica Reference Guide

Options can be set to specify what form of input should be accepted by a particular cell in a
notebook or from a particular stream.

The input syntax in TraditionalForm , for example, is different from that in InputForm and
StandardForm .

In general, what input syntax does is to determine how a particular string or collection of boxes
should be interpreted as an expression. When boxes are set up, say with the notebook front end, there
can be hidden InterpretationBox or TagBox objects which modify the interpretation of the boxes.

A.2.3 Character Strings

"characters" a character string

\" a literal " in a character string

\\ a literal \ in a character string

\< . . . \> a substring in which newlines are interpreted literally

\!\( . . . \) a substring representing two-dimensional boxes

Entering character strings.

Character strings can contain any sequence of 8- or 16-bit characters. Characters entered by name or
character code are stored the same as if they were entered directly.

Single newlines followed by spaces or tabs are converted to a single space when a string is entered,
unless these characters occur within \< . . . \>, in which case they are left unchanged.

Within \!\( . . . \) any box structures represented using backslash sequences can be used.

A.2.4 Symbol Names and Contexts

name symbol name

`name symbol name in current context

context`name symbol name in specified context

Symbol names and contexts.

Symbol names and contexts can contain any characters that are treated by Mathematica as letters or
letter-like forms. They can contain digits but cannot start with them.



A.2 Input Syntax 1021

A.2.5 Numbers

digits integer

digits.digits approximate number

base^^digits integer in specified base

base^^digits.digits approximate number in specified base

mantissa*^n scientific notation (mantissa � ��n)

base^^mantissa*^n scientific notation in specified base (mantissa � basen)

number` machine-precision approximate number

number`s arbitrary-precision number with precision s

number``s arbitrary-precision number with accuracy s

Input forms for numbers.

Numbers can be entered with the notation base^^digits in any base from 2 to 36. The base itself
is given in decimal. For bases larger than 10, additional digits are chosen from the letters a–z or
A–Z. Upper- and lower-case letters are equivalent for these purposes. Floating-point numbers can be
specified by including . in the digits sequence.

In scientific notation, mantissa can contain ` marks. The exponent n must always be an integer,
specified in decimal.

The precision or accuracy s can be any real number; it does not need to be an integer.

In the form base^^number`s the precision s is given in decimal, but it gives the effective number of
digits of precision in the specified base, not in base 10.

An approximate number x is taken to be machine precision if the number of digits given in it is
Ceiling[$MachinePrecision] + 1 or less. If more digits are given, then x is taken to be an arbitrary-
precision number. The accuracy of x is taken to be the number of digits that appear to the right of
the decimal point, while its precision is taken to be Log[10, Abs[x]] + Accuracy[x].

A number entered in the form 0``s is taken to have precision Indeterminate and accuracy s.

A.2.6 Bracketed Objects

Bracketed objects use explicit left and right delimiters to indicate their extent. They can appear
anywhere within Mathematica input, and can be nested in any way.

The delimiters in bracketed objects are matchfix operators. But since these delimiters explicitly enclose
all operands, no precedence need be assigned to such operators.



1022 Mathematica Reference Guide

(* any text *) comment

(expr) parenthesization: grouping of input

Bracketed objects without comma-separated elements.

Comments can be nested, and can continue for any number of lines. They can contain any 8- or
16-bit characters.

Parentheses must enclose a single complete expression; neither (e, e) nor ( ) are allowed.

{e�, e�, . . . } List[e�, e�, . . . ]

/ e�, e�, . . . 0 AngleBracket[e�, e�, . . . ]

D expr E Floor[expr]

F expr G Ceiling[expr]

@ e�, e�, . . . A BracketingBar[e�, e�, . . . ]

B e�, e�, . . . C DoubleBracketingBar[e�, e�, . . . ]

\(input\) input or grouping of boxes

Bracketed objects that allow comma-separated elements.

Throughout this book the notation . . . is used to stand for any sequence of expressions.

{e�, e�, . . . } can include any number of elements, with successive elements separated by commas.

{ } is List[ ], a list with zero elements.

/ e�, e�, . . . 0 can be entered as \[LeftAngleBracket] e�, e�, . . . \[RightAngleBracket].

The character \[InvisibleComma] can be used interchangeably with ordinary commas; the only
difference is that \[InvisibleComma] will not be displayed.

When the delimiters are special characters, it is a convention that they are named \[LeftName]
and \[RightName].

\( . . . \) is used to enter boxes using one-dimensional strings. Note that within the outermost
\( . . . \) in a piece of input the syntax used is slightly different from outside, as described on
page 1036.



A.2 Input Syntax 1023

h[e�, e�, . . . ] standard expression

e[[i�, i�, . . . ]] Part[e, i�, i�, . . . ]

e+ i�, i�, . . . , Part[e, i�, i�, . . . ]

Bracketed objects with heads.

Bracketed objects with heads explicitly delimit all their operands except the head. A precedence
must be assigned to define the extent of the head.

The precedence of h[e] is high enough that !h[e] is interpreted as Not[h[e]]. However, h_s[e] is
interpreted as (h_s)[e].

A.2.7 Operator Input Forms

Characters that are not letters, letter-like forms or structural elements are treated by Mathematica as
operators. Mathematica has built-in rules for interpreting all operators. The functions to which these
operators correspond may or may not, however, have built-in evaluation or other rules. Cases in
which built-in meanings are by default defined are indicated by � in the tables below.

Operators that construct two-dimensional boxes—all of which have names beginning with back-
slash—can only be used inside \( . . . \). The table below gives the interpretations of these operators
within \!\( . . . \). Page 1037 gives interpretations when no \! is included.

expr and expri any expression

symb any symbol

patt any pattern object

string and stringi "cccc" or a sequence of letters, letter-like forms and digits

filename like string, but can include additional characters described
below

� built-in meanings exist

Objects used in the tables of operator input forms.



1024 Mathematica Reference Guide

operator form full form grouping

forms representing numbers (see page 1021) �

forms representing symbols (see page 1020) �

forms representing character strings (see page 1020) �

expr::string MessageName[expr, "string"] �

expr::string�::string� MessageName[expr, "string�", "string�"] �

forms containing # (see page 1030) �

forms containing % (see page 1030) �

forms containing _ (see page 1030) �

<< filename Get["filename"] �

expr1

expr
2

Overscript[expr�, expr�] e
�e

e�
expr� \& expr� Overscript[expr�, expr�] e\&(e\&e)
expr1
expr

2

Underscript[expr�, expr�] e�e
e�

expr� \+ expr� Underscript[expr�, expr�] e\+(e\+e)

expr1
expr

2

expr
3

Underoverscript[expr�, expr�, expr]

expr� \+ expr� \% expr Underoverscript[expr�, expr�, expr]
expr� \& expr� \% expr Underoverscript[expr�, expr, expr�]

expr1 expr
2

Subscript[expr�, expr�] e�ee �
expr� \_ expr� Subscript[expr�, expr�] e\_(e\_e)
expr� \_ expr� \% expr Power[Subscript[expr�, expr�], expr] �

\!boxes (interpreted version of boxes)

expr�?expr� PatternTest[expr�, expr�] �

expr�[expr�, . . . ] expr�[expr�, . . . ] (e[e])[e] �

expr�[[expr�, . . . ]] Part[expr�, expr�, . . . ] (e[[e]])[[e]] �

expr�+expr�, . . . , Part[expr�, expr�, . . . ] (e+e,)+e, �

expr1 Hexpr
2
,…I Part[expr�, expr�, . . . ] �e+e,�+e, �

\*expr (boxes constructed from expr)
expr++ Increment[expr] �

expr-- Decrement[expr] �

Operator input forms, in order of decreasing precedence, part one.



A.2 Input Syntax 1025

operator form full form grouping

++expr PreIncrement[expr] �

--expr PreDecrement[expr] �

expr� @ expr� expr�[expr�] e @ (e @ e) �

expr� expr� (invisible application, input as expr� H @ H expr�) �

expr�[expr�]

expr� M expr� M expr expr�[expr�, expr] (e M e M e) M e M e �

expr� /@ expr� Map[expr�, expr�] e /@ (e /@ e) �

expr� //@ expr� MapAll[expr�, expr�] e //@ (e //@ e) �

expr� @@ expr� Apply[expr�, expr�] e @@ (e @@ e) �

expr� @@@ expr� Apply[expr�, expr�, {1}] e @@@ (e @@@ e) �

expr! Factorial[expr] �

expr!! Factorial2[expr] �

expr' Derivative[1][expr] �

expr'' . . . ' (n times) Derivative[n][expr] �

expr� <> expr� <> expr StringJoin[expr�, expr�, expr] e <> e <> e �

expr� ^ expr� Power[expr�, expr�] e^(e^e) �

expr1
expr

2 Power[expr�, expr�] e�ee � �

expr1 expr
2

expr
3 Power[Subscript[expr�, expr�], expr] �

expr� \^ expr� \% expr Power[Subscript[expr�, expr], expr�] �

vertical arrow and vector operators2expr Sqrt[expr] 2(2e) �

\@ expr Sqrt[expr] \@(\@e) �

\@ expr \% n Power[expr, 1/n] �

� expr� 7expr� Integrate[expr�, expr�] � (� e 7 e) 7 e �

�
e1

e2

e3 ]7e4 Integrate[e, {e
, e�, e�}] � (� e 7 e) 7 e �

other integration operators: see page 1031

8expr
1

expr2 D[expr�, expr�] 8e �8e e� �

Y expr Del[expr] Y (Y e)

� expr Square[expr] � (� e)
expr� � expr� � expr SmallCircle[expr�, expr�, expr] e � e � e

Operator input forms, in order of decreasing precedence, part two.



1026 Mathematica Reference Guide

operator form full form grouping

expr� � expr� � expr CircleDot[expr�, expr�, expr] e � e � e

expr� ** expr� ** expr NonCommutativeMultiply[expr�, expr�, expr] e ** e ** e

expr� � expr� � expr Cross[expr�, expr�, expr] e � e � e �

expr� . expr� . expr Dot[expr�, expr�, expr] e . e . e �

-expr Times[-1, expr] �

+expr expr �

m expr PlusMinus[expr]
� expr MinusPlus[expr]

expr� / expr� expr� (expr�)^-1 (e / e) / e �

expr� 
 expr� Divide[expr�, expr�] (e 
 e) 
 e �

expr� \/ expr� Divide[expr�, expr�] (e\/e)\/e �

expr� - expr� - expr Backslash[expr�, expr�, expr] e - e - e

expr� n expr� n expr Diamond[expr�, expr�, expr] e n e n e

expr� � expr� � expr Wedge[expr�, expr�, expr] e � e � e

expr� # expr� # expr Vee[expr�, expr�, expr] e # e # e

expr� g expr� g expr CircleTimes[expr�, expr�, expr] e g e g e

expr� o expr� o expr CenterDot[expr�, expr�, expr] e o e o e

expr� expr� expr Times[expr�, expr�, expr] e e e �

expr� * expr� * expr Times[expr�, expr�, expr] e * e * e �

expr� � expr� � expr Times[expr�, expr�, expr] e � e � e �

expr� [ expr� [ expr Star[expr�, expr�, expr] e [ e [ e

(
e1 =e2

e3

e4 Product[e
, {e�, e�, e}] * (* e) �

expr� $ expr� $ expr VerticalTilde[expr�, expr�, expr] e $ e $ e

expr� 1 expr� 1 expr Coproduct[expr�, expr�, expr] e 1 e 1 e

expr� % expr� % expr Cap[expr�, expr�, expr] e % e % e
expr� & expr� & expr Cup[expr�, expr�, expr] e & e & e

expr� O expr� O expr CirclePlus[expr�, expr�, expr] e O e O e
expr� ' expr� CircleMinus[expr�, expr�] (e ' e) ' e

Operator input forms, in order of decreasing precedence, part three.



A.2 Input Syntax 1027

operator form full form grouping

�
e1 =e2

e3

e4 Sum[e
, {e�, e�, e}] ) () e) �

expr� + expr� + expr Plus[expr�, expr�, expr] e + e + e �

expr� - expr� expr� + (-1 expr�) (e - e) - e �

expr� m expr� PlusMinus[expr�, expr�] (e m e) m e
expr� � expr� MinusPlus[expr�, expr�] (e � e) � e

expr� � expr� Intersection[expr�, expr�] e � e � e �

other intersection operators

expr� � expr� Union[expr�, expr�] e � e � e �

other union operators

expr� == expr� Equal[expr�, expr�] e == e == e �

expr� � expr� Equal[expr�, expr�] e � e � e �

expr� � expr� Equal[expr�, expr�] e � e � e �

expr� != expr� Unequal[expr�, expr�] e != e != e �

expr� � expr� Unequal[expr�, expr�] e � e � e �

other equality and similarity operators
expr� > expr� Greater[expr�, expr�] e > e > e �

expr� >= expr� GreaterEqual[expr�, expr�] e >= e >= e �

expr� � expr� GreaterEqual[expr�, expr�] e � e � e �

expr� � expr� GreaterEqual[expr�, expr�] e � e � e �

expr� < expr� Less[expr�, expr�] e < e < e �

expr� <= expr� LessEqual[expr�, expr�] e <= e <= e �

expr� � expr� LessEqual[expr�, expr�] e � e � e �

expr� ( expr� LessEqual[expr�, expr�] e ( e ( e �

other ordering operators
expr� 3 expr� VerticalBar[expr�, expr�] e 3 e 3 e
expr� � expr� NotVerticalBar[expr�, expr�] e � e � e
expr� 4 expr� DoubleVerticalBar[expr�, expr�] e 4 e 4 e
expr� � expr� NotDoubleVerticalBar[expr�, expr�] e � e � e
horizontal arrow and vector operators
diagonal arrow operators

expr� === expr� SameQ[expr�, expr�] e === e === e �

expr� =!= expr� UnsameQ[expr�, expr�] e =!= e =!= e �

Operator input forms, in order of decreasing precedence, part four.



1028 Mathematica Reference Guide

operator form full form grouping

expr� � expr� Element[expr�, expr�] e � e � e �

expr� ^ expr� NotElement[expr�, expr�] e ^ e ^ e �

expr� p expr� Subset[expr�, expr�] e p e p e
expr� q expr� Superset[expr�, expr�] e q e q e
other set relation operators

\expr
1

expr
2

ForAll[expr�, expr�] \e �\e e� �

]expr
1

expr
2

Exists[expr�, expr�] ]e �]e e� �

expr
1

expr
2

NotExists[expr�, expr�] e �e e�
!expr Not[expr] !(!e) �

� expr Not[expr] � (� e) �

expr� && expr� && expr And[expr�, expr�, expr] e && e && e �

expr� � expr� � expr And[expr�, expr�, expr] e � e � e �

expr� � expr� � expr Nand[expr�, expr�, expr] e � e � e �

expr� � expr� � expr Xor[expr�, expr�, expr] e � e � e �

expr� || expr� || expr Or[expr�, expr�, expr] e || e || e �

expr� � expr� � expr Or[expr�, expr�, expr] e � e � e �

expr� � expr� � expr Nor[expr�, expr�, expr] e � e � e �

expr� � expr� Implies[expr�, expr�] e�(e�e) �

expr� ! expr� Implies[expr�, expr�] e!(e!e) �

expr� � expr� RightTee[expr�, expr�] e � (e � e)
expr� ) expr� DoubleRightTee[expr�, expr�] e ) (e ) e)
expr� * expr� LeftTee[expr�, expr�] (e * e) * e
expr� + expr� DoubleLeftTee[expr�, expr�] (e + e) + e

expr� _ expr� SuchThat[expr�, expr�] e _ (e _ e)

expr.. Repeated[expr] �

expr... RepeatedNull[expr] �

expr� | expr� Alternatives[expr�, expr�] e | e | e �

symb:expr Pattern[symb, expr] �

patt:expr Optional[patt, expr] �

Operator input forms, in order of decreasing precedence, part five.



A.2 Input Syntax 1029

operator form full form grouping

expr� /; expr� Condition[expr�, expr�] (e/;e)/;e �

expr� -> expr� Rule[expr�, expr�] e -> (e -> e) �

expr� � expr� Rule[expr�, expr�] e � (e � e) �

expr� :> expr� RuleDelayed[expr�, expr�] e :> (e :> e) �

expr�  expr� RuleDelayed[expr�, expr�] e  (e  e) �

expr� /. expr� ReplaceAll[expr�, expr�] (e /. e) /. e �

expr� //. expr� ReplaceRepeated[expr�, expr�] (e //. e) //. e �

expr� += expr� AddTo[expr�, expr�] e += (e += e) �

expr� -= expr� SubtractFrom[expr�, expr�] e -= (e -= e) �

expr� *= expr� TimesBy[expr�, expr�] e *= (e *= e) �

expr� /= expr� DivideBy[expr�, expr�] e /= (e /= e) �

expr & Function[expr] �

expr� : expr� Colon[expr�, expr�] e : e : e

expr� // expr� expr�[expr�] (e // e) // e

expr� � expr� VerticalSeparator[expr�, expr�] e � e � e

expr� i expr� Therefore[expr�, expr�] e i (e i e)
expr� , expr� Because[expr�, expr�] (e , e) , e

expr� = expr� Set[expr�, expr�] e = (e = e) �

expr� := expr� SetDelayed[expr�, expr�] e := (e := e) �

expr� ^= expr� UpSet[expr�, expr�] e ^= (e ^= e) �

expr� ^:= expr� UpSetDelayed[expr�, expr�] e ^:= (e ^:= e) �

symb/: expr� = expr� TagSet[symb, expr�, expr�] �

symb/: expr� := expr� TagSetDelayed[symb, expr�, expr�] �

expr =. Unset[expr] �

symb/: expr =. TagUnset[symb, expr] �

expr >> filename Put[expr, "filename"] �

expr >>> filename PutAppend[expr, "filename"] �

expr�;expr�;expr CompoundExpression[expr�, expr�, expr] �

expr�;expr�; CompoundExpression[expr�, expr�, Null] �

expr� \` expr� FormBox[expr�, expr�] e \` (e \` e) �

Operator input forms, in order of decreasing precedence, part six.



1030 Mathematica Reference Guide

special input form full form

# Slot[1]

#n Slot[n]

## SlotSequence[1]

##n SlotSequence[n]

% Out[ ]

%% Out[-2]

%% . . . % (n times) Out[-n]

%n Out[n]

_ Blank[ ]

_expr Blank[expr]
__ BlankSequence[ ]

__expr BlankSequence[expr]
___ BlankNullSequence[ ]

___expr BlankNullSequence[expr]
_. Optional[Blank[ ]]

symb_ Pattern[symb, Blank[ ]]

symb_expr Pattern[symb, Blank[expr]]

symb__ Pattern[symb, BlankSequence[ ]]

symb__expr Pattern[symb, BlankSequence[expr]]

symb___ Pattern[symb, BlankNullSequence[ ]]

symb___expr Pattern[symb, BlankNullSequence[expr]]

symb_. Optional[Pattern[symb, Blank[ ]]]

Additional input forms, in order of decreasing precedence.

Special Characters

Special characters that appear in operators usually have names that correspond to the names of the
functions they represent. Thus the character K has name \[CirclePlus] and yields the function
CirclePlus. Exceptions are \[GreaterSlantEqual] , \[LessSlantEqual] and \[RoundImplies].

The delimiters in matchfix operators have names \[LeftName] and \[RightName].

Pages 1354–1401 give a complete listing of special characters that appear in operators.



A.2 Input Syntax 1031

keyboard characters special character

-> \[Rule] �
:> \[RuleDelayed] 
== \[Equal] �
!= \[NotEqual] �

keyboard characters special character

>= \[GreaterEqual] �
>= \[GreaterSlantEqual] �

<= \[LessEqual] �
<= \[LessSlantEqual] (

Keyboard and special characters with the same interpretations.

keyboard character special character

\[RawColon] : \[Colon] :

\[RawTilde] M \[Tilde] M
\[RawWedge] ^ \[Wedge] �

\[RawWedge] ^ \[And] �
\[RawStar] * \[Star] [

\[RawBackslash] \ \[Backslash] -

keyboard character special character

\[RawDot] . \[CenterDot] o
\[RawVerticalBar] | \[VerticalBar] 3
\[RawVerticalBar] | \[VerticalSeparator] �
\[RawVerticalBar] | \[LeftBracketingBar] @

\[RawDash] - \[Dash] �

... \[Ellipsis] r

Some keyboard and special characters with different interpretations.

Precedence and the Ordering of Input Forms

The tables of input forms are arranged in decreasing order of precedence. Input forms in the same
box have the same precedence. Each page in the table begins a new box. As discussed in Section
2.1.3, precedence determines how Mathematica groups terms in input expressions. The general rule is
that if L has higher precedence than K, then a K b L c is interpreted as a K �b L c�, and a L b K c is
interpreted as �aL b� K c.

Grouping of Input Forms

The third columns in the tables show how multiple occurrences of a single input form, or of several
input forms with the same precedence, are grouped. For example, a/b/c is grouped as (a/b)/c (“left
associative”), while a^b^c is grouped as a^(b^c) (“right associative”). No grouping is needed in an
expression like a + b + c, since Plus is fully associative, as represented by the attribute Flat.

Precedence of Integration Operators

Forms such as � expr� 7 expr� have an “outer” precedence just below Power, as indicated in the table
above, but an “inner” precedence just above �. The outer precedence determines when expr� needs
to be parenthesized; the inner precedence determines when expr� needs to be parenthesized.



1032 Mathematica Reference Guide

\[ContourIntegral], \[ClockwiseContourIntegral] and \[DoubleContourIntegral] work the
same as \[Integral].

See page 1034 for two-dimensional input forms associated with integration operators.

Spaces and Multiplication

Spaces in Mathematica denote multiplication, just as they do in standard mathematical notation. In
addition, Mathematica takes complete expressions that are adjacent, not necessarily separated by spaces,
to be multiplied together.

x y z x*y*z

2x 2*x

2(x+1) 2*(x+1)

c(x+1) c*(x+1)

(x+1)(y+2) (x+1)*(y+2)

x! y x!*y

x!y x!*y

Alternative forms for multiplication.

An expression like x!y could potentially mean either (x!)*y or x*(!y). The first interpretation is
chosen because Factorial has higher precedence than Not.

Spaces within single input forms are ignored. Thus, for example, a + b is equivalent to a+b. You
will often want to insert spaces around lower precedence operators to improve readability.

You can give a “coefficient” for a symbol by preceding it with any sequence of digits. When you
use numbers in bases larger than 10, the digits can include letters. (In bases other than 10, there must
be a space between the end of the coefficient, and the beginning of the symbol name.)

x^2y, like x^2 y, means (x^2) y

x/2y, like x/2 y, means (x/2) y

xy is a single symbol, not x*y

Some cases to be careful about.



A.2 Input Syntax 1033

Spaces to Avoid

You should avoid inserting any spaces between the different characters in composite operators such as
/., =. and >=. Although in some cases such spaces are allowed, they are liable to lead to confusion.

Another case where spaces must be avoided is between the characters of the pattern object x_. If
you type x _, Mathematica will interpret this as x*_, rather than the single named pattern object x_.

Similarly, you should not insert any spaces inside pattern objects like x_:value.

Spacing Characters

Ordinary keyboard space (\[RawSpace])

\[VeryThinSpace], \[ThinSpace], ..., \[ThickSpace]

\[NegativeVeryThinSpace], \[NegativeThinSpace], ..., \[NegativeThickSpace]

� (\[SpaceIndicator])

Spacing characters equivalent to an ordinary keyboard space.

Relational Operators

Relational operators can be mixed. An expression like a > b >= c is converted to
Inequality[a, Greater, b, GreaterEqual, c], which effectively evaluates as (a > b) && (b >= c).
(The reason for the intermediate Inequality form is that it prevents objects from being evaluated
twice when input like a > b >= c is processed.)

File Names

Any file name can be given in quotes after <<, >> and >>>. File names can also be given without
quotes if they contain only alphanumeric characters, special characters and the characters `, /, ., \, !,
-, _, :, $, *, M and ?, together with matched pairs of square brackets enclosing any characters other
than spaces, tabs and newlines. Note that file names given without quotes can be followed only by
spaces, tabs or newlines, or by the characters ), ], � as well as semicolon and comma.



1034 Mathematica Reference Guide

A.2.8 Two-Dimensional Input Forms

xy Power[x, y]

x
�������
y

Divide[x, y]

����x Sqrt[x]����xn
Power[x, 1/n]

a11 a12 …

a21 a22 …
��a11 , a12 , …�, �a21 , a22 , …��

8x y D[y, x]

8x,… y D[y, x, . . . ]

� xmax

xmin
y 7x Integrate[y, {x, xmin, xmax}]

� xmax

xmin
y w]

7x
�������������
z

Integrate[y w/z, {x, xmin, xmax}]

xmax�
x=xmin

y Sum[y, {x, xmin, xmax}]

xmax�
x=xmin

y Product[y, {x, xmin, xmax}]

Two-dimensional input forms with built-in evaluation rules.

Any array of expressions represented by a GridBox is interpreted as a list of lists. Even if the GridBox
has only one row, the interpretation is still {{a�, a�, . . . }}.

In the form �
xmin

xmax

y]w]
7x
�������������
z

the limits xmin and xmax can be omitted, as can y and w.

xy Subscript[x, y]

x� SubPlus[x]

x� SubMinus[x]

x[ SubStar[x]

x� SuperPlus[x]

x� SuperMinus[x]

x[ SuperStar[x]

x† SuperDagger[x]

x
y

Overscript[x, y]

x
y

Underscript[x, y]

xN OverBar[x]

x= OverVector[x]

xK OverTilde[x]

xf OverHat[x]

xL OverDot[x]

xN UnderBar[x]

Two-dimensional input forms without built-in evaluation rules.

There is no issue of precedence for forms such as ����x and xf in which operands are effectively
spanned by the operator. For forms such as xy and x† a left precedence does need to be specified,
so such forms are included in the main table of precedences above.



A.2 Input Syntax 1035

A.2.9 Input of Boxes

Use a palette

Use control keys

Use \!\(input\), together with ��!�

Use ��*�

Ways to input boxes.

Control Keys

��1� or ��!� activate \! form

��2� or ��@� square root

��5� or ��%� switch to alternate position (e.g. subscript to superscript)

��6� or ��^� superscript

��7� or ��&� overscript

��8� or ��*� enter raw boxes

��9� or ��(� begin a new cell within an existing cell

��0� or ��)� end a new cell within an existing cell

��-� or ��@� subscript

��=� or ��+� underscript

��J� (CONTROL-RETURN) create a new row in a GridBox

��,� create a new column in a GridBox

��.� expand current selection

��/� fraction

���� (CONTROL-SPACE) return from current position or state

���� , ��a� , ��b� , ��c� move an object by minimal increments on the screen

Standard control keys.

On English-language keyboards both forms will work where alternates are given. On other keyboards
the first form should work but the second may not.



1036 Mathematica Reference Guide

Boxes Constructed from Text

When textual input that you give is used to construct boxes, as in StandardForm or TraditionalForm
cells in a notebook, the input is handled slightly differently from when it is fed directly to the kernel.

The input is broken into tokens, and then each token is included in the box structure as a separate
character string. Thus, for example, xx+yyy is broken into the tokens "xx", "+", "yyy".

symbol name (e.g. x123)

number (e.g. 12.345)

operator (e.g. +=)

spacing (e.g. �)

character string (e.g. "text")

Types of tokens in text used to construct boxes.

A RowBox is constructed to hold each operator and its operands. The nesting of RowBox objects is
determined by the precedence of the operators in standard Mathematica syntax.

Note that spacing characters are not automatically discarded. Instead, each sequence of consecutive
such characters is made into a separate token.

String-Based Input

\( . . . \) input raw boxes

\!\( . . . \) input and interpret boxes

Inputting raw and interpreted boxes.

Any textual input that you give between \( and \) is taken to specify boxes to construct. The boxes
are only interpreted if you specify with \! that this should be done. Otherwise x \^ y is left for
example as SuperscriptBox[x, y], and is not converted to Power[x, y].

Within the outermost \( . . . \), further \( . . . \) specify grouping and lead to the insertion of
RowBox objects.



A.2 Input Syntax 1037

\(box�, box�, . . . \) RowBox[box�, box�, . . . ]

box� \^ box� SuperscriptBox[box�, box�]

box� \_ box� SubscriptBox[box�, box�]

box� \_ box� \% box SubsuperscriptBox[box�, box�, box]

box� \& box� OverscriptBox[box�, box�]

box� \+ box� UnderscriptBox[box�, box�]

box� \+ box� \% box UnderoverscriptBox[box�, box�, box]

box� \/ box� FractionBox[box�, box�]

\@ box SqrtBox[box]

form \` box FormBox[box, form]

\* input construct box by interpreting input

\� insert a space

\n insert a newline

\t indent at the beginning of a line

String-based ways of constructing raw boxes.

In string-based input between \( and \) spaces, tabs and newlines are discarded. \� can be
used to insert a single space. Special spacing characters such as \[ThinSpace], \[ThickSpace] or
\[NegativeThinSpace] are not discarded.

A.2.10 The Extent of Input Expressions

Mathematica will treat all input that you give on a single line as being part of the same expression.

Mathematica allows a single expression to continue for several lines. In general, it treats the in-
put that you give on successive lines as belonging to the same expression whenever no complete
expression would be formed without doing this.

Thus, for example, if one line ends with =, then Mathematica will assume that the expression must
continue on the next line. It will do the same if for example parentheses or other matchfix operators
remain open at the end of the line.

If at the end of a particular line the input you have given so far corresponds to a complete
expression, then Mathematica will normally begin immediately to process that expression.



1038 Mathematica Reference Guide

You can however explicitly tell Mathematica that a particular expression is incomplete by putting a
\ or a � (\[Continuation]) at the end of the line. Mathematica will then include the next line in the
same expression, discarding any spaces or tabs that occur at the beginning of that line.

If you are using StandardForm input in a notebook front end, then Mathematica will also not treat
an expression on a particular line as being complete if the line that follows it could not be complete
without being combined with its predecessor. Thus, for example, if a line begins with an infix oper-
ator such as b or /, then Mathematica will combine this line with the previous one to try to obtain a
complete expression. If a line begins with �, �, M, or another operator that can be used both in infix
or prefix form, then Mathematica will still combine the line with the previous one, but will issue a
warning to say what it is doing.

A.2.11 Special Input

?symbol get information

??symbol get more information

?s� s� . . . get information on several objects

!command execute an external command

!!file display the contents of an external file

Special input lines.

In most implementations of Mathematica, you can give a line of special input anywhere in your input.
The only constraint is that the special input must start at the beginning of a line.

Some implementations of Mathematica may not allow you to execute external commands using
!command.

A.2.12 Front End Files

Notebook files as well as front end initialization files can contain a subset of standard Mathematica
language syntax. This syntax includes:

Any Mathematica expression in FullForm .

Lists in {. . . } form. The operators ->, :> and &. Function slots in # form.

Special characters in \[Name], \:xxxx or \.xx form.

String representation of boxes involving \(, \) and other backslash operators.

Mathematica comments delimited by (* and *).



A.3 Some General Notations and Conventions 1039

A.3 Some General Notations and Conventions

A.3.1 Function Names

The names of built-in functions follow some general guidelines.

The name consists of complete English words, or standard mathematical abbreviations. American
spelling is used.

The first letter of each word is capitalized.

Functions whose names end with Q usually “ask a question”, and return either True or False.

Mathematical functions that are named after people usually have names in Mathematica of the form
PersonSymbol.

A.3.2 Function Arguments

The main expression or object on which a built-in function acts is usually given as the first argument
to the function. Subsidiary parameters appear as subsequent arguments.

The following are exceptions:

In functions like Map and Apply, the function to apply comes before the expression it is to be
applied to.

In scoping constructs such as Module and Function, local variables and parameter names come
before bodies.

In functions like Write and Display, the name of the file is given before the objects to be written
to it.

For mathematical functions, arguments that are written as subscripts in standard mathematical
notation are given before those that are written as superscripts.

A.3.3 Options

Some built-in functions can take options. Each option has a name, represented as a symbol, or in some
cases a string. Options are set by giving rules of the form name->value or name:>value. Such rules
must appear after all the other arguments in a function. Rules for different options can be given in
any order. If you do not explicitly give a rule for a particular option, a default setting for that option
is used.



1040 Mathematica Reference Guide

Options[f] give the default rules for all options associated with f

Options[expr] give the options set in a particular expression

Options[expr, name] give the setting for the option name in an expression

AbsoluteOptions[expr, name] give the absolute setting for name, even if its actual
setting is Automatic

SetOptions[f, name->value, . . . ] set default rules for options associated with f

Operations on options.

A.3.4 Part Numbering

n element n (starting at 1)

-n element n from the end

0 head

All all elements

Numbering of parts.

A.3.5 Sequence Specifications

All all elements

None no elements

n elements 1 through n

-n last n elements

{n} element n only

{m, n} elements m through n (inclusive)

{m, n, s} elements m through n in steps of s

Specifications for sequences of parts.

The sequence specification {m, n, s} corresponds to elements m, m + s, m + 2s, . . . , up to the largest
element not greater than n.

Sequence specifications are used in the functions Drop, Ordering, StringDrop, StringTake, Take
and Thread.



A.3 Some General Notations and Conventions 1041

A.3.6 Level Specifications

n levels 1 through n

Infinity levels 1 through Infinity

{n} level n only

{n�, n�} levels n� through n�

Heads -> True include heads of expressions

Heads -> False do not include heads of expressions

Level specifications.

The level in an expression corresponding to a non-negative integer n is defined to consist of parts
specified by n indices. A negative level number -n represents all parts of an expression that have
depth n. The depth of an expression, Depth[expr], is the maximum number of indices needed to
specify any part, plus one. Levels do not include heads of expressions, except with the option setting
Heads -> True. Level 0 is the whole expression. Level -1 contains all symbols and other objects that
have no subparts.

Ranges of levels specified by {n�, n�} contain all parts that are neither above level n�, nor below
level n� in the tree. The ni need not have the same sign. Thus, for example, {2, -2} specifies
subexpressions which occur anywhere below the top level, but above the leaves, of the expression
tree.

Level specifications are used by functions such as Apply, Cases, Count, FreeQ, Level, Map,
MapIndexed, Position, Replace and Scan. Note, however, that the default level specifications are
not the same for all of these functions.

Functions with level specifications visit different subexpressions in an order that corresponds to
depth-first traversal of the expression tree, with leaves visited before roots. The subexpressions visited
have part specifications which occur in an order which is lexicographic, except that longer sequences
appear before shorter ones.



1042 Mathematica Reference Guide

A.3.7 Iterators

{imax} iterate imax times

{i, imax} i goes from 1 to imax in steps of 1

{i, imin, imax} i goes from imin to imax in steps of 1

{i, imin, imax, di} i goes from imin to imax in steps of di

{i, imin, imax}, {j, jmin, jmax}, . . . i goes from imin to imax, and for each value of i, j
goes from jmin to jmax, etc.

Iterator notation.

Iterators are used in such functions as Sum, Table, Do and Range.

The iteration parameters imin, imax and di do not need to be integers. The variable i is given a
sequence of values starting at imin, and increasing in steps of di, stopping when the next value of i
would be greater than imax. The iteration parameters can be arbitrary symbolic expressions, so long
as (imax-imin)/di is a number.

When several iteration variables are used, the limits for the later ones can depend on the values of
earlier ones.

The variable i can be any symbolic expression; it need not be a single symbol. The value of i is
automatically set up to be local to the iteration function. This is effectively done by wrapping a Block
construct containing i around the iteration function.

The procedure for evaluating iteration functions is described on page 1046.

A.3.8 Scoping Constructs

Function[{x, . . . }, body] local parameters

lhs -> rhs and lhs :> rhs local pattern names

lhs = rhs and lhs := rhs local pattern names

With[{x = x�, . . . }, body] local constants

Module[{x, . . . }, body] local variables

Scoping constructs in Mathematica.

Scoping constructs allow the names of certain symbols to be local.



A.3 Some General Notations and Conventions 1043

When nested scoping constructs are evaluated, new symbols are automatically generated in the
inner scoping constructs so as to avoid name conflicts with symbols in outer scoping constructs.

In general, symbols with names of the form xxx are renamed xxx$.

When a transformation rule or definition is used, ReplaceAll (/.) is effectively used to replace the
pattern names that appear on the right-hand side. Nevertheless, new symbols are generated when
necessary to represent other objects that appear in scoping constructs on the right-hand side.

Each time it is evaluated, Module generates symbols with unique names of the form xxx$nnn as
replacements for all local variables that appear in its body.

A.3.9 Ordering of Expressions

The canonical ordering of expressions used automatically with the attribute Orderless and in func-
tions such as Sort satisfies the following rules:

Integers, rational and approximate real numbers are ordered by their numerical values.

Complex numbers are ordered by their real parts, and in the event of a tie, by the absolute values
of their imaginary parts.

Symbols are ordered according to their names, and in the event of a tie, by their contexts.

Expressions are usually ordered by comparing their parts in a depth-first manner. Shorter expres-
sions come first.

Powers and products are treated specially, and are ordered to correspond to terms in a polynomial.

Strings are ordered as they would be in a dictionary, with the upper-case versions of letters coming
after lower-case ones. Ordinary letters appear first, followed in order by script, Gothic, double-
struck, Greek and Hebrew. Mathematical operators appear in order of decreasing precedence.

A.3.10 Mathematical Functions

The mathematical functions such as Log[x] and BesselJ[n, x] that are built into Mathematica have a
number of features in common.

They carry the attribute Listable, so that they are automatically “threaded” over any lists that
appear as arguments.

They carry the attribute NumericFunction, so that they are assumed to give numerical values when
their arguments are numerical.

They give exact results in terms of integers, rational numbers and algebraic expressions in special
cases.

Except for functions whose arguments are always integers, mathematical functions in Mathematica
can be evaluated to any numerical precision, with any complex numbers as arguments. If a function
is undefined for a particular set of arguments, it is returned in symbolic form in this case.



1044 Mathematica Reference Guide

Numerical evaluation leads to results of a precision no higher than can be justified on the basis
of the precision of the arguments. Thus N[Gamma[27/10], 100] yields a high-precision result, but
N[Gamma[2.7], 100] cannot.

When possible, symbolic derivatives, integrals and series expansions of built-in mathematical func-
tions are evaluated in terms of other built-in functions.

A.3.11 Mathematical Constants

Mathematical constants such as E and Pi that are built into Mathematica have the following properties:

They do not have values as such.

They have numerical values that can be found to any precision.

They are treated as numeric quantities in NumericQ and elsewhere.

They carry the attribute Constant, and so are treated as constants in derivatives.

A.3.12 Protection

Mathematica allows you to make assignments that override the standard operation and meaning of
built-in Mathematica objects.

To make it difficult to make such assignments by mistake, most built-in Mathematica objects have
the attribute Protected. If you want to make an assignment for a built-in object, you must first
remove this attribute. You can do this by calling the function Unprotect.

There are a few fundamental Mathematica objects to which you absolutely cannot assign your own
values. These objects carry the attribute Locked, as well as Protected. The Locked attribute prevents
you from changing any of the attributes, and thus from removing the Protected attribute.

A.3.13 String Patterns

Functions such as StringMatchQ, Names and Remove allow you to give string patterns. String patterns
can contain metacharacters, which can stand for sequences of ordinary characters.

* zero or more characters

@ one or more characters excluding upper-case letters

\\* etc. literal *, etc.

Metacharacters used in string patterns.



A.4 Evaluation 1045

A.4 Evaluation

A.4.1 The Standard Evaluation Sequence

The following is the sequence of steps that Mathematica follows in evaluating an expression like
h[e�, e�, . . . ]. Every time the expression changes, Mathematica effectively starts the evaluation se-
quence over again.

If the expression is a raw object (e.g., Integer, String, etc.), leave it unchanged.

Evaluate the head h of the expression.

Evaluate each element ei of the expression in turn. If h is a symbol with attributes HoldFirst,
HoldRest, HoldAll or HoldAllComplete, then skip evaluation of certain elements.

Unless h has attribute HoldAllComplete strip the outermost of any Unevaluated wrappers that
appear in the ei.

Unless h has attribute SequenceHold, flatten out all Sequence objects that appear among the ei.

If h has attribute Flat, then flatten out all nested expressions with head h.

If h has attribute Listable, then thread through any ei that are lists.

If h has attribute Orderless, then sort the ei into order.

Unless h has attribute HoldAllComplete, use any applicable transformation rules associated with f
that you have defined for objects of the form h[ f[e�, . . . ], . . . ].

Use any built-in transformation rules associated with f for objects of the form h[ f[e�, . . . ], . . . ].

Use any applicable transformation rules that you have defined for h[e�, e�, . . . ] or for
h[ . . . ][ . . . ].

Use any built-in transformation rules for h[e�, e�, . . . ] or for h[ . . . ][ . . . ].

A.4.2 Non-Standard Argument Evaluation

There are a number of built-in Mathematica functions that evaluate their arguments in special ways.
The control structure While is an example. The symbol While has the attribute HoldAll. As a result,
the arguments of While are not evaluated as part of the standard evaluation process. Instead, the
internal code for While evaluates the arguments in a special way. In the case of While, the code
evaluates the arguments repeatedly, so as to implement a loop.



1046 Mathematica Reference Guide

Control structures arguments evaluated in a sequence determined by control
flow (e.g., CompoundExpression)

Conditionals arguments evaluated only when they correspond to
branches that are taken (e.g., If, Which)

Logical operations arguments evaluated only when they are needed in
determining the logical result (e.g., And, Or)

Iteration functions first argument evaluated for each step in the iteration (e.g.,
Do, Sum, Plot)

Tracing functions form never evaluated (e.g., Trace)

Assignments first argument only partially evaluated (e.g., Set, AddTo)

Pure functions function body not evaluated (e.g., Function)

Scoping constructs variable specifications not evaluated (e.g., Module, Block)

Holding functions argument maintained in unevaluated form (e.g., Hold,
HoldPattern)

Built-in functions that evaluate their arguments in special ways.

Logical Operations

In an expression of the form e�&&e�&&e the ei are evaluated in order. As soon as any ei is found to be
False, evaluation is stopped, and the result False is returned. This means that you can use the ei to
represent different “branches” in a program, with a particular branch being evaluated only if certain
conditions are met.

The Or function works much like And; it returns True as soon as it finds any argument that is True.
Xor, on the other hand, always evaluates all its arguments.

Iteration Functions

An iteration function such as Do[f, {i, imin, imax}] is evaluated as follows:

The iteration specification is evaluated. If it is not found to be of the form {i, imin, imax}, the
evaluation stops.

The value of the iteration variable i is made local, effectively using Block.

imin and imax are used to determine the sequence of values to be assigned to the iteration variable i.



A.4 Evaluation 1047

The iteration variable is successively set to each value, and f is evaluated in each case.

The local values assigned to i are cleared.

If there are several iteration variables, the same procedure is followed for each variable in turn, for
every value of all the preceding variables.

Unless otherwise specified, f is not evaluated until a specific value has been assigned to i, and is then
evaluated for each value of i chosen. You can use Evaluate[f] to make f be evaluated immediately,
rather than only after a specific value has been assigned to i.

Assignments

The left-hand sides of assignments are only partially evaluated.

If the left-hand side is a symbol, no evaluation is performed.

If the left-hand side is a function without hold attributes, the arguments of the function are
evaluated, but the function itself is not evaluated.

The right-hand side is evaluated for immediate (=), but not for delayed (:=), assignments.

Any subexpression of the form HoldPattern[expr] that appears on the left-hand side of an assign-
ment is not evaluated, but is replaced by the unevaluated form of expr before the assignment is done.

A.4.3 Overriding Non-Standard Argument Evaluation

f[expr�, . . . , Evaluate[exprn], . . . ] evaluates the argument exprn, whether or not the
attributes of f specify that it should be held

Overriding holding of arguments.

By using Evaluate, you can get any argument of a function evaluated immediately, even if the
argument would usually be evaluated later under the control of the function.

A.4.4 Preventing Evaluation

Mathematica provides various functions which act as “wrappers” to prevent the expressions they
contain from being evaluated.



1048 Mathematica Reference Guide

Hold[expr] treated as Hold[expr] in all cases

HoldComplete[expr] treated as HoldComplete[expr] with upvalues disabled

HoldForm[expr] treated as expr for printing

HoldPattern[expr] treated as expr in rules, definitions and patterns

Unevaluated[expr] treated as expr when arguments are passed to a function

Wrappers that prevent expressions from being evaluated.

A.4.5 Global Control of Evaluation

In the evaluation procedure described above, two basic kinds of steps are involved:

Iteration: evaluate a particular expression until it no longer changes.

Recursion: evaluate subsidiary expressions needed to find the value of a particular expression.

Iteration leads to evaluation chains in which successive expressions are obtained by the application
of various transformation rules.

Trace shows evaluation chains as lists, and shows subsidiary evaluations corresponding to recursion
in sublists.

The expressions associated with the sequence of subsidiary evaluations which lead to an expression
currently being evaluated are given in the list returned by Stack[ ].

$RecursionLimit maximum recursion depth

$IterationLimit maximum number of iterations

Global variables controlling the evaluation of expressions.

A.4.6 Aborts

You can ask Mathematica to abort at any point in a computation, either by calling the function Abort[ ],
or by typing appropriate interrupt keys.

When asked to abort, Mathematica will terminate the computation as quickly as possible. If the
answer obtained would be incorrect or incomplete, then Mathematica returns $Aborted instead of
giving that answer.

Aborts can be caught using CheckAbort, and can be postponed using AbortProtect.



A.5 Patterns and Transformation Rules 1049

A.5 Patterns and Transformation Rules

A.5.1 Patterns

Patterns stand for classes of expressions. They contain pattern objects which represent sets of possible
expressions.

_ any expression

x_ any expression, given the name x

x:pattern a pattern, given the name x

pattern ? test a pattern that yields True when test is applied to its value

_h any expression with head h

x_h any expression with head h, given the name x

__ any sequence of one or more expressions

___ any sequence of zero or more expressions

x__ and x___ sequences of expressions, given the name x

__h and ___h sequences of expressions, each with head h

x__h and x___h sequences of expressions with head h, given the name x

x_:v an expression with default value v

x_h:v an expression with head h and default value v

x_. an expression with a globally defined default value

Optional[x_h] an expression that must have head h, and has a globally
defined default value

pattern.. a pattern repeated one or more times

pattern... a pattern repeated zero or more times

pattern� | pattern� | . . . a pattern which matches at least one of the patterni

pattern /; cond a pattern for which cond evaluates to True

HoldPattern[pattern] a pattern not evaluated

Verbatim[expr] an expression to be matched verbatim

Pattern objects.



1050 Mathematica Reference Guide

When several pattern objects with the same name occur in a single pattern, all the objects must
stand for the same expression. Thus f[x_, x_] can stand for f[2, 2] but not f[2, 3].

In a pattern object such as _h, the head h can be any expression, but cannot itself be a pattern.

A pattern object such as x__ stands for a sequence of expressions. So, for example, f[x__] can stand
for f[a, b, c], with x being Sequence[a, b, c]. If you use x, say in the result of a transformation
rule, the sequence will be spliced into the function in which x appears. Thus g[u, x, u] would
become g[u, a, b, c, u].

When the pattern objects x_:v and x_. appear as arguments of functions, they represent arguments
which may be omitted. When the argument corresponding to x_:v is omitted, x is taken to have
value v. When the argument corresponding to x_. is omitted, x is taken to have a default value that
is associated with the function in which it appears. You can specify this default value by making
assignments for Default[f] and so on.

Default[f] default value for x_. when it appears as any argument of
the function f

Default[f, n] default value for x_. when it appears as the nth argument
(negative n count from the end)

Default[f, n, tot] default value for the nth argument when there are a total of
tot arguments

Default values.

A pattern like f[x__, y__, z__] can match an expression like f[a, b, c, d, e] with several dif-
ferent choices of x, y and z. The choices with x and y of minimum length are tried first. In general,
when there are multiple __ or ___ in a single function, the case that is tried first takes all the __ and
___ to stand for sequences of minimum length, except the last one, which stands for “the rest” of the
arguments.

When x_:v or x_. are present, the case that is tried first is the one in which none of them correspond
to omitted arguments. Cases in which later arguments are dropped are tried next.

Orderless f[x, y] and f[y, x] are equivalent

Flat f[f[x], y] and f[x, y] are equivalent

OneIdentity f[x] and x are equivalent

Attributes used in matching patterns.



A.5 Patterns and Transformation Rules 1051

Pattern objects like x_ can represent any sequence of arguments in a function f with attribute
Flat. The value of x in this case is f applied to the sequence of arguments. If f has the attribute
OneIdentity, then e is used instead of f[e] when x corresponds to a sequence of just one argument.

A.5.2 Assignments

lhs = rhs immediate assignment: rhs is evaluated at the time of
assignment

lhs := rhs delayed assignment: rhs is evaluated when the value of lhs
is requested

The two basic types of assignment in Mathematica.

Assignments in Mathematica specify transformation rules for expressions. Every assignment that you
make must be associated with a particular Mathematica symbol.

f[args] = rhs assignment is associated with f (downvalue)

t/: f[args] = rhs assignment is associated with t (upvalue)

f[g[args]] ^= rhs assignment is associated with g (upvalue)

Assignments associated with different symbols.

In the case of an assignment like f[args] = rhs, Mathematica looks at f, then the head of f, then the
head of that, and so on, until it finds a symbol with which to associate the assignment.

When you make an assignment like lhs ^= rhs, Mathematica will set up transformation rules associ-
ated with each distinct symbol that occurs either as an argument of lhs, or as the head of an argument
of lhs.

The transformation rules associated with a particular symbol s are always stored in a definite
order, and are tested in that order when they are used. Each time you make an assignment, the
corresponding transformation rule is inserted at the end of the list of transformation rules associated
with s, except in the following cases:

The left-hand side of the transformation rule is identical to a transformation rule that has already
been stored, and any /; conditions on the right-hand side are also identical. In this case, the new
transformation rule is inserted in place of the old one.

Mathematica determines that the new transformation rule is more specific than a rule already present,
and would never be used if it were placed after this rule. In this case, the new rule is placed before
the old one. Note that in many cases it is not possible to determine whether one rule is more
specific than another; in such cases, the new rule is always inserted at the end.



1052 Mathematica Reference Guide

A.5.3 Types of Values

Attributes[f ] attributes of f

DefaultValues[f ] default values for arguments of f

DownValues[f ] values for f[. . . ], f[ . . . ][ . . . ], etc.

FormatValues[f ] print forms associated with f

Messages[f ] messages associated with f

NValues[f ] numerical values associated with f

Options[f ] defaults for options associated with f

OwnValues[f ] values for f itself

UpValues[f ] values for . . . [ . . . , f[ . . . ], . . . ]

Types of values associated with symbols.

A.5.4 Clearing and Removing Objects

expr =. clear a value defined for expr

f/: expr =. clear a value associated with f defined for expr

Clear[s�, s�, . . . ] clear all values for the symbols si, except for attributes,
messages and defaults

ClearAll[s�, s�, . . . ] clear all values for the si, including attributes, messages and
defaults

Remove[s�, s�, . . . ] clear all values, and then remove the names of the si

Ways to clear and remove objects.

Clear, ClearAll and Remove can all take string patterns as arguments, to specify action on all symbols
whose names match the string pattern.

Clear, ClearAll and Remove do nothing to symbols with the attribute Protected.

A.5.5 Transformation Rules

lhs -> rhs immediate rule: rhs is evaluated when the rule is first given

lhs :> rhs delayed rule: rhs is evaluated when the rule is used

The two basic types of transformation rules in Mathematica.

Replacements for pattern variables that appear in transformation rules are effectively done using
ReplaceAll (the /. operator).



A.6 Files and Streams 1053

A.6 Files and Streams

A.6.1 File Names

name.m Mathematica language source file

name.nb Mathematica notebook file

name.ma Mathematica notebook file from before Version 3

name.mx Mathematica expression dump

name.exe MathLink executable program

name.tm MathLink template file

name.ml MathLink stream file

Conventions for file names.

Most files used by Mathematica are completely system independent. .mx and .exe files are however
system dependent. For these files, there is a convention that bundles of versions for different computer
systems have names with forms such as name/$SystemID/name.

In general, when you refer to a file, Mathematica tries to resolve its name as follows:

If the name starts with !, Mathematica treats the remainder of the name as an external command,
and uses a pipe to this command.

If the name contains metacharacters used by your operating system, then Mathematica passes the
name directly to the operating system for interpretation.

Unless the file is to be used for input, no further processing on the name is done.

Unless the name given is an absolute file name under your operating system, Mathematica will
search each of the directories specified in the list $Path .

If what is found is a directory rather than a file, then Mathematica will look for a file
name/$SystemID/name.

For names of the form name` the following further translations are done in Get and related
functions:

A file name.mx is used if it exists.

A file name.m is used if it exists.



1054 Mathematica Reference Guide

If name is a directory, then the file name/init.m is used if it exists.

If name.mx is a directory, then name.mx/$SystemID/name.mx is used if it exists.

In Install, name` is taken to refer to a file or directory named name.exe.

A.6.2 Streams

InputStream["name", n] input from a file or pipe

OutputStream["name", n] output to a file or pipe

Types of streams.

option name default value

CharacterEncoding $CharacterEncoding
encoding to use for special characters

DOSTextFormat True whether to output files with MS-DOS
text-mode conventions

FormatType InputForm default format for expressions

PageWidth 78 number of characters per line

TotalWidth Infinity maximum number of characters in a single
expression

Options for output streams.

You can test options for streams using Options, and reset them using SetOptions.



A.7 Mathematica Sessions 1055

A.7 Mathematica Sessions

A.7.1 Command-Line Options and Environment Variables

-pwfile Mathematica password file

-pwpath path to search for a Mathematica password file

-run Mathematica input to run (kernel only)

-initfile Mathematica initialization file

-initpath path to search for initialization files

-noinit do not run initialization files

-mathlink communicate only via MathLink

Typical command-line options for Mathematica executables.

If the Mathematica front end is called with a notebook file as a command-line argument, then this
notebook will be made the initial selected notebook. Otherwise, a new notebook will be created for
this purpose.

Mathematica kernels and front ends can also take additional command-line options specific to
particular window environments.

$MATHINIT command-line environment for the Mathematica front end, as
well as MathReader

$MATHKERNELINIT command-line environment for the Mathematica kernel

- $MATHEMATICA_BASE setting for $BaseDirectory

- $MATHEMATICA_USERBASE setting for $UserBaseDirectory

Environment variables.

If no command-line options are explicitly given, Mathematica will read the values of operating
system environment variables, and will use these values like command lines.



1056 Mathematica Reference Guide

A.7.2 Initialization

On startup, the Mathematica kernel does the following:

Perform license management operations.

Run Mathematica commands specified in any -runfirst options passed to the kernel executable.

Run Mathematica commands specified in any -run options passed to the kernel executable.

Run the Mathematica commands in the user-specific kernel init.m file.

Run the Mathematica commands in the system-wide kernel init.m file.

Load init.m and Kernel/init.m files in Autoload directories.

Begin running the main loop.

A.7.3 The Main Loop

All Mathematica sessions repeatedly execute the following main loop:

Read in input.

Apply $PreRead function, if defined, to the input string.

Print syntax warnings if necessary.

Apply $SyntaxHandler function if there is a syntax error.

Assign InString[n].

Apply $Pre function, if defined, to the input expression.

Assign In[n].

Evaluate expression.

Apply $Post function, if defined.

Assign Out[n], stripping off any formatting wrappers.

Apply $PrePrint function, if defined.

Assign MessageList[n] and clear $MessageList.

Print expression, if it is not Null.

Increment $Line.

Clear any pending aborts.

Note that if you call Mathematica via MathLink from within an external program, then you must
effectively create your own main loop, which will usually differ from the one described above.



A.7 Mathematica Sessions 1057

A.7.4 Messages

During a Mathematica session messages can be generated either by explicit calls to Message, or in the
course of executing other built-in functions.

f::name::lang a message in a specific language

f::name a message in a default language

General::name a general message with a given name

Message names.

If no language is specified for a particular message, text for the message is sought in each of
the languages specified by $Language. If f::name is not defined, a definition for General::name is
sought. If still no message is found, any value defined for $NewMessage is applied to f and "name".

Off[message] prevents a specified message from ever being printed. Check allows you to determine
whether particular messages were generated during the evaluation of an expression. $MessageList
and MessageList[n] record all the messages that were generated during the evaluation of a particular
line in a Mathematica session.

Messages are specified as strings to be used as the first argument of StringForm. $MessagePrePrint
is applied to each expression to be spliced into the string.

A.7.5 Termination

Exit[ ] or Quit[ ] terminate Mathematica

$Epilog symbol to evaluate before Mathematica exits

$IgnoreEOF whether to exit an interactive Mathematica session when an
end-of-file character is received

end.m file to read when Mathematica terminates

Mathematica termination.

There are several ways to end a Mathematica session. If you are using Mathematica interactively, typing
Exit[ ] or Quit[ ] on an input line will always terminate Mathematica.

If you are taking input for Mathematica from a file, Mathematica will exit when it reaches the end of
the file. If you are using Mathematica interactively, it will still exit if it receives an end-of-file character
(typically ��d� ). You can stop Mathematica from doing this by setting $IgnoreEOF=True.



1058 Mathematica Reference Guide

A.7.6 Network License Management

single-machine license a process must always run on a specific machine

network license a process can run on any machine on a network

Single-machine and network licenses.

Copies of Mathematica can be set up with either single-machine or network licenses. A network license
is indicated by a line in the mathpass file starting with !name, where name is the name of the server
machine for the network license.

Network licenses are controlled by the Mathematica license management program mathlm. This
program must be running whenever a Mathematica with a network license is being used. Typically
you will want to set up your system so that mathlm is started whenever the system boots.

Type .\mathlm directly on the command line

Add mathlm as a Windows service

Ways to start the network license manager under Microsoft Windows.

Type ./mathlm directly on the Unix command line

Add a line to start mathlm in your central /etc/rc.local boot file

Add a crontab entry to start mathlm

Ways to start the network license manager on Macintosh and Unix systems.

When mathlm is not started directly from a command line, it normally sets itself up as a background
process, and continues running until it is explicitly terminated. Note that if one mathlm process is
running, any other mathlm processes you try to start will automatically exit immediately.



A.7 Mathematica Sessions 1059

-logfile file write server messages to file

-pwfile file use the specified mathpass file (default ./mathpass)

-timeout n suspend license from stopped Mathematicajobs after n hours
(default infinity)

-restrict file use the script contained in file to limit or deny access to
specified users or machines

-install install mathlm as a Windows service (Microsoft Windows
only)

-uninstall file uninstall mathlm as a Windows service (Microsoft Windows
only)

-formatlog string display server messages in a format specified by string

-localtime use local time instead of the default Greenwich Mean Time
in server messages

-trfile file use the substitute text specified in file as the text of error
messages,

-verbose n print server messages to stdout with the level of verbosity
determined by n, an integer between 1 and 4

-help print the MathID and a list of all command-line options

-logginglevel n control verbosity of messages to logfile with n, an integer
between 1 and 4

-trlang language use built-in translations, where language can be english,
french, german, or japanese

-noremotemonitor disable MonitorLM queries from hosts other than the
MathLM server

Command-line options for mathlm.

You can use the mathlm -restrict file to tell the network license manager to authorize only certain
sessions. The detailed syntax of a restriction script is explained in the Network Mathematica System
Administrator’s Guide.

monitorlm a program to monitor network license activity

Monitoring network license activity.



1060 Mathematica Reference Guide

You can use the program monitorlm to get information on current Mathematica license activity on
your computer network.

-server name report license activity on the server specified by name—this
must be the first argument

-template file use the format specified by file as a template for the output

-output file write output to file

-localtime use local time instead of the default Greenwich Mean Time

-format format write output in the specified format, which can be text,
html, cgi, or file

Command-line options for monitorlm.



A.8 Mathematica File Organization 1061

A.8 Mathematica File Organization

A.8.1 Mathematica Distribution Files

A full Mathematica installation consists of something over 2200 separate files, arranged in a total
of about 280 directories under the main installation directory. The location of the main installation
directory is determined at install time. From within a Mathematica kernel, its name is given by the
value of $InstallationDirectory .

C:\Program�Files\Wolfram�Research\Mathematica\5.0
Windows

/Applications/Mathematica 5.0.app
Macintosh

/usr/local/mathematica Unix

Default locations for the Mathematica installation directory.

The executable programs that launch Mathematica are typically in the main installation directory.
Sometimes there may also be links to them, or scripts accessing them, in other locations. From
within a Mathematica kernel, First[$CommandLine] gives the full name of the executable program
corresponding to that kernel.

Mathematica Mathematica front end

MathKernel Mathematica kernel, usually with its own text-based interface

math Mathematica kernel to be run in a terminal or shell

mcc script for preprocessing and compiling MathLink C source
files

Typical executable programs accessible from the installation directory.

The main installation directory has three standard subdirectories that contain material distributed
with Mathematica. Under normal circumstances, none of the contents of these directories should ever
be modified, except, for example, if you choose to edit a shared style sheet.



1062 Mathematica Reference Guide

AddOns bundled Mathematica add-ons

Documentation Mathematica system documentation

SystemFiles Mathematica system files

Top-level subdirectories of the main installation directory.

Particularly on Unix systems, Mathematica often has executable files for different computer archi-
tectures and systems stored in a single overall directory structure. Each system is in a subdirectory
with a name given by $SystemID. Some resource directories may also contain files specific both to
particular languages and particular computing environments. These files are given in subdirectories
such as Japanese/Windows.

Kernel/Binaries/system kernel binaries or elements for each computer system

Kernel/SystemResources/system system-specific .mx files used by the kernel

Kernel/TextResources message and text files used by the kernel

FrontEnd/Binaries/system front end binaries or elements for each computer system

FrontEnd/SystemResources files used by the front end in each window system
environment

FrontEnd/TextResources message and text files used by the front end

FrontEnd/StyleSheets default notebook style sheets

FrontEnd/Palettes default palette notebooks

Libraries/system MathLink and other libraries used by the kernel and front
end

Fonts Mathematica fonts, often copied to a central directory

CharacterEncodings specifications of character encodings

SpellingDictionaries spelling dictionaries

SystemDocumentation/env Unix man pages and other environment-specific
documentation

Graphics/Binaries/system PostScript interpreters and graphics programs

Graphics/SystemResources PostScript definitions and other resources for graphics

Graphics/Packages packages for setting up graphics

Typical subdirectories of the SystemFiles directory, part one.



A.8 Mathematica File Organization 1063

Installation various auxiliary programs used in installation, called
automatically by the main installer program

IncludeFiles files for inclusion in other programs

Java files for the Java Runtime Environment (if needed)

Typical subdirectories of the SystemFiles directory, part two.

Bundled with versions of Mathematica are various standard add-on items. These are placed in the
AddOns subdirectory of the main installation directory.

StandardPackages standard add-on packages distributed with Mathematica

MathLink MathLink development material

JLink J/Link material

NETLink .NET/Link material

Typical subdirectories of the AddOns directory.

The default contents of the Mathematica Help Browser are stored in the Documentation direc-
tory. BrowserCategories files in each subdirectory set up the categories used in the Help Browser.
BrowserIndex files provide data for the master index.

RefGuide reference guide and examples for built-in functions

MainBook the complete text of this book

AddOns documentation for standard add-on items

GettingStarted introductory documentation, and demos

OtherInformation additional information

Typical subdirectories of the Documentation directory.

A.8.2 Loadable Files

You can customize your Mathematica by adding files that can loaded into the system under differ-
ent circumstances. Such files are conventionally placed in either system-wide or user-specific base
directories.



1064 Mathematica Reference Guide

$BaseDirectory system-wide base directory for files to be loaded by
Mathematica

$UserBaseDirectory user-specific base directory for files to be loaded by
Mathematica

Base directories for files to be loaded by Mathematica.

C:\Documents�and�Settings\All�Users\Application�Data\Mathematica
Windows

/Library/Mathematica Macintosh

/usr/share/Mathematica Unix

Typical values of $BaseDirectory.

C:\Documents�and�Settings\username\Application�Data\Mathematica
Windows

M/Library/Mathematica Macintosh

M/.Mathematica Unix

Typical values of $UserBaseDirectory.

You can specify different locations for these directories by setting operating system environment
variables when you launch Mathematica, as discussed on page 1055.

Applications Mathematica application packages

Autoload packages to be autoloaded on startup

FrontEnd front end initialization files

Kernel kernel initialization files

Licensing license management files

SystemFiles general system files

Typical subdirectories of Mathematica base directories.



A.8 Mathematica File Organization 1065

Some files in base directories serve as configuration files, automatically used by the Mathematica
kernel or front end.

Kernel/init.m run when the kernel is started

Kernel/end.m run when the kernel is terminated

FrontEnd/init.m read when the front end is started

SystemFiles/FrontEnd/StyleSheets/
customized notebook style sheets

SystemFiles/FrontEnd/Palettes/
additional palettes to appear in the front end menu

Some typical kernel and front end configuration files.

Kernel configuration files can contain any Mathematica commands. These commands can test global
variables such as $SystemID and $MachineName to determine what operations to perform. Front end
configuration files can contain only certain special commands, as described on page 1038.

Applications/name/ named add-on applications

Autoload/name/ add-ons to be loaded automatically when Mathematica is
started

Subdirectories under $BaseDirectory and $UserBaseDirectory.

With the default setting for the kernel $Path variable, an add-on can be loaded from within a
Mathematica session simply by using the command <<name`. This will load the init.m file for the
add-on, which should in turn be set up to load other necessary files or packages.

By placing an add-on under the Autoload subdirectory of $BaseDirectory or $UserBaseDirectory,
you can have Mathematica automatically load the add-on whenever you start the kernel or the front
end.

init.m or Kernel/init.m an initialization file to be loaded by the kernel

FrontEnd/init.m an initialization file to be loaded by the front end

Documentation/ documentation to be found by the front end

Typical possible contents of the directory for an add-on.

Note that with the default setting for the front end documentation path, all documentation in
Documentation directories will automatically show up in the front end Help Browser.



1066 Mathematica Reference Guide

A.9 Some Notes on Internal Implementation

A.9.1 Introduction
General issues about the internal implementation of Mathematica are discussed on pages 218–226. Given here are brief notes
on particular features.

These notes apply to Version 5. Algorithms and other aspects of implementation are subject to change in future versions.

It should be emphasized that these notes give only a rough indication of basic methods and algorithms used. The actual
implementation usually involves many substantial additional elements.

Thus, for example, the notes simply say that DSolve solves second-order linear differential equations using the Kovacic
algorithm. But the internal code which achieves this is over 60 pages long, includes a number of other algorithms, and
involves a great many subtleties.

A.9.2 Data Structures and Memory Management
A Mathematica expression internally consists of a contiguous array of pointers, the first to the head, and the rest to its
successive elements.

Each expression contains a special form of hash code which is used both in pattern matching and evaluation.

For every symbol there is a central symbol table entry which stores all information about the symbol.

Most raw objects such as strings and numbers are allocated separately; unique copies are however maintained of small
integers and of certain approximate numbers generated in computations.

Every piece of memory used by Mathematica maintains a count of how many times it is referenced. Memory is
automatically freed when this count reaches zero.

The contiguous storage of elements in expressions reduces memory fragmentation and swapping. However, it can lead to
the copying of a complete array of pointers when a single element in a long expression is modified. Many optimizations
based on reference counts and pre-allocation are used to avoid such copying.

When appropriate, large lists and nested lists of numbers are automatically stored as packed arrays of machine-sized
integers or real numbers. The Mathematica compiler is automatically used to compile complicated functions that will be
repeatedly applied to such packed arrays. MathLink, DumpSave, Display, as well as various Import and Export formats,
make external use of packed arrays.

A.9.3 Basic System Features
Mathematica is fundamentally an interpreter which scans through expressions calling internal code pointed to by the symbol
table entries of heads that it encounters.

Any transformation rule—whether given as x -> y or in a definition—is automatically compiled into a form which allows
for rapid pattern matching. Many different types of patterns are distinguished and are handled by special code.

A form of hashing that takes account of blanks and other features of patterns is used in pattern matching.

The internal code associated with pattern matching is approximately 250 pages long.

When a large number of definitions are given for a particular symbol, a hash table is automatically built using a version of
Dispatch so that appropriate rules can quickly be found.



A.9 Some Notes on Internal Implementation 1067

- A.9.4 Numerical and Related Functions

Number representation and numerical evaluation

Large integers and high-precision approximate numbers are stored as arrays of base �� or ��
 digits, depending on the
lengths of machine integers. Precision is internally maintained as a floating-point number. IntegerDigits,
RealDigits and related base conversion functions use recursive divide-and-conquer algorithms. Similar algorithms are
used for number input and output. N uses an adaptive procedure to increase its internal working precision in order
to achieve whatever overall precision is requested. Floor, Ceiling and related functions use an adaptive procedure
similar to N to generate exact results from exact input.

Basic arithmetic

Multiplication of large integers and high-precision approximate numbers is done using interleaved schoolbook,
Karatsuba, three-way Toom-Cook and number-theoretic transform algorithms. Machine-code optimization for specific
architectures is achieved by using GMP. Integer powers are found by a left-right binary decomposition algorithm.

Reciprocals and rational powers of approximate numbers use Newton’s method. Exact roots start from numerical
estimates. Significance arithmetic is used for all arithmetic with approximate numbers beyond machine precision.

Pseudorandom numbers

Random uses the Wolfram rule 30 cellular automaton generator for integers. It uses a Marsaglia-Zaman
subtract-with-borrow generator for real numbers.

-Number-theoretical functions
-GCD interleaves the HGCD algorithm, the Jebelean-Sorenson-Weber accelerated GCD algorithm, and a combination of
Euclid’s algorithm and an algorithm based on iterative removal of powers of 2. PrimeQ first tests for divisibility using
small primes, then uses the Miller-Rabin strong pseudoprime test base 2 and base 3, and then uses a Lucas test. As
of 1997, this procedure is known to be correct only for n ) ����, and it is conceivable that for larger n it could claim a
composite number to be prime. The package NumberTheory`PrimeQ` contains a much slower algorithm which has
been proved correct for all n. It can return an explicit certificate of primality. FactorInteger switches between trial
division, Pollard p � �, Pollard rho and quadratic sieve algorithms. The package NumberTheory`FactorIntegerECM`
contains an elliptic curve algorithm suitable for factoring some very large integers. Prime and PrimePi use sparse
caching and sieving. For large n, the Lagarias-Miller-Odlyzko algorithm for PrimePi is used, based on asymptotic
estimates of the density of primes, and is inverted to give Prime. LatticeReduce uses the Lenstra-Lenstra-Lovasz
lattice reduction algorithm. To find a requested number of terms ContinuedFraction uses a modification of Lehmer’s
indirect method, with a self-restarting divide-and-conquer algorithm to reduce the numerical precision required at each
step. ContinuedFraction uses recurrence relations to find periodic continued fractions for quadratic irrationals.

FromContinuedFraction uses iterated matrix multiplication optimized by a divide-and-conquer method.

Combinatorial functions

Most combinatorial functions use sparse caching and recursion. Factorial, Binomial and related functions use a
divide-and-conquer algorithm to balance the number of digits in subproducts. Fibonacci[n] uses an iterative method
based on the binary digit sequence of n. PartitionsP[n] uses Euler’s pentagonal formula for small n, and the
non-recursive Hardy-Ramanujan-Rademacher method for larger n. ClebschGordan and related functions use
generalized hypergeometric series.

Elementary transcendental functions

Exponential and trigonometric functions use Taylor series, stable recursion by argument doubling, and functional
relations. Log and inverse trigonometric functions use Taylor series and functional relations.

Mathematical constants

Values of constants are cached once computed. Binary splitting is used to subdivide computations of constants. Pi
is computed using the Chudnovsky formula. E is computed from its series expansion. EulerGamma uses the
Brent-McMillan algorithm. Catalan is computed from a linearly convergent Ramanujan sum.



1068 Mathematica Reference Guide

Special functions

For machine precision most special functions use Mathematica-derived rational minimax approximations. The notes that
follow apply mainly to arbitrary precision. Orthogonal polynomials use stable recursion formulas for polynomial cases
and hypergeometric functions in general. Gamma uses recursion, functional equations and the Binet asymptotic
formula. Incomplete gamma and beta functions use hypergeometric series and continued fractions. PolyGamma uses
Euler-Maclaurin summation, functional equations and recursion. PolyLog uses Euler-Maclaurin summation, expansions
in terms of incomplete gamma functions and numerical quadrature. Zeta and related functions use Euler-Maclaurin
summation and functional equations. Near the critical strip they also use the Riemann-Siegel formula.

StieltjesGamma uses Keiper’s algorithm based on numerical quadrature of an integral representation of the zeta
function. The error function and functions related to exponential integrals are all evaluated using incomplete gamma
functions. The inverse error functions use binomial search and a high-order generalized Newton’s method. Bessel
functions use series and asymptotic expansions. For integer orders, some also use stable forward recursion. The
hypergeometric functions use functional equations, stable recurrence relations, series expansions and asymptotic series.
Methods from NSum and NIntegrate are also sometimes used. ProductLog uses high-order Newton’s method starting
from rational approximations and asymptotic expansions. Elliptic integrals are evaluated using the descending Gauss
transformation. Elliptic theta functions use series summation with recursive evaluation of series terms. Other
elliptic functions mostly use arithmetic-geometric mean methods. Mathieu functions use Fourier series. The Mathieu
characteristic functions use generalizations of Blanch’s Newton method.

Numerical integration

With Method->Automatic, NIntegrate uses GaussKronrod in one dimension, and MultiDimensional otherwise. If an
explicit setting for MaxPoints is given, NIntegrate by default uses Method->QuasiMonteCarlo. GaussKronrod:
adaptive Gaussian quadrature with error estimation based on evaluation at Kronrod points. DoubleExponential:
non-adaptive double-exponential quadrature. Trapezoidal: elementary trapezoidal method. Oscillatory:
transformation to handle certain integrals containing trigonometric and Bessel functions. MultiDimensional: adaptive
Genz-Malik algorithm. MonteCarlo: non-adaptive Monte Carlo. QuasiMonteCarlo: non-adaptive
Halton-Hammersley-Wozniakowski algorithm.

Numerical sums and products

If the ratio test does not give 1, the Wynn epsilon algorithm is applied to a sequence of partial sums or products.
Otherwise Euler-Maclaurin summation is used with Integrate or NIntegrate.

Numerical differential equations

For ordinary differential equations, NDSolve by default uses an LSODA approach, switching between a non-stiff Adams
method and a stiff Gear backward differentiation formula method. For linear boundary value problems the
Gel’fand-Lokutsiyevskii chasing method is used. Differential-algebraic equations use IDA, based on repeated BDF and
Newton iteration methods. For �n � ��-dimensional PDEs the method of lines is used. NDSolve supports explicit
Method settings that cover most known methods from the literature. The code for NDSolve and related functions is
about 1400 pages long.

Approximate equation solving and optimization

Polynomial root finding is done based on the Jenkins-Traub algorithm. For sparse linear systems, Solve and NSolve
use several efficient numerical methods, mostly based on Gauss factoring with Markowitz products (approximately 250
pages of code). For systems of algebraic equations, NSolve computes a numerical Gröbner basis using an efficient
monomial ordering, then uses eigensystem methods to extract numerical roots. FindRoot uses a damped Newton’s
method, the secant method and Brent’s method. With Method->Automatic and two starting values, FindMinimum uses
Brent’s principal axis method. With one starting value for each variable, FindMinimum uses BFGS quasi-Newton
methods, with a limited memory variant for large systems. If the function to be minimized is a sum of squares,
FindMinimum uses the Levenberg-Marquardt method (Method->LevenbergMarquardt). LinearProgramming uses
simplex and revised simplex methods, and with Method->"InteriorPoint" uses primal-dual interior point methods.

For linear cases, NMinimize and NMaximize use the same methods as LinearProgramming. For nonlinear cases, they
use Nelder-Mead methods, supplemented by differential evolution, especially when integer variables are present.



A.9 Some Notes on Internal Implementation 1069

Data manipulation

Fourier uses the FFT algorithm with decomposition of the length into prime factors. When the prime factors are large,
fast convolution methods are used to maintain O�n log�n�� asymptotic complexity. For real input, Fourier uses a real
transform method. ListConvolve and ListCorrelate use FFT algorithms when possible. For exact integer inputs,
enough digits are computed to deduce exact integer results. InterpolatingFunction uses divided differences to
construct Lagrange or Hermite interpolating polynomials. Fit works using singular value decomposition. FindFit
uses the same method for the linear least-squares case, the Levenberg-Marquardt method for nonlinear least-squares,
and general FindMinimum methods for other norms. CellularAutomaton uses bit-packed parallel operations with bit
slicing. For elementary rules, absolutely optimal Boolean functions are used, while for totalistic rules,
just-in-time-compiled bit-packed tables are used. In two dimensions, sparse bit-packed arrays are used when possible,
with only active clusters updated.

Approximate numerical linear algebra

Machine-precision matrices are typically converted to a special internal representation for processing. SparseArray
with rules involving patterns uses cylindrical algebraic decomposition to find connected array components. Sparse arrays
are stored internally using compressed sparse row formats, generalized for tensors of arbitrary rank. For dense arrays,
LAPACK algorithms extended for arbitrary precision are used when appropriate. BLAS technology is used to optimize
for particular machine architectures. LUDecomposition, Inverse, RowReduce and Det use Gaussian elimination with
partial pivoting. LinearSolve uses the same methods, together with iterative improvement for high-precision numbers.

For sparse arrays, LinearSolve uses UMFPACK multifrontal direct solver methods and with Method->"Krylov" uses
Krylov iterative methods preconditioned by an incomplete LU factorization.Eigenvalues and Eigenvectors use
ARPACK Arnoldi methods. SingularValueDecomposition uses the QR algorithm with Givens rotations.
PseudoInverse, NullSpace and MatrixRank are based on SingularValueDecomposition. QRDecomposition uses
Householder transformations. SchurDecomposition uses QR iteration. MatrixExp uses Schur decomposition.

Exact numerical linear algebra

Inverse and LinearSolve use efficient row reduction based on numerical approximation. With Modulus->n, modular
Gaussian elimination is used. Det uses modular methods and row reduction, constructing a result using the Chinese
Remainder Theorem. Eigenvalues works by interpolating the characteristic polynomial. MatrixExp uses Putzer’s
method or Jordan decomposition.

- A.9.5 Algebra and Calculus

Polynomial manipulation

For univariate polynomials, Factor uses a variant of the Cantor-Zassenhaus algorithm to factor modulo a prime, then
uses Hensel lifting and recombination to build up factors over the integers. Factoring over algebraic number fields is
done by finding a primitive element over the rationals and then using Trager’s algorithm. For multivariate
polynomials Factor works by substituting appropriate choices of integers for all but one variable, then factoring the
resulting univariate polynomials, and reconstructing multivariate factors using Wang’s algorithm. The internal code for
Factor exclusive of general polynomial manipulation is about 250 pages long. FactorSquareFree works by finding a
derivative and then iteratively computing GCDs. Resultant uses either explicit subresultant polynomial remainder
sequences or modular sequences accompanied by the Chinese Remainder Theorem. Apart uses either a version of the
Padé technique or the method of undetermined coefficients. PolynomialGCD and Together usually use modular
algorithms, including Zippel’s sparse modular algorithm, but in some cases use subresultant polynomial remainder
sequences. For multivariate polynomials the Chinese Remainder Theorem together with sparse interpolation are also
used.

Symbolic linear algebra

RowReduce, LinearSolve, NullSpace and MatrixRank are based on Gaussian elimination. Inverse uses cofactor
expansion and row reduction. Pivots are chosen heuristically by looking for simple expressions. Det uses direct
cofactor expansion for small matrices, and Gaussian elimination for larger ones. MatrixExp finds eigenvalues and
then uses Putzer’s method. Zero testing for various functions is done using symbolic transformations and
interval-based numerical approximations after random numerical values have been substituted for variables.



1070 Mathematica Reference Guide

-Exact equation solving and reduction

For linear equations Gaussian elimination and other methods of linear algebra are used. Root objects representing
algebraic numbers are usually isolated and manipulated using validated numerical methods. With
ExactRootIsolation->True, Root uses for real roots a continued fraction version of an algorithm based on Descartes’
rule of signs, and for complex roots the Collins-Krandick algorithm. For single polynomial equations, Solve uses
explicit formulas up to degree four, attempts to reduce polynomials using Factor and Decompose, and recognizes
cyclotomic and other special polynomials. For systems of polynomial equations, Solve constructs a Gröbner basis.

Solve and GroebnerBasis use an efficient version of the Buchberger algorithm. For non-polynomial equations,
Solve attempts to change variables and add polynomial side conditions. The code for Solve and related functions is
about 500 pages long. - For polynomial systems Reduce uses cylindrical algebraic decomposition for real domains and
Gröbner basis methods for complex domains. With algebraic functions, Reduce constructs equivalent purely
polynomial systems. With transcendental functions, Reduce generates polynomial systems composed with transcendental
conditions, then reduces these using functional relations and a database of inverse image information.

CylindricalDecomposition uses the Collins-Hong algorithm with Brown-McCallum projection for well-oriented sets
and Hong projection for other sets. CAD construction is done by Strzebonski’s genealogy-based method using validated
numerics backed up by exact algebraic number computation. For zero-dimensional systems Gröbner basis methods are
used. For Diophantine systems, Reduce solves linear equations using Hermite normal form, and linear inequalities
using Contejean-Devie methods. For univariate polynomial equations it uses an improved Cucker-Koiran-Smale method,
while for bivariate quadratic equations, it uses Hardy-Muskat-Williams methods for ellipses, and classical techniques for
Pell and other cases. Reduce includes specialized methods for about 25 classes of Diophantine equations, including the
Tzanakis-de Weger algorithm for Thue equations. With prime moduli, Reduce uses linear algebra for linear equations
and Gröbner bases over prime fields for polynomial equations. For composite moduli, it uses Hermite normal form and
Gröbner bases over integers. Resolve mainly uses an optimized subset of the methods from Reduce. Reduce and
related functions use about 350 pages of Mathematica code and 1400 pages of C code.

,Exact optimization
,For linear cases, Minimize and Maximize use exact linear programming methods. For polynomial cases they use
cylindrical algebraic decomposition.

-Simplification

FullSimplify automatically applies about 40 types of general algebraic transformations, as well as about 400 types of
rules for specific mathematical functions. Generalized hypergeometric functions are simplified using about 70 pages of
Mathematica transformation rules. These functions are fundamental to many calculus operations in Mathematica.

FunctionExpand uses an extension of Gauss’s algorithm to expand trigonometric functions with arguments that are
rational multiples of Π. Simplify and FullSimplify cache results when appropriate. - When assumptions specify
that variables are real, polynomial constraints are handled by cylindrical algebraic decomposition, while linear
constraints are handled by the simplex algorithm or Loos-Weispfenning linear quantifier elimination. For strict
polynomial inequalities, Strzebonski’s generic CAD algorithm is used. When assumptions involve equations among
polynomials, Gröbner basis methods are used. For non-algebraic functions, a database of relations is used to
determine the domains of function values from the domains of their arguments. Polynomial-oriented algorithms are
used whenever the resulting domains correspond to semi-algebraic sets. For integer functions, several hundred
theorems of number theory are used in the form of Mathematica rules.

Differentiation and integration

Differentiation uses caching to avoid recomputing partial results. For indefinite integrals, an extended version of the
Risch algorithm is used whenever both the integrand and integral can be expressed in terms of elementary functions,
exponential integral functions, polylogarithms and other related functions. For other indefinite integrals, heuristic
simplification followed by pattern matching is used. The algorithms in Mathematica cover all of the indefinite integrals
in standard reference books such as Gradshteyn-Ryzhik. Definite integrals that involve no singularities are mostly
done by taking limits of the indefinite integrals. Many other definite integrals are done using Marichev-Adamchik
Mellin transform methods. The results are often initially expressed in terms of Meijer G functions, which are converted
into hypergeometric functions using Slater’s Theorem and then simplified. Integrate uses about 500 pages of
Mathematica code and 600 pages of C code.



A.9 Some Notes on Internal Implementation 1071

-Differential equations

Systems of linear equations with constant coefficients are solved using matrix exponentiation. Second-order linear
equations with variable coefficients whose solutions can be expressed in terms of elementary functions and their
integrals are solved using the Kovacic algorithm. Higher-order linear equations are solved using Abramov and
Bronstein algorithms. Systems of linear equations with rational function coefficients whose solutions can be given as
rational functions are solved using Abramov-Bronstein elimination algorithms. Linear equations with polynomial
coefficients are solved in terms of special functions by using Mellin transforms. When possible, nonlinear equations
are solved by symmetry reduction techniques. For first-order equations classical techniques are used; for second-order
equations and systems integrating factor and Bocharov techniques are used. The algorithms in Mathematica cover most
of the ordinary differential equations in standard reference books such as Kamke. For partial differential equations,
separation of variables and symmetry reduction are used. - For differential-algebraic equations, a method based on
isolating singular parts by core nilpotent decomposition is used. DSolve uses about 300 pages of Mathematica code
and 200 pages of C code.

Sums and products

Polynomial series are summed using Bernoulli and Euler polynomials. Series involving rational and factorial functions
are summed using Adamchik techniques in terms of generalized hypergeometric functions, which are then simplified.

Series involving polygamma functions are summed using integral representations. Dirichlet and related series are
summed using pattern matching. For infinite series, d’Alembert and Raabe convergence tests are used. The
algorithms in Mathematica cover at least 90% of the sums in standard reference books such as Gradshteyn-Ryzhik.

Products are done primarily using pattern matching. Sum and Product use about 100 pages of Mathematica code.

Series and limits

Series works by recursively composing series expansions of functions with series expansions of their arguments.
Limits are found from series and using other methods.

,Recurrence equations
,RSolve solves systems of linear equations with constant coefficients using matrix powers. , Linear equations with
polynomial coefficients whose solutions can be given as hypergeometric terms are solved using van Hoeij algorithms.
, Systems of linear equations with rational function coefficients whose solutions can be given as rational functions are
solved using Abramov-Bronstein elimination algorithms. , Nonlinear equations are solved by transformation of
variables, Göktaş symmetry reduction methods or Germundsson trigonometric power methods. , The algorithms in
Mathematica cover most of the ordinary and q-difference equations ever discussed in the mathematical literature. , For
difference-algebraic equations, a method based on isolating singular parts by core nilpotent decomposition is used.

A.9.6 Output and Interfacing

Graphics

Hidden-surface elimination for 3D graphics is done so as to be independent of display resolution. A custom-written
PostScript interpreter is used to render graphics in the front end. Notebooks use a custom platform-independent
bitmap image format.

Front end

The front end uses MathLink both for communication with the kernel, and for communication between its different
internal components. All menu items and other functions in the front end are specified using Mathematica expressions.

Configuration and preference files use Mathematica language format. The Help Browser is based on Mathematica
notebooks generated from the same source code as this book.

Notebooks

Notebooks are represented as Mathematica expressions. Notebook files contain additional cached outline information in
the form of Mathematica comments. This information makes possible efficient random access. Incremental saving of
notebooks is done so as to minimize rewriting of data, moving data already written out whenever possible.

Platform-independent double-buffering is used by default to minimize flicker when window contents are updated.



1072 Mathematica Reference Guide

Autoscrolling uses a control-theoretical mechanism to optimize smoothness and controllability. All special characters
are platform-independently represented using Unicode. Mapping tables are set up for specific Kanji and other fonts.

Spell checking and hyphenation are done using algorithms and a 100,000-word standard English dictionary, together
with a 20,000-word technical dictionary, with 5000 Mathematica and other words added. Spelling correction is done
using textual and phonetic metrics.

MathLink

In OSI terms, MathLink is a presentation-level protocol, which can be layered on top of any transport medium, both
message-based and stream-based. MathLink encodes data in a compressed format when it determines that both ends
of a link are on compatible computer systems. MathLink can transmit out-of-band data such as interrupts as well as
Mathematica expressions. When possible MathLink is implemented using dynamically linked shared libraries.

Expression formatting

The front end uses a directed acyclic graph to represent the box structure of formatted expressions. Boxes are
interpreted using a two-dimensional generalization of an operator precedence parser. Incremental parsing is used to
minimize structure and display updating. Character spacing and positioning are determined from font data and
operator tables. Line breaking is globally optimized throughout expressions, based on a method similar to the one
used for text layout in TEX. During input, line breaking is set up so that small changes to expressions rarely cause
large-scale reformatting; if the input needs to jump, an elliptical cursor tracker momentarily appears to guide the eye.

Expression formatting uses about 2000 pages of C code.



A.10 Major Built-in Mathematica Objects 1073

A.10 Listing of Major Built-in Mathematica
Objects

Introduction

This section gives an alphabetical list of built-in objects which are supported in Mathematica Version 5.

The list does not include objects such as CirclePlus that are associated with operators such as K,
but which have no built-in values.

The list also does not include objects that are defined in Mathematica packages, even those distributed
as a standard part of the Mathematica system.

Note also that options which appear only in a single built-in Mathematica function are sometimes
not given as separate entries in the list.

A few objects in the list, mostly ones related to external operations, are not available on some
computer systems.

, object or feature completely new since Version 4.0

- object or feature whose functionality was extensively changed since Version 4.0

New and modified objects and features in the listing.

New in Version . . . indicates in what version of Mathematica a function first appeared.

Modified in Version . . . indicates in what version substantial changes of functionality were last made.

The internal code of Mathematica is continually improved and enhanced, and between each major
version the code for a great many built-in functions is modified in some way or another. So even if an
object is not indicated by , , - or Modified in . . . in this listing, it may well have been substantially
enhanced in its efficiency or in the quality of results it gives.

This listing includes only standard built-in Mathematica objects that reside in the System` context.
In a typical version of Mathematica there may be additional objects present both in the System` context,
as well as in the Developer` and Experimental` contexts. For production work it is best to use only
documented objects in the System` context, since the specifications of other objects may change in
future versions. The online documentation for your version of Mathematica may contain information
on Developer` and Experimental` objects. Further information is available at the Wolfram Research
website.



1074 Mathematica Reference Guide

System` built-in objects given in this listing

Developer` advanced objects intended for Mathematica developers

Experimental` objects provided on an experimental basis

Contexts for built-in objects.

In many versions of Mathematica, you can access the text given in this section directly, typically
using the Help Browser (see page 57). Typing ?F to the Mathematica kernel will also give you the
main description of the object F from this section.

More information on related packages mentioned in this listing can be found using the Help
Browser, or by looking at Standard Add-on Packages published by Wolfram Research. Note that the
specifications of functions in packages are subject to incompatible changes in future versions of
Mathematica.

There are a total of 1226 objects in this listing.

Conventions in This Listing

text in this style literal Mathematica input that you type in as it is printed
(e.g., function names)

text in this style expressions that you fill in (e.g., function arguments)

object�, object�, . . . a sequence of any number of expressions

, new since Mathematica Version 4.0

- modified since Mathematica Version 4.0

Conventions used in the list of built-in objects.

Note that for items modified in Version 5 this listing makes no distinction between those new in
Version 3 and those not.



A.10 Major Built-in Mathematica Objects Abort — AbsoluteOptions 1075

Abort
Abort[ ] generates an interrupt to abort a computation.
You can call Abort anywhere within a computation. It has the same effect as an interactive interrupt in which you
select the abort option. You can use Abort as an “emergency stop” in a computation. Once Abort has been
called, Mathematica functions currently being evaluated return as quickly as possible. In an interactive session, the
final result from an aborted computation is $Aborted. You can use CheckAbort to “catch” returns from an abort.

See page 371. See also: Throw, TimeConstrained, MemoryConstrained, Return. New in Version 2.

AbortProtect
AbortProtect[expr] evaluates expr, saving any aborts until the evaluation is complete.
Aborts that are generated during an AbortProtect take effect as soon as the execution of the AbortProtect is
over. CheckAbort can be used inside AbortProtect to catch and absorb any aborts that occur. AbortProtect
also protects against aborts generated by TimeConstrained and MemoryConstrained. See page 371. New in
Version 2.

Abs
Abs[z] gives the absolute value of the real or complex number z.
For complex numbers z, Abs[z] gives the modulus /z/. Abs[z] is left unevaluated if z is not a numeric quantity.

See pages 745 and 746. See also: Re, Im, Arg, Mod, ComplexExpand, Norm. New in Version 1.

AbsoluteDashing
AbsoluteDashing[{d�, d�, . . . }] is a graphics directive which specifies that lines which
follow are to be drawn dashed, with successive segments having absolute lengths d�, d�, . . .
(repeated cyclically).

The absolute lengths are measured in units of printer’s points, approximately equal to ��� of an inch.
AbsoluteDashing[{ }] specifies that lines should be solid. AbsoluteDashing can be used in both two- and

three-dimensional graphics. See page 501. See also: AbsoluteThickness, Offset, Thickness, GrayLevel, Hue,
RGBColor. New in Version 2.

AbsoluteOptions
AbsoluteOptions[expr] gives the absolute settings of options specified in an expression such
as a graphics object.
AbsoluteOptions[expr, name] gives the absolute setting for the option name.
AbsoluteOptions[expr, {name�, name�, . . . }] gives a list of the absolute settings for the
options namei.
AbsoluteOptions[object] gives the absolute settings for options associated with an external
object such as a NotebookObject.
AbsoluteOptions gives the actual settings for options used internally by Mathematica when the setting given is
Automatic or All. AbsoluteOptions returns lists of rules, just like Options. You can use AbsoluteOptions on
graphics options such as PlotRange and Ticks. If you ask for AbsoluteOptions[NotebookObject[. . . ], name]
the kernel will send a request to the front end to find the result. See pages 145 and 490. See also: Options,
FullGraphics. Related package: Utilities`FilterOptions`. New in Version 4.



1076 AbsolutePointSize — AccountingForm Mathematica Reference Guide

AbsolutePointSize
AbsolutePointSize[d] is a graphics directive which specifies that points which follow are to
be shown if possible as circular regions with absolute diameter d.

The absolute diameter is measured in units of printer’s points, approximately equal to ��� of an inch.
AbsolutePointSize can be used in both two- and three-dimensional graphics. See page 500. See also: Offset,

PointSize, AbsoluteThickness, Thickness. New in Version 2; modified in Version 3.

AbsoluteThickness
AbsoluteThickness[d] is a graphics directive which specifies that lines which follow are to be
drawn with absolute thickness d.

The absolute thickness is measured in units of printer’s points, approximately equal to ��� of an inch.
AbsoluteThickness can be used in both two- and three-dimensional graphics. See page 501. See also: Offset,

AbsoluteDashing, AbsolutePointSize, PointSize, Dashing. New in Version 2.

AbsoluteTime
AbsoluteTime[ ] gives the total number of seconds since the beginning of January 1, 1900, in
your time zone.
AbsoluteTime[ ] uses whatever date and time have been set on your computer system. It performs no corrections
for time zones, daylight saving time, etc. AbsoluteTime[z] gives the result for time zone z. This is inferred by
knowing your local date and time, and local time zone. The time zone is given as the number of hours to be
added to Greenwich mean time to obtain local time. - AbsoluteTime[ ] is always accurate down to a granularity
of $TimeUnit seconds, but on many systems is much more accurate. There are 2208988800 seconds from the
beginning of January 1, 1900 to the beginning of January 1, 1970 and 2840140800 seconds to the beginning of
January 1, 1990. See page 710. See also: Date, SessionTime, TimeUsed, AbsoluteTiming, Timing, TimeZone,
ToDate, FromDate. Related package: Miscellaneous`Calendar`. New in Version 2.

, AbsoluteTiming
AbsoluteTiming[expr] evaluates expr, returning a list of the absolute time that has elapsed,
together with the result obtained.
AbsoluteTiming gives the absolute number of seconds of real time that have elapsed, multiplied by the symbol
Second. AbsoluteTiming has attribute HoldAll. AbsoluteTiming[expr;] will give {timing, Null}.

First[AbsoluteTiming[expr;]] /. Second->1 yields just the number of seconds of time elapsed in the
evaluation of expr. AbsoluteTiming is always accurate down to a granularity of $TimeUnit seconds, but on many
systems is much more accurate. See page 711. See also: Timing, TimeConstrained, SessionTime, AbsoluteTime.

New in Version 5.0.

AccountingForm
AccountingForm[expr] prints with all numbers in expr given in standard accounting notation.
AccountingForm[expr, n] prints with numbers given to n-digit precision.
AccountingForm never uses scientific notation. AccountingForm uses parentheses to indicate negative numbers.

AccountingForm takes the same options as NumberForm, but uses a different default function for
ExponentFunction, and a different default for NumberSigns. AccountingForm acts as a “wrapper”, which affects
printing, but not evaluation. See page 435. See also: PaddedForm, NumberForm. New in Version 2.



A.10 Major Built-in Mathematica Objects Accuracy — AddTo 1077

- Accuracy
Accuracy[x] gives the effective number of digits to the right of the decimal point in the
number x.
, Accuracy[x] gives a measure of the absolute uncertainty in the value of x. , With uncertainty dx, Accuracy[x]
is -Log[10, dx]. For exact numbers such as integers, Accuracy[x] is Infinity. - Accuracy[x] does not
normally yield an integer result, and need not be positive. - For machine-precision numbers, Accuracy[x] gives
the same as $MachinePrecision - Log[10, Abs[x]]. , Accuracy[0.] is Log[10, $MinMachineNumber].
, Numbers entered in the form digits``a are taken to have accuracy a. If x is not a number, Accuracy[x] gives
the minimum value of Accuracy for all the numbers that appear in x. See page 727. See also: Precision, N,
Chop, SetAccuracy. New in Version 1; modified in Version 5.0.

- AccuracyGoal
AccuracyGoal is an option for various numerical operations which specifies how many
effective digits of accuracy should be sought in the final result.
AccuracyGoal is an option for such functions as NIntegrate, NDSolve and FindRoot.
- AccuracyGoal -> Automatic normally yields an accuracy goal equal to half the setting for WorkingPrecision.

AccuracyGoal -> Infinity specifies that accuracy should not be used as the criterion for terminating the
numerical procedure. PrecisionGoal is typically used in this case. Even though you may specify
AccuracyGoal->n, the results you get may sometimes have much less than n-digit accuracy. In most cases, you
must set WorkingPrecision to be at least as large as AccuracyGoal. AccuracyGoal effectively specifies the
absolute error allowed in a numerical procedure. With AccuracyGoal->a and PrecisionGoal->p, Mathematica
attempts to make the numerical error in a result of size x be less than ���a � /x/���p . See page 976. See also:
PrecisionGoal, WorkingPrecision. New in Version 1; modified in Version 5.0.

Active
Active is an option for ButtonBox, Cell and Notebook which specifies whether a button
should be active.
With Active->False the contents of a button can be edited. With Active->True a button will perform an action
when it is clicked. Active cells are indicated by an A in their cell bracket. See page 607. See also:
ButtonStyle, Evaluator. New in Version 3.

AddTo
x += dx adds dx to x and returns the new value of x.
AddTo has the attribute HoldFirst. x += dx is equivalent to x = x + dx. See page 305. See also: Increment,
PreIncrement, Set, PrependTo. New in Version 1.



1078 AdjustmentBox — AiryBiPrime Mathematica Reference Guide

AdjustmentBox
AdjustmentBox[box, opts] displays with the placement of box adjusted using the options
given.
In the notebook front end, AdjustmentBox objects can typically be inserted and modified using ��a� , ���� ,
��b� and ��c� . These keys move your current selection by one pixel at the current screen magnification. The
following options can be given:

BoxMargins {{left, right}, {bottom, top}} margins to leave around the contents of the box
BoxBaselineShift up how much the baseline should be shifted relative to those of

neighboring boxes

Horizontal motion specifications are in ems; vertical ones in x-heights. Motion specifications can be either
positive or negative numbers. Positive margin specifications increase the spacing around box; negative ones
decrease it. Moving the baseline affects for example vertical alignment in a RowBox. Top and bottom margins
affect for example placement in a FractionBox or an OverscriptBox. In StandardForm and InputForm input,
AdjustmentBox is by default ignored, so that AdjustmentBox[box, opts] is interpreted just as box would be.

Inserting an explicit spacing character such as \[ThinSpace] can have the same effect for display as
AdjustmentBox, but the spacing character by default affects interpretation. AdjustmentBox[box, opts] uses the
options given only to adjust the position of box itself. Unlike StyleBox, it does not propagate the options to
subboxes. See page 455. See also: StyleBox, GridBox, ScriptBaselineShifts. New in Version 3.

AiryAi
AiryAi[z] gives the Airy function Ai�z�.
Mathematical function (see Section A.3.10). The Airy function Ai�z� is a solution to the differential equation
y$$ � xy � �. Ai�z� tends to zero as z # �. AiryAi[z] is an entire function of z with no branch cut
discontinuities. See page 775. See also: AiryAiPrime, AiryBi, AiryBiPrime. New in Version 1.

AiryAiPrime
AiryAiPrime[z] gives the derivative of the Airy function Ai$�z�.
Mathematical function (see Section A.3.10). See notes for AiryAi. See page 775. See also: AiryBi,
AiryBiPrime. New in Version 2.

AiryBi
AiryBi[z] gives the Airy function Bi�z�.
Mathematical function (see Section A.3.10). The Airy function Bi�z� is a solution to the differential equation
y$$ � xy � �. Bi�z� increases exponentially as z # �. AiryBi[z] is an entire function of z with no branch cut
discontinuities. See page 775. See also: AiryAi, AiryBiPrime. New in Version 2.

AiryBiPrime
AiryBiPrime[z] gives the derivative of the Airy function Bi$�z�.
Mathematical function (see Section A.3.10). See notes for AiryBi. See page 775. See also: AiryAi,
AiryAiPrime. New in Version 2.



A.10 Major Built-in Mathematica Objects Algebraics — And 1079

Algebraics
Algebraics represents the domain of algebraic numbers, as in x � Algebraics.
Algebraic numbers are defined to be numbers that solve polynomial equations with rational coefficients.

x � Algebraics evaluates immediately only for quantities x that are explicitly constructed from rational numbers,
radicals and Root objects, or are known to be transcendental. Simplify[expr � Algebraics] can be used to try to
determine whether an expression corresponds to an algebraic number. Algebraics is output in TraditionalForm
as �. See page 817. See also: Element, Simplify, Integers, Root, Extension, Reals. New in Version 4.

All
All is a setting used for certain options.
In Part and related functions, All specifies all parts at a particular level.
For example, PlotRange -> All specifies that all points are to be included in a plot. See page 136. See also:
Automatic, None, Part. New in Version 1; modified in Version 4.0.

Alternatives
p� | p� | . . . is a pattern object which represents any of the patterns pi.
Example: _Integer | _Real represents an object with head either Integer or Real. Unless the same set of
pattern names appears in all of the pi, you cannot use these pattern names on the right-hand side of transformation
rules for the pattern. Thus, for example, you can use x in a[x_] | b[x_], but you can use neither x nor y in
a[x_] | b[y_]. See page 269. See also: Optional. New in Version 2.

AmbientLight
AmbientLight is an option for Graphics3D and related functions that gives the level of
simulated ambient illumination in a three-dimensional picture.
The setting for AmbientLight must be a GrayLevel, Hue or RGBColor directive. See page 545. See also:
Lighting, LightSources, SurfaceColor. New in Version 1.

AnchoredSearch
AnchoredSearch is an option for Find and FindList which specifies whether the text
searched for must be at the beginning of a record.
With the default setting RecordSeparators -> {"\n"}, AnchoredSearch -> True specifies that the text must
appear at the beginning of a line. See page 651. New in Version 2.

And
e� && e� && . . . is the logical AND function. It evaluates its arguments in order, giving False
immediately if any of them are False, and True if they are all True.
And[e�, e�, . . . ] can be input in StandardForm and InputForm as e� � e� � . . . . The character � can be entered as
,&& ,, ,and , or \[And]. And evaluates its arguments in a non-standard way (see page 1046). And gives symbolic
results when necessary, removing initial arguments that are True. See page 87. See also: LogicalExpand,
BitAnd, Nand. New in Version 1; modified in Version 3.



1080 AnimationDirection — Append Mathematica Reference Guide

AnimationDirection
AnimationDirection is an option for Cell which specifies the direction to run an animation
which starts with the cell.
The setting AnimationDirection->Forward specifies that the animation should run through successive selected
graphics cells in the order that they appear in the notebook, and should then start again at the first cell.

AnimationDirection->Backward specifies that the reverse order should be used.
AnimationDirection->ForwardBackward specifies that the animation should run from the first cell to the last,

and should then reverse back to the first cell again. It is the setting of AnimationDirection for the first graphics
cell in the sequence selected that determines the animation direction for the whole sequence. See page 617. See
also: AnimationDisplayTime. New in Version 3.

AnimationDisplayTime
AnimationDisplayTime is an option for Cell which specifies the minimum time in seconds
for which a cell should be displayed in the course of an animation.
The default setting of AnimationDisplayTime->0.1 specifies that the animation should be run as fast as your
computer can. See page 617. See also: AnimationDirection. New in Version 3.

Apart
Apart[expr] rewrites a rational expression as a sum of terms with minimal denominators.
Apart[expr, var] treats all variables other than var as constants.
Example: Apart[(x^2+1)/(x-1)] ��# 1 � 2���1 � x� � x . Apart gives the partial fraction decomposition of a
rational expression. Apart[expr, var] writes expr as a polynomial in var together with a sum of ratios of
polynomials, where the degree in var of each numerator polynomial is less than that of the corresponding
denominator polynomial. Apart[(x + y)/(x - y), x] ��# 1 � �2[y���x � y� .

Apart[(x + y)/(x - y), y] ��# �1 � �2[x����x � y� . Apart[expr, Trig -> True] treats trigonometric
functions as rational functions of exponentials, and manipulates them accordingly. See page 802. See also:
Together, Cancel, PolynomialQuotient. New in Version 1.

AppellF1
AppellF1[a, b�, b�, c, x, y] is the Appell hypergeometric function of two variables
F��ag b�� b�g cg x� y�.
Mathematical function (see Section A.3.10). F��ag b�� b�g cg x� y� has series expansion
��m����n���a�m�n�b��m�b��n��mdnd�c�m�n�xmyn . F��ag b�� b�g cg x� y� reduces to �F��a� bg cg z� when x � � or y � �.

AppellF1[a, b�, b�, c, x, y] has singular lines in two-variable complex �x� y� space at Re�x� � � and Re�y� � �,
and has branch cut discontinuities along the rays from � to � in x and y. FullSimplify and FunctionExpand
include transformation rules for AppellF1. See page 780. See also: Hypergeometric2F1. New in Version 4.

Append
Append[expr, elem] gives expr with elem appended.
Examples: Append[{a,b}, c] ��# �a, b, c� ; Append[f[a], b+c] ��# fa, b � c� . - In iteratively building a list,
it is usually more efficient to use Sow and Reap than to use Append[list, new] at each step. , Append works on
SparseArray objects, returning ordinary lists if necessary. See pages 125 and 288. See also: Prepend, Insert,
AppendTo, PadRight, Sow. New in Version 1.



A.10 Major Built-in Mathematica Objects AppendTo — ArcCsc 1081

AppendTo
AppendTo[s, elem] appends elem to the value of s, and resets s to the result.
AppendTo[s, elem] is equivalent to s = Append[s, elem]. AppendTo[s, elem] does not evaluate s. - You can use
AppendTo repeatedly to build up a list, though Sow and Reap will usually be more efficient. , AppendTo works on
SparseArray objects, returning ordinary lists if necessary. See page 306. See also: PrependTo, Sow. New in
Version 1.

Apply
Apply[f, expr] or f @@ expr replaces the head of expr by f.
Apply[f, expr, levelspec] replaces heads in parts of expr specified by levelspec.
Examples: Apply[f, {a, b, c}] ��# fa, b, c� ; Apply[Plus, g[a, b]] ��# a � b . Level specifications are
described on page 1041. The default value for levelspec in Apply is {0}. f @@@ expr is equivalent to
Apply[f, expr, {1}]. Examples: Apply[f, {{a,b},{c,d}}] ��# f�a, b�, �c, d�� .

Apply[f, {{a,b},{c,d}}, {1}] ��# �fa, b�, fc, d�� . Apply[f, {{{{a}}}}, -2] ��# �fffa���� .
, Apply operates on SparseArray objects just as it would on the corresponding ordinary lists. See page 243.

See also: Map, Scan, Level, Operate, MapThread, Total. New in Version 1; modified in Version 4.0.

ArcCos

ArcCos[z] gives the arc cosine cos���z� of the complex number z.
Mathematical function (see Section A.3.10). All results are given in radians. For real z between �� and �, the
results are always in the range � to Π. ArcCos[z] has branch cut discontinuities in the complex z plane running
from �� to �� and �� to ��. See page 761. New in Version 1.

ArcCosh

ArcCosh[z] gives the inverse hyperbolic cosine cosh���z� of the complex number z.
Mathematical function (see Section A.3.10). ArcCosh[z] has a branch cut discontinuity in the complex z plane
running from �� to ��. See page 761. See also: ArcSech. New in Version 1.

ArcCot

ArcCot[z] gives the arc cotangent cot���z� of the complex number z.
Mathematical function (see Section A.3.10). All results are given in radians. For real z, the results are always in
the range �Π�� to Π��, excluding �. ArcCot[z] has a branch cut discontinuity in the complex z plane running
from �i to �i. See page 761. New in Version 1.

ArcCoth

ArcCoth[z] gives the inverse hyperbolic cotangent coth���z� of the complex number z.
Mathematical function (see Section A.3.10). ArcCoth[z] has a branch cut discontinuity in the complex z plane
running from �� to ��. See page 761. New in Version 1.

ArcCsc

ArcCsc[z] gives the arc cosecant csc���z� of the complex number z.
Mathematical function (see Section A.3.10). All results are given in radians. For real z outside the interval �� to
�, the results are always in the range �Π�� to Π��, excluding �. ArcCsc[z] has a branch cut discontinuity in the
complex z plane running from �� to ��. See page 761. New in Version 1.



1082 ArcCsch — ArcTanh Mathematica Reference Guide

ArcCsch

ArcCsch[z] gives the inverse hyperbolic cosecant csch���z� of the complex number z.
Mathematical function (see Section A.3.10). ArcCsch[z] has a branch cut discontinuity in the complex z plane
running from �i to �i. See page 761. New in Version 1.

ArcSec

ArcSec[z] gives the arc secant sec���z� of the complex number z.
Mathematical function (see Section A.3.10). All results are given in radians. For real z outside the interval �� to
�, the results are always in the range � to Π, excluding Π��. ArcSec[z] has a branch cut discontinuity in the
complex z plane running from �� to ��. See page 761. New in Version 1.

ArcSech

ArcSech[z] gives the inverse hyperbolic secant sech���z� of the complex number z.
Mathematical function (see Section A.3.10). ArcSech[z] has branch cut discontinuities in the complex z plane
running from �� to 0 and +1 to ��. See page 761. New in Version 1.

ArcSin

ArcSin[z] gives the arc sine sin���z� of the complex number z.
Mathematical function (see Section A.3.10). All results are given in radians. For real z between �� and �, the
results are always in the range �Π�� to Π��. ArcSin[z] has branch cut discontinuities in the complex z plane
running from �� to �� and �� to ��. See page 761. New in Version 1.

ArcSinh

ArcSinh[z] gives the inverse hyperbolic sine sinh���z� of the complex number z.
Mathematical function (see Section A.3.10). ArcSinh[z] has branch cut discontinuities in the complex z plane
running from �i� to �i and �i to �i�. See page 761. See also: ArcCsch. New in Version 1.

ArcTan

ArcTan[z] gives the arc tangent tan���z� of the complex number z.

ArcTan[x, y] gives the arc tangent of y
x , taking into account which quadrant the point �x� y� is

in.
Mathematical function (see Section A.3.10). All results are given in radians. For real z, the results are always in
the range �Π�� to Π��. ArcTan[z] has branch cut discontinuities in the complex z plane running from �i� to �i

and �i to �i�. If x or y is complex, then ArcTan[x, y] gives �i log !�x � iy��
!

x� � y�". When x� � y� � �,
ArcTan[x, y] gives the number Φ such that x � cos Φ and y � sin Φ. See page 761. See also: Arg. New in
Version 1.

ArcTanh

ArcTanh[z] gives the hyperbolic arc tangent tanh���z� of the complex number z.
Mathematical function (see Section A.3.10). See page 761. ArcTanh[z] has branch cut discontinuities in the
complex z plane running from �� to �� and �� to ��. See also: ArcCoth. New in Version 1.



A.10 Major Built-in Mathematica Objects Arg — ArrayQ 1083

Arg
Arg[z] gives the argument of the complex number z.
Mathematical function (see Section A.3.10). Arg[z] is left unevaluated if z is not a numeric quantity. Arg[z]
gives the phase angle of z in radians. The result from Arg[z] is always between �Π and �Π. Arg[z] has a
branch cut discontinuity in the complex z plane running from �� to �. See page 746. See also: ArcTan, Sign.

New in Version 1.

ArithmeticGeometricMean
ArithmeticGeometricMean[a, b] gives the arithmetic-geometric mean of a and b.
See page 788. New in Version 1.

Array
Array[f, n] generates a list of length n, with elements f[i].
Array[f, {n�, n�, . . . }] generates an n� � n� � 			 array of nested lists, with elements
f[i�, i�, . . . ].
Array[f, {n�, n�, . . . }, {r�, r�, . . . }] generates a list using the index origins ri (default 1).
Array[f, dims, origin, h] uses head h, rather than List, for each level of the array.
Examples: Array[f, 3] ��# �f1�, f2�, f3�� .

Array[f, {2, 3}] ��# ��f1, 1�, f1, 2�, f1, 3��, �f2, 1�, f2, 2�, f2, 3��� generates a � �  matrix.
Array[#1^#2 &, {2, 2}] ��# ��1, 1�, �2, 4�� . Array[f, 3, 0] ��# �f0�, f1�, f2�� generates an array

with index origin 0. Array[f, 3, 1, Plus] ��# f1� � f2� � f3� . Note that the dimensions given to Array
are not in standard Mathematica iterator notation. See page 250. See also: Table, SparseArray. New in
Version 1; modified in Version 4.0.

, ArrayDepth
- ArrayDepth[expr] gives the depth to which expr is a full array, with all the parts at a
particular level being lists of the same length, or is a SparseArray object.
ArrayDepth[list] is equivalent to Length[Dimensions[list]]. Examples: ArrayDepth[{a,b}] ��# 1 ;
ArrayDepth[{a,{b}}] ��# 1 . See page 916. See also: Dimensions, Depth, ArrayQ, VectorQ, MatrixQ, PadLeft.

New in Version 5.0.

, ArrayQ
ArrayQ[expr] gives True if expr is a full array or a SparseArray object, and gives False
otherwise.
ArrayQ[expr, patt] requires expr to be a full array with a depth that matches the pattern patt.
ArrayQ[expr, patt, test] requires also that test yield True when applied to each of the array
elements in expr.
In a full array all parts at a particular level must be lists of the same length. ArrayQ[expr, 1|2] tests whether
expr is either a vector or a matrix. ArrayQ[expr, _, NumberQ] tests whether expr is a numerical array at all levels.

See page 290. See also: ArrayDepth, MatrixQ, VectorQ, Dimensions. New in Version 5.0.



1084 ArrayRules — Assumptions Mathematica Reference Guide

, ArrayRules
ArrayRules[SparseArray[. . . ]] gives the rules {pos�->val�, pos�->val�, . . . } specifying
elements in a sparse array.
ArrayRules[list] gives rules for SparseArray[list].
The last element of ArrayRules[s] is always {_, _, . . . } -> def, where def is the default value for unspecified
elements in the sparse array. ArrayRules[list, val] takes the default value to be val. ArrayRules[list] assumes
a default value of 0. See page 922. See also: Position, Normal. New in Version 5.0.

AspectRatio
AspectRatio is an option for Show and related functions which specifies the ratio of height to
width for a plot.
AspectRatio determines the scaling for the final image shape. AspectRatio -> Automatic determines the ratio
of height to width from the actual coordinate values in the plot. The default value
AspectRatio -> 1/GoldenRatio is used for two-dimensional plots. AspectRatio -> Automatic is used for
three-dimensional plots. See page 509. See also: BoxRatios, PlotRegion. New in Version 1.

AspectRatioFixed
AspectRatioFixed is an option for Cell which specifies whether graphics in the cell should
be constrained to stay the same shape when they are interactively resized using the front end.
With AspectRatioFixed->False, the shape of an image is determined by the setting for ImageSize. See
page 616. See also: ImageSize, AspectRatio. New in Version 3.

, Assuming
Assuming[assum, expr] evaluates expr with assum appended to $Assumptions, so that assum is
included in the default assumptions used by functions such as Refine, Simplify and
Integrate.
Assuming affects the default assumptions for all functions that have an Assumptions option. The assumptions can
be equations, inequalities or domain specifications, or lists or logical combinations of these. Assumptions from
nested invocations of Assuming are combined. Assuming[assum, expr] is effectively equivalent to
Block[{$Assumptions = $Assumptions && assum}, expr]. Assuming converts lists of assumptions {a�, a�, . . . }
to a� && a� && . . . . See page 818. See also: Block, Module, Refine, Reduce. New in Version 5.0.

- Assumptions
Assumptions is an option for functions such as Simplify, Refine and Integrate which
specifies default assumptions to be made about symbolic quantities.
, The default setting is Assumptions:>$Assumptions. - The assumptions can be equations, inequalities or
domain specifications, or lists or logical combinations of these. , Assuming modifies $Assumptions and so
modifies the value of default settings for Assumptions options. x � Reals can be used to specify that x should
be treated as a real variable. See page 867. See also: Assuming, $Assumptions, GenerateConditions,
Integrate, Refine, Limit. New in Version 3; modified in Version 5.0.



A.10 Major Built-in Mathematica Objects AtomQ — Attributes 1085

- AtomQ
AtomQ[expr] yields True if expr is an expression which cannot be divided into subexpressions,
and yields False otherwise.
You can use AtomQ in a recursive procedure to tell when you have reached the bottom of the tree corresponding to
an expression. - AtomQ gives True for symbols, numbers, strings and other raw objects, such as sparse arrays.

AtomQ gives True on any object whose subparts cannot be accessed using functions like Map. See page 268.
See also: NumberQ, Head, LeafCount, Length. New in Version 1; modified in Version 5.0.

Attributes
Attributes[symbol] gives the list of attributes for a symbol.
The attributes of a symbol can be set by assigning a value to Attributes[s]. If a single attribute is assigned, it
need not be in a list. Attributes[s] = {} clears all attributes of a symbol. Attributes[{s�, s�, . . . }] gives a
list of the attributes for each of the si. Attributes["str"] gives a list of the attributes for all symbols which
match the string pattern str. Attributes[HoldPattern[s]] is treated as equivalent to Attributes[s]. Attributes
for functions must be set before any definitions that involve the functions are given. The complete list of possible
attributes for a symbol f is:

Constant all derivatives of f are zero
Flat f is associative
HoldAll all the arguments of f are not evaluated
HoldAllComplete the arguments of f are completely shielded from evaluation
HoldFirst the first argument of f is not evaluated
HoldRest all but the first argument of f are not evaluated
Listable f is automatically “threaded” over lists
Locked attributes of f cannot be changed
NHoldAll the arguments of f are not affected by N

NHoldFirst the first argument of f is not affected by N

NHoldRest all but the first argument of f are not affected by N

NumericFunction the value of f is assumed to be a number when its arguments are numbers
OneIdentity f[a], f[f[a]], etc. are equivalent to a in pattern matching
Orderless f is commutative
Protected values of f cannot be changed
ReadProtected values of f cannot be read
SequenceHold Sequence objects in the arguments of f are not flattened out
Stub Needs is automatically called if the symbol is ever input
Temporary f is a local variable, removed when no longer used

See page 328. See also: SetAttributes, ClearAttributes. New in Version 1; modified in Version 3.



1086 AutoIndent — Axes Mathematica Reference Guide

AutoIndent
AutoIndent is an option for Cell which specifies what automatic indentation should be done
at the beginning of a new line after an explicit return character has been entered.
Possible settings for AutoIndent are:

False do no indentation
True indent the same as the previous line
Automatic indent according to the structure of the expression (default)

With AutoIndent->True, tabs or spaces used for indentation on the previous line are explicitly inserted at the
beginning of the new line. With AutoIndent->Automatic, line breaks are always indicated by an
IndentingNewLine character even if they were originally entered using ` or \[NewLine]. Indentation after an
\[IndentingNewLine] is automatically redone every time an expression is displayed. The amount of indentation
after an IndentingNewLine is determined by the settings for the LineIndent and LineIndentMaxFraction options.

See page 613. See also: LineIndent, ParagraphIndent, ShowAutoStyles. New in Version 3; modified in
Version 4.0.

AutoItalicWords
AutoItalicWords is an option for Cell which gives a list of words which should
automatically be put in italics when they are entered.
Typical settings for AutoItalicWords include "Mathematica" and "MathLink". AutoItalicWords affects only
ordinary text strings, not elements of more general expressions. See page 613. See also: FontSlant,
SingleLetterItalics. New in Version 3.

Automatic
Automatic represents an option value that is to be chosen automatically by a built-in function.
See page 136. See also: All, True. New in Version 1.

AutoSpacing
AutoSpacing is an option for StyleBox and Cell which specifies whether spaces between
successive characters should be adjusted automatically.
AutoSpacing->False leaves equal spaces between all characters. AutoSpacing->True inserts additional space
around lower-precedence operators. AutoSpacing->False is in effect automatically used inside ordinary strings
and comments. See page 454. See also: TextJustification. New in Version 3.

Axes
Axes is an option for graphics functions that specifies whether axes should be drawn.
Axes -> True draws all axes. Axes -> False draws no axes. Axes -> {False, True} draws a y axis but no x
axis in two dimensions. In two dimensions, axes are drawn to cross at the position specified by the option
AxesOrigin. In three dimensions, axes are drawn on the edges of the bounding box specified by the option
AxesEdge. See pages 511 and 549. See also: AxesLabel, Frame, GridLines, Boxed. New in Version 1.



A.10 Major Built-in Mathematica Objects AxesEdge — Background 1087

AxesEdge
AxesEdge is an option for three-dimensional graphics functions that specifies on which edges
of the bounding box axes should be drawn.
AxesEdge->{{diry, dirz}, {dirx, dirz}, {dirx, diry}} specifies on which three edges of the bounding box axes are
drawn. The diri must be either +1 or -1, and specify whether axes are drawn on the edge of the box with a larger
or smaller value of coordinate i, respectively. The default setting AxesEdge->Automatic chooses automatically on
which exposed box edges axes should be drawn. Any pair {diri, dirj} in the setting for AxesEdge can be
replaced by Automatic to specify that the position of the corresponding axis is to be chosen automatically. Any
pair {diri, dirj} can be replaced by None, in which case the corresponding axis will not be drawn. If you
explicitly specify on which edge to draw an axis, the axis will be drawn on that edge, whether or not the edge is
exposed with the view point you have chosen. See page 551. New in Version 2.

AxesLabel
AxesLabel is an option for graphics functions that specifies labels for axes.
AxesLabel -> None specifies that no labels should be given. AxesLabel -> label specifies a label for the y axis of
a two-dimensional plot, and the z axis of a three-dimensional plot. AxesLabel -> {xlabel, ylabel, . . . } specifies
labels for different axes. By default, axes labels in two-dimensional graphics are placed at the ends of the axes. In
three-dimensional graphics, they are aligned with the middles of the axes. Any expression can be specified as a
label. It will be given in OutputForm. Arbitrary strings of text can be given as "text". See pages 512 and 552.

See also: PlotLabel, FrameLabel. New in Version 1.

AxesOrigin
AxesOrigin is an option for two-dimensional graphics functions which specifies where any
axes drawn should cross.
AxesOrigin -> {x, y} specifies that the axes should cross at the point {x, y}. AxesOrigin -> Automatic uses
an internal algorithm to determine where the axes should cross. If the point {0, 0} is within, or close to, the
plotting region, then it is usually chosen as the axis origin. In contour and density plots,
AxesOrigin -> Automatic puts axes outside the plotting area. See page 512. New in Version 2.

AxesStyle
AxesStyle is an option for graphics functions which specifies how axes should be rendered.
AxesStyle can be used in both two- and three-dimensional graphics. AxesStyle -> style specifies that all axes
are to be generated with the specified graphics directive, or list of graphics directives.

AxesStyle -> {{xstyle}, {ystyle}, . . . } specifies that axes should use graphics directives xstyle, . . . . The styles
must be enclosed in lists, perhaps of length one. Styles can be specified using graphics directives such as
Dashing, Hue and Thickness. The default color of axes is specified by the option DefaultColor. See pages 512
and 550. See also: Prolog, Epilog, PlotStyle, FrameStyle. New in Version 2.

Background
Background is an option which specifies the background color to use.
Background is an option for graphics functions, Text, Cell and ButtonBox. The setting for Background in
graphics functions must be a CMYKColor, GrayLevel, Hue or RGBColor directive. The default setting in graphics
functions is Background->Automatic, which produces a white background on most output devices. In Text,
Background->None draws no background rectangle around the text and Background->Automatic draws a
background rectangle in the same color as the background for the whole plot. In a cell, the background is used
only for the region inside any cell frame. See pages 504 and 604. See also: Prolog, DefaultColor, PlotRegion,
FontColor. New in Version 2; modified in Version 3.



1088 BaseForm — BesselJ Mathematica Reference Guide

BaseForm
BaseForm[expr, n] prints with the numbers in expr given in base n.
The maximum allowed base is 36. For bases larger than 10, additional digits are chosen from the letters a–z. You
can enter a number in an arbitrary base using base^^digits. When a number in an arbitrary base is given in
scientific notation, the exponent is still given in base 10. You can mix BaseForm with NumberForm and related
functions. BaseForm acts as a “wrapper”, which affects printing, but not evaluation. See pages 438 and 725.

See also: IntegerDigits, RealDigits. New in Version 1.

Begin
Begin["context`"] resets the current context.
Begin resets the value of $Context. The interpretation of symbol names depends on context. Begin thus affects
the parsing of input expressions. See page 398. See also: BeginPackage, End, $ContextPath. New in Version 1.

BeginPackage
BeginPackage["context`"] makes context` and System` the only active contexts.
BeginPackage["context`", {"need�`", "need�`", . . . }] calls Needs on the needi.
BeginPackage is typically used at the beginning of a Mathematica package. BeginPackage resets the values of
both $Context and $ContextPath. The interpretation of symbol names depends on context. BeginPackage thus
affects the parsing of input expressions. See page 398. See also: EndPackage. New in Version 1.

BernoulliB
BernoulliB[n] gives the Bernoulli number Bn.
BernoulliB[n, x] gives the Bernoulli polynomial Bn�x�.
Mathematical function (see Section A.3.10). The Bernoulli polynomials satisfy the generating function relation
text��et � �� � ��n�� Bn�x��tn�nd�. The Bernoulli numbers are given by Bn � Bn���. See page 757. See also: EulerE.

New in Version 1.

BesselI
BesselI[n, z] gives the modified Bessel function of the first kind In�z�.
Mathematical function (see Section A.3.10). In�z� satisfies the differential equation z�y$$ � zy$ � �z� � n��y � �.

BesselI[n, z] has a branch cut discontinuity in the complex z plane running from �� to �. FullSimplify
and FunctionExpand include transformation rules for BesselI. See page 775. See also: BesselK, AiryBi,
BesselJ. New in Version 1.

BesselJ
BesselJ[n, z] gives the Bessel function of the first kind Jn�z�.
Mathematical function (see Section A.3.10). Jn�z� satisfies the differential equation z�y$$ � zy$ � �z� � n��y � �.

BesselJ[n, z] has a branch cut discontinuity in the complex z plane running from �� to �. FullSimplify
and FunctionExpand include transformation rules for BesselJ. See page 775. See also: BesselY, StruveH,
BesselK. Related package: NumericalMath`BesselZeros`. New in Version 1.



A.10 Major Built-in Mathematica Objects BesselK — BitAnd 1089

BesselK
BesselK[n, z] gives the modified Bessel function of the second kind Kn�z�.
Mathematical function (see Section A.3.10). Kn�z� satisfies the differential equation z�y$$ � zy$ � �z� � n��y � �.

BesselK[n, z] has a branch cut discontinuity in the complex z plane running from �� to �. FullSimplify
and FunctionExpand include transformation rules for BesselK. See page 775. See also: BesselI, AiryAi,
BesselJ. New in Version 1.

BesselY
BesselY[n, z] gives the Bessel function of the second kind Yn�z�.
Mathematical function (see Section A.3.10). Yn�z� satisfies the differential equation z�y$$ � zy$ � �z� � n��y � �.

BesselY[n, z] has a branch cut discontinuity in the complex z plane running from �� to �. FullSimplify
and FunctionExpand include transformation rules for BesselY. See page 775. See also: BesselJ, StruveH,
BesselI. Related package: NumericalMath`BesselZeros`. New in Version 1.

Beta
Beta[a, b] gives the Euler beta function h�a� b�.
Beta[z, a, b] gives the incomplete beta function hz�a� b�.

Mathematical function (see Section A.3.10). h�a� b� � ��a���b����a � b� � � �� t a���� � t�b��dt.

hz�a� b� � � z
�

t a���� � t�b��dt. Beta[z, a, b] has a branch cut discontinuity in the complex z plane running from

�� to �. Beta[z�, z�, a, b] gives the generalized incomplete beta function � z�
z�

t a���� � t�b��dt. Note that the

arguments in the incomplete form of Beta are arranged differently from those in the incomplete form of Gamma.
In TraditionalForm, Beta is output using \[CapitalBeta]. See page 770. See also: BetaRegularized,

InverseBetaRegularized. New in Version 1.

BetaRegularized
BetaRegularized[z, a, b] gives the regularized incomplete beta function Iz�a� b�.
Mathematical function (see Section A.3.10). For non-singular cases, I�z� a� b� � B�z� a� b��B�a� b�.

BetaRegularized[z�, z�, a, b] gives the generalized regularized incomplete beta function defined in
non-singular cases as Beta[z�, z�, a, b]/Beta[a, b]. Note that the arguments in BetaRegularized are arranged
differently from those in GammaRegularized. See page 770. See also: Beta, InverseBetaRegularized. New in
Version 2.

Binomial

Binomial[n, m] gives the binomial coefficient �n
m�.

Integer mathematical function (see Section A.3.10). Binomial is evaluated symbolically when possible. Example:
Binomial[x+2, x] ��# ��1 � x�[�2 � x���2 . In general, �n

m� is defined by ��n � ������m � ����n �m � ��� or
suitable limits of this. See page 757. Implementation notes: see page 1067. See also: Multinomial, Pochhammer.

New in Version 1.

BitAnd
BitAnd[n�, n�, . . . ] gives the bitwise AND of the integers ni.
Integer mathematical function (see Section A.3.10). BitAnd[n�, n�, . . . ] yields the integer whose binary bit
representation has ones at positions where the binary bit representations of all of the ni have ones. For negative
integers BitAnd assumes a two’s complement representation. See page 756. See also: BitOr, BitXor, BitNot,
And, IntegerDigits, DigitCount, CellularAutomaton. New in Version 4.



1090 BitNot — BlankNullSequence Mathematica Reference Guide

BitNot
BitNot[n] gives the bitwise NOT of the integer n.
Integer mathematical function (see Section A.3.10). BitNot[n] turns ones into zeros and vice versa in the binary
bit representation of n. Integers are assumed to be represented in two’s complement form, with an unlimited
number of digits, so that BitNot[n] is simply equivalent to �� � n. See page 756. See also: BitAnd, BitOr,
BitXor, Not. New in Version 4.

BitOr
BitOr[n�, n�, . . . ] gives the bitwise OR of the integers ni.
Integer mathematical function (see Section A.3.10). BitOr[n�, n�, . . . ] yields the integer whose binary bit
representation has ones at positions where the binary bit representations of any of the ni have ones. For negative
integers BitOr assumes a two’s complement representation. See page 756. See also: BitAnd, BitXor, BitNot, Or,
IntegerDigits, CellularAutomaton. New in Version 4.

BitXor
BitXor[n�, n�, . . . ] gives the bitwise XOR of the integers ni.
Integer mathematical function (see Section A.3.10). BitXor[n�, n�, . . . ] yields the integer whose binary bit
representation has ones at positions where an odd number of the binary bit representations of the ni have ones.

For negative integers BitXor assumes a two’s complement representation. See page 756. See also: BitAnd,
BitOr, BitNot, Xor, IntegerDigits, CellularAutomaton. New in Version 4.

Blank
_ or Blank[ ] is a pattern object that can stand for any Mathematica expression.
_h or Blank[h] can stand for any expression with head h.
The head h in _h cannot itself contain pattern objects. See page 259. See also: Pattern, Optional, ForAll.

New in Version 1.

BlankNullSequence
___ (three _ characters) or BlankNullSequence[ ] is a pattern object that can stand for any
sequence of zero or more Mathematica expressions.
___h or BlankNullSequence[h] can stand for any sequence of expressions, all of which have
head h.
Blank sequences work slightly differently depending on whether or not the head of the expression in which they
appear is a symbol with the attribute Flat. Consider matching the pattern f[a�, a�, . . . , ___, c�, . . . ] against
the expression f[a�, a�, . . . , b�, . . . , c�, . . . ]. If f is a symbol with attribute Flat, then the ___ will be taken to
stand for the expression f[b�, . . . ]. If f is not a symbol with attribute Flat, then ___ will be taken to stand for the
sequence of expressions b�, . . . . With a named pattern, such as x___, x can be used only as an element in an
expression. The sequence of expressions b�, . . . is “spliced in” to replace x, thereby usually increasing the length of
the expression. If ___ matches a sequence of length more than one, then the sequence will be represented by a
Sequence object. In most uses of ___, however, the Sequence object will automatically be spliced into another
expression, and will never appear explicitly. See page 273. See also: Pattern, SlotSequence. New in Version 1.



A.10 Major Built-in Mathematica Objects BlankSequence — BoxStyle 1091

BlankSequence
__ (two _ characters) or BlankSequence[ ] is a pattern object that can stand for any sequence
of one or more Mathematica expressions.
__h or BlankSequence[h] can stand for any sequence of one or more expressions, all of which
have head h.
See notes for BlankNullSequence. See page 273. New in Version 1.

Block
Block[{x, y, . . . }, expr] specifies that expr is to be evaluated with local values for the
symbols x, y, . . . .
Block[{x = x�, . . . }, expr] defines initial local values for x, . . . .
Block allows you to set up an environment in which the values of variables can temporarily be changed. When
you execute a block, values assigned to x, y, . . . are cleared. When the execution of the block is finished, the
original values of these symbols are restored. Block affects only the values of symbols, not their names. Initial
values specified for x, y, . . . are evaluated before x, y, . . . are cleared. You can use Block[{vars}, body /; cond] as
the right-hand side of a transformation rule with a condition attached. Block has attribute HoldAll. Block
implements dynamic scoping of variables. Block is automatically used to localize values of iterators in iteration
constructs such as Do, Sum and Table. See page 389. See also: Module, With, CompoundExpression. New in
Version 1.

Booleans
Booleans represents the domain of booleans, as in x � Booleans.
The domain of booleans is taken to consist of the symbols True and False. x � Booleans evaluates immediately
if x is explicitly True or False. Simplify[expr � Booleans] can be used to try to determine whether an
expression is boolean, with no undetermined variables. Boolean is output in TraditionalForm as �. See
page 817. See also: Element, Simplify, True, False, Integers. New in Version 4.

Boxed
Boxed is an option for Graphics3D which specifies whether to draw the edges of the bounding
box in a three-dimensional picture.
Boxed -> True draws the box; Boxed -> False does not. See pages 151 and 549. New in Version 1.

BoxRatios
BoxRatios is an option for Graphics3D and SurfaceGraphics which gives the ratios of side
lengths for the bounding box of the three-dimensional picture.
BoxRatios -> {sx, sy, sz} gives the side-length ratios. See page 531. New in Version 1.

BoxStyle
BoxStyle is an option for three-dimensional graphics functions which specifies how the
bounding box should be rendered.
BoxStyle can be set to a list of graphics directives such as Dashing, Thickness, GrayLevel and RGBColor. See
pages 503 and 550. See also: AxesStyle, Prolog, Epilog, DisplayFunction. New in Version 2.



1092 Break — ButtonData Mathematica Reference Guide

Break
Break[ ] exits the nearest enclosing Do, For or While.
Break[ ] takes effect as soon as it is evaluated, even if it appears inside other functions. After a Break the value
Null is returned from the enclosing control structure. The function of Break can also be achieved using Throw
and Catch. See page 353. See also: Continue, Return, Goto, Abort. New in Version 1; modified in Version 3.

ButtonBox
ButtonBox[boxes] represents a button in a notebook, displaying boxes and performing an
action when it is clicked on.
The default action is to paste boxes at your current insertion point.
Other actions can be specified using options.
ButtonBox objects are used to implement palette buttons, hyperlinks and other active elements
in notebooks.
ButtonBox objects are active when either they or the cell that contains them has the option
Active->True.
When ButtonBox objects are active, they perform an action whenever they are clicked on. Otherwise, clicking on
them simply selects them or their contents. ButtonBox[boxes, ButtonStyle->"style"] takes the properties of the
ButtonBox from the specified style. The style for a ButtonBox can specify both its appearance and its action. The
following options affecting button appearance can be given:

Background Automatic button background color
ButtonFrame "Palette" the type of frame for the button
ButtonExpandable True whether a button should expand to fill a position in a GridBox

ButtonMargins 3.0 the margin in printer’s points around the contents of a button
ButtonMinHeight 1.0 the minimum total height of a button in units of font size

The following options affecting button action can be given:

Active False whether to make the button always active
ButtonData Null the second argument to supply to the button function
ButtonEvaluator None where to send the button function expression for evaluation
ButtonFunction (pasting function) the function to apply when the button is clicked
ButtonNote None what to display in the window status line when the cursor is over the

button
ButtonSource Automatic where to get the first argument of the button function from

ButtonBox[ . . . ] is by default interpreted as Button[ . . . ] if it is given as input to the Mathematica kernel. See
pages 448 and 595. See also: Dialog, Input. New in Version 3.

ButtonData
ButtonData is an option for ButtonBox which specifies the second argument to give to the
ButtonFunction for the button when the button is active and is clicked on.
The default is ButtonData->Automatic. ButtonData provides a convenient way to associate additional data with
a button that does not affect the display of the button. See page 597. See also: ButtonSource, ButtonNote,
ButtonStyle. New in Version 3.



A.10 Major Built-in Mathematica Objects ButtonEvaluator — ButtonFunction 1093

ButtonEvaluator
ButtonEvaluator is an option for ButtonBox which specifies where the expression constructed
from ButtonFunction should be sent for evaluation.
The default setting is ButtonEvaluator->None. Possible settings are:

None the front end
Automatic the kernel used by default in the current notebook
"name" a kernel referred to by a specific name

With ButtonEvaluator->Automatic the expression to be evaluated can contain any Mathematica objects. With
ButtonEvaluator->None the expression can contain only the specific notebook commands supported by the front
end. All these commands are in the context FrontEnd`. Expressions intended for processing purely by the front end
must be wrapped with FrontEndExecute. See page 597. See also: ButtonFunction, ButtonStyle,
SelectionEvaluate, ButtonNotebook. New in Version 3.

ButtonExpandable
ButtonExpandable is an option for ButtonBox which specifies whether the button should
expand to fill any GridBox position in which it appears.
The default setting is ButtonExpandable->True. This setting is usually used for all buttons that appear in
palettes. With ButtonExpandable->False the size of a button is determined purely by its contents, independent
of its environment. With ButtonExpandable->False, gutters will often be left between buttons in a GridBox.

See page 452. See also: ButtonMargins, ButtonMinHeight, TextJustification. New in Version 3.

ButtonFrame
ButtonFrame is an option for ButtonBox which specifies the type of frame to display around a
button.
Typical settings supported include:

"Palette" a button in a palette
"DialogBox" a button in a dialog box
None no frame

Button frames generated by ButtonFrame are set up to follow the conventions for particular computer systems.
A button with a particular setting for ButtonFrame may look slightly different on different computer systems.
See page 452. See also: ButtonStyle, WindowFrame. New in Version 3.

ButtonFunction
ButtonFunction is an option for ButtonBox which specifies the function to execute when the
button is active and is clicked on.
The default setting for ButtonFunction causes the button to paste its contents at your current notebook selection.

ButtonFunction is used only with the setting Active->True either for the individual button, or for the cell
which contains it. With ButtonFunction->f the first argument supplied to f is specified by the setting for
ButtonSource, and the second argument by the setting for ButtonData. Standard Mathematica precedence rules
require parentheses in ButtonFunction->(body &). Settings for ButtonFunction are often inherited from button
styles via the ButtonStyle option. With the default setting ButtonEvaluator -> None the expression constructed
from the button function is sent to the front end for evaluation. See page 597. See also: ButtonEvaluator,
ButtonNote, NotebookApply, ButtonNotebook. New in Version 3.



1094 ButtonMargins — ButtonSource Mathematica Reference Guide

ButtonMargins
ButtonMargins is an option for ButtonBox which specifies how much space in printer’s points
to leave around the contents of a button when the button is displayed.
The default setting is ButtonMargins->3. See page 452. See also: ButtonExpandable, ButtonMinHeight. New
in Version 3.

ButtonMinHeight
ButtonMinHeight is an option for ButtonBox which specifies the minimum total height in
units of font size that should be allowed for the button.
The default setting ButtonMinHeight->1 forces a button to have a total height which at least accommodates all the
characters in the current font. ButtonMinHeight->0 reduces the total height of a button as much as possible,
allowing buttons containing characters such as x and X to be different heights. See page 452. See also:
ButtonMargins, ButtonExpandable, RowMinHeight. New in Version 3.

ButtonNote
ButtonNote is an option for ButtonBox which specifies what should be displayed in the status
line of the current notebook window when the button is active and the cursor is placed on top
of it.
The default is to display whatever setting is given for ButtonData. Any expression can be specified as the setting
for ButtonNote, though most windows will only allow a single character height to be displayed. ButtonNote can
be used to display keyboard equivalents for buttons in a palette. See page 597. See also: ButtonData,
ButtonFunction, ButtonStyle. New in Version 3.

ButtonNotebook
ButtonNotebook[ ] gives the notebook, if any, that contains the button which initiated the
current evaluation.
ButtonNotebook returns a NotebookObject. If a button in a palette initiates evaluation in another notebook, then
ButtonNotebook[ ] will be the palette, but EvaluationNotebook[ ] will be the other notebook. If the current
evaluation was not initiated by a button, then ButtonNotebook[ ] will return $Failed. See page 579. See also:
Notebooks, EvaluationNotebook, SelectedNotebook, InputNotebook. New in Version 3.

ButtonSource
ButtonSource is an option for ButtonBox which specifies the first argument to give to the
ButtonFunction for the button when the button is active and is clicked on.
The default is ButtonSource->Automatic. Possible settings are:

Automatic ButtonData if it is set, otherwise ButtonContents

ButtonContents the first argument of the ButtonBox

ButtonData the setting for the ButtonData option
Cell the whole cell in which the button appears
CellContents the contents of the cell in which the button appears
Notebook the whole notebook in which the button appears
n the expression n levels up from the button in the notebook

See page 597. See also: ButtonFunction, ButtonData, ButtonStyle, NotebookRead. New in Version 3.



A.10 Major Built-in Mathematica Objects ButtonStyle — Cancel 1095

ButtonStyle
ButtonStyle is an option for ButtonBox which specifies the default properties for the button.
Typical styles defined in the standard notebook front end are:

"Paste" paste the contents of the button (default)
"Evaluate" paste then evaluate in place what has been pasted
"EvaluateCell" paste then evaluate the whole cell
"CopyEvaluate" copy the current selection into a new cell, then paste and evaluate in place
"CopyEvaluateCell" copy the current selection into a new cell, then paste and evaluate the whole cell
"Hyperlink" jump to a different location in the notebook

The properties specified by a button style can affect both the appearance and action of a button. The properties
can be overridden by explicit settings for ButtonBox options. See page 595. See also: ButtonFrame,
ButtonFunction. New in Version 3.

Byte
Byte represents a single byte of data in Read.
See page 646. Related package: Utilities`BinaryFiles`. New in Version 1.

ByteCount
ByteCount[expr] gives the number of bytes used internally by Mathematica to store expr.
ByteCount does not take account of any sharing of subexpressions. The results it gives assume that every part of
the expression is stored separately. ByteCount will therefore often give an overestimate of the amount of memory
currently needed to store a particular expression. When you manipulate the expression, however, subexpressions will
often stop being shared, and the amount of memory needed will be close to the value returned by ByteCount. See
page 714. See also: LeafCount, MemoryInUse, MaxMemoryUsed, Length, StringLength, Depth. New in Version 1.

C
- C[i] is the default form for the ith parameter or constant generated in representing the results
of various symbolic computations.
, The C[i] are often used to parameterize families of solutions to equations. , In functions like DSolve, the C[i]
can be thought of as corresponding to constants of integration. , In cases such as partial differential equations, the
C[i] represent functions rather than variables. , C is the default setting for the option GeneratedParameters in
such functions as DSolve, RSolve and Reduce. See pages 93 and 871. See also: GeneratedParameters, Unique.

New in Version 2.

Cancel
Cancel[expr] cancels out common factors in the numerator and denominator of expr.
Example: Cancel[(x^2-1)/(x-1)] ��# 1 � x . Cancel is Listable. Cancel cancels out the greatest common
divisor of the numerator and denominator. Cancel[expr, Modulus->p] generates a result modulo p.

Cancel[expr, Extension->Automatic] allows operations to be performed on algebraic numbers in expr.
Cancel[expr, Trig -> True] treats trigonometric functions as rational functions of exponentials, and manipulates

them accordingly. See page 802. See also: Apart, GCD. New in Version 1; modified in Version 3.



1096 CarmichaelLambda — Ceiling Mathematica Reference Guide

CarmichaelLambda
CarmichaelLambda[n] gives the Carmichael function Λ�n�, defined as the smallest integer m
such that km Q � mod n for all k relatively prime to n.
Integer mathematical function (see Section A.3.10). CarmichaelLambda returns unevaluated if there is no integer m
satisfying the necessary conditions. See page 752. See also: MultiplicativeOrder, EulerPhi, RealDigits.

New in Version 4.

Cases
Cases[{e�, e�, . . . }, pattern] gives a list of the ei that match the pattern.
Cases[{e�, . . . }, pattern -> rhs] gives a list of the values of rhs corresponding to the ei that
match the pattern.
Cases[expr, pattern, levspec] gives a list of all parts of expr on levels specified by levspec which
match the pattern.
Cases[expr, pattern -> rhs, levspec] gives the values of rhs which match the pattern.
Cases[expr, pattern, levspec, n] gives the first n parts in expr which match the pattern.
Example: Cases[{2, x, 4}, _Integer] ��# �2, 4� . The first argument to Cases need not have head List.
, Cases[expr, pattern :> rhs] evaluates rhs only when the pattern is found. Level specifications are described on
page 1041. See page 261. See also: Select, Position, ReplaceList, Collect, DeleteCases. Related package:
Statistics`DataManipulation`. New in Version 1.

Catalan
Catalan is Catalan’s constant, with numerical value � �	������.

Mathematical constant (see Section A.3.11). Catalan’s constant is given by the sum ��k������k��k � ����. See
page 765. Implementation notes: see page 1067. New in Version 1.

Catch
Catch[expr] returns the argument of the first Throw generated in the evaluation of expr.
Catch[expr, form] returns value from the first Throw[value, tag] for which form matches tag.
Catch[expr, form, f] returns f[value, tag].
Catch[expr, . . . ] always returns the value of expr if no Throw was generated during the evaluation. form can be
any expression, and is often a pattern. tag in Throw[value, tag] is re-evaluated every time it is compared to form.

See page 350. See also: Check, CheckAbort, Reap. New in Version 1; modified in Version 3.

Ceiling
Ceiling[x] gives the smallest integer greater than or equal to x.
Mathematical function (see Section A.3.10). Examples: Ceiling[2.4] ��# 3 ; Ceiling[2.6] ��# 3 ;
Ceiling[-2.4] ��# �2 ; Ceiling[-2.6] ��# �2 . Ceiling[x] can be entered in StandardForm and InputForm asF x G, Hlc H x Hrc H or \[LeftCeiling] x \[RightCeiling]. Ceiling[x] returns an integer when x is any
numeric quantity, whether or not it is an explicit number. Example: Ceiling[Pi^2] ��# 10 . For exact numeric
quantities, Ceiling internally uses numerical approximations to establish its result. This process can be affected by
the setting of the global variable $MaxExtraPrecision. See page 745. Implementation notes: see page 1067.

See also: Floor, IntegerPart, Round, Chop. New in Version 1; modified in Version 3.



A.10 Major Built-in Mathematica Objects Cell — CellBaseline 1097

Cell
Cell[contents, "style"] represents a cell in a Mathematica notebook.
A Mathematica notebook consists of a list of cells. You can see the form of a cell as an expression by using the
Show Expression command in the standard Mathematica front end. You can access cells in a notebook directly using
the front end. You can also access the cells from the kernel using NotebookRead and NotebookWrite, or using
Options and SetOptions on NotebookSelection[obj]. The contents of cells can be the following:

"text" plain text
TextData[{text�, text�, . . . }] general text objects
BoxData[boxes] formatted Mathematica expressions
GraphicsData["type", data] graphics or sounds
OutputFormData["itext", "otext"] text as generated by InputForm and OutputForm

RawData["data"] unformatted expressions
CellGroupData[{cell�, cell�, . . . }, Open] open group of cells
CellGroupData[{cell�, cell�, . . . }, Closed] closed group of cells
StyleData["style"] sample cell for a particular style

In any given notebook, a collection of possible cell styles are defined, typically with names such as "Title",
"Section", "Input" and "Output". Cells can have many options, including:

Active whether buttons in cell should be active
Background the color of the background for the cell
Editable whether to allow the contents of the cell to be edited
CellFrame whether to draw a frame around the cell
CellTags tags for the cell
FontSize the default size of text in the cell
TextAlignment how to align text in the cell

See page 599. See also: Notebook, CellPrint. New in Version 3.

CellAutoOverwrite
CellAutoOverwrite is an option for Cell which specifies whether new output obtained by
evaluating this cell should overwrite old output.
Any sequence of cells with GeneratedCell->True which follow the given cell are assumed to correspond to
output. The output is deleted only when new output is ready to be inserted in its place. CellAutoOverwrite is
typically set for cells in "Output" style. See page 608. See also: GeneratedCell, CellEvaluationDuplicate,
Deletable. New in Version 3.

CellBaseline
CellBaseline is an option for Cell which specifies where the baseline of the cell should be
assumed to be when it appears inside another cell.
CellBaseline is used to determine the vertical alignment of cells that are embedded in text, typically in TextData
objects. CellBaseline->pos specifies that position pos in the Cell should be assumed to be the baseline of the
Cell and should therefore be aligned with baselines of other boxes. Possible settings are:

Axis axis of the expression in the cell
Baseline baseline of the expression in the cell (default)
Bottom bottom of the expression in the cell
Center center of the expression in the cell
Top top of the expression in the cell

See page 605. See also: CellMargins, GridBaseline. New in Version 3.



1098 CellDingbat — CellGroupData Mathematica Reference Guide

CellDingbat
CellDingbat is an option for Cell which specifies what dingbat to use to emphasize a cell.
The setting CellDingbat->"" displays no dingbat. Dingbats are placed to the left of the main contents of a cell,
aligned with the first line of the contents. Dingbats are placed outside of any cell frame. The setting for
CellDingbat can be any string. A typical setting is "\[FilledSquare]". CellDingbat is often set for styles of
cells rather than for individual cells. See page 604. See also: CellFrame, Background. New in Version 3.

CellEditDuplicate
CellEditDuplicate is an option for Cell which specifies whether the front end should make
a copy of the cell before actually applying any changes in its contents that you request.
CellEditDuplicate is by default set to True for cells that are generated as Mathematica output. New cells
generated when CellEditDuplicate->True have styles specified by the setting for DefaultDuplicateCellStyle
for the notebook. CellEditDuplicate is typically set for styles of cells rather than for individual cells. See
page 607. See also: CellEvaluationDuplicate, Editable. New in Version 3.

CellEvaluationDuplicate
CellEvaluationDuplicate is an option for Cell which specifies whether the front end should
make a copy of the cell before performing any evaluation of its contents that you request.
New cells generated when CellEvaluationDuplicate->True have styles specified by the setting for
DefaultDuplicateCellStyle for the notebook. CellEvaluationDuplicate is typically set for styles of cells
rather than for individual cells. See page 608. See also: CellEditDuplicate, Evaluatable, CellAutoOverwrite.

New in Version 3.

CellFrame
CellFrame is an option for Cell which specifies whether a frame should be drawn around a
cell.
The space left between the frame and the cell contents is determined by CellFrameMargins. Dingbats go outside
the frame. See page 604. See also: Background, CellDingbat, FrameBox. New in Version 3.

CellFrameMargins
CellFrameMargins is an option for Cell which specifies the absolute margins in printer’s
points to leave inside a frame that is drawn around a cell.
Possible settings are:

dist the same margins on all sides
{{left, right}, {bottom, top}} different margins on different sides

See page 605. See also: CellMargins. New in Version 3.

CellGroupData
CellGroupData[{cell�, cell�, . . . }, Open] represents an open group of cells in a notebook.
CellGroupData[{cell�, cell�, . . . }, Closed] represents a closed group of cells.
When a group of cells is closed, only the first member of the group is visible. When cells are entered into a
notebook, they are automatically placed in groups unless CellGrouping->Manual is set. See page 600. See also:
Cell, CellGrouping, CellOpen. New in Version 3.



A.10 Major Built-in Mathematica Objects CellGrouping — CellOpen 1099

CellGrouping
CellGrouping is an option for Notebook which specifies how cells in the notebook should be
assembled into groups.
The default setting is typically CellGrouping->Automatic. With CellGrouping->Automatic, cells are
automatically grouped in a hierarchical way based on their styles. With CellGrouping->Manual, cells must be
grouped manually, either by setting up explicit CellGroupData expressions, or by using the Group Cells menu item
in the notebook front end. See page 618. See also: CellGroupData. New in Version 3.

CellLabel
CellLabel is an option for Cell which gives the label to use for a particular cell.
CellLabel->"" specifies that no label should be used for a cell. Cell labels are displayed when the setting
ShowCellLabels->True is made. Cell labels are typically generated automatically when cells appear as input or
output to the Mathematica kernel. Cell labels are automatically deleted when a cell is modified if
CellLabelAutoDelete->True. See page 607. See also: CellTags. New in Version 3.

CellLabelAutoDelete
CellLabelAutoDelete is an option for Cell which specifies whether a label for the cell should
be automatically deleted if the contents of the cell are modified or the notebook containing the
cell is saved in a file.
Cell styles that represent Mathematica input and output typically have CellLabelAutoDelete->True.

CellLabelAutoDelete is more often set for styles of cells than for individual cells. See page 607. See also:
CellLabel, ShowCellLabel, CellTags, CellAutoOverwrite. New in Version 3.

CellMargins
CellMargins is an option for Cell which specifies the absolute margins in printer’s points to
leave around a cell.
Possible settings are:

dist the same margins on all sides
{{left, right}, {bottom, top}} different margins on different sides

The left margin gives the distance from the edge of the window to the left-hand side of the cell. The right
margin gives the distance from the inside of the cell bracket to the right-hand side of the cell. The left and right
margins can be set interactively in the front end using the Show Ruler ruler. The top and bottom margins determine
the amount of space to leave above and below the cell. The margins go to the edge of any cell frame that is
present. Cell dingbats are placed to the left of the left-hand side of the cell, and extend into the left cell margin.

See page 605. See also: CellFrameMargins, CellBaseline, ImageMargins, WindowMargins. New in Version 3.

CellOpen
CellOpen is an option for Cell which specifies whether the contents of a cell should be
explicitly displayed.
With CellOpen->False, a small cell bracket is still shown to indicate the presence of a cell. Cells which are not
open can still be evaluated automatically if you set InitializationCell->True. See page 604. See also:
Visible, CellGroupData, ConversionRules. New in Version 3.



1100 CellPrint — CellularAutomaton Mathematica Reference Guide

CellPrint
CellPrint[cell] inserts cell in a notebook immediately after the cell that is currently being
evaluated.
CellPrint[{cell�, cell�, . . . }] inserts a sequence of cells.
The celli must all have head Cell. CellPrint is a special case of NotebookWrite. With a text-based front end,
CellPrint[cell] does the same as applying Print to the contents of cell. Cells generated by CellPrint by default
have GeneratedCell->True. See page 575. See also: StylePrint, Print, NotebookWrite, NotebookPrint. New
in Version 3.

CellTags
CellTags is an option for Cell which gives a list of tags to associate with a cell.
Cell tags are typically used to allow searching for cells. The tags are usually strings. Cell tags are displayed
when the setting ShowCellTags->True is made. See page 607. See also: CellLabel, ConversionRules. New in
Version 3.

, CellularAutomaton
CellularAutomaton[rnum, init, t] generates a list representing the evolution of cellular
automaton rule rnum from initial condition init for t steps.
CellularAutomaton[rnum, init, t, {offt, offx, . . . }] keeps only the parts of the evolution list
with the specified offsets.
Possible settings for rnum are:

n k � �, r � �, elementary rule
{n, k} general nearest-neighbor rule with k colors
{n, k, r} general rule with k colors and range r
{n, k, {r�, r�, . . . , rd}} d-dimensional rule with ��r� � �� � ��r� � �� � � � � � ��rd � �� neighborhood
{n, k, {{off�}, {off�}, . . . , {offs}}} rule with neighbors at specified offsets
{n, {k, 1}} k-color nearest-neighbor totalistic rule
{n, {k, 1}, r} k-color range r totalistic rule
{n, {k, {wt�, wt�, . . . }}, rspec} rule in which neighbor i is assigned weight wti

{fun, {}, rspec} applies the function fun to each list of neighbors, with a second argument
of the step number

CellularAutomaton[{n, k}, . . . ] is equivalent to CellularAutomaton[{n, {k, {k^2, k, 1}}}, . . . ]. Common
forms for 2D cellular automata include:
{n, {k, 1}, {1, 1}} 9-neighbor totalistic rule
{n, {k, {{0, 1, 0}, {1, 1, 1}, {0, 1, 0}}}, {1, 1}} 5-neighbor totalistic rule
{n, {k, {{0, k, 0}, {k, 1, k}, {0, k, 0}}}, {1, 1}} 5-neighbor outer totalistic rule
{n + k^5 (k - 1), {k, {{0, 1, 0}, {1, 4 k + 1, 1}, {0, 1, 0}}}, {1, 1}} 5-neighbor growth rule

Normally, all elements in init and the evolution list are integers between 0 and k � �. But when a general
function is used, the elements of init and the evolution list do not have to be integers. The second argument
passed to fun is the step number, starting at 0. Initial conditions are constructed from init as follows:

{a�, a�, . . . } explicit list of values ai, assumed cyclic
{{a�, a�, . . . }, b} values ai superimposed on a b background
{{a�, a�, . . . }, {b�, b�, . . . }} values ai superimposed on a background of

repetitions of b�, b�, � � � (continued)



A.10 Major Built-in Mathematica Objects CellularAutomaton (continued) — Character 1101

, CellularAutomaton (continued)

{{{{a��, a��, . . . }, off�}, {{a��, . . . }, off�}, . . . }, bspec} values aij at offsets offi on a background
{{a��, a��, . . . }, {a��, . . . }, . . . } explicit list of values in two dimensions
{aspec, bspec} values in d dimensions with d-dimensional padding

The first element of aspec is superimposed on the background at the first position in the positive direction in each
coordinate relative to the origin. This means that bspec[[1, 1, . . . ]] is aligned with aspec[[1, 1, . . . ]]. Time
offsets offt are specified as follows:

All all steps � through t
u steps 0 through u
-1 last step (step t)
{u} step u
{u�, u�} steps u� through u�
{u�, u�, du} steps u�, u� + du, � � �

CellularAutomaton[rnum, init, t] generates an evolution list of length t � �. The initial condition is taken to
have offset 0. Space offsets offx are specified as follows:

All all cells that can be affected by the specified initial condition
Automatic all cells in the region that differs from the background
0 cell aligned with beginning of aspec
x cells at offsets up to x on the right
-x cells at offsets up to x on the left
{x} cell at offset x to the right
{-x} cell at offset x to the left
{x�, x�} cells at offsets x� through x�
{x�, x�, dx} cells x� , x� + dx, � � �

In one dimension, the first element of aspec is taken by default to have space offset 0. In any number of
dimensions, aspec[[1, 1, 1, . . . ]] is taken by default to have space offset {0, 0, 0, . . . }. Each element of the
evolution list produced by CellularAutomaton is always the same size. With an initial condition specified by an
aspec of width w, the region that can be affected after t steps by a cellular automaton with a rule of range r has
width w � �rt. If no bspec background is specified, space offsets of All and Automatic will include every cell in
aspec. A space offset of All includes all cells that can be affected by the initial condition. A space offset of
Automatic can be used to trim off background from the sides of a cellular automaton pattern. In working out
how wide a region to keep, Automatic only looks at results on steps specified by offt. See page 942.

Implementation notes: see page 1069. See also: ListConvolve, Partition, BitXor. New in Version 4.2.

CForm
CForm[expr] prints as a C language version of expr.
Standard arithmetic functions and certain control structures are translated. No declarations are generated. CForm
acts as a “wrapper”, which affects printing, but not evaluation. See pages 213 and 425. See also: FortranForm,
Compile. New in Version 1.

Character
Character represents a single character in Read.
See page 646. Related package: Utilities`BinaryFiles`. New in Version 1.



1102 CharacterEncoding — Check Mathematica Reference Guide

CharacterEncoding
CharacterEncoding is an option for input and output functions which specifies what raw
character encoding should be used.
The default is CharacterEncoding:>$CharacterEncoding . The possible settings for CharacterEncoding are the
same as for $CharacterEncoding. See pages 422 and 634. See also: ToCharacterCode, FromCharacterCode,
StringReplace, $SystemCharacterEncoding, ShowSpecialCharacters. New in Version 3.

, CharacteristicPolynomial
CharacteristicPolynomial[m, x] gives the characteristic polynomial for the matrix m.
m must be a square matrix. It can contain numeric or symbolic entries. See pages 905 and 910. See also:
Eigenvalues, Det. New in Version 5.0.

CharacterRange
CharacterRange["c�", "c�"] yields a list of the characters in the range from "c�" to "c�".
Example: CharacterRange["A", "D"] ��# �"A", "B", "C", "D"� . CharacterRange["a", "z"] yields the
English alphabet. CharacterRange["0", "9"] yields a list of digits. CharacterRange["c�", "c�"] gives the list
of characters with character codes from ToCharacterCode["c�"] to ToCharacterCode["c�"].

CharacterRange["b", "a"] gives { }. See page 413. See also: FromCharacterCode, Range, Sort, Symbol,
Unique. New in Version 3.

Characters
Characters["string"] gives a list of the characters in a string.
Each character is given as a length one string. Characters handles both ordinary and special characters. See
page 412. See also: StringJoin, StringLength, ToCharacterCode, StringToStream, CharacterRange. New in
Version 1; modified in Version 3.

ChebyshevT
ChebyshevT[n, x] gives the Chebyshev polynomial of the first kind Tn�x�.
Mathematical function (see Section A.3.10). Explicit polynomials are given for integer n. Tn�cos Θ� � cos�nΘ�.

ChebyshevT[n, z] has a branch cut discontinuity in the complex z plane running from �� to ��. See page 766.
See also: ChebyshevU. New in Version 1.

ChebyshevU
ChebyshevU[n, x] gives the Chebyshev polynomial of the second kind Un�x�.
Mathematical function (see Section A.3.10). Explicit polynomials are given for integer n.

Un�cos Θ� � sine�n � ��Θf�sin Θ. ChebyshevU[n, z] has a branch cut discontinuity in the complex z plane running
from �� to ��. See page 766. See also: ChebyshevT. New in Version 1.

Check
Check[expr, failexpr] evaluates expr, and returns the result, unless messages were generated, in
which case it evaluates and returns failexpr.
Check[expr, failexpr, s�::t�, s�::t�, . . . ] checks only for the specified messages.
Check has attribute HoldAll. Check tests only for messages that are actually output. It does not test for messages
that have been suppressed using Off. See page 481. See also: MessageList, $MessageList, Message,
Indeterminate, TimeConstrained, CheckAbort. New in Version 1.



A.10 Major Built-in Mathematica Objects CheckAbort — Clear 1103

CheckAbort
CheckAbort[expr, failexpr] evaluates expr, returning failexpr if an abort occurs.
CheckAbort absorbs any aborts it handles, and does not propagate them further. CheckAbort works inside
AbortProtect. CheckAbort has attribute HoldAll. See page 371. See also: Catch, Check. New in Version 2.

, CholeskyDecomposition
CholeskyDecomposition[m] gives the Cholesky decomposition of a matrix m.
The matrix m can be numerical or symbolic, but must be Hermitian and positive definite.

CholeskyDecomposition[m] yields an upper triangular matrix u so that Conjugate[Transpose[u]] . u == m.
See page 914. See also: LUDecomposition, LinearSolve, LinearSolveFunction, FindMinimum. New in

Version 5.0.

Chop
Chop[expr] replaces approximate real numbers in expr that are close to zero by the exact
integer 0.
Chop[expr, delta] replaces numbers smaller in absolute magnitude than delta by 0. Chop uses a default tolerance
of ����� . Chop works on both Real and Complex numbers. See page 730. See also: Rationalize, Round. New
in Version 1.

Circle
Circle[{x, y}, r] is a two-dimensional graphics primitive that represents a circle of radius r
centered at the point x, y.
Circle[{x, y}, {rx, ry}] yields an ellipse with semi-axes rx and ry.
Circle[{x, y}, r, {Θ�, Θ�}] represents a circular arc.
Angles are measured in radians counterclockwise from the positive x direction.

Circle[{x, y}, {rx, ry}, {Θ�, Θ�}] yields a segment of an ellipse obtained by transforming a circular arc with
the specified starting and ending angles. Scaled[{drx, dry}] or Scaled[{drx, dry}, {rx, ry}] can be used in the
radius specification. The dri are in scaled coordinates, and the ri are in ordinary coordinates. Offset[{ax, ay}]
can be used to specify radii in printer’s points. The thickness of the circle can be specified using the Thickness
primitive. See page 496. See also: Disk. New in Version 2; modified in Version 3.

Clear
Clear[symbol�, symbol�, . . . ] clears values and definitions for the symboli.
Clear["form�", "form�", . . . ] clears values and definitions for all symbols whose names
match any of the string patterns formi.
Clear does not clear attributes, messages, or defaults associated with symbols. Clear["form"] allows
metacharacters such as *, as specified on page 1044. Clear["context`*"] clears all symbols in a particular context.

Clear is HoldAll. Clear does not affect symbols with the attribute Protected. See pages 110, 304, 403
and 1052. See also: Remove. New in Version 1.



1104 ClearAll — Close Mathematica Reference Guide

ClearAll
ClearAll[symb�, symb�, . . . ] clears all values, definitions, attributes, messages and defaults
associated with symbols.
ClearAll["form�", "form�", . . . ] clears all symbols whose names textually match any of the
formi.
See notes for Clear. See pages 331 and 1052. See also: Remove. New in Version 1.

ClearAttributes
ClearAttributes[s, attr] removes attr from the list of attributes of the symbol s.
ClearAttributes modifies Attributes[s]. ClearAttributes[s, {attr�, attr�, . . . }] removes several attributes at
a time. ClearAttributes[{s�, s�, . . . }, attrs] removes attributes from several symbols at a time.

ClearAttributes is HoldFirst. ClearAttributes does not affect symbols with the attribute Locked. See
page 328. See also: SetAttributes, Unprotect. New in Version 1.

ClebschGordan
ClebschGordan[{j�, m�}, {j�, m�}, {j, m}] gives the Clebsch-Gordan coefficient for
the decomposition of / j�m� in terms of / j��m�� / j��m��.
The Clebsch-Gordan coefficients vanish except when m � m� �m� and the ji satisfy a triangle inequality. The
parameters of ClebschGordan can be integers, half-integers or symbolic expressions. Mathematica uses the standard
conventions of Edmonds for the phase of the Clebsch-Gordan coefficients. See page 760. Implementation notes:
see page 1067. See also: ThreeJSymbol, SixJSymbol, SphericalHarmonicY. New in Version 2.

ClipFill
ClipFill is an option for SurfaceGraphics that specifies how clipped parts of the surface are
to be drawn.
ClipFill specifies what is to be shown in places where the surface would extend beyond the bounding box. The
possible settings are:

Automatic show clipped areas like the rest of the surface
None make holes in the surface where it would be clipped
color show clipped areas with a particular color
{bottom, top} use different specifications for bottom and top clipped areas

The colors for clipped areas can be specified by GrayLevel, Hue or RGBColor directives, or SurfaceColor objects.
See page 540. New in Version 1.

Close
Close[stream] closes a stream.
The argument to Close can be an InputStream or OutputStream object. If there is only one stream with a
particular name, the argument to close can be "name". See page 632. See also: OpenAppend, SetOptions,
Streams. New in Version 1.



A.10 Major Built-in Mathematica Objects CMYKColor — CoefficientList 1105

CMYKColor
CMYKColor[cyan, magenta, yellow, black] is a graphics directive which specifies that graphical
objects which follow are to be displayed in the color given.
Color levels outside the range 0 to 1 will be clipped. CMYKColor can be used to specify colors for color printing.

CMYKColor specifications are automatically converted to RGBColor when simulated lighting calculations are done.
See page 563. See also: RGBColor, ColorOutput. Related package: Graphics`Colors`. New in Version 2.

Coefficient
Coefficient[expr, form] gives the coefficient of form in the polynomial expr.
Coefficient[expr, form, n] gives the coefficient of form^n in expr.

Coefficient picks only terms that contain the particular form specified. x� is not considered part of x. form can
be a product of powers. Coefficient[expr, form, 0] picks out terms that are not proportional to form.

Coefficient works whether or not expr is explicitly given in expanded form. See page 799. See also:
Exponent, CoefficientList, SeriesCoefficient. New in Version 1; modified in Version 3.

, CoefficientArrays
CoefficientArrays[polys, vars] gives the arrays of coefficients of the variables vars in the
polynomials polys.
CoefficientArrays gives a list containing SparseArray objects, which can be converted to ordinary arrays using
Normal. If CoefficientArrays[polys, vars] gives {m�, m�, m�, . . . }, then polys can be reconstructed as
m� + m� . vars + m� . vars . vars + . . . . Any element of polys of the form lhs == rhs is taken to correspond to
the polynomial lhs - rhs. CoefficientArrays[polys, {form�, form�, . . . }] takes all expressions in polys that
match any of the formi to be variables. CoefficientArrays[polys] is equivalent to
CoefficientArrays[polys, Variables[polys]]. The length of the list CoefficientArrays[polys, vars] is one
more than the total degree of polys. The mi are sparse arrays with ranks i + 1. The first element m� has the
same length as the list polys. If polys is a single polynomial rather than a list, m� is also not a list. For linear
equations, the solution to Thread[polys==0] is given by LinearSolve[m�, -m�]. For nonlinear equations, the mi
are not unique. CoefficientArrays by default assigns non-zero coefficients only to monomials where the variables
appear in the same order as vars. CoefficientArrays[polys, vars, Symmetric->True] makes all the mi
symmetric in all their indices. The resulting arrays will generally be less sparse. See page 922. See also:
CoefficientList, SparseArray, Solve. New in Version 5.0.

CoefficientList
CoefficientList[poly, var] gives a list of coefficients of powers of var in poly, starting with
power 0.
CoefficientList[poly, {var�, var�, . . . }] gives an array of coefficients of the vari.
Example: CoefficientList[x^2 + 2 x y - y, {x, y}] ��# ��0, �1�, �0, 2�, �1, 0�� . The dimensions of the
array returned by CoefficientList are determined by the values of the Exponent[poly, vari]. Terms that do not
contain positive integer powers of a particular variable are included in the first element of the list for that variable.

CoefficientList always returns a full rectangular array. Combinations of powers that do not appear in poly give
zeros in the array. , CoefficientList[0, var] gives {}. CoefficientList works whether or not poly is
explicitly given in expanded form. See page 799. See also: Series, CoefficientArrays, SeriesCoefficient,
Coefficient, Collect, FactorList. New in Version 1; modified in Version 3.



1106 Collect — ColorOutput Mathematica Reference Guide

Collect
Collect[expr, x] collects together terms involving the same powers of objects matching x.
Collect[expr, {x�, x�, . . . }] collects together terms that involve the same powers of objects
matching x�, x�, . . . .
Collect[expr, var, h] applies h to the expression that forms the coefficient of each term
obtained.
Collect[expr, x] effectively writes expr as a polynomial in x or a fractional power of x. Examples:
Collect[x + n x + m, x] ��# m � �1 � n� x ;
Collect[(1+x+y)^3, x] ��# 1 � x3 � 3 y � 3 y2 � y3 � x2 �3 � 3 y� � x �3 � 6 y � 3 y2� . Collect[expr, x, Simplify]
can be used to simplify each coefficient separately. See page 797. See also: Series, CoefficientList, Together,
Cases. New in Version 1; modified in Version 3.

ColorFunction
ColorFunction is an option for various graphics functions which specifies a function to apply
to z values to determine the color to use for a particular x, y region.
ColorFunction is an option for Plot3D, ListPlot3D, DensityPlot, ContourPlot, Raster and related functions.

With the default setting ColorFunctionScaling -> True, the arguments provided for the function specified by
ColorFunction are always scaled to be in the range 0 to 1. With ColorFunctionScaling -> False original
unscaled values are used. The function specified by ColorFunction must return a CMYKColor, GrayLevel, Hue or
RGBColor directive. ColorFunction -> Automatic yields a range of gray levels. ColorFunction -> Hue yields a
range of colors. In three-dimensional graphics, ColorFunction is used only with the option setting
Lighting -> False. See page 517. See also: ColorFunctionScaling, Lighting, ColorOutput. New in
Version 2; modified in Version 4.0.

ColorFunctionScaling
ColorFunctionScaling is an option for various graphics functions which specifies whether
the values provided to a color function should be scaled to lie between 0 and 1.
The default setting for ColorFunctionScaling is True. With ColorFunctionScaling -> False original unscaled
values are fed to the color function. See page 517. See also: ColorFunction. New in Version 4.

ColorOutput
ColorOutput is an option for graphics functions which specifies the type of color output to
produce.
Possible settings are:

Automatic use whatever color directives are given
None convert to monochrome
CMYKColor convert to CMYKColor

GrayLevel convert to GrayLevel

RGBColor convert to RGBColor

f convert using the function f

Mathematica performs color conversions using approximations to typical primary display and printing colors. See
page 564. New in Version 2; modified in Version 3.



A.10 Major Built-in Mathematica Objects ColumnAlignments — ColumnLines 1107

ColumnAlignments
ColumnAlignments is an option for GridBox which specifies how entries in each column
should be aligned.
The following settings can be given:

Center centered (default)
Left left justified (aligned on left edge)
Right right justified (aligned on right edge)
"." aligned at decimal points
"c" aligned at the first occurrence of the character c
{pos�, pos�, . . . } separate settings for each column in the grid

Lists of settings are used cyclically if there are more columns in the grid than elements in the list. With the
setting ColumnAlignments->"c" a column will be right justified if the character c appears nowhere in it. You can
insert invisible \[AlignmentMarker] characters in the entries in a grid to specify how these entries should be
aligned. See page 449. See also: RowAlignments, ColumnsEqual, TableAlignments, TextAlignment. New in
Version 3.

ColumnForm
ColumnForm[{e�, e�, . . . }] prints as a column with e� above e�, etc.
ColumnForm[list, horiz] specifies the horizontal alignment of each element.
ColumnForm[list, horiz, vert] also specifies the vertical alignment of the whole column.
Possible horizontal alignments are:

Center centered
Left left justified (default case)
Right right justified

Possible vertical alignments are:

Above the bottom element of the column is aligned with the baseline
Below the top element is aligned with the baseline (default case)
Center the column is centered on the baseline

The first argument of ColumnForm can have any head, not necessarily List. ColumnForm acts as a “wrapper”,
which affects printing, but not evaluation. See pages 416 and 437. See also: TableForm, MatrixForm,
SequenceForm, GridBox. New in Version 1.

ColumnLines
ColumnLines is an option for GridBox which specifies whether lines should be drawn between
adjacent columns.
The default setting is ColumnLines->False. ColumnLines->{v��, v�, . . . } specifies whether lines should be
drawn between successive pairs of columns. The vij can be True or False. If there are more columns than entries
in the list, the last element is used repeatedly for remaining pairs of columns. Lines can be drawn around the
outside of a GridBox using FrameBox. See page 446. See also: RowLines, FrameBox, GridLines. New in
Version 3.



1108 ColumnsEqual — Compile Mathematica Reference Guide

ColumnsEqual
ColumnsEqual is an option for GridBox which specifies whether all columns in the grid should
be assigned equal width.
The default setting ColumnsEqual->False determines the width of each column from the widest entry in that
column. ColumnsEqual->True makes all columns the same width, with the width determined by the widest entry
in the whole GridBox. See page 449. See also: ColumnWidths, ColumnAlignments, ColumnSpacings, RowsEqual,
MatrixForm. New in Version 3.

ColumnSpacings
ColumnSpacings is an option for GridBox which specifies the spaces in ems that should be
inserted between adjacent columns.
The default setting is ColumnSpacings->0.8. ColumnSpacings effectively specifies the minimum distance between
entries in adjacent columns; individual entries will often not fill their columns and will therefore be further apart.

ColumnSpacings->n uses a column spacing equal to n times the current font size—usually about n times the
width of an M in the current font. ColumnSpacings->{s��, s�, . . . } can be used to specify different spacings
between different columns. If there are more columns than entries in this list, then the last element of the list is
used repeatedly for the remaining columns. See page 449. See also: ColumnAlignments, ColumnWidths,
ColumnsEqual, RowSpacings, TableSpacing. New in Version 3.

ColumnWidths
ColumnWidths is an option for GridBox which specifies the widths of columns in ems.
The default setting is ColumnWidths->Automatic, specifying that all columns should be made wide enough to fit
their contents without breaking onto multiple lines. ColumnWidths->n uses column widths equal to n times the
current font size—usually about n times the width of an M in the current font. ColumnWidths->{w�, w�, . . . }
can be used to specify different widths for different columns. If there are more columns than entries in this list, then
the last element of the list is used repeatedly for the remaining columns. An explicit setting for ColumnWidths
overrides ColumnsEqual->True. See page 449. See also: ColumnsEqual, ColumnSpacings. New in Version 3.

Compile
Compile[{x�, x�, . . . }, expr] creates a compiled function which evaluates expr assuming
numerical values of the xi.
Compile[{{x�, t�}, . . . }, expr] assumes that xi is of a type which matches ti.
Compile[{{x�, t�, n�}, . . . }, expr] assumes that xi is a rank ni array of objects each of a type
which matches ti.
Compile[vars, expr, {{p�, pt�}, . . . }] assumes that subexpressions in expr which match pi are
of types which match pti.
The types handled by Compile are:

_Integer machine-size integer
_Real machine-precision approximate real number (default)
_Complex machine-precision approximate complex number
True | False logical variable

(continued)



A.10 Major Built-in Mathematica Objects Compile (continued) — Complex 1109

Compile (continued)

Nested lists given as input to a compiled function must be full arrays of numbers. Compile handles numerical
functions, matrix operations, procedural programming constructs, list manipulation functions, functional
programming constructs, etc. Compile generates a CompiledFunction object. Compiled code does not handle
numerical precision and local variables in the same way as ordinary Mathematica code. If a compiled function
cannot be evaluated with particular arguments using compiled code, ordinary Mathematica code is used instead.

Ordinary Mathematica code can be called from within compiled code. Results obtained from the Mathematica code
are assumed to be approximate real numbers, unless specified otherwise by the third argument of Compile. The
number of times and the order in which objects are evaluated by Compile may be different from ordinary
Mathematica code. Compile has attribute HoldAll, and does not by default do any evaluation before compilation.

You can use Compile[ . . . , Evaluate[expr]] to specify that expr should be evaluated symbolically before
compilation. See page 372. See also: Dispatch, Function, InterpolatingFunction, CForm. New in Version 2;
modified in Version 3.

Compiled
Compiled is an option for various numerical and plotting functions which specifies whether
the expressions they work with should automatically be compiled.
Compiled -> True automatically creates compiled functions. You should set Compiled -> False if you need to
use high-precision numbers. See page 373. New in Version 2.

CompiledFunction
CompiledFunction[args, argregs, nregs, instr, func] represents compiled code for evaluating
a compiled function.
args is a list giving a pattern for the type of each argument to the function. The types are specified as in Compile.

argregs is a list of the registers into which actual argument values should be placed to evaluate the compiled
code. nregs is a list of the numbers of logical, integer, real, complex and tensor registers required in evaluating
the compiled code. instr is a list of actual compiled code instructions. func is a Mathematica pure function to be
used if no result can be obtained from the compiled code for any reason. Compile generates a CompiledFunction
object which can be executed by applying it to appropriate arguments. CompiledFunction objects that are
constructed explicitly can also be executed. Basic consistency checks are done when such objects are first evaluated
by Mathematica. The code in a CompiledFunction object is based on an idealized register machine. See
page 376. See also: InterpolatingFunction. New in Version 2; modified in Version 4.0.

Complement
Complement[eall, e�, e�, . . . ] gives the elements in eall which are not in any of the ei.
The list returned by Complement is sorted into standard order. Example:
Complement[{a,b,c,d,e}, {a,c}, {d}] ��# �b, e� . Complement[eall, e�, . . . , SameTest->test] applies test to
each pair of elements in eall and the ei to determine whether they should be considered the same. See page 127.

See also: Intersection, Union. New in Version 1; modified in Version 3.

Complex
Complex is the head used for complex numbers.
You can enter a complex number in the form x + I y. _Complex can be used to stand for a complex number in a
pattern. You have to use Re and Im to extract parts of Complex numbers. See page 722. See also: Complexes,
Real, Re, Im. New in Version 1.



1110 Complexes — ComposeSeries Mathematica Reference Guide

Complexes
Complexes represents the domain of complex numbers, as in x � Complexes.
x � Complexes evaluates immediately only if x is a numeric quantity. Simplify[expr � Complexes] can be used
to try to determine whether an expression corresponds to a complex number. The domain of real numbers is
taken to be a subset of the domain of complex numbers. Complexes is output in TraditionalForm as �. See
pages 817 and 839. See also: Element, Simplify, NumberQ, NumericQ, Complex, Reals. Related package:
Algebra`Quaternions`. New in Version 4.

ComplexExpand
ComplexExpand[expr] expands expr assuming that all variables are real.
ComplexExpand[expr, {x�, x�, . . . }] expands expr assuming that variables matching any of
the xi are complex.
Example: ComplexExpand[Sin[x + I y]] ��# Coshy� Sinx� � � Cosx� Sinhy� . The variables given in the
second argument of ComplexExpand can be patterns. Example:
ComplexExpand[Sin[x], x] ��# CoshImx�� SinRex�� � � CosRex�� SinhImx�� . The option
TargetFunctions can be given as a list of functions from the set {Re, Im, Abs, Arg, Conjugate, Sign}.
ComplexExpand will try to give results in terms of functions specified.

ComplexExpand[expr, vars, TargetFunctions -> {Abs, Arg}] converts to polar coordinates. See page 812.
See also: GaussianIntegers, TrigToExp, ExpToTrig, TrigExpand, FunctionExpand. New in Version 2.

ComplexInfinity
ComplexInfinity represents a quantity with infinite magnitude, but undetermined complex
phase.
ComplexInfinity is converted to DirectedInfinity[ ]. In OutputForm, DirectedInfinity[ ] is printed as
ComplexInfinity. See page 743. See also: Infinity, Indeterminate. New in Version 1.

ComplexityFunction
ComplexityFunction is an option for Simplify and FullSimplify which gives a function to
rank the complexity of different forms of an expression.
With the default setting ComplexityFunction->Automatic, forms are ranked primarily according to their
LeafCount, with corrections to treat integers with more digits as more complex.

Simplify[expr, ComplexityFunction->f] applies f to each intermediate expression generated by Simplify,
treating the one which yields the smallest numerical value as simplest. See page 815. See also: Length,
StringLength, TimeConstraint, ExcludedForms, TransformationFunctions. New in Version 3.

ComposeList
ComposeList[{f�, f�, . . . }, x] generates a list of the form {x, f�[x], f�[f�[x]], . . . }.
Example: ComposeList[{a, b, c}, x] ��# �x, ax�, bax��, cbax���� . See page 250. See also:
NestList, FoldList, NestWhileList. New in Version 2.

ComposeSeries
ComposeSeries[series�, series�, . . . ] composes several power series.
ComposeSeries[series�, series�, . . . ] effectively replaces the variable in series� by series� and so on. Two series can
only meaningfully be composed when the point about which the first series is expanded corresponds to the limiting
value of the second series at its expansion point. See page 887. See also: InverseSeries. New in Version 3.



A.10 Major Built-in Mathematica Objects Composition — Context 1111

Composition
Composition[f�, f�, f, . . . ] represents a composition of the functions f�, f�, f, . . . .
Composition allows you to build up compositions of functions which can later be applied to specific arguments.

Example: Composition[a, b, c][x] ��# abcx��� . Composition objects containing Identity or
InverseFunction[f] are automatically simplified when possible. Composition has the attributes Flat and
OneIdentity. a @ b @ c gives a[b[c]]. a // b // c gives c[b[a]]. See page 253. See also: Nest, Function.

New in Version 2.

CompoundExpression
expr�; expr�; . . . evaluates the expri in turn, giving the last one as the result.
CompoundExpression evaluates its arguments in a sequence corresponding to the control flow. The returned value
can be the result of Return[expr]. The evaluation of the expri can be affected by Return, Throw and Goto.

expr�; expr�; returns value Null. If it is given as input, the resulting output will not be printed. Out[n] will
nevertheless be assigned to be the value of expr�. See pages 43 and 1029. See also: Block. New in Version 1.

Condition
patt /; test is a pattern which matches only if the evaluation of test yields True.
lhs :> rhs /; test represents a rule which applies only if the evaluation of test yields True.
lhs := rhs /; test is a definition to be used only if test yields True.
Example: The pattern x_ /; x > 0 represents an expression which must be positive. All pattern variables used in
test must also appear in patt. Example: f[x_] := fp[x] /; x > 1 defines a function in the case when x c �.

lhs := Module[{vars}, rhs /; test] allows local variables to be shared between test and rhs. You can use the same
construction with Block and With. See pages 265 and 345. See also: If, Switch, Which, PatternTest, Element.

New in Version 1.

Conjugate
Conjugate[z] gives the complex conjugate z� of the complex number z.
Mathematical function (see Section A.3.10). See page 746. See also: ComplexExpand. New in Version 1.

Constant
Constant is an attribute which indicates zero derivative of a symbol with respect to all
parameters.
Constant is used by Dt. Functions f[ . . . ] are taken to have zero total derivative if f has attribute Constant.

Mathematical constants such as Pi have attribute Constant. See pages 329 and 854. New in Version 1.

Constants
Constants is an option for Dt which gives a list of objects to be taken as constants.
If f appears in the list of Constants, then both Dt[f] and Dt[f[ . . . ]] are taken to be zero. See page 854. See
also: D. New in Version 1.

Context
Context[ ] gives the current context.
Context[symbol] gives the context in which a symbol appears.
The current context is the value of $Context. See page 394. See also: Begin, $ContextPath, Remove. New in
Version 1.



1112 Contexts — ContourGraphics Mathematica Reference Guide

Contexts
Contexts[ ] gives a list of all contexts.
Contexts["string"] gives a list of the contexts which match the string.
The string can contain metacharacters such as * and @, as described on page 1044. See pages 394 and 403. See
also: $Packages, $ContextPath. New in Version 2.

Continue
Continue[ ] exits to the nearest enclosing Do, For or While in a procedural program.
Continue[ ] takes effect as soon as it is evaluated, even if it appears inside other functions. The function of
Continue can also be achieved using Throw and Catch. See page 353. See also: Break, Goto. New in Version 1;
modified in Version 3.

ContinuedFraction
ContinuedFraction[x, n] generates a list of the first n terms in the continued fraction
representation of x.
ContinuedFraction[x] generates a list of all terms that can be obtained given the precision
of x.
The continued fraction representation {a�, a�, a, . . . } corresponds to the expression a� � ���a� � ���a � 			��. x can
be either an exact or an inexact number. Example: ContinuedFraction[Pi, 4] ��# �3, 7, 15, 1� . For exact
numbers, ContinuedFraction[x] can be used if x is rational, or is a quadratic irrational. For quadratic irrationals,
ContinuedFraction[x] returns a result of the form {a�, a�, . . . , {b�, b�, . . . }}, corresponding to an infinite
sequence of terms, starting with the ai, and followed by cyclic repetitions of the bi. Since the continued fraction
representation for a rational number has only a limited number of terms, ContinuedFraction[x, n] may yield a
list with less than n elements in this case. For terminating continued fractions, {. . . , k} is always equivalent to
{. . . , k-1, 1}; ContinuedFraction returns the first of these forms. FromContinuedFraction[list] reconstructs a
number from the result of ContinuedFraction. See page 754. Implementation notes: see page 1067. See also:
FromContinuedFraction, IntegerDigits, Rationalize, Khinchin, RealDigits. New in Version 4.

ContourGraphics
ContourGraphics[array] is a representation of a contour plot.
array must be a rectangular array of real numbers, representing z values. The following options can be given:

AspectRatio 1 ratio of height to width
Axes False whether to draw axes
AxesLabel None axes labels
AxesOrigin Automatic where axes should cross
AxesStyle Automatic graphics directives to specify the style for axes
Background Automatic background color for the plot
ColorFunction Automatic function specifying the color of regions between contour lines
ColorFunctionScaling True whether to scale z values before applying a color function
ColorOutput Automatic type of color output to produce
ContourLines True whether to draw explicit contour lines
Contours 10 what contours to use
ContourShading True whether to shade the regions between contours
ContourStyle Automatic the style for contour lines
DefaultColor Automatic the default color for plot elements
DisplayFunction $DisplayFunction function for generating output
Epilog {} graphics primitives to be rendered after the main plot

(continued)



A.10 Major Built-in Mathematica Objects ContourGraphics (continued) — Contours 1113

ContourGraphics (continued)

FormatType $FormatType the default format type for text
Frame True whether to put a frame around the plot
FrameLabel None frame labels
FrameStyle Automatic graphics directives giving the style for the frame
FrameTicks Automatic frame tick marks
ImageSize Automatic the absolute size at which to render the graphic in a notebook
MeshRange Automatic ranges of x and y coordinates
PlotLabel None a label for the plot
PlotRange Automatic range of z values to include
PlotRegion Automatic the final display region to be filled
Prolog {} graphics primitives to be rendered before the main plot
RotateLabel True whether to rotate y labels on the frame
TextStyle $TextStyle the default style for text
Ticks Automatic tick marks

ContourGraphics[g] converts DensityGraphics and SurfaceGraphics objects to ContourGraphics. The resulting
graphics can be rendered using Show. Graphics[ContourGraphics[ . . . ]] generates a representation in terms of
an ordinary Graphics object. ContourGraphics is generated by ContourPlot and ListContourPlot. See
page 517. See also: ListContourPlot, DensityGraphics. New in Version 1.

ContourLines
ContourLines is an option for contour plots which specifies whether to draw explicit contour
lines.
ContourLines -> True draws contour lines. ContourLines -> False does not. See page 519. See also:
ContourStyle, Contours. New in Version 2.

ContourPlot
ContourPlot[f, {x, xmin, xmax}, {y, ymin, ymax}] generates a contour plot of f as a
function of x and y.
ContourPlot evaluates its arguments in a non-standard way (see page 1046). You should use Evaluate to evaluate
the function to be plotted if this can safely be done before specific numerical values are supplied. ContourPlot
has the same options as ContourGraphics, with the following additions:

Compiled True whether to compile the function to plot
PlotPoints 25 the number of points in each direction at which to sample the function

ContourPlot has the default option setting Frame -> True. ContourPlot returns a ContourGraphics object,
with the MeshRange option set. See page 146. See also: DensityPlot. Related packages:
Graphics`ContourPlot3D`, Graphics`ImplicitPlot`, Graphics`PlotField`, Graphics`ComplexMap`. New in
Version 1.

Contours
Contours is an option for ContourGraphics specifying the contours to use.
Contours -> n chooses n equally spaced contours between the minimum and maximum z values.

Contours -> {z�, z�, . . . } specifies the explicit z values of contours to use. See pages 147 and 519. New in
Version 2.



1114 ContourShading — CopyFile Mathematica Reference Guide

ContourShading
ContourShading is an option for contour plots which specifies whether the regions between
contour lines should be shaded.
With ContourShading -> False, regions between contour lines are left blank. With ContourShading -> True,
regions are colored based on the setting for the option ColorFunction. The default is to color the regions with
gray levels running from black to white with increasing height. The value given as the argument for the
ColorFunction function is the average of the values of the contour lines bounding a particular region. If
ColorFunctionScaling -> True, it is scaled so as to lie between 0 and 1. See page 519. New in Version 2.

ContourStyle
ContourStyle is an option for contour plots that specifies the style in which contour lines
should be drawn.
ContourStyle -> style specifies that all contour lines are to be generated with the specified graphics directive, or
list of graphics directives. ContourStyle -> {{style�}, {style�}, . . . } specifies that successive contour lines should
use graphics directives style�, . . . . The styles must be enclosed in lists, perhaps of length one. The stylei are used
cyclically. Styles can be specified using graphics directives such as Dashing, Hue and Thickness. See page 519.

See also: PlotStyle. New in Version 2.

ConversionRules
ConversionRules is an option for Cell which can be set to a list of rules specifying how the
contents of the cell are to be converted to external formats.
Typical elements in the list have the form "TeX" -> data. Settings for ConversionRules do not affect the display
of cells in the standard Mathematica notebook front end. ConversionRules can be used to save the original form
of a cell that has been converted from an external format. See page 607. See also: CellTags. New in Version 3.

Copyable
Copyable is an option for Cell which specifies whether a cell can be copied interactively using
the front end.
Even with the setting Copyable->False, the expression corresponding to a cell can still be read into the kernel
using NotebookRead. With Copyable->False set at the notebook level, no cells in the notebook can be copied
interactively in the front end. See page 607. See also: Selectable, ReadProtected. New in Version 3.

CopyDirectory
CopyDirectory["dir�", "dir�"] copies the directory dir� to dir�.
dir� must already exist; dir� must not. CopyDirectory copies all the files in dir� to dir�. CopyDirectory sets the
modification dates for dir� and for all the files in it to be the same as those for dir�. CopyDirectory returns the
full name of the directory it copies to, and $Failed if it cannot complete the copy. See page 641. See also:
RenameDirectory, CreateDirectory, DeleteDirectory. New in Version 2.

CopyFile
CopyFile["file�", "file�"] copies file� to file�.
file� must already exist; file� must not. CopyFile sets the modification date for file� to be the same as for file�.

CopyFile returns the full name of the file it copies to, and $Failed if it cannot do the copy. See page 641.
See also: RenameFile, DeleteFile, CopyDirectory. New in Version 2.



A.10 Major Built-in Mathematica Objects Cos — Count 1115

Cos
Cos[z] gives the cosine of z.
Mathematical function (see Section A.3.10). The argument of Cos is assumed to be in radians. (Multiply by
Degree to convert from degrees.) Cos is automatically evaluated when its argument is a simple rational multiple
of Π; for more complicated rational multiples, FunctionExpand can sometimes be used. See page 761. See also:
ArcCos, Sec, TrigToExp, TrigExpand. New in Version 1.

Cosh
Cosh[z] gives the hyperbolic cosine of z.

Mathematical function (see Section A.3.10). cosh�z� � �� �e
z � e�z�. See page 761. See also: ArcCosh, Sech,

TrigToExp, TrigExpand. New in Version 1.

CoshIntegral
CoshIntegral[z] gives the hyperbolic cosine integral Chi�z�.

Mathematical function (see Section A.3.10). Chi�z� � Γ � log�z� � � z
�
�cosh�t� � ���t dt, where Γ is Euler’s constant.

CoshIntegral[z] has a branch cut discontinuity in the complex z plane running from �� to �. See page 774.
See also: SinhIntegral. New in Version 3.

CosIntegral
CosIntegral[z] gives the cosine integral function Ci�z�.

Mathematical function (see Section A.3.10). Ci�z� � � � �z cos�t��t dt. CosIntegral[z] has a branch cut
discontinuity in the complex z plane running from �� to �. See page 774. See also: SinIntegral,
ExpIntegralE, ExpIntegralEi, FresnelC. New in Version 2.

Cot
Cot[z] gives the cotangent of z.
Mathematical function (see Section A.3.10). The argument of Cot is assumed to be in radians. (Multiply by
Degree to convert from degrees.) cot�z� � ��tan�z�. Cos[z]/Sin[z] is automatically converted to Cot[z].
TrigFactorList[expr] does decomposition. See page 761. See also: ArcCot, TrigToExp, TrigExpand. New in
Version 1.

Coth
Coth[z] gives the hyperbolic cotangent of z.
Mathematical function (see Section A.3.10). Cosh[z]/Sinh[z] is automatically converted to Coth[z].
TrigFactorList[expr] does decomposition. See page 761. See also: ArcCoth, TrigToExp, TrigExpand. New in
Version 1.

Count
Count[list, pattern] gives the number of elements in list that match pattern.
Count[expr, pattern, levelspec] gives the total number of subexpressions matching pattern that
appear at the levels in expr specified by levelspec.
Level specifications are described on page 1041. See page 261. See also: FreeQ, MemberQ, Cases, Select,
Position. Related package: Statistics`DataManipulation`. New in Version 1.



1116 CreateDirectory — Cyclotomic Mathematica Reference Guide

CreateDirectory
CreateDirectory["dir"] creates a directory.
CreateDirectory creates a subdirectory of your current working directory. The directory created by
CreateDirectory is initially empty. CreateDirectory returns the full name of the directory it creates, and
$Failed if it cannot create the directory. CreateDirectory has attribute Listable. See page 641. See also:
DeleteDirectory, RenameDirectory, CopyDirectory. New in Version 2.

Cross
Cross[a, b] gives the vector cross product of a and b.
If a and b are lists of length 3, corresponding to vectors in three dimensions, then Cross[a, b] is also a list of
length 3. Cross[a, b] can be entered in StandardForm and InputForm as a � b, a Hcross H b or a \[Cross] b.
Note the difference between \[Cross] and \[Times]. Cross is antisymmetric, so that Cross[b, a] is
-Cross[a, b]. In general, Cross[v�, v�, . . . , vn��] is a totally antisymmetric product which takes vectors of
length n and yields a vector of length n that is orthogonal to all of the vi. Cross[v�, v�, . . . ] gives the dual
(Hodge star) of the wedge product of the vi, viewed as one-forms in n dimensions. See page 119. See also: Dot,
Signature, Outer. New in Version 3.

Csc
Csc[z] gives the cosecant of z.
Mathematical function (see Section A.3.10). The argument of Csc is assumed to be in radians. (Multiply by Degree
to convert from degrees.) csc�z� � ��sin�z�. 1/Sin[z] is automatically converted to Csc[z]. TrigFactorList[expr]
does decomposition. See page 761. See also: ArcCsc, TrigToExp, TrigExpand. New in Version 1.

Csch
Csch[z] gives the hyperbolic cosecant of z.
Mathematical function (see Section A.3.10). csch�z� � ��sinh�z�. 1/Sinh[z] is automatically converted to Csch[z].
TrigFactorList[expr] does decomposition. See page 761. See also: ArcCsch, TrigToExp, TrigExpand. New in
Version 1.

Cuboid
Cuboid[{xmin, ymin, zmin}] is a three-dimensional graphics primitive that represents a unit
cuboid, oriented parallel to the axes.
Cuboid[{xmin, ymin, zmin}, {xmax, ymax, zmax}] specifies a cuboid by giving the
coordinates of opposite corners.
Each face of the cuboid (rectangular parallelepiped) is effectively a Polygon object. You can specify how the faces
and edges of the cuboid should be rendered using the same graphics directives as for polygons. The coordinates
of the corners of the cuboid can be given using Scaled. See page 520. See also: Polygon, Rectangle. Related
package: Graphics`Polyhedra`. New in Version 2.

Cyclotomic
Cyclotomic[n, x] gives the cyclotomic polynomial of order n in x.

The cyclotomic polynomial Cn�x� of order n is defined to be �k�x � e�Πik�n�, where the product runs over integers k
less than n that are relatively prime to n. See page 807. See also: Factor, Roots. New in Version 1.



A.10 Major Built-in Mathematica Objects CylindricalDecomposition — Date 1117

, CylindricalDecomposition
CylindricalDecomposition[ineqs, {x�, x�, . . . }] finds a decomposition of the region
represented by the inequalities ineqs into cylindrical parts whose directions correspond to the
successive xi.

Example: CylindricalDecomposition[x^2 + y^2 < 1, {x, y}] ��# �1 ? x ? 1 && ������������
1 � x2 ? y ?�����������

1 � x2 .
CylindricalDecomposition assumes that all variables are real. Lists or logical combinations of inequalities can

be given. CylindricalDecomposition returns inequalities whose bounds in general involve algebraic functions.
See page 847. Implementation notes: see page 1070. See also: Reduce, Resolve, FindInstance, FullSimplify,

GroebnerBasis. New in Version 5.0.

D
D[f, x] gives the partial derivative "f�"x.
D[f, {x, n}] gives the multiple derivative "nf�"xn.
D[f, x�, x�, . . . ] gives "�"x� "�"x� 			 f .
D[f, x] can be input as 8x f . The character 8 is entered as ,pd , or \[PartialD]. The variable x is entered as a
subscript. All quantities that do not explicitly depend on the xi are taken to have zero partial derivative.

D[f, x�, . . . , NonConstants -> {v�, . . . }] specifies that the vi implicitly depend on the xi, so that they do not
have zero partial derivative. The derivatives of built-in mathematical functions are evaluated when possible in
terms of other built-in mathematical functions. Numerical approximations to derivatives can be found using N. D
uses the chain rule to simplify derivatives of unknown functions. D[f, x, y] can be input as 8x,y f . The character
\[InvisibleComma], entered as ,, ,, can be used instead of an ordinary comma. It does not display, but is still
interpreted just like a comma. See page 853. Implementation notes: see page 1070. See also: Dt, Derivative,
Maximize. Related packages: Calculus`VectorAnalysis`, NumericalMath`NLimit`. New in Version 1; modified in
Version 3.

Dashing
Dashing[{r�, r�, . . . }] is a two-dimensional graphics directive which specifies that lines
which follow are to be drawn dashed, with successive segments of lengths r�, r�, . . . (repeated
cyclically). The ri is given as a fraction of the total width of the graph.
Dashing can be used in both two- and three-dimensional graphics. Dashing[{ }] specifies that lines should be
solid. See page 501. See also: AbsoluteDashing, Thickness, GrayLevel, Hue, RGBColor, PlotStyle. New in
Version 1.

Date
Date[ ] gives the current local date and time in the form
{year, month, day, hour, minute, second}.
Date[ ] uses whatever date and time have been set on your computer system. It performs no corrections for time
zones, daylight saving time, etc. Date[z] gives the date in time zone z. This is inferred by knowing your local
date and time, and local time zone. The time zone is given as the number of hours to be added to Greenwich
mean time to obtain local time. All values returned by Date[ ] are integers, except the number of seconds. The
number of seconds is never more accurate than $TimeUnit. You can compare two lists returned by Date using
Order. See page 709. See also: AbsoluteTime, TimeZone, SessionTime, TimeUsed, ToDate, FromDate, FileDate,
$CreationDate. Related package: Miscellaneous`Calendar`. New in Version 2.



1118 DeclarePackage — DefaultColor Mathematica Reference Guide

DeclarePackage
DeclarePackage["context`", {"name�", "name�", . . . }] declares that Needs["context`"]
should automatically be executed if a symbol with any of the specified names is ever used.
You can use DeclarePackage to tell Mathematica automatically to load a particular package when any of the
symbols defined in it are used. DeclarePackage creates symbols with the attribute Stub in the specified context.

DeclarePackage prepends context` to $ContextPath. See page 401. See also: Needs, $NewSymbol. New in
Version 2.

Decompose
Decompose[poly, x] decomposes a polynomial, if possible, into a composition of simpler
polynomials.
Decompose gives a list of the polynomials Pi which can be composed as P��P��			�x�			�� to give the original
polynomial. The set of polynomials Pi is not necessarily unique. Decomposition is an operation which is
independent of polynomial factorization. See page 807. See also: FactorList, Solve. New in Version 1.

Decrement
x-- decreases the value of x by 1, returning the old value of x.
Decrement has attribute HoldFirst. See page 305. See also: PreDecrement, SubtractFrom, Set. New in
Version 1.

DedekindEta
DedekindEta[Τ] gives the Dedekind eta modular elliptic function Η�Τ�.
Mathematical function (see Section A.3.10). DedekindEta is defined only in the upper half of the complex Τ plane.
It is not defined for real Τ. The argument Τ is the ratio of Weierstrass half-periods Ω$�Ω. DedekindEta satisfies
? � ��Π���Η�
�Τ� where ? is the discriminant, given in terms of Weierstrass invariants by g� � ��g

�
 . See page 782

for a discussion of argument conventions for elliptic functions. See page 787. See also: ModularLambda,
KleinInvariantJ, EllipticTheta, PartitionsP. New in Version 3.

Default
Default[f], if defined, gives the default value for arguments of the function f obtained with a
_. pattern object.

Default[f, i] gives the default value to use when _. appears as the ith argument of f.

Default[f, i, n] gives the default value for the ith argument out of a total of n arguments.
_. represents an optional argument to a function, with a default value specified by Default. The necessary
values for Default[f] must always be defined before _. is used as an argument of f. Values defined for
Default[f] are stored in DefaultValues[f]. See page 1050. See also: Options. Related package:
Utilities`FilterOptions`. New in Version 1.

DefaultColor
DefaultColor is an option for graphics functions which specifies the default color to use for
lines, points, etc.
The setting for DefaultColor must be a CMYKColor, GrayLevel, Hue or RGBColor directive. The default setting is
DefaultColor->Automatic, which gives a default color complementary to the background specified. See
page 504. See also: Prolog, Background, FontColor, TextStyle. New in Version 2.



A.10 Major Built-in Mathematica Objects DefaultDuplicateCellStyle — Delete 1119

DefaultDuplicateCellStyle
DefaultDuplicateCellStyle is an option for Notebook which specifies the default style to
use for cells created by automatic duplication of other cells in the notebook.
A typical default setting for DefaultDuplicateCellStyle is "Input". DefaultDuplicateCellStyle determines
the style for new cells created from cells with CellEditDuplicate->True or CellEvaluationDuplicate->True.

See page 619. See also: DefaultNewCellStyle. New in Version 3.

DefaultNewCellStyle
DefaultNewCellStyle is an option for Notebook which specifies the default style to use for
new cells created in the notebook.
A typical default setting for DefaultNewCellStyle is "Input". DefaultNewCellStyle determines the style for
new cells created interactively in the front end. See page 619. See also: DefaultDuplicateCellStyle. New in
Version 3.

Definition
Definition[symbol] prints as the definitions given for a symbol.
Definition has attribute HoldAll. Definition[symbol] prints as all values and attributes defined for symbol. ?s
uses Definition. See page 625. See also: FullDefinition, Information. New in Version 1.

Degree
Degree gives the number of radians in one degree. It has a numerical value of Π��� .
You can multiply by Degree to convert from degrees to radians. Example: 30 Degree represents �� . Degree
can be entered in StandardForm and InputForm as �, ,deg , or \[Degree]. Degree is printed in StandardForm
as �. See page 765. New in Version 1; modified in Version 3.

Deletable
Deletable is an option for Cell which specifies whether the cell can be deleted interactively
using the front end.
With the setting Deletable->False at the notebook level, you can prevent any cells in any notebook from being
deleted. See pages 448 and 607. See also: Editable, Selectable. New in Version 3.

Delete
Delete[expr, n] deletes the element at position n in expr. If n is negative, the position is
counted from the end.
Delete[expr, {i, j, . . . }] deletes the part at position {i, j, . . . }.
Delete[expr, {{i�, j�, . . . }, {i�, j�, . . . }, . . . }] deletes parts at several positions.
Example: Delete[{a, b, c, d}, 3] ��# �a, b, d� . Delete[{a, b, c, d}, {{1}, {3}}] ��# �b, d� .

Deleting the head of a particular element in an expression is equivalent to applying FlattenAt to the expression
at that point. Example: Delete[{a, {b}, c}, {2, 0}] ��# �a, b, c� . Deleting the head of a whole expression
makes the head be Sequence. Example: Delete[{a, b}, 0] ��# Sequencea, b� . , Delete works on
SparseArray objects. See pages 125 and 288. See also: Insert, MapAt, ReplacePart, FlattenAt, DeleteCases,
Drop, StringDrop. New in Version 2.



1120 DeleteCases — Denominator Mathematica Reference Guide

- DeleteCases
DeleteCases[expr, pattern] removes all elements of expr which match pattern.
DeleteCases[expr, pattern, levspec] removes all parts of expr on levels specified by levspec
which match pattern.
- DeleteCases[expr, pattern, levspec, n] removes the first n parts of expr which match pattern.
Example: DeleteCases[{1, a, 2, b}, _Integer] ��# �a, b� . With the option Heads -> True, you can delete
heads with DeleteCases. Deleting the head of a particular element in an expression is equivalent to applying
FlattenAt to the expression at that point. Example:
DeleteCases[{1, f[2, 3], 4}, f, {2}, Heads -> True] ��# �1, 2, 3, 4� . Level specifications are described
on page 1041. See page 262. See also: Cases, ReplaceAll, Delete. New in Version 2; modified in Version 4.1.

DeleteDirectory
DeleteDirectory["dir"] deletes the specified directory.
DeleteDirectory["dir", DeleteContents -> True] deletes dir and all files and directories that it contains.

DeleteDirectory["dir"] deletes the directory dir only if it contains no files. DeleteDirectory returns Null if
it succeeds in deleting a directory, and $Failed if it fails. See page 641. See also: CreateDirectory,
DeleteFile. New in Version 2.

DeleteFile
DeleteFile["file"] deletes a file.
DeleteFile[{"file�", "file�", . . . }] deletes a list of files.
DeleteFile returns Null if it succeeds in deleting files, and $Failed if it fails. See page 641. See also:
RenameFile, DeleteDirectory. New in Version 2.

DelimiterFlashTime
DelimiterFlashTime is an option for cells and notebooks which specifies how long in seconds
a delimiter should flash for when its matching delimiter is entered.
DelimiterFlashTime->0 makes delimiters not flash. A typical default setting is DelimiterFlashTime->0.3,
which makes matching delimiters flash for 0.3 seconds. Delimiters include parentheses, brackets and braces, as
well as [[, ]] and (* and *), and paired special characters such as /, 0. If you enter an unpaired closing
delimiter the standard Mathematica front end will beep. You can use the front end menu item Check Balance to
select ranges with balanced delimiters in an expressions. You can set DelimiterFlashTime at the level of a single
cell, a notebook, or the whole front end. See page 613. See also: ShowAutoStyles, SyntaxQ,
ShowCursorTracker. New in Version 3.

Denominator
Denominator[expr] gives the denominator of expr.
Denominator picks out terms which have superficially negative exponents. Numerator picks out all remaining
terms. An exponent is “superficially negative” if it has a negative number as a factor. The standard
representation of rational expressions as products of powers means that you cannot simply use Part to extract
denominators. Denominator can be used on rational numbers. See page 74. See also: ExpandDenominator,
Rationals. New in Version 1.



A.10 Major Built-in Mathematica Objects DensityGraphics — DensityPlot 1121

DensityGraphics
DensityGraphics[array] is a representation of a density plot.
array must be a rectangular array of real numbers, representing z values. The following options can be given:

AspectRatio 1 ratio of height to width
Axes False whether to draw axes
AxesLabel None axes labels
AxesOrigin Automatic where axes should cross
AxesStyle Automatic graphics directives to specify the style for axes
Background Automatic background color for the plot
ColorFunction Automatic function specifying the color for each cell
ColorFunctionScaling True whether to scale z values before applying a color function
ColorOutput Automatic type of color output to produce
DefaultColor Automatic the default color for plot elements
DisplayFunction $DisplayFunction function for generating output
Epilog {} graphics primitives to be rendered after the main plot
FormatType $FormatType the default format type for text
Frame True whether to put a frame around the plot
FrameLabel None frame labels
FrameStyle Automatic graphics directives giving the style for the frame
FrameTicks Automatic frame tick marks
ImageSize Automatic the absolute size at which to render the graphic in a notebook
Mesh True whether to draw a mesh
MeshRange Automatic ranges of x and y coordinates
MeshStyle Automatic graphics directives to specify the style for mesh lines
PlotLabel None a label for the plot
PlotRange Automatic range of z values to include
PlotRegion Automatic the final display region to be filled
Prolog {} graphics primitives to be rendered before the main plot
RotateLabel True whether to rotate y labels on the frame
TextStyle $TextStyle the default style for text
Ticks Automatic tick marks

DensityGraphics can be displayed using Show. DensityGraphics is generated by DensityPlot and
ListDensityPlot. DensityGraphics[g] converts ContourGraphics and SurfaceGraphics objects to
DensityGraphics. The resulting graphics can be rendered using Show. Graphics[DensityGraphics[ . . . ]]
generates a representation in terms of an ordinary Graphics object. , SparseArray objects can be used in
DensityGraphics. See page 517. See also: ListDensityPlot, ContourGraphics, Raster, RasterArray. New in
Version 1.

DensityPlot
DensityPlot[f, {x, xmin, xmax}, {y, ymin, ymax}] makes a density plot of f as a function
of x and y.
DensityPlot evaluates its arguments in a non-standard way (see page 1046). You should use Evaluate to evaluate
the function to be plotted if this can safely be done before specific numerical values are supplied. DensityPlot
has the same options as DensityGraphics, with the following additions:

Compiled True whether to compile the function to plot
PlotPoints 25 the number of points in each direction at which to sample the function

DensityPlot has the default option setting Frame -> True. DensityPlot returns a DensityGraphics object,
with the MeshRange option set. See page 146. See also: ContourPlot. New in Version 1.



1122 Depth — Dialog Mathematica Reference Guide

- Depth
Depth[expr] gives the maximum number of indices needed to specify any part of expr, plus one.
Raw objects have depth 1. The computation of Depth does not include heads of expressions. , Depth treats
SparseArray objects just like the corresponding ordinary lists. See page 239. See also: ArrayDepth, Level,
LeafCount, Length, Nest. New in Version 1; modified in Version 5.0.

Derivative
f' represents the derivative of a function f of one argument.
Derivative[n�, n�, . . . ][f] is the general form, representing a function obtained from f by
differentiating n� times with respect to the first argument, n� times with respect to the second
argument, and so on.
f' is equivalent to Derivative[1][f]. f'' evaluates to Derivative[2][f]. You can think of Derivative as a
functional operator which acts on functions to give derivative functions. Derivative is generated when you apply
D to functions whose derivatives Mathematica does not know. Mathematica attempts to convert Derivative[n][f]
and so on to pure functions. Whenever Derivative[n][f] is generated, Mathematica rewrites it as
D[f[#]&, {#, n}]. If Mathematica finds an explicit value for this derivative, it returns this value. Otherwise, it
returns the original Derivative form. Example: Cos' ��# �Sin#1� & . Derivative[-n][f] represents the nth

indefinite integral of f. Derivative[{n�, n�, . . . }][f] represents the derivative of f[{x�, x�, . . . }] taken ni
times with respect to xi. In general, arguments given in lists in f can be handled by using a corresponding list
structure in Derivative. N[f'[x]] will give a numerical approximation to a derivative. See page 856. See also:
D, Dt. New in Version 1; modified in Version 4.0.

Det
Det[m] gives the determinant of the square matrix m.
Det[m, Modulus->n] computes the determinant modulo n. See page 905. Implementation notes: see page 1069.

See also: CharacteristicPolynomial, Minors, RowReduce, MatrixRank, NullSpace, Tr, Signature. New in
Version 1.

DiagonalMatrix
DiagonalMatrix[list] gives a matrix with the elements of list on the leading diagonal, and 0
elsewhere.
See page 896. See also: IdentityMatrix, Tr, KroneckerDelta. Related package:
LinearAlgebra`MatrixManipulation` . New in Version 1.

Dialog
Dialog[ ] initiates a dialog.
Dialog[expr] initiates a dialog with expr as the current value of %.
Dialog creates a dialog which consists of a sequence of input and output lines. You can exit a dialog using
Return. With the global setting $IgnoreEOF = False, you can also exit a dialog by entering an end-of-file
character. If you exit with Return[expr], then expr is the value returned by the Dialog function. Otherwise, the
value returned is the expression on the last output line in the dialog. Dialog automatically localizes the values of
$Line, $MessageList and $Epilog. Dialog initially sets the local value of $Line to be equal to its global value.
This means that the numbering of input and output lines in the dialog follows the sequence outside the dialog.
When the dialog is exited, however, the numbering reverts to the sequence that would be followed if there had
been no dialog. Any local value assigned to $Epilog is evaluated when the dialog is exited. The main loop
within a dialog uses global variables such as $Pre and $Post. The option DialogSymbols :> {x, y, . . . } sets up
local values for variables within the dialog. DialogSymbols :> {x = x�, . . . } defines initial values for the variables.

The option DialogProlog :> expr specifies an expression to evaluate before starting the dialog. Dialog first
localizes variables, then evaluates any expression specified by DialogProlog, then evaluates any argument you have
given for Dialog. See page 707. See also: TraceDialog, Input, $Inspector, ButtonBox. New in Version 2.



A.10 Major Built-in Mathematica Objects DialogProlog — DigitQ 1123

DialogProlog
DialogProlog is an option for Dialog which can give an expression to evaluate before the
dialog starts.
You must use a delayed rule of the form DialogProlog :> expr to prevent expr from evaluating prematurely.

Expressions given by DialogProlog are evaluated after symbol values are localized, and before any expression
given as the argument of Dialog is evaluated. See page 708. See also: $Epilog. New in Version 2.

DialogSymbols
DialogSymbols is an option for Dialog which gives a list of symbols whose values should be
localized in the dialog.
DialogSymbols :> {x, y, . . . } specifies that x, y, . . . should have local values for the duration of the dialog.

DialogSymbols :> {x = x�, . . . } defines initial values for variables. In addition to any symbols you specify,
Dialog always uses local values for $Epilog, $Line and $MessageList. The DialogSymbols option sets up local
values in a dialog in the same way that a Block enclosing the dialog would. See page 708. New in Version 2.

DigitBlock
DigitBlock is an option for NumberForm and related functions which specifies the maximum
length of blocks of digits between breaks.
The default setting is DigitBlock -> Infinity, which specifies that no breaks should be inserted.

DigitBlock -> n inserts a break every n digits. DigitBlock -> {nleft, nright} inserts a break every nleft digits
to the left of the decimal point, and every nright digits to the right of the decimal point. The setting for
NumberSeparator determines what string should be used at each break. See page 436. New in Version 1.

DigitCount
DigitCount[n, b, d] gives the number of d digits in the base b representation of n.
DigitCount[n, b] gives a list of the numbers of 1, 2, � � �, b � �, 0 digits in the base b
representation of n.
DigitCount[n] gives a list of the numbers of 1, 2, � � �, 9, 0 digits in the base 10 representation
of n.
DigitCount[n] is equivalent to DigitCount[n, 10, Mod[Range[10],10]]. Integer mathematical function (see
Section A.3.10). See page 755. See also: IntegerDigits, FromDigits, BitAnd, IntegerExponent. New in
Version 4.

DigitQ
DigitQ[string] yields True if all the characters in the string are digits in the range 0
through 9, and yields False otherwise.
See page 413. See also: LetterQ, Number. New in Version 2.



1124 Dimensions — DirectoryName Mathematica Reference Guide

- Dimensions
Dimensions[expr] gives a list of the dimensions of expr.
Dimensions[expr, n] gives a list of the dimensions of expr down to level n.
expr must be a full array, with all the pieces of expr at a particular level having the same length. (The elements of
expr can then be thought of as filling up a hyper-rectangular region.) Each successive level in expr sampled by
Dimensions must have the same head. Example: Dimensions[{{a,b,c},{d,e,f}}] ��# �2, 3� . , For
SparseArray objects, Dimensions yields the dimensions of the corresponding ordinary lists. See page 900. See
also: ArrayDepth, VectorQ, MatrixQ. New in Version 1; modified in Version 5.0.

DiracDelta
DiracDelta[x] represents the Dirac delta function ∆�x�.
DiracDelta[x�, x�, . . . ] represents the multidimensional Dirac delta function ∆�x�� x�� . . .�.
DiracDelta[x] returns 0 for all numeric x other than 0. DiracDelta can be used in integrals, integral transforms
and differential equations. Some transformations are done automatically when DiracDelta appears in a product
of terms. DiracDelta[x�, x�, . . . ] returns 0 if any of the xi are numeric and not 0. DiracDelta has attribute
Orderless. For exact numeric quantities, DiracDelta internally uses numerical approximations to establish its
result. This process can be affected by the setting of the global variable $MaxExtraPrecision. See page 879. See
also: UnitStep, If, PrincipalValue, Limit, KroneckerDelta. New in Version 4.

DirectedInfinity
DirectedInfinity[ ] represents an infinite numerical quantity whose direction in the
complex plane is unknown.
DirectedInfinity[z] represents an infinite numerical quantity that is a positive real multiple
of the complex number z.
You can think of DirectedInfinity[z] as representing a point in the complex plane reached by starting at the
origin and going an infinite distance in the direction of the point z. The following conversions are made:

Infinity DirectedInfinity[1]

-Infinity DirectedInfinity[-1]

ComplexInfinity DirectedInfinity[ ]

Certain arithmetic operations are performed on DirectedInfinity quantities. In OutputForm,
DirectedInfinity[z] is printed in terms of Infinity, and DirectedInfinity[ ] is printed as ComplexInfinity.

See page 743. See also: Indeterminate. New in Version 1.

Directory
Directory[ ] gives the current working directory.
Directory returns the full name of the directory as a string. See page 636. See also: $Path, SetDirectory,
ResetDirectory, ParentDirectory, $HomeDirectory, DirectoryName, FileNames. New in Version 2.

DirectoryName
DirectoryName["name"] extracts the directory name from the specification for a file.
DirectoryName works differently on different computer systems. DirectoryName["directory"] is normally
equivalent to ParentDirectory["directory"]. DirectoryName["name", n] applies DirectoryName n times to name.

DirectoryName yields output appropriate for use in SetDirectory and ToFileName. If name contains no
directory specification, DirectoryName["name"] returns "". See page 639. See also: $Input, Directory. New
in Version 3.



A.10 Major Built-in Mathematica Objects DirectoryStack — Display 1125

DirectoryStack
DirectoryStack[ ] gives the directory stack which represents the sequence of current
directories used.
DirectoryStack[ ] returns a list of full names of directories. Each call to SetDirectory prepends one element
to the directory stack; each call to ResetDirectory drops one. See page 636. New in Version 2.

DiscreteDelta
DiscreteDelta[n�, n�, . . . ] gives the discrete delta function ∆�n�� n�� � � ��, equal to 1 if all the
ni are zero, and 0 otherwise.
DiscreteDelta[0] gives 1; DiscreteDelta[n] gives 0 for other numeric n. DiscreteDelta has attribute
Orderless. See page 882. See also: IdentityMatrix, UnitStep, If, Signature, DiracDelta. New in Version 4.

Disk
Disk[{x, y}, r] is a two-dimensional graphics primitive that represents a filled disk of radius
r centered at the point x, y.
Disk[{x, y}, {rx, ry}] yields an elliptical disk with semi-axes rx and ry.
Disk[{x, y}, r, {Θ�, Θ�}] represents a segment of a disk.
Angles are measured in radians counterclockwise from the positive x direction. Disk[{x, y}, {rx, ry}, {Θ�, Θ�}]
yields an elliptical disk segment obtained by transforming a circular disk segment with the specified starting and
ending angles. Scaled and Offset can be used in the radius specification (see notes for Circle). See page 496.

See also: Circle, Polygon. New in Version 2.

Dispatch
Dispatch[{lhs�->rhs�, lhs�->rhs�, . . . }] generates an optimized dispatch table representation
of a list of rules. The object produced by Dispatch can be used to give the rules in
expr /. rules.
The use of Dispatch will never affect results that are obtained, but may make the application of long lists of rules
much faster. Lists of rules are usually scanned sequentially when you evaluate an expression like expr /. rules.
Rules such as a[1]->a1 and a[2]->a2, which cannot simultaneously apply, need not both be scanned explicitly.
Dispatch generates a dispatch table which uses hash codes to specify which sets of rules need actually be scanned
for a particular input expression. Lists of rules produced by assignments made with = and := are automatically
optimized with dispatch tables when appropriate. See page 302. See also: ReplaceAll, Compile. New in
Version 2.

Display
Display[channel, graphics] writes graphics or sound to the specified output channel in
Mathematica PostScript format.
Display[channel, graphics, "format"] writes graphics or sound in the specified format.
Display[channel, expr, "format"] writes boxes, cells or notebook expressions in the specified
format.
The output channel can be a single file or pipe, or a list of them. The graphics in Display can be Graphics,
Graphics3D, SurfaceGraphics, ContourGraphics, DensityGraphics or GraphicsArray. The graphics can also
include Sound. The expr in Display can be Cell, Notebook or any boxes, as generated by ToBoxes[expr]. Any
of the graphics formats specified for Export can be used. The following options can be given:

CharacterEncoding {} the encoding to use for characters in text
ImageOffset {0, 0} offset of the image in the viewing area

(continued)



1126 Display (continued) — Distribute Mathematica Reference Guide

Display (continued)

ImageResolution Automatic resolution in dpi for the image
ImageRotated False whether to rotate the image to landscape mode
ImageSize Automatic absolute image size in printer’s points

$DisplayFunction is usually given in terms of Display. If any of the specified files or pipes in channel are not
open, Display uses OpenWrite to open them, then closes these particular files or pipes when it has finished. In
many cases, Display calls the Mathematica notebook front end via MathLink. If the front end is not present, certain
capabilities of Display may not be available. When displaying text, Display may make use of fonts that are
specifically installed for Mathematica. See page 554. See also: Export, Write, Show, DisplayString, HTMLSave.

New in Version 1; modified in Version 3.

DisplayForm
DisplayForm[expr] prints with boxes inside expr shown in explicit two-dimensional or other
form.
In ordinary StandardForm output, boxes such as SubscriptBox are shown literally. In DisplayForm they are shown
as explicit two-dimensional constructs. Example: DisplayForm[SubscriptBox["x", "y"]] ��# xy . DisplayForm
acts as a “wrapper”, which affects printing, but not evaluation. See page 445. See also: FullForm,
ToExpression, ToBoxes. New in Version 3.

DisplayFunction
DisplayFunction is an option for graphics and sound functions that specifies the function to
apply to graphics and sound objects in order to display them.
The default setting for DisplayFunction in graphics functions is $DisplayFunction, and in sound functions is
$SoundDisplayFunction. A typical setting is DisplayFunction->Display[channel, #]&. Setting
DisplayFunction->Identity will cause the objects to be returned, but no display to be generated. See pages 134
and 553. See also: Show. New in Version 1.

DisplayString
DisplayString[graphics] generates a string giving graphics or sound in Mathematica PostScript
format.
DisplayString[graphics, "format"] generates a string giving graphics or sound in the
specified format.
DisplayString[expr, "format"] generates a string giving boxes, cells or notebook expressions
in the specified format.
The options and format settings for DisplayString are the same as for Display. See page 554. See also:
StringToStream. New in Version 3.

Distribute
Distribute[f[x�, x�, . . . ]] distributes f over Plus appearing in any of the xi.
Distribute[expr, g] distributes over g.
Distribute[expr, g, f] performs the distribution only if the head of expr is f.
Distribute effectively implements the distributive law for operators f and g. Distribute explicitly constructs the
complete result of a distribution; Expand, on the other hand, builds up results iteratively, simplifying at each stage.

Example: Distribute[f[a+b,c+d]] ��# fa, c� � fa, d� � fb, c� � fb, d� .
Distribute[f[a+b,g[x,y],c], g] ��# gfa � b, x, c�, fa � b, y, c�� . Distribute[expr, g, f, gp, fp]

gives gp and fp in place of g and f respectively in the result of the distribution. See page 256. See also: Expand,
Thread, Outer, Inner. New in Version 1.



A.10 Major Built-in Mathematica Objects Divide — Dot 1127

Divide
x/y or Divide[x, y] is equivalent to x y^-1.
x/y is converted to x y^-1 on input. Divide[x, y] can be entered in StandardForm and InputForm as x 
 y,
x Hdiv H y or x \[Divide] y. See page 29. New in Version 1; modified in Version 3.

DivideBy
x /= c divides x by c and returns the new value of x.
DivideBy has the attribute HoldFirst. x /= c is equivalent to x = x/c. See page 305. See also: TimesBy,
SubtractFrom, Set. New in Version 1.

Divisors
Divisors[n] gives a list of the integers that divide n.
Example: Divisors[12] ��# �1, 2, 3, 4, 6, 12� . Divisors[n, GaussianIntegers -> True] includes divisors
that are Gaussian integers. See page 750. See also: FactorInteger, EulerPhi. New in Version 1.

DivisorSigma
DivisorSigma[k, n] gives the divisor function Σk�n�.
Integer mathematical function (see Section A.3.10). Σk�n� is the sum of the kth powers of the divisors of n.

DivisorSigma[k, n, GaussianIntegers -> True] includes divisors that are Gaussian integers. See page 752.
See also: EulerPhi. New in Version 1.

Do
Do[expr, {imax}] evaluates expr imax times.
Do[expr, {i, imax}] evaluates expr with the variable i successively taking on the values 1
through imax (in steps of 1).
Do[expr, {i, imin, imax}] starts with i = imin. Do[expr, {i, imin, imax, di}] uses steps di.
Do[expr, {i, imin, imax}, {j, jmin, jmax}, . . . ] evaluates expr looping over different values
of j, etc. for each i.
Do uses the standard Mathematica iteration specification. Do evaluates its arguments in a non-standard way (see
page 1046). You can use Return, Break, Continue and Throw inside Do. Unless an explicit Return is used, the
value returned by Do is Null. See page 348. See also: For, While, Table, Nest, NestWhile, Fold. New in
Version 1.

Dot
a.b.c or Dot[a, b, c] gives products of vectors, matrices and tensors.
a.b gives an explicit result when a and b are lists with appropriate dimensions. It contracts the last index in a with
the first index in b. Various applications of Dot:

{a�, a�} . {b�, b�} scalar product of vectors
{a�, a�} . {{m��, m��}, {m��, m��}} product of a vector and a matrix
{{m��, m��}, {m��, m��}} . {a�, a�} product of a matrix and a vector
{{m��, m��}, {m��, m��}} . {{n��, n��}, {n��, n��}} product of two matrices

Examples: {a, b} . {c, d} ��# a c � b d . {{a, b}, {c, d}} . {x, y} ��# �a x � b y, c x � d y� . The result
of applying Dot to two tensors Ti�i�			in and Uj�j�			jm is the tensor �k Ti�i�			in��k

Ukj�			jm
. Applying Dot to a rank n

tensor and a rank m tensor gives a rank n �m � � tensor. , Dot can be used on SparseArray objects, returning a
SparseArray object when possible. - When its arguments are not lists or sparse arrays, Dot remains unevaluated.
It has the attribute Flat. See pages 118 and 901. See also: Inner, Cross, Outer, NonCommutativeMultiply,
Norm. Related package: Calculus`VectorAnalysis`. New in Version 1.



1128 DownValues — DSolve Mathematica Reference Guide

DownValues
DownValues[f] gives a list of transformation rules corresponding to all downvalues defined for
the symbol f.
You can specify the downvalues for f by making an assignment of the form DownValues[f] = list. The list
returned by DownValues has elements of the form HoldPattern[lhs] :> rhs. See page 322. See also: Set,
UpValues. New in Version 2; modified in Version 3.

DragAndDrop
DragAndDrop is an option for Cell which specifies whether to allow drag-and-drop editing on
the contents of the cell.
With DragAndDrop->True, dragging an already-selected region cuts the region from its original location, and pastes
it at the location you move to. DragAndDrop is more often set as a global option in the front end, rather than as
an option for individual cells. See page 615. See also: StructuredSelection. New in Version 3.

Drop
Drop[list, n] gives list with its first n elements dropped.
Drop[list, -n] gives list with its last n elements dropped.

Drop[list, {n}] gives list with its nth element dropped.
Drop[list, {m, n}] gives list with elements m through n dropped.
Drop[list, {m, n, s}] gives list with elements m through n in steps of s dropped.
Drop[list, seq�, seq�, . . . ] gives a nested list in which elements specified by seqi have been
dropped at level i in list.
Drop uses the standard sequence specification (see page 1040). Examples: Drop[{a,b,c,d,e}, 2] ��# �c, d, e� .

Drop[{a,b,c,d,e}, -3] ��# �a, b� . Drop[Range[7], {2, 5, 2}] ��# �1, 3, 5, 6, 7� . Drop can be used
on an object with any head, not necessarily List. Drop[list, seq�, seq�] effectively drops all elements except
those in a submatrix of list. Example: Drop[{{a,b,c},{d,e,f}}, 1, -1] ��# ��d, e�� . , Drop works on
SparseArray objects. See pages 123 and 287. See also: Rest, Most, StringDrop, Take, Cases. Related package:
LinearAlgebra`MatrixManipulation` . New in Version 1; modified in Version 4.

- DSolve
DSolve[eqn, y, x] solves a differential equation for the function y, with independent
variable x.
DSolve[{eqn�, eqn�, . . . }, {y�, y�, . . . }, x] solves a list of differential equations.
DSolve[eqn, y, {x�, x�, . . . }] solves a partial differential equation.
DSolve[eqn, y[x], x] gives solutions for y[x] rather than for the function y itself. Example:
DSolve[y'[x] == 2 a x, y[x], x] ��# ��yx� � a x2 � C1��� . Differential equations must be stated in terms
of derivatives such as y'[x], obtained with D, not total derivatives obtained with Dt. , The list of equations given
to DSolve can include algebraic ones that do not involve derivatives. - DSolve generates constants of integration
indexed by successive integers. The option GeneratedParameters specifies the function to apply to each index. The
default is GeneratedParameters->C, which yields constants of integration C[1], C[2], . . . .
- GeneratedParameters->(Module[{C}, C]&) guarantees that the constants of integration are unique, even across
different invocations of DSolve. For partial differential equations, DSolve generates arbitrary functions C[n][. . . ].

(continued)



A.10 Major Built-in Mathematica Objects DSolve (continued) — DumpSave 1129

- DSolve (continued)

Boundary conditions can be specified by giving equations such as y'[0] == b. Solutions given by DSolve
sometimes include integrals that cannot be carried out explicitly by Integrate. Dummy variables with local names
are used in such integrals. DSolve sometimes gives implicit solutions in terms of Solve. DSolve can solve linear
ordinary differential equations of any order with constant coefficients. It can solve also many linear equations up to
second order with non-constant coefficients. DSolve includes general procedures that handle a large fraction of the
nonlinear ordinary differential equations whose solutions are given in standard reference books such as Kamke.

DSolve can find general solutions for linear and weakly nonlinear partial differential equations. Truly nonlinear
partial differential equations usually admit no general solutions. , DSolve can handle not only pure differential
equations but also differential-algebraic equations. See page 869. Implementation notes: see page 1071. See
also: NDSolve, Solve, RSolve. Related packages: Calculus`VariationalMethods`, Calculus`VectorAnalysis`.

New in Version 2; modified in Version 5.0.

Dt
Dt[f, x] gives the total derivative df�dx.
Dt[f] gives the total differential df .
Dt[f, {x, n}] gives the multiple derivative dnf�dxn.
Dt[f, x�, x�, . . . ] gives d�dx� d�dx� 			 f .
Dt[f, x�, . . . , Constants -> {c�, . . . }] specifies that the ci are constants, which have zero total derivative.

Symbols with attribute Constant are taken to be constants, with zero total derivative. If an object is specified to
be a constant, then all functions with that object as a head are also taken to be constants. All quantities not
explicitly specified as constants are assumed to depend on the xi. Example: Dt[x y] ��# y Dtx� � x Dty� .

Dt[x y, Constants -> {x}] ��# x Dty, Constants � �x�� . You can specify total derivatives by assigning
values to Dt[f], etc. See page 854. See also: D, Derivative. New in Version 1.

DumpSave
DumpSave["file.mx", symbol] writes definitions associated with a symbol to a file in internal
Mathematica format.
DumpSave["file.mx", "context`"] writes out definitions associated with all symbols in the
specified context.
DumpSave["file.mx", {object�, object�, . . . }] writes out definitions for several symbols or
contexts.
DumpSave["package`", objects] chooses the name of the output file based on the computer
system used.
DumpSave["file"] saves all definitions in the current session.
DumpSave writes out definitions in a binary format that is optimized for input by Mathematica. Each file has a
plain text header identifying its type and contents. Files written by DumpSave can be read by Get. Files written
by DumpSave can only be read on the same type of computer system on which they were written. DumpSave will
not preserve open stream and link objects. Files written by DumpSave conventionally have names that end with
.mx. DumpSave["package`", . . . ] writes a file with a name such as package.mx/$SystemID/package.mx . You can
use DumpSave["file", "s"] to write out the definition for the value of a symbol s itself. DumpSave["file"] will save
the definitions for all symbols in the current session. You can typically read a dump file when you start
Mathematica by using the initfile command-line option. See page 627. See also: Save, LinkWrite. New in
Version 3.



1130 E — Eigensystem Mathematica Reference Guide

E
E is the exponential constant e (base of natural logarithms), with numerical value � �	�����.
Mathematical constant (see Section A.3.11). E can be entered in StandardForm and InputForm as �, ,ee , or
\[ExponentialE]. In StandardForm and TraditionalForm, E is printed as �. See page 765. Implementation
notes: see page 1067. See also: Exp. New in Version 1; modified in Version 3.

EdgeForm
EdgeForm[g] is a three-dimensional graphics directive which specifies that edges of polygons
are to be drawn using the graphics directive or list of graphics directives g.
EdgeForm[ ] draws no edges of polygons. The directives RGBColor, CMYKColor, GrayLevel, Hue and Thickness
can be used in EdgeForm. EdgeForm does not affect the rendering of Line objects. No lines are ever drawn
when an edge is formed by one polygon intersecting another. See page 528. See also: FaceForm, Line. New in
Version 1.

Editable
Editable is an option for boxes, cells and notebooks which specifies whether their contents
can be edited interactively using the front end.
Even with the setting Editable->False, the contents of an object can still be copied as a whole. Editable is an
option for InterpretationBox and TagBox, as well as for StyleBox. Setting Editable->False effectively allows
you to “write protect” elements of notebooks. See pages 448 and 607. See also: CellEditDuplicate,
Selectable, Copyable, Protected. New in Version 3.

- Eigensystem
Eigensystem[m] gives a list {values, vectors} of the eigenvalues and eigenvectors of the
square matrix m.
, Eigensystem[{m, a}] gives the generalized eigenvalues and eigenvectors of m with respect
to a.
, Eigensystem[m, k] gives the eigenvalues and eigenvectors for the first k eigenvalues of m.
Eigensystem finds numerical eigenvalues and eigenvectors if m contains approximate real or complex numbers.

All the non-zero eigenvectors given are independent. If the number of eigenvectors is equal to the number of
non-zero eigenvalues, then corresponding eigenvalues and eigenvectors are given in corresponding positions in their
respective lists. If there are more eigenvalues than independent eigenvectors, then each extra eigenvalue is paired
with a vector of zeros. Eigensystem[m, ZeroTest -> test] applies test to determine whether expressions should
be assumed to be zero. The default setting is ZeroTest -> Automatic. The eigenvalues and eigenvectors satisfy
the matrix equation m.Transpose[vectors] == Transpose[vectors].DiagonalMatrix[values] . , Generalized
eigenvalues and eigenvectors satisfy m.Transpose[vectors] == a.Transpose[vectors].DiagonalMatrix[values] .

{vals, vecs} = Eigensystem[m] can be used to set vals and vecs to be the eigenvalues and eigenvectors
respectively. , Eigensystem[m, spec] is equivalent to Take[Eigensystem[m], spec]. , SparseArray objects can
be used in Eigensystem. See notes for Eigenvalues. See page 910. See also: NullSpace,
JordanDecomposition, SchurDecomposition, SingularValueDecomposition, QRDecomposition. Related package:
LinearAlgebra`Orthogonalization` . New in Version 1; modified in Version 5.0.



A.10 Major Built-in Mathematica Objects Eigenvalues — Element 1131

- Eigenvalues
Eigenvalues[m] gives a list of the eigenvalues of the square matrix m.
, Eigenvalues[{m, a}] gives the generalized eigenvalues of m with respect to a.
, Eigenvalues[m, k] gives the first k eigenvalues of m.
Eigenvalues finds numerical eigenvalues if m contains approximate real or complex numbers. Repeated
eigenvalues appear with their appropriate multiplicity. An n � n matrix gives a list of exactly n eigenvalues, not
necessarily distinct. , If they are numeric, eigenvalues are sorted in order of decreasing absolute value. The
eigenvalues of a matrix m are those Λ for which m . v == Λ v for some non-zero eigenvector v. , The generalized
eigenvalues of m with respect to a are those Λ for which m . v == Λ a . v. , When matrices m and a have a
dimension-d shared null space, then d of their generalized eigenvalues will be Indeterminate. , Ordinary
eigenvalues are always finite; generalized eigenvalues can be infinite. , For numeric eigenvalues,
Eigenvalues[m, k] gives the k that are largest in absolute value. , Eigenvalues[m, -k] gives the k that are
smallest in absolute value. , Eigenvalues[m, spec] is always equivalent to Take[Eigenvalues[m], spec].
, The option settings Cubics->True and Quartics->True can be used to specify that explicit radicals should be
generated for all cubics and quartics. , SparseArray objects can be used in Eigenvalues. See page 910. See
also: SingularValueList, CharacteristicPolynomial, Det, Tr. New in Version 1; modified in Version 5.0.

- Eigenvectors
Eigenvectors[m] gives a list of the eigenvectors of the square matrix m.
, Eigenvectors[{m, a}] gives the generalized eigenvectors of m with respect to a.
, Eigenvectors[m, k] gives the first k eigenvectors of m.
Eigenvectors finds numerical eigenvectors if m contains approximate real or complex numbers. Eigenvectors
corresponding to degenerate eigenvalues are chosen to be linearly independent. Eigenvectors are not normalized.

For an n � n matrix, Eigenvectors always returns a list of length n. The list contains each of the independent
eigenvectors of the matrix, followed if necessary by an appropriate number of vectors of zeros. , Eigenvectors
with numeric eigenvalues are sorted in order of decreasing absolute value of their eigenvalues.

Eigenvectors[m, ZeroTest -> test] applies test to determine whether expressions should be assumed to be zero.
The default setting is ZeroTest -> Automatic. , Eigenvectors[m, spec] is equivalent to
Take[Eigenvectors[m], spec]. , SparseArray objects can be used in Eigenvectors. See notes for
Eigenvalues. See page 910. See also: NullSpace. Related package: LinearAlgebra`Orthogonalization` .

New in Version 1; modified in Version 5.0.

- Element
Element[x, dom] or x � dom asserts that x is an element of the domain dom.
Element[{x�, x�, . . . }, dom] asserts that all the xi are elements of dom.
Element[patt, dom] asserts that any expression matching the pattern patt is an element of dom.
- x � dom can be entered as x Hel H dom or x \[Element] dom. Element can be used to set up assumptions in
Simplify and related functions. Possible domains are:

Algebraics algebraic numbers
Booleans True or False

Complexes complex numbers
Integers integers
Primes prime numbers
Rationals rational numbers
Reals real numbers

(continued)



1132 Element (continued) — EllipticK Mathematica Reference Guide

- Element (continued)

x � dom if possible evaluates immediately when x is numeric. Examples: Pi � Algebraics ��# False ;
Pi � Reals ��# True . (x� | x� | . . . ) � dom is equivalent to {x�, x�, . . . } � dom. {x�, x�, . . . } � dom
evaluates to (x� | x� | . . . ) � dom if its truth or falsity cannot immediately be determined. See pages 73
and 816. See also: Simplify, MemberQ, IntegerQ, Assumptions, Condition, PatternTest, Equal, Less. New in
Version 4; modified in Version 5.0.

Eliminate
Eliminate[eqns, vars] eliminates variables between a set of simultaneous equations.
Equations are given in the form lhs == rhs. Simultaneous equations can be combined either in a list or with &&.

A single variable or a list of variables can be specified. Example:
Eliminate[{x == 2 + y, y == z}, y] ��# 2 � z � x . Variables can be any expressions. Eliminate works
primarily with linear and polynomial equations. See page 832. See also: Reduce, SolveAlways, Solve,
GroebnerBasis, Exists. New in Version 1.

EllipticE
EllipticE[m] gives the complete elliptic integral E�m�.
EllipticE[Φ, m] gives the elliptic integral of the second kind E�Φ/m�.

Mathematical function (see Section A.3.10). For �Π�� ) Φ ) Π��, E�Φ/m� � � Φ� �� �m sin��Θ����� dΘ. E�m� � E� Π� /m�.
See page 782 for a discussion of argument conventions for elliptic integrals. EllipticE[m] has a branch cut

discontinuity in the complex m plane running from � to �. EllipticE[Φ, m] has a branch cut discontinuity
running along the ray from csc��Φ� to infinity. See page 783. See also: JacobiZeta, JacobiAmplitude. New in
Version 1.

EllipticExp
EllipticExp[u, {a, b}] is the inverse for EllipticLog. It produces a list {x, y} such that
u == EllipticLog[{x, y}, {a, b}].

EllipticExp gives the generalized exponential associated with the elliptic curve y� � x � ax� � bx. EllipticExp
is the basis for computing Weierstrass functions in Mathematica. See page 788. New in Version 1.

EllipticF
EllipticF[Φ, m] gives the elliptic integral of the first kind F�Φ/m�.

Mathematical function (see Section A.3.10). For �Π�� ) Φ ) Π��, F�Φ/m� � � Φ� �� �m sin��Θ������ dΘ. The complete
elliptic integral associated with EllipticF is EllipticK. EllipticF is the inverse of JacobiAmplitude. If
Φ � am�u/m� then u � F�Φ/m�. EllipticF[Φ, m] has a branch cut discontinuity running along the ray from csc��Φ�
to infinity. See page 782 for a discussion of argument conventions for elliptic integrals. See page 783. See also:
JacobiZeta, JacobiAmplitude. New in Version 1.

EllipticK
EllipticK[m] gives the complete elliptic integral of the first kind K�m�.
Mathematical function (see Section A.3.10). EllipticK is given in terms of the incomplete elliptic integral of the
first kind by K�m� � F� Π� /m�. See page 782 for a discussion of argument conventions for elliptic integrals.

EllipticK[m] has a branch cut discontinuity in the complex m plane running from � to �. See page 783.
See also: JacobiZeta, EllipticNomeQ. New in Version 1.



A.10 Major Built-in Mathematica Objects EllipticLog — Encode 1133

EllipticLog
EllipticLog[{x, y}, {a, b}] gives the generalized logarithm associated with the elliptic
curve y� � x � ax� � bx.

EllipticLog[{x, y}, {a, b}] is defined as the value of the integral �� � x
�
�t � at� � bt����� dt, where the sign of the

square root is specified by giving the value of y such that y �
 

x � ax� � bx. See page 788. See also:
EllipticExp. New in Version 1.

EllipticNomeQ
EllipticNomeQ[m] gives the nome q corresponding to the parameter m in an elliptic function.
Mathematical function (see Section A.3.10). EllipticNomeQ is related to EllipticK by
q�m� � expe�ΠK�� �m��K�m�f. EllipticNomeQ[m] has a branch cut discontinuity in the complex m plane running
from � to �. See page 782. See also: InverseEllipticNomeQ. New in Version 3.

EllipticPi
EllipticPi[n, m] gives the complete elliptic integral of the third kind B�n/m�.
EllipticPi[n, Φ, m] gives the incomplete elliptic integral B�ng Φ/m�.

Mathematical function (see Section A.3.10). B�ng Φ/m� � � Φ� �� � n sin��Θ����e� �m sin��Θ�f���� dΘ. B�n/m� � B�ng Π� /m�.
See page 782 for a discussion of argument conventions for elliptic integrals. See page 783. New in Version 1.

EllipticTheta
EllipticTheta[a, u, q] gives the theta function ia�u� q� (a � �� 			� 
).
Mathematical function (see Section A.3.10). i��u� q� � �q��
��n������nqn�n��� sin���n � ��u�,

i��u� q� � �q��
��n�� qn�n��� cos���n � ��u�, i�u� q� � � � ���n�� qn� cos��nu�, i
�u� q� � � � ���n������nqn� cos��nu�. See
page 782 for a discussion of argument conventions for elliptic and related functions. See page 785. See also:
ModularLambda, DedekindEta, KleinInvariantJ. New in Version 1.

EllipticThetaPrime
EllipticThetaPrime[a, u, q] gives the derivative with respect to u of the theta function
ia�u� q� (a � �� 			� 
).
See notes for EllipticTheta. See page 785. New in Version 3.

Encode
Encode["source", "dest"] writes an encoded version of the file source to the file dest.
<<dest decodes the file before reading its contents.
Encode["source", "dest", "key"] produces an encoded file which must be read in using
Get["dest", "key"].
Encoded files contain only printable ASCII characters. They begin with a special sequence which is recognized by
Get. On certain computer systems Encode["source", "dest", MachineID->"ID"] can be used to generate an
encoded file which can be read in only on a computer with a particular $MachineID. No function is provided in
Mathematica to convert encoded files back to their original form. See page 626. See also: ReadProtected,
$MachineID. New in Version 2.



1134 End — Epilog Mathematica Reference Guide

End
End[ ] returns the present context, and reverts to the previous one.
Every call to End must be balanced by an earlier call to Begin. End[ ] resets the value of $Context. End[ ]
returns the present context name as a string of the form "context`". End[ ] does not modify $ContextPath. See
page 398. New in Version 1.

EndOfFile
EndOfFile is a symbol returned by Read when it reaches the end of a file.
Subsequent calls to Read will also give EndOfFile. See page 649. New in Version 1.

EndPackage
EndPackage[ ] restores $Context and $ContextPath to their values before the preceding
BeginPackage, and prepends the current context to the list $ContextPath.
Every call to EndPackage must be balanced by an earlier call to BeginPackage. EndPackage is typically used at
the end of a Mathematica package. EndPackage returns Null. EndPackage resets the values of both $Context
and $ContextPath. See page 398. New in Version 1.

EngineeringForm
EngineeringForm[expr] prints with all real numbers in expr given in engineering notation.
EngineeringForm[expr, n] prints with numbers given to n-digit precision.
In “engineering notation” the exponent is always arranged to be a multiple of 3. EngineeringForm takes the
same options as NumberForm, but uses a different default function for ExponentFunction. You can mix
EngineeringForm and BaseForm. EngineeringForm acts as a “wrapper”, which affects printing, but not
evaluation. See page 435. See also: ScientificForm, NumberForm. New in Version 1.

Environment
Environment["var"] gives the value of an operating system environment variable.
The values of environment variables are returned by Environment as strings. Environment returns $Failed if it
cannot find a value for the operating system variable you requested. The behavior of Environment depends on
the computer system you are using. See page 716. See also: Run, $CommandLine, $System. New in Version 1.

Epilog
Epilog is an option for graphics functions which gives a list of graphics primitives to be
rendered after the main part of the graphics is rendered.
In three-dimensional graphics, two-dimensional graphics primitives can be specified by the Epilog option. The
graphics primitives are rendered in a 0,1 coordinate system. See page 504. See also: Prolog, AxesStyle,
PlotStyle, DisplayFunction. New in Version 2.



A.10 Major Built-in Mathematica Objects Equal — EulerE 1135

- Equal
lhs == rhs returns True if lhs and rhs are identical.
lhs == rhs is used to represent a symbolic equation, to be manipulated using functions like Solve. lhs == rhs
returns True if lhs and rhs are identical expressions. lhs == rhs returns False if lhs and rhs are determined to be
unequal by comparisons between numbers or other raw data, such as strings. Approximate numbers are
considered equal if they differ in at most their last eight binary digits (roughly their last two decimal digits).

2 == 2. gives True. e� == e� == e gives True if all the ei are equal. Equal[e] gives True. For exact
numeric quantities, Equal internally uses numerical approximations to establish inequality. This process can be
affected by the setting of the global variable $MaxExtraPrecision. In StandardForm and InputForm, lhs == rhs
can be input as lhs \[Equal] rhs or lhs � rhs. , It can also be input as lhs \[LongEqual] rhs or lhs � rhs. See
page 86. See also: SameQ, Unequal, KroneckerDelta, Order, Element. New in Version 1; modified in Version 4.1.

Erf
Erf[z] gives the error function erf�z�.
Erf[z�, z�] gives the generalized error function erf�z�� � erf�z��.
Mathematical function (see Section A.3.10). Erf[z] is the integral of the Gaussian distribution, given by

erf�z� � � 
Π

� z
�

e�t
�
dt. Erf[z�, z�] is given by �

 

Π
� z�

z�
e�t
�
dt. Erf[z] is an entire function of z with no branch cut

discontinuities. See page 775. See also: InverseErf, Erfc, Erfi, ExpIntegralE, ExpIntegralEi, FresnelC,
FresnelS. Related package: Statistics`NormalDistribution` . New in Version 1.

Erfc
Erfc[z] gives the complementary error function erfc�z�.
Erfc[z] is given by erfc�z� � � � erf�z�. See notes for Erf. See page 775. See also: InverseErfc. New in
Version 2.

Erfi
Erfi[z] gives the imaginary error function erf�iz��i.
See notes for Erf. See page 775. New in Version 3.

ErrorBox
ErrorBox[boxes] represents boxes that cannot be interpreted in input or output.
ErrorBox[boxes] typically displays as the raw form of boxes together with underlining that indicates parts that
cannot be interpreted. See page 447. See also: TagBox, InterpretationBox, ToExpression. New in Version 3.

EulerE
EulerE[n] gives the Euler number En.
EulerE[n, x] gives the Euler polynomial En�x�.
Mathematical function (see Section A.3.10). The Euler polynomials satisfy the generating function relation
�ext��et � �� � ��n�� En�x��tn�nd�. The Euler numbers are given by En � �nEn� �� �. See page 757. See also:
BernoulliB. New in Version 1.



1136 EulerGamma — Evaluator Mathematica Reference Guide

EulerGamma
EulerGamma is Euler’s constant Γ, with numerical value � �	������.
Mathematical constant (see Section A.3.11). See page 765. Implementation notes: see page 1067. See also:
PolyGamma, StieltjesGamma, HarmonicNumber. New in Version 1.

EulerPhi
EulerPhi[n] gives the Euler totient function Φ�n�.
Integer mathematical function (see Section A.3.10). Φ�n� gives the number of positive integers less than or equal to
n which are relatively prime to n. See page 752. See also: FactorInteger, Divisors, MoebiusMu,
MultiplicativeOrder, CarmichaelLambda, PowerMod. New in Version 1.

Evaluatable
Evaluatable is an option for Cell which specifies whether a cell should be used as input to
be evaluated by the Mathematica kernel.
With Evaluatable->True, typing SHIFT-RETURN in the front end when the cell is selected will cause the contents of
the cell to be sent to the Mathematica kernel for evaluation. Evaluatable is more often set for styles of cells than
for individual cells. See page 608. See also: Evaluator, InitializationCell, CellEvaluationDuplicate. New
in Version 3.

Evaluate
Evaluate[expr] causes expr to be evaluated even if it appears as the argument of a function
whose attributes specify that it should be held unevaluated.
Example: Hold[Evaluate[1 + 1]] ��# Hold2� . You can use Evaluate to override HoldFirst, etc. attributes of
built-in functions. Evaluate only overrides HoldFirst, etc. attributes when it appears directly as the head of the
function argument that would otherwise be held. See page 337. See also: ReleaseHold. New in Version 2.

, EvaluationMonitor
EvaluationMonitor is an option for various numerical computation functions that gives an
expression to evaluate whenever functions derived from the input are evaluated numerically.
The option setting is normally given as EvaluationMonitor :> expr. The :> is used instead of -> to avoid expr
being immediately evaluated. Whenever expr is evaluated, all variables in the numerical computation are assigned
their current values. Block[{var� = val�, . . . }, expr] is effectively used. See page 977. See also: StepMonitor,
Sow, Print, Trace. New in Version 5.0.

EvaluationNotebook
EvaluationNotebook[ ] gives the notebook in which this function is being evaluated.
EvaluationNotebook returns a NotebookObject. See page 579. See also: SelectedNotebook, InputNotebook,
ButtonNotebook, Notebooks, SelectionMove. New in Version 3.

Evaluator
Evaluator is an option for Cell which gives the name of the kernel to use to evaluate the
contents of a cell.
The default setting is typically Evaluator->"Local". Evaluator is more often set at a global level or at the level
of whole notebooks than at the level of individual cells. See page 608. See also: InitializationCell. New in
Version 3.



A.10 Major Built-in Mathematica Objects EvenQ — Expand 1137

EvenQ
EvenQ[expr] gives True if expr is an even integer, and False otherwise.
EvenQ[expr] returns False unless expr is manifestly an even integer (i.e., has head Integer, and is even). You
can use EvenQ[x] ^= True to override the normal operation of EvenQ, and effectively define x to be an even
integer. See pages 267 and 723. See also: IntegerQ, OddQ, TrueQ. New in Version 1.

ExcludedForms
ExcludedForms is an option for FullSimplify which can be set to a list of patterns for
expressions that should not be touched if they are encountered at intermediate steps in the
operation of FullSimplify.
The default setting for ExcludedForms is { }. A setting such as Gamma[_] will cause FullSimplify to treat
gamma functions as elementary objects which should not be transformed. See page 814. See also:
TimeConstraint, ComplexityFunction, Simplify, TrigFactor. New in Version 3.

, Exists
Exists[x, expr] represents the statement that there exists a value of x for which expr is True.
Exists[x, cond, expr] states that there exists an x satisfying the condition cond for which expr
is True.
Exists[{x�, x�, . . . }, expr] states that there exist values for all the xi for which expr is True.
Exists[x, expr] can be entered as ]x expr . The character ] can be entered as ,ex , or \[Exists]. The variable x is
given as a subscript. Exists[x, cond, expr] can be entered as ]x,cond expr . In StandardForm, Exists[x, expr]
is output as ]x expr . Exists[x, cond, expr] is output as ]x,cond expr . Exists can be used in such functions as
Reduce, Resolve and FullSimplify. The condition cond is often used to specify the domain of a variable, as in
x � Integers. Exists[x, cond, expr] is equivalent to Exists[x, cond && expr]. Exists[{x�, x�, . . . }, . . . ] is
equivalent to ]x1

]x2
… . The value of x in Exists[x, expr] is taken to be localized, as in Block. See page 847.

See also: ForAll, FindInstance, Resolve, Reduce, Element, Eliminate. New in Version 5.0.

Exit
Exit[ ] terminates a Mathematica kernel session.
Exit is a synonym for Quit. Exit terminates the kernel session even if called from within Dialog. On most
computer systems, Exit[n] can be used to pass the integer exit code n to the operating system. See pages 706
and 1057. See also: Return, $IgnoreEOF. New in Version 1.

Exp
Exp[z] is the exponential function.
Mathematical function (see Section A.3.10). Exp[z] is converted to E^z. See page 761. See also: Power, E,
ExpToTrig. New in Version 1.

Expand
Expand[expr] expands out products and positive integer powers in expr.
Expand[expr, patt] leaves unexpanded any parts of expr that are free of the pattern patt.
Expand works only on positive integer powers. Expand applies only to the top level in expr.

Expand[expr, Modulus->p] expands expr reducing the result modulo p. See page 797. See also: Distribute,
Apart, Series, Factor, LogicalExpand, TrigExpand, PowerExpand, ExpandAll. New in Version 1; modified in
Version 3.



1138 ExpandAll — Exponent Mathematica Reference Guide

ExpandAll
ExpandAll[expr] expands out all products and integer powers in any part of expr.
ExpandAll[expr, patt] avoids expanding parts of expr that do not contain terms matching the
pattern patt.
ExpandAll[expr] effectively maps Expand and ExpandDenominator onto every part of expr. See page 801. New
in Version 1.

ExpandDenominator
ExpandDenominator[expr] expands out products and powers that appear as denominators in
expr.
ExpandDenominator works only on negative integer powers. ExpandDenominator applies only to the top level in
expr. See page 801. See also: Expand, ExpandNumerator, ExpandAll, Together. New in Version 1.

ExpandNumerator
ExpandNumerator[expr] expands out products and powers that appear in the numerator of
expr.
ExpandNumerator works on terms that have positive integer exponents. ExpandNumerator applies only to the top
level in expr. See page 801. See also: Expand, ExpandDenominator, ExpandAll. New in Version 1.

ExpIntegralE
ExpIntegralE[n, z] gives the exponential integral function En�z�.

Mathematical function (see Section A.3.10). En�z� � � �� e�zt�tn dt. ExpIntegralE[n, z] has a branch cut
discontinuity in the complex z plane running from �� to �. See page 774. See also: ExpIntegralEi, Erf,
LogIntegral, SinIntegral, CosIntegral. New in Version 1.

ExpIntegralEi
ExpIntegralEi[z] gives the exponential integral function Ei�z�.

Mathematical function (see Section A.3.10). Ei�z� � � � ��z e�t�t dt, where the principal value of the integral is taken.

ExpIntegralEi[z] has a branch cut discontinuity in the complex z plane running from �� to �. See page 774.
See also: ExpIntegralE, Erf, LogIntegral, SinIntegral, CosIntegral. New in Version 1.

Exponent
Exponent[expr, form] gives the maximum power with which form appears in the expanded
form of expr.
Exponent[expr, form, h] applies h to the set of exponents with which form appears in expr.
Example: Exponent[x^2 + a x^3, x] ��# 3 . The default taken for h is Max. Example:
Exponent[x^2 + a x^3, x, List] ��# �2, 3� . form can be a product of terms. Exponent works whether or
not expr is explicitly given in expanded form. , Exponent[0, x] is -Infinity. See page 799. See also:
Coefficient, Cases, IntegerExponent. New in Version 1; modified in Version 3.



A.10 Major Built-in Mathematica Objects ExponentFunction — Export 1139

ExponentFunction
ExponentFunction is an option for NumberForm and related functions which determines the
exponent to use in printing approximate real numbers.
Functions like NumberForm first find the exponent that would make exactly one digit appear to the left of the
decimal point when the number is printed in scientific notation. Then they take this exponent and apply the
function specified by ExponentFunction to it. If the value obtained from this function is an integer, it is used as
the exponent of the number. If it is Null, then the number is printed without scientific notation. The argument
provided for the function specified by ExponentFunction is always an integer. In NumberForm, the default setting
for ExponentFunction never modifies the exponent, but returns Null for machine numbers with exponents between
�� and 5, and for high-precision numbers where insignificant zeros would have to be inserted if the number were
not printed in scientific notation. In ScientificForm, the default setting for ExponentFunction never returns
Null. In EngineeringForm, the default setting for ExponentFunction returns an exponent that is a multiple of 3.

In AccountingForm, the default setting for ExponentFunction always returns Null. See page 436. See also:
NumberFormat. New in Version 2.

- Export
Export["file.ext", expr] exports data to a file, converting it to a format corresponding to the
file extension ext.
Export["file", expr, "format"] exports data to a file, converting it to the specified format.
Export can handle numerical and textual data, graphics, sounds, material from notebooks, and general expressions
in various formats. - The following basic formats are supported for numerical and textual data:

"CSV" comma-separated value tabular data (.csv)
"Lines" list of strings to be placed on separate lines
"List" list of numbers or strings to be placed on separate lines
"Table" list of lists of numbers or strings to be placed in a two-dimensional array (.dat)
"Text" single string of ordinary characters (.txt)
"TSV" tab-separated value tabular data (.tsv)
"UnicodeText" single string of 16-bit Unicode characters
"Words" list of strings to be separated by spaces
- In "CSV", "List" and "Table" format, numbers are written in C or Fortran-like “E” notation when necessary.
- In "CSV" format, columns are separated by commas, unless other settings are specified using
ConversionOptions. In "Table" format, columns are separated by spaces. Export["file.txt", expr] uses
"Text" format. Export["file.dat", expr] uses "Table" format. - The following additional formats are also
supported for numerical and textual data:

"FITS" FITS astronomical data format (.fit, .fits)
"HDF" Hierarchical Data Format (.hdf)
"MAT" MAT matrix format (.mat)
"MTX" Matrix Market format (.mtx)

All graphics formats in Export can handle any type of 2D or 3D Mathematica graphics. They can also handle
Notebook and Cell objects. In some formats, lists of frames for animated graphics can be given. The following
options can be given when exporting graphics:

ImageResolution Automatic resolution in dpi for the image
ImageRotated False whether to rotate the image (landscape mode)
ImageSize Automatic absolute image size in printer’s points

(continued)



1140 Export (continued) — Export (continued) Mathematica Reference Guide

- Export (continued)

- The following graphics formats are independent of the setting for ImageResolution:

"EPS" Encapsulated PostScript (.eps)
"MPS" Mathematica abbreviated PostScript (.mps)
"PDF" Adobe Acrobat portable document format (.pdf)
"PICT" Macintosh PICT
"SVG" Scalable Vector Graphics (.svg)
"WMF" Windows metafile format (.wmf)
- The following graphics formats depend on the setting for ImageResolution:

"BMP" Microsoft bitmap format (.bmp)
"DICOM" DICOM medical imaging format (.dcm, .dic)
"EPSI" Encapsulated PostScript with device-independent preview (.epsi)
"EPSTIFF" Encapsulated PostScript with TIFF preview
"GIF" GIF and animated GIF (.gif)
"JPEG" JPEG (.jpg, .jpeg)
"MGF" Mathematica system-independent raster graphics format (.mgf)
"PBM" portable bitmap format (.pbm)
"PGM" portable graymap format (.pgm)
"PNG" PNG format (.png)
"PNM" portable anymap format (.pnm)
"PPM" portable pixmap format (.ppm)
"TIFF" TIFF (.tif, .tiff)
"XBitmap" X window system bitmap (.xbm)
- The following three-dimensional graphics formats are supported:

"DXF" AutoCAD drawing interchange format (.dxf)
"STL" STL stereolithography format (.stl)

The following sound formats are supported:

"AIFF" AIFF format (.aif, .aiff)
"AU" Μ law encoding (.au)
"SND" sound file format (.snd)
"WAV" Microsoft wave format (.wav)
- Notebook and Cell objects, as well as any box expression obtained from ToBoxes, can be exported in the
following formats:

"HTML" HTML (.htm, .html)
"NB" Mathematica notebook format (.nb)
"TeX" TEX (.tex)
"XHTML+MathML" XHTML with MathML inclusions (.xml)

These formats generate markup material which maintains much of the document structure that exists within
Mathematica. With HTML and TEX formats, Export operates like HTMLSave and TeXSave. , The following XML
formats are supported:

"ExpressionML" format for Mathematica expressions
"MathML" format for mathematical expressions (.mml)
"NotebookML" format for notebook expressions (.nbml)
"SVG" Scalable Vector Graphics format for graphics (.svg)
"XML" format determined by content (.xml)

(continued)



A.10 Major Built-in Mathematica Objects Export (continued) — ExtendedGCD 1141

- Export (continued)

- With format "MathML", box expressions are exported in terms of MathML presentation elements. Other
expressions are if possible exported in TraditionalForm format. - With format "XML", notebook or cell
expressions, and notebook objects, are exported as NotebookML. SymbolicXML expressions are exported as general
XML. Other expressions are exported as ExpressionML. , Arbitrary Mathematica expressions can be exported in the
following formats:

"Dump" internal binary format (.mx)
"Expression" InputForm textual format (.m)
"ExpressionML" XML-based ExpressionML format

Many details can be specified in the setting for ConversionOptions. The following general options can be given:

ByteOrdering $ByteOrdering what byte order to use for binary data
CharacterEncoding Automatic the encoding to use for text characters
ConversionOptions {} private options for specific formats

Possible formats accepted by Export are given in the list $ExportFormats. Export["!prog", expr, "format"]
exports data to a pipe. See pages 207, 567 and 642. See also: Import, ExportString, $ExportFormats, Display,
Write, Put, TeXSave, HTMLSave, MathMLForm, DumpSave. New in Version 4; modified in Version 5.0.

- ExportString
ExportString[expr, "format"] generates a string corresponding to expr exported in the
specified format.
Many graphics, sound and binary formats yield strings containing non-printable characters. See notes for Export.

See page 567. See also: ImportString, DisplayString. New in Version 4; modified in Version 5.0.

Expression
Expression is a symbol that represents an ordinary Mathematica expression in Read and
related functions.
See page 646. See also: ToExpression. New in Version 1.

ExpToTrig
ExpToTrig[expr] converts exponentials in expr to trigonometric functions.
ExpToTrig generates both circular and hyperbolic functions. ExpToTrig tries when possible to give results that do
not involve explicit complex numbers. See page 812. See also: TrigToExp, TrigReduce, ComplexExpand. New
in Version 3.

- ExtendedGCD
- ExtendedGCD[n�, n�, . . . ] gives the extended greatest common divisor of the integers ni.
Integer mathematical function (see Section A.3.10). - ExtendedGCD[n�, n�, . . . ] returns a list {g, {r�, r�, . . . }}
where g is GCD[n�, n�, . . . ] and g � r�n� � r�n� � � � � . See page 752. See also: GCD. Related package:
Algebra`PolynomialExtendedGCD`. New in Version 1; modified in Version 4.2.



1142 Extension — FaceGrids Mathematica Reference Guide

Extension
Extension is an option for Factor, PolynomialGCD and related functions which specifies what
algebraic numbers to allow in the coefficients of resulting polynomials.
With the setting Extension->{a�, a�, . . . } any rational combination of the ai can appear. The ai must be
exact numbers. They can involve I, nth roots, and Root objects. The ai can be viewed as generators for the
algebraic number field in which the coefficients are assumed to lie. With the default setting Extension->None all
coefficients are required to be rational numbers, and any algebraic numbers that appear in input polynomials are
treated like independent variables. Extension->Automatic includes any algebraic numbers from the input
polynomials in the coefficient field. Extension->{a�, a�, . . . } includes both the ai and any algebraic numbers
from the input polynomials in the coefficient field. GaussianIntegers->True is equivalent to Extension->I.

See page 809. See also: Modulus, Algebraics. New in Version 3.

Extract
Extract[expr, list] extracts the part of expr at the position specified by list.
Extract[expr, {list�, list�, . . . }] extracts a list of parts of expr.
Extract[expr, . . . , h] extracts parts of expr, wrapping each of them with head h before
evaluation.
Extract[expr, {i, j, . . . }] is equivalent to Part[expr, i, j, . . . ]. The position specifications used by Extract
have the same form as those returned by Position, and used in functions such as MapAt and ReplacePart. You
can use Extract[expr, . . . , Hold] to extract parts without evaluation. - If expr is a SparseArray object,
Extract[expr, . . . ] extracts parts in the corresponding ordinary array. See page 286. See also: Part, Take,
PadLeft. New in Version 3.

FaceForm
FaceForm[gf, gb] is a three-dimensional graphics directive which specifies that the front faces
of polygons are to be drawn with the graphics primitive gf, and the back faces with gb.
The graphics specifications gf and gb must be CMYKColor, GrayLevel, Hue or RGBColor directives, or SurfaceColor
objects. Specifications given outside of FaceForm will apply both to the front and back faces of polygons. The
front face of a polygon is defined to be the one for which the corners as you specify them are in counterclockwise
order (right-hand rule). See page 529. See also: EdgeForm. New in Version 1.

FaceGrids
FaceGrids is an option for three-dimensional graphics functions that specifies grid lines to
draw on the faces of the bounding box.
The following settings can be given for FaceGrids:

None no grid lines drawn
All grid lines drawn on all faces
{face�, face�, . . . } grid lines drawn on the specified faces
{{face�, {xgrid�, ygrid�}}, . . . } details of grid lines specified

Faces are specified as {dirx, diry, dirz}, where two of the diri must be 0, and the third one must be +1 or -1.
Example: the x-y face with smallest z value is specified as {0, 0, -1}. For each face, specifications

{xgridi, ygridi} can be given to determine the arrangement of grid lines. These specifications have the form
described in the notes for GridLines. See page 553. See also: Ticks. New in Version 2.



A.10 Major Built-in Mathematica Objects Factor — FactorList 1143

Factor
Factor[poly] factors a polynomial over the integers.
Factor[poly, Modulus->p] factors a polynomial modulo a prime p.
Factor[poly, Extension->{a�, a�, . . . }] factors a polynomial allowing coefficients that are
rational combinations of the algebraic numbers ai.
Factor applies only to the top level in an expression. You may have to use Map, or apply Factor again, to reach
other levels. Factor[poly, GaussianIntegers->True] factors allowing Gaussian integer coefficients. If any
coefficients in poly are complex numbers, factoring is done allowing Gaussian integer coefficients. The exponents
of variables need not be positive integers. Factor can deal with exponents that are linear combinations of symbolic
expressions. When given a rational expression, Factor effectively first calls Together, then factors numerator and
denominator. With the default setting Extension->None, Factor[poly] will treat algebraic number coefficients in
poly like independent variables. Factor[poly, Extension->Automatic] will extend the domain of coefficients to
include any algebraic numbers that appear in poly. See page 797. Implementation notes: see page 1069. See
also: FactorList, FactorTerms, FactorSquareFree, Solve, Expand, Simplify, FactorInteger, TrigFactor. New
in Version 1; modified in Version 3.

Factorial
n! gives the factorial of n.
Mathematical function (see Section A.3.10). For non-integer n, the numerical value of n! is given by Gamma[1 + n].

See page 757. Implementation notes: see page 1067. See also: Gamma, Binomial. New in Version 1.

Factorial2
n!! gives the double factorial of n.
Mathematical function (see Section A.3.10). ndd � n�n � ���n � 
� � 			. ndd is a product of even numbers for n even,
and odd numbers for n odd. See page 757. See also: Gamma. New in Version 1.

- FactorInteger
FactorInteger[n] gives a list of the prime factors of the integer n, together with their
exponents.
Example: FactorInteger[2434500] ��# ��2, 2�, �3, 2�, �5, 3�, �541, 1�� . For negative numbers, the unit
{-1, 1} is included in the list of factors. FactorInteger also works on rational numbers. The prime factors of
the denominator are given with negative exponents. FactorInteger[n, GaussianIntegers->True] factors over
Gaussian integers. , FactorInteger[m + I m] automatically works over the Gaussian integers. When necessary,
a unit of the form {-1, 1}, {I, 1} or {-I, 1} is included in the list of factors.

FactorInteger[n, FactorComplete->False] does fast but not necessarily complete factorization, and extracts
only factors that are easy to find. See page 750. Implementation notes: see page 1067. See also:
IntegerExponent, Prime, PrimeQ, Divisors. Related package: NumberTheory`FactorIntegerECM` . New in
Version 1; modified in Version 5.0.

FactorList
FactorList[poly] gives a list of the factors of a polynomial, together with their exponents.
The first element of the list is always the overall numerical factor. It is {1, 1} if there is no overall numerical
factor. Example: FactorList[3 (1+x)^2 (1-x)] ��# ���3, 1�, ��1 � x, 1�, �1 � x, 2�� .

FactorList[poly, Modulus->p] factors modulo a prime p. FactorList[poly, GaussianIntegers->True] allows
Gaussian integer coefficients. FactorList[poly, Extension->{a�, a�, . . . }] allows coefficients that are arbitrary
rational combinations of the ai. See page 806. See also: FactorTermsList, TrigFactorList, CoefficientList,
Factor. New in Version 1; modified in Version 3.



1144 FactorSquareFree — Fibonacci Mathematica Reference Guide

FactorSquareFree
FactorSquareFree[poly] pulls out any multiple factors in a polynomial.
FactorSquareFree[poly, Modulus->p] pulls out multiple factors modulo a prime p.

FactorSquareFree[poly, Extension->Automatic] extends the coefficient field to include algebraic numbers that
appear in the coefficients of poly. See page 806. New in Version 1; modified in Version 3. See also:
FactorSquareFreeList.

FactorSquareFreeList
FactorSquareFreeList[poly] gives a list of square-free factors of a polynomial, together with
their exponents.
See page 806. New in Version 1. See also: FactorSquareFree.

FactorTerms
FactorTerms[poly] pulls out any overall numerical factor in poly.
FactorTerms[poly, x] pulls out any overall factor in poly that does not depend on x.
FactorTerms[poly, {x�, x�, . . . }] pulls out any overall factor in poly that does not depend on
any of the xi.

Example: FactorTerms[3 - 3x^2] ��# �3 ��1 � x2� . FactorTerms[poly, x] extracts the content of poly with
respect to x. See notes for Factor. See page 797. New in Version 1.

FactorTermsList
FactorTermsList[poly, {x�, x�, . . . }] gives a list of factors of poly. The first element in the
list is the overall numerical factor. The second element is a factor that does not depend on any
of the xi. Subsequent elements are factors which depend on progressively more of the xi.
See notes for FactorTerms. See page 806. New in Version 1.

False
False is the symbol for the Boolean value false.
See page 85. See also: TrueQ, True, Booleans. New in Version 1.

Fibonacci
Fibonacci[n] gives the Fibonacci number Fn.
Fibonacci[n, x] gives the Fibonacci polynomial Fn�x�.
Integer mathematical function (see Section A.3.10). The Fn satisfy the recurrence relation Fn � Fn�� � Fn�� with
F� � F� � �. For any complex value of n the Fn are given by the general formula Fn � �Φn � ��Φ��n��

 

�, where Φ is
the golden ratio. The Fibonacci polynomial Fn�x� is the coefficient of tn in the expansion of t��� � xt � t��. The
Fibonacci polynomials satisfy the recurrence relation Fn�x� � xFn���x� � Fn���x�. FullSimplify and
FunctionExpand include transformation rules for combinations of Fibonacci numbers with symbolic arguments
when the arguments are specified to be integers using n � Integers. See page 757. Implementation notes: see
page 1067. See also: GoldenRatio. New in Version 3.



A.10 Major Built-in Mathematica Objects FileByteCount — Find 1145

FileByteCount
FileByteCount["file"] gives the number of bytes in a file.
If a particular file is moved from one computer system to another, the number of bytes in the file as reported by
FileByteCount may change. See page 641. See also: StringLength, FileType. Related package:
Utilities`BinaryFiles`. New in Version 2.

FileDate
FileDate["file"] gives the date and time at which a file was last modified.
FileDate returns the date and time in the format used by Date. See page 641. See also: SetFileDate,
FromDate. New in Version 2.

FileNames
FileNames[ ] lists all files in the current working directory.
FileNames["form"] lists all files in the current working directory whose names match the
string pattern form.
FileNames[{"form�", "form�", . . . }] lists all files whose names match any of the formi.
FileNames[forms, {"dir�", "dir�", . . . }] lists files with names matching forms in any of the
directories diri.
FileNames[forms, dirs, n] includes files that are in subdirectories up to n levels down.
The string pattern "form" can contain the metacharacters specified on page 1044. FileNames["*"] is equivalent to
FileNames[ ]. FileNames[forms, dirs, Infinity] looks for files in all subdirectories of the dirs. The list of files
returned by FileNames is sorted in the order generated by the function Sort. FileNames[forms, dirs, n] includes
names of directories only if they appear exactly at level n. The forms can include relative or absolute directory
specifications, in addition to names of files. Setting the option IgnoreCase -> True makes FileNames treat lower-
and upper-case letters in file names as equivalent. On operating systems such as MS-DOS, FileNames always
treats lower- and upper-case letters in file names as equivalent. See page 638. See also: Directory, FileType,
Get. Related package: Utilities`Package`. New in Version 2; modified in Version 4.0.

FileType
FileType["file"] gives the type of a file, typically File, Directory or None.
FileType returns None if the file specified does not exist. See page 641. See also: FileNames, FileByteCount.

New in Version 2.

Find
Find[stream, "text"] finds the first line in an input stream that contains the specified string.
Find[stream, {"text�", "text�", . . . }] finds the first line that contains any of the specified
strings.
Find breaks the input stream into records, delimited by record separators, and scans each record for the strings you
specify. Find returns as a string the first record which contains the specified text. If Find does not find any
record which contains the specified text before it reaches the end of the file, it returns EndOfFile.

(continued)



1146 Find (continued) — FindFit Mathematica Reference Guide

Find (continued)

The following options can be given:

AnchoredSearch False whether to require that the text searched for be at the beginning of a record
IgnoreCase False whether to treat lower- and upper-case as equivalent
RecordSeparators {"\n"} separators for records
WordSearch False whether to require that the text searched for appear as a word
WordSeparators {" ", "\t"} separators for words

The first argument to Find can be InputStream["name", n], or simply "name" if there is only one open input
stream with the specified name. You can open a file or pipe to get an InputStream object using OpenRead.

Find does not close streams after it finishes reading from them. See page 652. See also: Read, Skip,
StreamPosition, StringToStream, NotebookFind. New in Version 2.

, FindFit
FindFit[data, expr, pars, vars] finds numerical values of the parameters pars that make expr
give a best fit to data as a function of vars.
The data can have the form {{x�, y�, . . . , f�}, {x�, y�, . . . , f�}, . . . }, where the number of
coordinates x, y, . . . is equal to the number of variables in the list vars.
The data can also be of the form {f�, f�, . . . }, with a single coordinate assumed to take values
1, 2, . . . .
FindFit returns a list of replacements for par�, par�, . . . . The expression expr must yield a numerical value when
pars and vars are all numerical. The expression expr can depend either linearly or nonlinearly on the pari. In the
linear case, FindFit finds a globally optimal fit. In the nonlinear case, it finds in general only a locally optimal
fit. FindFit[data, expr, {{par�, p�}, {par�, p�}, . . . }, vars] starts the search for a fit with
{par� -> p�, par� -> p�, . . . }. FindFit by default finds a least-squares fit. The option NormFunction -> f
specifies that the norm f[residual] should be minimized. The following options can be given:

AccuracyGoal Automatic the accuracy sought
EvaluationMonitor None expression to evaluate whenever expr is evaluated
MaxIterations 100 maximum number of iterations to use
Method Automatic method to use
NormFunction Norm the norm to minimize
PrecisionGoal Automatic the precision sought
StepMonitor None expression to evaluate whenever a step is taken
WorkingPrecision MachinePrecision the precision used in internal computations

The default settings for AccuracyGoal and PrecisionGoal are WorkingPrecision/2. The settings for
AccuracyGoal and PrecisionGoal specify the number of digits to seek in both the values of the parameters
returned, and the value of the NormFunction. FindFit continues until either of the goals specified by
AccuracyGoal or PrecisionGoal is achieved. Possible settings for Method are as for FindMinimum. See
page 929. Implementation notes: see page 1069. See also: FindMinimum, Fit, NMinimize, Interpolation.

Related packages: Statistics`NonlinearFit`, Statistics`LinearRegression`. New in Version 5.0.



A.10 Major Built-in Mathematica Objects FindInstance — FindMinimum 1147

, FindInstance
FindInstance[expr, vars] finds an instance of vars that makes the statement expr be True.
FindInstance[expr, vars, dom] finds an instance over the domain dom. Common choices of
dom are Complexes, Reals, Integers and Booleans.
FindInstance[expr, vars, dom, n] finds n instances.
FindInstance[expr, {x�, x�, . . . }] gives results in the same form as Solve: {{x� -> val�, x� -> val�, . . . }} if an
instance exists, and {} if it does not. expr can contain equations, inequalities, domain specifications and
quantifiers, in the same form as in Reduce. With exact symbolic input, FindInstance gives exact results. Even
if two inputs define the same mathematical set, FindInstance may still pick different instances to return. The
instances returned by FindInstance typically correspond to special or interesting points in the set.

FindInstance[expr, vars] assumes by default that quantities appearing algebraically in inequalities are real, while
all other quantities are complex. FindInstance[expr, vars, Integers] finds solutions to Diophantine equations.

FindInstance[expr, vars, Booleans] solves Boolean satisfiability for expr. FindInstance[expr, vars, Reals]
assumes that not only vars but also all function values in expr are real. FindInstance[expr && vars � Reals, vars]
assumes only that the vars are real. FindInstance may be able to find instances even if Reduce cannot give a
complete reduction. Every time you run FindInstance with a given input, it will return the same output.

Different settings for the option RandomSeed -> n may yield different collections of instances. See pages 838
and 844. See also: Solve, Reduce, FindRoot, Minimize, Random. New in Version 5.0.

FindList
FindList["file", "text"] gives a list of lines in the file that contain the specified string.
FindList["file", {"text�", "text�", . . . }] gives a list of all lines that contain any of the
specified strings.
FindList[{"file�", . . . }, . . . ] gives a list of lines containing the specified strings in any of the
filei.
FindList[files, text, n] includes only the first n lines found.
FindList returns {} if it fails to find any record which contains the specified text. If FindList opens a file or
pipe, it closes it again when it has finished. See notes for Find. See page 650. See also: ReadList. New in
Version 2.

, FindMaximum
FindMaximum[f, {x, x�}] searches for a local maximum in f, starting from the point x = x�.
FindMaximum[f, {{x, x�}, {y, y�}, . . . }] searches for a local maximum in a function of
several variables.
FindMaximum returns a list of the form {fmax, {x->xmax}}, where fmax is the maximum value of f found, and xmax is
the value of x for which it is found. See notes for FindMinimum. See page 107. See also: FindMinimum,
NMaximize, Maximize, FindFit, LinearProgramming, D. Related package: Statistics`NonlinearFit`. New in
Version 5.0.

- FindMinimum
FindMinimum[f, {x, x�}] searches for a local minimum in f, starting from the point x=x�.
, FindMinimum[f, {{x, x�}, {y, y�}, . . . }] searches for a local minimum in a function of
several variables.

(continued)



1148 FindMinimum (continued) — FindRoot Mathematica Reference Guide

- FindMinimum (continued)

FindMinimum returns a list of the form {fmin, {x->xmin}}, where fmin is the minimum value of f found, and xmin
is the value of x for which it is found. , If the starting point for a variable is given as a list, the values of the
variable are taken to be lists with the same dimensions. FindMinimum has attribute HoldAll.
- FindMinimum[f, {x, x�, x�}] searches for a local minimum in f using x� and x� as the first two values of x,
avoiding the use of derivatives. FindMinimum[f, {x, x�, xmin, xmax}] searches for a local minimum, stopping the
search if x ever gets outside the range xmin to xmax. The results found by FindMinimum may correspond only to
local, but not global, minima. - The following options can be given:

AccuracyGoal Automatic the accuracy sought
Compiled True whether the function should be compiled
EvaluationMonitor None expression to evaluate whenever f is evaluated
Gradient Automatic the list of gradient functions {D[f, x], D[f, y], . . . }

MaxIterations 100 maximum number of iterations to use
Method Automatic method to use
PrecisionGoal Automatic the precision sought
StepMonitor None expression to evaluate whenever a step is taken
WorkingPrecision MachinePrecision the precision used in internal computations
- The default settings for AccuracyGoal and PrecisionGoal are WorkingPrecision/2. , The settings for
AccuracyGoal and PrecisionGoal specify the number of digits to seek in both the value of the position of the
minimum, and the value of the function at the minimum. FindMinimum continues until either of the goals
specified by AccuracyGoal or PrecisionGoal is achieved. - Possible settings for Method include
"ConjugateGradient", "Gradient", "LevenbergMarquardt", "Newton" and "QuasiNewton", with the default being
Automatic. See page 973. Implementation notes: see page 1068. See also: FindMaximum, NMinimize, Minimize,
FindFit, LinearProgramming, D, CholeskyDecomposition. New in Version 1; modified in Version 5.0.

- FindRoot
FindRoot[lhs==rhs, {x, x�}] searches for a numerical solution to the equation lhs==rhs,
starting with x=x�.
FindRoot[{eqn�, eqn�, . . . }, {{x, x�}, {y, y�}, . . . }] searches for a numerical solution to
the simultaneous equations eqni.
- If the starting point for a variable is given as a list, the values of the variable are taken to be lists with the
same dimensions. FindRoot returns a list of replacements for x, y, . . . , in the same form as obtained from Solve.

FindRoot has attribute HoldAll. - FindRoot[lhs==rhs, {x, x�, x�}] searches for a solution using x� and x� as
the first two values of x, avoiding the use of derivatives. FindRoot[lhs==rhs, {x, xstart, xmin, xmax}] searches
for a solution, stopping the search if x ever gets outside the range xmin to xmax. If you specify only one starting
value of x, FindRoot searches for a solution using Newton methods. If you specify two starting values, FindRoot
uses a variant of the secant method. If all equations and starting values are real, then FindRoot will search only
for real roots. If any are complex, it will also search for complex roots. You can always tell FindRoot to search
for complex roots by adding 0. I to the starting value. , FindRoot[expr, . . . ] will search for a root of the
equation expr==0. - The following options can be given:

AccuracyGoal Automatic the accuracy sought
Compiled True whether the function should be compiled
EvaluationMonitor None expression to evaluate whenever equations are evaluated
Jacobian Automatic the Jacobian of the system
MaxIterations 100 maximum number of iterations to use
PrecisionGoal Automatic the precision sought
StepMonitor None expression to evaluate whenever a step is taken
WorkingPrecision MachinePrecision the precision to use in internal computations

(continued)



A.10 Major Built-in Mathematica Objects FindRoot (continued) — FixedPoint 1149

- FindRoot (continued)

- The default settings for AccuracyGoal and PrecisionGoal are WorkingPrecision/2. , The setting for
AccuracyGoal specifies the number of digits of accuracy to seek both in the value of the position of the root, and
the value of the function at the root. , The setting for PrecisionGoal specifies the number of digits of precision
to seek in the value of the position of the root. , FindRoot continues until either of the goals specified by
AccuracyGoal or PrecisionGoal is achieved. If FindRoot does not succeed in finding a solution to the accuracy
you specify within MaxIterations steps, it returns the most recent approximation to a solution that it found. You
can then apply FindRoot again, with this approximation as a starting point. See page 960. Implementation
notes: see page 1068. See also: NSolve, Solve, FindMinimum, FindInstance. Related package:
NumericalMath`InterpolateRoot`. New in Version 1; modified in Version 5.0.

First
First[expr] gives the first element in expr.
First[expr] is equivalent to expr[[1]]. See page 122. See also: Part, Last, Rest, Take, Select. New in
Version 1.

Fit
Fit[data, funs, vars] finds a least-squares fit to a list of data as a linear combination of the
functions funs of variables vars.
The data can have the form {{x�, y�, . . . , f�}, {x�, y�, . . . , f�}, . . . }, where the number of
coordinates x, y, . . . is equal to the number of variables in the list vars.
The data can also be of the form {f�, f�, . . . }, with a single coordinate assumed to take values
1, 2, . . . .
The argument funs can be any list of functions that depend only on the objects vars.
Fit[{f�, f�, . . . }, {1, x, x^2}, x] gives a quadratic fit to a sequence of values fi. The result is of the form
a� + a� x + a� x^2, where the ai are real numbers. The successive values of x needed to obtain the fi are assumed
to be 1, 2, . . . . Fit[{{x�, f�}, {x�, f�}, . . . }, {1, x, x^2}, x] does a quadratic fit, assuming a sequence of x
values xi. Fit[{{x�, y�, f�}, . . . }, {1, x, y}, {x, y}] finds a fit of the form a� + a� x + a� y. Fit always
finds the linear combination of the functions in the list funs that minimizes the sum of the squares of deviations
from the values fi. Exact numbers given as input to Fit are converted to approximate numbers with machine
precision. See page 926. Implementation notes: see page 1069. See also: FindFit, Interpolation,
InterpolatingPolynomial, Solve, PseudoInverse, QRDecomposition, FindMinimum. Related packages:
Statistics`LinearRegression`. New in Version 1.

FixedPoint
FixedPoint[f, expr] starts with expr, then applies f repeatedly until the result no longer
changes.
FixedPoint[f, expr, n] stops after at most n steps. FixedPoint always returns the last result it gets. You can
use Throw to exit from FixedPoint before it is finished. FixedPoint[f, expr] applies SameQ to successive pairs of
results to determine whether a fixed point has been reached. NestWhile[f, expr, comp, 2] uses a general
comparison function. See page 241. See also: FixedPointList, NestWhile, Nest, ReplaceRepeated. New in
Version 1; modified in Version 3.



1150 FixedPointList — Floor Mathematica Reference Guide

FixedPointList
FixedPointList[f, expr] generates a list giving the results of applying f repeatedly, starting
with expr, until the results no longer change.
See notes for FixedPoint. FixedPointList[f, expr] gives expr as the first element of the list it produces. The
last two elements in the list produced by FixedPointList are always the same. See page 241. See also:
NestWhileList, NestList, ComposeList. New in Version 2.

Flat
Flat is an attribute that can be assigned to a symbol f to indicate that all expressions involving
nested functions f should be flattened out. This property is accounted for in pattern matching.
Flat corresponds to the mathematical property of associativity. For a symbol f with attribute Flat,
f[f[a, b], f[c]] is automatically reduced to f[a, b, c]. Functions like Plus, Times and Dot are Flat. For a
Flat function f, the variables x and y in the pattern f[x_, y_] can correspond to any sequence of arguments.

The Flat attribute must be assigned before defining any values for a Flat function. See page 329. See also:
Orderless, OneIdentity. New in Version 1.

Flatten
Flatten[list] flattens out nested lists.
Flatten[list, n] flattens to level n.
Flatten[list, n, h] flattens subexpressions with head h.
Example: Flatten[{a,{b,c},{d}}] ��# �a, b, c, d� . Flatten “unravels” lists, effectively just deleting inner
braces. Flatten[list, n] effectively flattens the top level in list n times. Flatten[f[e, . . . ]] flattens out
subexpressions with head f. , Flatten flattens out levels in SparseArray objects just as in the corresponding
ordinary arrays. See pages 130 and 255. See also: Partition, FlattenAt. New in Version 1.

FlattenAt

FlattenAt[list, n] flattens out a sublist that appears as the nth element of list. If n is negative,
the position is counted from the end.
FlattenAt[expr, {i, j, . . . }] flattens out the part of expr at position {i, j, . . . }.
FlattenAt[expr, {{i�, j�, . . . }, {i�, j�, . . . }, . . . }] flattens out parts of expr at several
positions.
Example: FlattenAt[{a, {b, c}, {d, e}}, 2] ��# �a, b, c, �d, e�� . See page 255. See also: DeleteCases,
Flatten, Sequence, SlotSequence. New in Version 2.

Floor
Floor[x] gives the greatest integer less than or equal to x.
Mathematical function (see Section A.3.10). Examples: Floor[2.4] ��# 2 ; Floor[2.6] ��# 2 ;
Floor[-2.4] ��# �3 ; Floor[-2.6] ��# �3 . Floor[x] can be entered in StandardForm and InputForm as D x E,
Hlf H x Hrf H or \[LeftFloor] x \[RightFloor]. Floor[x] returns an integer when x is any numeric quantity,
whether or not it is an explicit number. Example: Floor[Pi^2] ��# 9 . For exact numeric quantities, Floor
internally uses numerical approximations to establish its result. This process can be affected by the setting of the
global variable $MaxExtraPrecision. See page 745. Implementation notes: see page 1067. See also: Ceiling,
Round, IntegerPart, Chop. New in Version 1; modified in Version 3.



A.10 Major Built-in Mathematica Objects Fold — FontSlant 1151

Fold
Fold[f, x, list] gives the last element of FoldList[f, x, list].
Example: Fold[f, x, {a, b, c}] ��# fffx, a�, b�, c� . You can use Throw to exit from Fold before it is
finished. See notes for FoldList. See page 243. See also: Nest. New in Version 2; modified in Version 3.

FoldList
FoldList[f, x, {a, b, . . . }] gives {x, f[x, a], f[f[x, a], b], . . . }.
Example: FoldList[f, x, {a, b, c}] ��# �x, fx, a�, ffx, a�, b�, fffx, a�, b�, c�� .

FoldList[Plus, 0, list] generates cumulative sums of the elements in list. Example:
FoldList[Plus, 0, {a, b, c}] ��# �0, a, a � b, a � b � c� . With a length n list, FoldList generates a list of
length n � �. The head of list in FoldList[f, x, list] need not be List. See page 243. See also: Fold,
NestList, ComposeList, Partition, MapIndexed. New in Version 2.

FontColor
FontColor is an option for Cell, StyleBox and StyleForm which specifies the default color in
which to render text.
The setting for FontColor must be a CMYKColor, GrayLevel, Hue or RGBColor directive. See pages 444 and 612.

See also: Background, DefaultColor, FontWeight. New in Version 3.

FontFamily
FontFamily is an option for Cell, StyleBox and StyleForm which specifies the font family in
which text should be rendered.
The default is FontFamily->"Courier". Other common choices are "Times" and "Helvetica". Mathematica will
combine settings for FontFamily, FontWeight, FontSlant, FontTracking and sometimes FontSize to construct a
complete name for the font you want. It will then use this name, together with any settings you have specified for
FontPostScriptName and FontNativeName to try to locate an appropriate font on your particular computer system.

When generating PostScript output on a printer or otherwise, settings you give for FontPostScriptName are
typically used in preference to other font specifications. Mathematica will try making replacements for the font
family name that you specify with the option FontSubstitutions. Mathematica by default uses heuristics such as
translating "Helvetica" to "Geneva" for appropriate computer systems. See pages 444 and 612. See also:
StyleForm, TextStyle. New in Version 3.

FontSize
FontSize is an option for Cell, StyleBox and StyleForm which specifies the default size in
printer’s points of the font in which to render text.
The size of a font is typically taken to be the distance from the top of the highest character to the bottom of the
lowest character. A printer’s point is approximately ��� of an inch. Fonts with the same nominal point size may
not look the same size to the eye. See pages 444 and 612. See also: FontWeight, FontTracking, ScriptMinSize,
ScriptSizeMultipliers. New in Version 3.

FontSlant
FontSlant is an option for Cell, StyleBox and StyleForm which specifies how slanted the
characters should be in text in the cell.
Typical settings are "Plain", "Italic" and "Oblique". With the "Oblique" setting, each character typically has
the same basic form as with "Plain", but is slanted. With the "Italic" setting, the basic form is different. See
notes for FontFamily. See pages 444 and 612. See also: AutoItalicWords, SingleLetterItalics. New in
Version 3.



1152 FontSubstitutions — ForAll Mathematica Reference Guide

FontSubstitutions
FontSubstitutions is an option for Cell, StyleBox and StyleForm which gives a list of
substitutions to try for font family names.
A typical setting is {"Geneva" -> "Helvetica"}. FontSubstitutions is used only for FontFamily settings, and
not for FontWeight, FontSlant and so on. See page 612. See also: FontFamily. New in Version 3.

FontTracking
FontTracking is an option for Cell, StyleBox and StyleForm which specifies how condensed
or expanded you want the font in which text is rendered to be.
Typical settings are "Condensed" and "Expanded". The default is "Plain". For some fonts and on some computer
systems, additional settings are supported, such as "Narrow", "Compressed", "SemiCondensed", "Extended" and
"Wide". See notes for FontFamily. See page 612. New in Version 3.

FontWeight
FontWeight is an option for Cell, StyleBox and StyleForm which specifies how heavy the
characters in a font should be.
Typical settings are "Plain" and "Bold". For some fonts and on some computer systems, additional settings are
supported, such as "Thin", "Light", "Medium", "SemiBold", "Heavy", "Black" and "Fat". See notes for
FontFamily. See pages 444 and 612. New in Version 3.

For
For[start, test, incr, body] executes start, then repeatedly evaluates body and incr until test
fails to give True.
For evaluates its arguments in a non-standard way. For[start, test, incr] does the loop with a null body. The
sequence of evaluation is test, body, incr. The For exits as soon as test fails. If Break[ ] is generated in the
evaluation of body, the For loop exits. Continue[ ] exits the evaluation of body, and continues the loop by
evaluating incr. Unless Return[expr] or Throw[expr] is generated, the final value returned by For is Null.

Example: For[tot=0; i=0, i < 3, i++, tot += f[i]]. Note that the roles of semicolon and comma are reversed
relative to the C programming language. See page 352. See also: Do, While, Throw, NestWhile. New in
Version 1.

, ForAll
ForAll[x, expr] represents the statement that expr is True for all values of x.
ForAll[x, cond, expr] states that expr is True for all x satisfying the condition cond.
ForAll[{x�, x�, . . . }, expr] states that expr is True for all values of all the xi.
ForAll[x, expr] can be entered as \x expr . The character \ can be entered as ,fa , or \[ForAll]. The variable x is
given as a subscript. ForAll[x, cond, expr] can be entered as \x,cond expr . In StandardForm, ForAll[x, expr]
is output as \x expr . ForAll[x, cond, expr] is output as \x,cond expr . ForAll can be used in such functions as
Reduce, Resolve and FullSimplify. The condition cond is often used to specify the domain of a variable, as in
x � Integers. ForAll[x, cond, expr] is equivalent to ForAll[x, Implies[cond, expr]].

ForAll[{x�, x�, . . . }, . . . ] is equivalent to \x1
\x2

… . The value of x in ForAll[x, expr] is taken to be
localized, as in Block. See page 847. See also: Exists, Resolve, Reduce, Element, Blank, SolveAlways. New
in Version 5.0.



A.10 Major Built-in Mathematica Objects Format — FortranForm 1153

- Format
Format[expr] prints as the formatted form of expr.
Assigning values to Format[expr] defines print forms for expressions.
Format[expr, form] gives a format for the specified form of output.
- Standard forms for formatted output are:

CForm C language input form
FortranForm Fortran input form
InputForm one-dimensional form suitable for direct keyboard input
MathMLForm MathML form
OutputForm character-based two-dimensional form
StandardForm standard two-dimensional form
TeXForm TEX input form
TraditionalForm form approximating traditional mathematical notation

You can add your own forms for formatted output. Example: Format[s] := rhs defines a symbol s to print like
rhs. Format[f[ . . . ]] := rhs defines a function f to print like rhs. Definitions for Format are stored in the
FormatValues of a symbol. If you specify a new output format for an expression by giving a definition for
Format, there is no guarantee that Mathematica will be able to interpret this output format if it is used as input.

Definitions given for Format are used before those given for MakeBoxes. See page 473. See also: ToString,
ToBoxes, MakeBoxes, MakeExpression. New in Version 1; modified in Version 4.1.

FormatType
FormatType is an option for output streams, graphics and functions such as Text which
specifies the default format type to use when outputting expressions.
Standard values for FormatType are given in the notes for Format. SetOptions[stream, FormatType -> type]
resets the format type for an open stream. For graphics functions the default option setting is
FormatType :> $FormatType. For graphics functions box-based format types such as StandardForm and
TraditionalForm can be used only when a notebook front end is present. See pages 556 and 634. See also:
TextStyle, LanguageCategory. New in Version 1; modified in Version 3.

FormBox
FormBox[boxes, form] displays as boxes but specifies that rules associated with form should be
used to interpret boxes on input.
In InputForm and StandardForm \(form\`input\) yields FormBox[input, form]. \(\`input\) yields
FormBox[input, RawForm]. See page 447. See also: TagBox, InterpretationBox, ToExpression,
MakeExpression. New in Version 3.

FortranForm
FortranForm[expr] prints as a Fortran language version of expr.
Standard arithmetic functions and certain control structures are translated. FortranForm acts as a “wrapper”,
which affects printing, but not evaluation. The width of output lines must be set explicitly by giving the option
PageWidth -> n for the relevant output stream. SetOptions[$Output, PageWidth -> 72] uses a line width of 72
characters for standard Mathematica output. No declarations are generated. See pages 213 and 425. See also:
CForm, Compile. New in Version 1.



1154 Fourier — FourierSinTransform Mathematica Reference Guide

Fourier
Fourier[list] finds the discrete Fourier transform of a list of complex numbers.

The discrete Fourier transform vs of a list ur of length n is by default defined to be �
 

n
�n

r�� ure�Πi�r����s����n . Note

that the zero frequency term appears at position 1 in the resulting list. Other definitions are used in some
scientific and technical fields. Different choices of definitions can be specified using the option
FourierParameters. With the setting FourierParameters -> {a, b} the discrete Fourier transform computed by
Fourier is �

n���a���
�n

r�� ure�Πib�r����s����n . Some common choices for {a, b} are {0, 1} (default), {-1, 1} (data
analysis), {1, -1} (signal processing). The setting b � �� effectively corresponds to conjugating both input and
output lists. To ensure a unique inverse discrete Fourier transform, /b/ must be relatively prime to n. The list of
data supplied to Fourier need not have a length equal to a power of two. The list given in Fourier[list] can be
nested to represent an array of data in any number of dimensions. The array of data must be rectangular. If the
elements of list are exact numbers, Fourier begins by applying N to them. , Fourier can be used on
SparseArray objects. See page 935. Implementation notes: see page 1069. See also: InverseFourier,
FourierTransform, Fit. New in Version 1; modified in Version 4.

FourierCosTransform
FourierCosTransform[expr, t, Ω] gives the symbolic Fourier cosine transform of expr.
FourierCosTransform[expr, {t�, t�, . . . }, {Ω�, Ω�, . . . }] gives the multidimensional
Fourier cosine transform of expr.

The Fourier cosine transform of a function f�t� is by default defined to be
!

�
Π � �� f�t� cos�Ωt� dt. Other definitions

are used in some scientific and technical fields. Different choices of definitions can be specified using the option
FourierParameters. With the setting FourierParameters->{a, b} the Fourier cosine transform computed by

FourierCosTransform is �
"

/b/
��Π���a � �� f�t� cos�bΩt� dt. See notes for FourierTransform. See page 878. See also:

FourierSinTransform, FourierTransform, Fourier, InverseFourierCosTransform. New in Version 4.

FourierSinTransform
FourierSinTransform[expr, t, Ω] gives the symbolic Fourier sine transform of expr.
FourierSinTransform[expr, {t�, t�, . . . }, {Ω�, Ω�, . . . }] gives the multidimensional
Fourier sine transform of expr.

The Fourier sine transform of a function f�t� is by default defined to be
!

�
Π � �� f�t� sin�Ωt� dt. Other definitions are

used in some scientific and technical fields. Different choices of definitions can be specified using the option
FourierParameters. With the setting FourierParameters->{a, b} the Fourier sine transform computed by

FourierSinTransform is �
"

/b/
��Π���a � �� f�t� sin�bΩt� dt. See notes for FourierTransform. See page 878. See also:

FourierCosTransform, FourierTransform, Fourier, InverseFourierSinTransform. New in Version 4.



A.10 Major Built-in Mathematica Objects FourierTransform — Frame 1155

FourierTransform
FourierTransform[expr, t, Ω] gives the symbolic Fourier transform of expr.
FourierTransform[expr, {t�, t�, . . . }, {Ω�, Ω�, . . . }] gives the multidimensional Fourier
transform of expr.

The Fourier transform of a function f�t� is by default defined to be �
 

�Π
� ��� f�t� eiΩt dt. Other definitions are used

in some scientific and technical fields. Different choices of definitions can be specified using the option
FourierParameters. With the setting FourierParameters->{a, b} the Fourier transform computed by

FourierTransform is
"

/b/
��Π���a � ��� f�t� eibΩt dt. Some common choices for {a, b} are {0, 1} (default; modern

physics), {1, -1} (pure mathematics; systems engineering), {-1, 1} (classical physics), {0, -2 Pi} (signal
processing). Assumptions and other options to Integrate can also be given in FourierTransform.

FourierTransform[expr, t, Ω] yields an expression depending on the continuous variable Ω that represents the
symbolic Fourier transform of expr with respect to the continuous variable t. Fourier[list] takes a finite list of
numbers as input, and yields as output a list representing the discrete Fourier transform of the input. In
TraditionalForm, FourierTransform is output using � . See page 876. See also: FourierSinTransform,
FourierCosTransform, Fourier, InverseFourierTransform, LaplaceTransform, Integrate. New in Version 4.

FractionalPart
FractionalPart[x] gives the fractional part of x.
Mathematical function (see Section A.3.10). FractionalPart[x] in effect takes all digits to the right of the
decimal point and drops the others. Examples: FractionalPart[2.4] ��# 0.4 ; FractionalPart[2.6] ��# 0.6 ;
FractionalPart[-2.4] ��# �0.4 ; FractionalPart[-2.6] ��# �0.6 . FractionalPart[x] + IntegerPart[x] is
always exactly x. FractionalPart[x] yields a result when x is any numeric quantity, whether or not it is an
explicit number. Example: FractionalPart[Pi^2] ��# �9 � Π2. For exact numeric quantities, FractionalPart
internally uses numerical approximations to establish its result. This process can be affected by the setting of the
global variable $MaxExtraPrecision. See page 745. See also: IntegerPart, Mod. New in Version 3.

FractionBox

FractionBox[x, y] represents x������y in input and output.
Inside \( . . . \) FractionBox[x, y] can be input as x \/ y. In a notebook a FractionBox can be created using
��/� . ���� moves out of the fraction. In StandardForm and InputForm, FractionBox[x, y] is interpreted on
input as x/y. The axis of FractionBox[x, y] is taken to go through the fraction line. The baseline lies below the
axis by the distance between the axis and the bottom of characters such as ( in the current font. The width of
the fraction line can be given in x-heights as the setting for the SpanLineThickness option in StyleBox. If
FractionBox[x, y] does not fit on a single line, it is output as x / y. In StandardForm, explicit FractionBox
objects are output literally. You can use DisplayForm to see the display form of such objects. See page 445. See
also: OverscriptBox, GridBox. New in Version 3.

Frame
Frame is an option for two-dimensional graphics functions which specifies whether a frame
should be drawn around the plot.
Frame -> True by default draws a frame with tick marks. If Ticks -> Automatic, setting Frame -> True
suppresses tick marks on axes. See pages 511 and 514. See also: Boxed. New in Version 2.



1156 FrameBox — FreeQ Mathematica Reference Guide

FrameBox
FrameBox[box] displays with a frame drawn around box.
In StandardForm and InputForm, FrameBox is by default ignored, so that FrameBox[box] is interpreted just as box
would be. In StandardForm, explicit FrameBox objects are output literally. You can use DisplayForm to see the
display form of such objects. See page 446. See also: StyleBox, CellFrame, ColumnLines, RowLines. New in
Version 3.

FrameLabel
FrameLabel is an option for two-dimensional graphics functions that specifies labels to be
placed on the edges of a frame around a plot.
FrameLabel -> None specifies that no labels should be given. FrameLabel -> {xmlabel, ymlabel} specifies labels
for the bottom and left-hand edges of the frame. FrameLabel -> {xmlabel, ymlabel, xplabel, yplabel} specifies
labels for each of the edges of the frame, ordered clockwise starting from the bottom edge. Any expression can
be specified as a label. It will be given in OutputForm. Arbitrary strings of text can be given as "text". Labels for
the vertical edges of the frame are by default written vertically. RotateLabel -> False specifies that they should
be horizontal. See page 514. See also: AxesLabel, PlotLabel. New in Version 2.

FrameStyle
FrameStyle is an option for two-dimensional graphics functions that specifies how the edges
of a frame should be rendered.
FrameStyle -> style specifies that all edges of the frame are to be generated with the specified graphics directive,
or list of graphics directives. FrameStyle -> {{xmstyle}, {ymstyle}, . . . } specifies that different edges of the
frame should be generated with different styles. The edges are ordered clockwise starting from the bottom edge. All
styles must be enclosed in lists, perhaps of length one. Styles can be specified using graphics directives such as
Dashing, Hue and Thickness. The default color of frame edges is specified by the option DefaultColor. See
page 514. See also: Prolog, Epilog, AxesStyle. New in Version 2.

FrameTicks
FrameTicks is an option for two-dimensional graphics functions that specifies tick marks for
the edges of a frame.
The following settings can be given for FrameTicks:

None no tick marks drawn
Automatic tick marks placed automatically
{xmticks, ymticks, . . . } tick mark options specified separately for each edge

When tick mark specifications are given separately for each edge, the edges are ordered clockwise starting from
the bottom of the frame. With the Automatic setting, tick marks are usually placed at points whose coordinates
have the minimum number of digits in their decimal representation. For each edge, tick marks can be specified as
described in the notes for Ticks. See page 514. See also: Ticks, GridLines, FaceGrids. New in Version 2.

FreeQ
FreeQ[expr, form] yields True if no subexpression in expr matches form, and yields False
otherwise.
FreeQ[expr, form, levelspec] tests only those parts of expr on levels specified by levelspec.
form can be a pattern. Example: FreeQ[f[x^2] + y^2, x^_] ��# False . FreeQ looks at the heads of raw
expressions, testing whether those heads match form. See page 268. See also: MemberQ, Count. New in
Version 1.



A.10 Major Built-in Mathematica Objects FresnelC — FromDate 1157

FresnelC
FresnelC[z] gives the Fresnel integral C�z�.

Mathematical function (see Section A.3.10). FresnelC[z] is given by � z
�

cos �Πt���� dt. FresnelC[z] is an entire
function of z with no branch cut discontinuities. See page 775. See also: Erf, CosIntegral. New in Version 3.

FresnelS
FresnelS[z] gives the Fresnel integral S�z�.

Mathematical function (see Section A.3.10). FresnelS[z] is given by � z
�

sin �Πt���� dt. FresnelS[z] is an entire
function of z with no branch cut discontinuities. See page 775. See also: Erf, SinIntegral. New in Version 3.

FromCharacterCode
FromCharacterCode[n] gives a string consisting of the character with integer code n.
FromCharacterCode[{n�, n�, . . . }] gives a string consisting of the sequence of characters
with codes ni.
FromCharacterCode[{{n��, n��, . . . }, {n��, . . . }, . . . }] gives a list of strings.
FromCharacterCode[ . . . , "encoding"] uses the specified character encoding.
The integer n must lie between 0 and 65535, as returned by ToCharacterCode. For n between 0 and 127,
FromCharacterCode returns ASCII characters. For n between 129 and 255, it returns ISO Latin-1 characters. For
other n it returns characters specified by the standard Mathematica encoding based on Unicode.

InputForm[FromCharacterCode[n]] gives the full name assigned to a special character with character code n.
Whether a particular character generated by FromCharacterCode can be rendered on your output device will

depend on what fonts and drivers you are using. Encodings supported in FromCharacterCode[ . . . , "encoding"]
are listed in the notes for $CharacterEncoding. See page 417. See also: ToCharacterCode, CharacterRange,
$CharacterEncoding. Related package: Utilities`BinaryFiles`. New in Version 2; modified in Version 4.

FromContinuedFraction
FromContinuedFraction[list] reconstructs a number from the list of its continued fraction
terms.
FromContinuedFraction[{a�, a�, a, . . . }] returns a� � ���a� � ���a � 			��. The ai can be symbolic.

FromContinuedFraction[{a�, a�, . . . , {b�, b�, . . . }}] returns the exact number whose continued fraction terms
start with the ai, then consist of cyclic repetitions of the bi. FromContinuedFraction acts as the inverse of
ContinuedFraction. See page 754. Implementation notes: see page 1067. See also: ContinuedFraction,
Rationalize, FromDigits, Fold. New in Version 4.

FromDate
FromDate[date] converts a date of the form {y, m, d, h, m, s} to an absolute number of
seconds since the beginning of January 1, 1900.
FromDate converts between the forms returned by Date and AbsoluteTime. FromDate assumes that both the date
and the absolute time are to be given in the same time zone. See page 710. See also: ToDate. Related
package: Miscellaneous`Calendar`. New in Version 2.



1158 FromDigits — FullGraphics Mathematica Reference Guide

FromDigits
FromDigits[list] constructs an integer from the list of its decimal digits.
FromDigits[list, b] takes the digits to be given in base b.
Example: FromDigits[{3,7,4}] ��# 374 . FromDigits is effectively the inverse of IntegerDigits.

FromDigits[{list, n}, b] takes n to be an exponent, while FromDigits[{{list, {rep}}, n}, b] takes rep to be
repeated, so that FromDigits can also be used as the inverse of RealDigits. Since IntegerDigits[n] discards
the sign of n, FromDigits[IntegerDigits[n]] is Abs[n] not just n. The digits in list and the base b need not be
positive integers, and can be any expression. If Indeterminate appears in list, it is assumed to signify unknown
digits beyond the precision of an approximate real number. See page 725. See also: IntegerDigits,
RealDigits, FromContinuedFraction, NumberForm, DigitCount. New in Version 3; modified in Version 4.0.

FrontEndExecute
FrontEndExecute[expr] sends expr to be executed by the Mathematica front end.
FrontEndExecute[expr] sends expr to $FrontEnd via MathLink using LinkWrite. The standard Mathematica front
end can handle only specific notebook manipulation commands such as NotebookApply, NotebookLocate and
SelectedNotebook. It uses the versions of these commands in the FrontEnd` context.

FrontEndExecute[FrontEndToken["name"]] executes named commands in the front end, typically corresponding
to menu items. See page 594. See also: LinkWrite, ButtonEvaluator. New in Version 3.

FullDefinition
FullDefinition[symbol] prints as the definitions given for symbol, and all symbols on which
these depend.
FullDefinition has attribute HoldAll. FullDefinition[symbol] recursively prints as all definitions for the
symbol, and for the symbols that appear in these definitions, unless those symbols have the attribute Protected.

FullDefinition does not show rules associated with symbols that have attribute ReadProtected. See page 625.
See also: Definition, Save, Information. New in Version 1.

- FullForm
FullForm[expr] prints as the full form of expr, with no special syntax.
Example: FullForm[a + b^2] ��# Plusa, Powerb, 2�� . FullForm acts as a “wrapper”, which affects printing,
but not evaluation. , FullForm always effectively uses "PrintableASCII" as the setting for $CharacterEncoding.

See page 424. See also: InputForm, TreeForm. New in Version 1; modified in Version 5.0.

FullGraphics
FullGraphics[g] takes a graphics object, and generates a new one in which objects specified
by graphics options are given as explicit lists of graphics primitives.
FullGraphics generates explicit graphics primitives for objects specified by options such as Axes, Ticks, etc. See
page 490. See also: AbsoluteOptions. New in Version 2.



A.10 Major Built-in Mathematica Objects FullSimplify — FunctionExpand 1159

- FullSimplify
FullSimplify[expr] tries a wide range of transformations on expr involving elementary and
special functions, and returns the simplest form it finds.
FullSimplify[expr, assum] does simplification using assumptions.
FullSimplify will always yield at least as simple a form as Simplify, but may take substantially longer. - The
following options can be given:

Assumptions $Assumptions default assumptions to append to assum
ComplexityFunction Automatic how to assess the complexity of each form generated
ExcludedForms { } patterns specifying forms of subexpression that should not be

touched
TimeConstraint Infinity for how many seconds to try doing any particular transformation
TransformationFunctions Automatic functions to try in transforming the expression

FullSimplify uses RootReduce on expressions that involve Root objects. FullSimplify does transformations
on most kinds of special functions. , You can specify default assumptions for FullSimplify using Assuming.

See notes for Simplify. See pages 68 and 813. Implementation notes: see page 1070. See also: Simplify,
Factor, Expand, PowerExpand, ComplexExpand, TrigExpand, Element, FunctionExpand, Assuming. New in
Version 3; modified in Version 5.0.

Function
Function[body] or body& is a pure function. The formal parameters are # (or #1), #2, etc.
Function[x, body] is a pure function with a single formal parameter x.
Function[{x�, x�, . . . }, body] is a pure function with a list of formal parameters.
Example: (# + 1)&[x] ��# 1 � x . Map[(# + 1)&, {x, y, z}] ��# �1 � x, 1 � y, 1 � z� . When Function[body]
or body& is applied to a set of arguments, # (or #1) is replaced by the first argument, #2 by the second, and so on.
#0 is replaced by the function itself. If there are more arguments supplied than #i in the function, the remaining
arguments are ignored. ## stands for the sequence of all arguments supplied. ##n stands for arguments from
number n on. f[##, ##2]& [x, y, z] ��# fx, y, z, y, z� . Function is analogous to Λ in LISP or formal
logic. Function has attribute HoldAll. The function body is evaluated only after the formal parameters have been
replaced by arguments. The named formal parameters xi in Function[{x�, . . . }, body] are treated as local, and
are renamed xi$ when necessary to avoid confusion with actual arguments supplied to the function. Function is
treated as a scoping construct (see Section A.3.8). Function[params, body, {attr�, attr�, . . . }] represents a pure
function that is to be treated as having attributes attri for the purpose of evaluation. See page 248. See also:
Apply, CompiledFunction. New in Version 1.

- FunctionExpand
FunctionExpand[expr] tries to expand out special and certain other functions in expr, when
possible reducing compound arguments to simpler ones.
FunctionExpand[expr, assum] expands using assumptions.
FunctionExpand uses a large collection of rules. FunctionExpand applies to certain trigonometric functions as
well as special functions. FunctionExpand is automatically called by FullSimplify. Assumptions in
FunctionExpand can be specified as in Simplify. Example: FunctionExpand[expr, x � Reals] performs
expansion assuming that x is real. , FunctionExpand has the option Assumptions, specifying default assumptions
to be appended to assum. , The default setting for the Assumptions option is $Assumptions. , You can specify
default assumptions for FunctionExpand using Assuming. See page 792. Implementation notes: see page 1070.

See also: TrigExpand, TrigToExp, ComplexExpand, FullSimplify. New in Version 3; modified in Version 5.0.



1160 FunctionInterpolation — GaussianIntegers Mathematica Reference Guide

FunctionInterpolation
FunctionInterpolation[expr, {x, xmin, xmax}] evaluates expr with x running from xmin to
xmax and constructs an InterpolatingFunction object which represents an approximate
function corresponding to the result.
FunctionInterpolation[expr, {x, xmin, xmax}, {y, ymin, ymax}, . . . ] constructs an
InterpolatingFunction object with several arguments.
You can use FunctionInterpolation to generate a single InterpolatingFunction object from an expression
containing several such objects. The option InterpolationPrecision specifies the precision of values to be
returned by the InterpolatingFunction generated. See notes for Interpolation. See page 935. See also:
ListInterpolation, InterpolatingPolynomial, Table. New in Version 3.

Gamma
Gamma[z] is the Euler gamma function ��z�.
Gamma[a, z] is the incomplete gamma function ��a� z�.
Gamma[a, z�, z�] is the generalized incomplete gamma function ��a� z�� � ��a� z��.

Mathematical function (see Section A.3.10). The gamma function satisfies ��z� � � �� tz��e�tdt. The incomplete

gamma function satisfies ��a� z� � � �z ta��e�tdt. The generalized incomplete gamma function is given by the

integral � z�
z�

ta��e�tdt. Note that the arguments in the incomplete form of Gamma are arranged differently from

those in the incomplete form of Beta. Gamma[z] has no branch cut discontinuities. Gamma[a, z] has a branch
cut discontinuity in the complex z plane running from �� to �. FullSimplify and FunctionExpand include
transformation rules for Gamma. See page 770. Implementation notes: see page 1068. See also: Factorial,
LogGamma, GammaRegularized, InverseGammaRegularized, PolyGamma, RiemannSiegelTheta. New in Version 1.

GammaRegularized
GammaRegularized[a, z] is the regularized incomplete gamma function Q�a� z�.
Mathematical function (see Section A.3.10). In non-singular cases, Q�a� z� � ��a� z����a�.

GammaRegularized[a, z�, z�] is the generalized regularized incomplete gamma function, defined in non-singular
cases as Gamma[a, z�, z�]/Gamma[a]. Note that the arguments in GammaRegularized are arranged differently from
those in BetaRegularized. See page 770. See also: InverseGammaRegularized. New in Version 2.

GaussianIntegers
GaussianIntegers is an option for FactorInteger, PrimeQ, Factor and related functions
which specifies whether factorization should be done over Gaussian integers.
With GaussianIntegers -> False, factorization is done over the ordinary ring of integers �. With
GaussianIntegers -> True, factorization is done over the ring of integers with i adjoined �eif. Example:
FactorInteger[13, GaussianIntegers -> True] ��# ����, 1�, �2 � 3 �, 1�, �3 � 2 �, 1�� . The Gaussian
primes used when GaussianIntegers -> True are chosen to have both real and imaginary parts positive. The
first entry in the list given by FactorInteger with GaussianIntegers -> True may be -1 or -I. See page 751.

See also: Extension, ComplexExpand. New in Version 2.



A.10 Major Built-in Mathematica Objects GCD — GeneratedParameters 1161

GCD
GCD[n�, n�, . . . ] gives the greatest common divisor of the integers ni.
Integer mathematical function (see Section A.3.10). GCD[n�, . . . ] gives the integer factors common to all the ni.

GCD also works with rational numbers; GCD[r�, r�, . . . ] gives the greatest rational number r for which all the
ri/r are integers. GCD has attributes Flat and Orderless. See page 749. See also: PolynomialGCD, Rational,
LCM, ExtendedGCD. New in Version 1.

GegenbauerC

GegenbauerC[n, m, x] gives the Gegenbauer polynomial C�m�n �x�.

GegenbauerC[n, x] gives the renormalized form limm#� C�m�n �x��m.
Mathematical function (see Section A.3.10). Explicit polynomials are given for integer n and for any m. Cm

n �x�
satisfies the differential equation �� � x��y$$ � ��m � ��xy$ � n�n � �m�y � �. The Gegenbauer polynomials are
orthogonal on the interval ���� �� with weight function �� � x��m����, corresponding to integration over a unit
hypersphere. GegenbauerC[n, 0, x] is always zero. GegenbauerC[n, m, z] has a branch cut discontinuity in
the complex z plane running from �� to ��. See page 766. See also: LegendreP, ChebyshevT, ChebyshevU.

New in Version 1.

General
General is a symbol to which general system messages are attached.
When you refer to a message with name s::tag in On or Off, the text of the message is obtained from
General::tag if no specific message named s::tag exists. See page 480. New in Version 1.

GenerateConditions
GenerateConditions is an option for Integrate that specifies whether explicit conditions on
parameters should be generated in the results of definite integrals.
- The default setting is GenerateConditions->Automatic, which is equivalent to a setting of True for
one-dimensional integrals. See page 867. See also: Assumptions. New in Version 3.

GeneratedCell
GeneratedCell is an option for Cell which indicates whether the cell was generated from the
kernel.
Cells created interactively using only operations in the front end have GeneratedCell->False. The setting for
GeneratedCell is used to determine which cells should be considered as Mathematica output. See page 608. See
also: CellAutoOverwrite. New in Version 3.

, GeneratedParameters
GeneratedParameters is an option which specifies how parameters generated to represent the
results of various symbolic operations should be named.
The typical default setting is GeneratedParameters->C. The setting GeneratedParameters->f specifies that
successive generated parameters should be named f[1], f[2], . . . . In typical cases, the f[i] are used to
parameterize families of solutions to equations. The f[i] usually correspond to free parameters, but are also
sometimes used to represent arbitrary functions. The f[i] have indices that start at 1 for each invocation of a
particular symbolic operation. GeneratedParameters->(Module[{C}, C]&) guarantees that parameters are unique,
even across different invocations of a function. GeneratedParameters is an option to such functions as DSolve,
RSolve and Reduce. See page 841. See also: C, Unique, Module. New in Version 5.0.



1162 Get — Graphics Mathematica Reference Guide

Get
<<name reads in a file, evaluating each expression in it, and returning the last one.
On systems with graphical interfaces, there will usually be graphical tools for reading in files. If name is the name
of a Mathematica context, ending with a ` context mark character, then Get will process this name to find the file to
read. If name is the name of a file, any .m extension must be included explicitly. Get can read .mx files of
Mathematica definitions written by DumpSave. <<"name" is equivalent to <<name. The double quotes can be omitted
if the name is of the form specified on page 1033. If a file with name file.mx is found to be a directory, Get will
look for a file with a name like file.mx/$SystemID/file.mx. If the file found by <<name is a directory, Mathematica
will try to load the file init.m in that directory. Get by default successively searches for files in the directories
specified by the elements of $Path. Get[name, Path->{"dir�", "dir�", . . . }] successively searches for files in
each of the diri. Syntax errors in Mathematica input files are reported in the standard form:
filename: line: syntax error in expr. Get continues attempting to read a file even after a syntax error has been
detected. However, if an error is detected, $Context and $ContextPath are reset to the values they had when Get
was called. During the execution of Get, the global variable $Input is set to the name of the file being read.

Get["file", "key"] reads a file which has been encoded using Encode["source", "file", "key"]. See page 623.
See also: Read, Install, RunThrough, Put, Splice, FileNames, ToFileName, ToExpression, NotebookGet. New

in Version 1; modified in Version 3.

Glaisher
Glaisher is Glaisher’s constant with numerical value � �	���
.

Mathematical constant (see Section A.3.11). Glaisher’s constant A satisfies log�A� � ��� � Ζ
$����, where Ζ is the

Riemann zeta function. See page 765. See also: Zeta. New in Version 4.

GoldenRatio

GoldenRatio is the golden ratio Φ � �� �
 

����, with numerical value � �	����.
Mathematical constant (see Section A.3.11). See page 765. See also: Fibonacci. New in Version 1.

Goto
Goto[tag] scans for Label[tag], and transfers control to that point.
Goto first scans any compound expression in which it appears directly, then scans compound expressions which
enclose this one. See pages 353 and 354. See also: Throw, Switch, Which. New in Version 1; modified in
Version 3.

Graphics
Graphics[primitives, options] represents a two-dimensional graphical image.
Graphics is displayed using Show. The following graphics primitives can be used:

Circle[{x, y}, r] circle
Disk[{x, y}, r] filled disk
Line[{{x�, y�}, . . . }] line
Point[{x, y}] point
Polygon[{{x�, y�}, . . . }] filled polygon
PostScript["string"] PostScript code to include verbatim
Raster[array] array of gray levels
RasterArray[garray] array of colored cells
Rectangle[{xmin, ymin}, {xmax, ymax}] filled rectangle
Text[expr, {x, y}] text

(continued)



A.10 Major Built-in Mathematica Objects Graphics (continued) — Graphics (continued) 1163

Graphics (continued)

The sound primitives SampledSoundList and SampledSoundFunction can also be included. The following
graphics directives can be used:

AbsoluteDashing[{w�, . . . }] absolute line dashing specification
AbsolutePointSize[d] absolute point size specification
AbsoluteThickness[w] absolute line thickness specification
CMYKColor[c, m, y, k] color specification
Dashing[{w�, . . . }] line dashing specification
GrayLevel[i] intensity specification
Hue[h] hue specification
PointSize[d] point size specification
RGBColor[r, g, b] color specification
Thickness[w] line thickness specification

The following options can be given:

AspectRatio 1/GoldenRatio ratio of height to width
Axes False whether to draw axes
AxesLabel None axes labels
AxesOrigin Automatic where axes should cross
AxesStyle Automatic graphics directives to specify the style for axes
Background Automatic background color for the plot
ColorOutput Automatic type of color output to produce
DefaultColor Automatic the default color for plot elements
DisplayFunction $DisplayFunction function for generating output
Epilog {} graphics primitives to be rendered after the main plot
FormatType $FormatType the default format type for text
Frame False whether to put a frame around the plot
FrameLabel None frame labels
FrameStyle Automatic graphics directives giving the style for the frame
FrameTicks Automatic frame tick marks
GridLines None grid lines to draw
ImageSize Automatic the absolute size at which to render the graphic in a notebook
PlotLabel None a label for the plot
PlotRange Automatic range of values to include
PlotRegion Automatic the final display region to be filled
Prolog {} graphics primitives to be rendered before the main plot
RotateLabel True whether to rotate y labels on the frame
TextStyle $TextStyle the default style for text
Ticks Automatic tick marks

Nested lists of graphics primitives can be given. Specifications such as GrayLevel remain in effect only until the
end of the list which contains them. Graphics[Graphics3D[ . . . ]] generates an ordinary 2D graphics object
corresponding to 3D graphics. The same works for SurfaceGraphics, ContourGraphics and DensityGraphics.

The standard print form for Graphics[ . . . ] is -Graphics-. InputForm prints the explicit list of primitives. See
page 487. See also: Plot, ListPlot, ParametricPlot. Related package: Graphics`Graphics`. New in
Version 1.



1164 Graphics3D — Graphics3D Mathematica Reference Guide

Graphics3D
Graphics3D[primitives, options] represents a three-dimensional graphical image.
Graphics3D is displayed using Show. The following graphics primitives can be used:

Cuboid[{xmin, ymin, zmin}, . . . ] cuboid
Line[{{x�, y�, z�}, . . . }] line
Point[{x, y, z}] point
Polygon[{{x�, y�, z�}, . . . }] polygon
Text[expr, {x, y, z}] text

The sound primitives SampledSoundList and SampledSoundFunction can also be included. The following
graphics directives can be used:

AbsoluteDashing[{w�, . . . }] absolute line dashing specification
AbsolutePointSize[d] absolute point size specification
AbsoluteThickness[w] absolute line thickness specification
CMYKColor[c, m, y, k] color specification
Dashing[{w�, . . . }] line dashing specification
EdgeForm[spec] polygon edge specification
FaceForm[spec] polygon face specification
GrayLevel[i] gray-level specification
Hue[h] hue specification
PointSize[d] point size specification
RGBColor[r, g, b] color specification
SurfaceColor[spec] surface properties specification
Thickness[w] line thickness specification

The following options can be given:

AmbientLight GrayLevel[0] ambient illumination level
AspectRatio Automatic ratio of height to width
Axes False whether to draw axes
AxesEdge Automatic on which edges to put axes
AxesLabel None axes labels
AxesStyle Automatic graphics directives to specify the style for axes
Background Automatic background color for the plot
Boxed True whether to draw the bounding box
BoxRatios Automatic bounding 3D box ratios
BoxStyle Automatic graphics directives to specify the style for the box
ColorOutput Automatic type of color output to produce
DefaultColor Automatic the default color for plot elements
DisplayFunction $DisplayFunction function for generating output
Epilog {} 2D graphics primitives to be rendered after the main plot
FaceGrids None grid lines to draw on the bounding box
FormatType $FormatType the default format type for text
ImageSize Automatic the absolute size at which to render the graphic in a notebook
Lighting True whether to use simulated illumination
LightSources (see below) positions and colors of light sources
PlotLabel None a label for the plot
PlotRange Automatic range of values to include
PlotRegion Automatic the final display region to be filled
PolygonIntersections True whether to leave intersecting polygons unchanged
Prolog {} 2D graphics primitives to be rendered before the main plot

(continued)



A.10 Major Built-in Mathematica Objects Graphics3D (continued) — GrayLevel 1165

Graphics3D (continued)

RenderAll True whether to render all polygons
Shading True whether to shade polygons
SphericalRegion False whether to make the circumscribing sphere fit in final display area
TextStyle $TextStyle the default style for text
Ticks Automatic tick marks
ViewCenter Automatic point to put at the center of final display area
ViewPoint {1.3, -2.4, 2.} viewing position
ViewVertical {0, 0, 1} direction to make vertical

Nested lists of graphics primitives can be given. Specifications such as GrayLevel remain in effect only until the
end of the list which contains them. The standard print form for Graphics3D[ . . . ] is -Graphics3D-. InputForm
prints the explicit list of primitives. The default light sources used are
{{{1,0,1}, RGBColor[1,0,0]}, {{1,1,1}, RGBColor[0,1,0]}, {{0,1,1}, RGBColor[0,0,1]}}.

Graphics3D[SurfaceGraphics[ . . . ]] can be used to convert a SurfaceGraphics object into Graphics3D
representation. Graphics[SurfaceGraphics[ . . . ]] generates a representation in terms of ordinary 2D graphics
primitives. See page 487. See also: Plot3D, SurfaceGraphics, ParametricPlot3D. Related packages:
Graphics`Graphics3D`, Graphics`Shapes`, Graphics`Polyhedra`. New in Version 1.

GraphicsArray
GraphicsArray[{g�, g�, . . . }] represents a row of graphics objects.
GraphicsArray[{{g��, g��, . . . }, . . . }] represents a two-dimensional array of graphics
objects.
You can display a GraphicsArray object using Show. GraphicsArray sets up identical rectangular display areas
for each of the graphics objects it contains. GraphicsArray takes the same options as Graphics, with the defaults
for Ticks and FrameTicks changed to None. GraphicsArray takes the additional option GraphicsSpacing, which
specifies the spacing between the rectangular areas containing each graphics object. The default setting is
GraphicsSpacing -> 0.1. The options DisplayFunction, ColorOutput and CharacterEncoding are ignored for
graphics objects given inside GraphicsArray. See pages 139 and 487. See also: Rectangle, RasterArray,
TableForm, GridBox. New in Version 2.

GraphicsSpacing
GraphicsSpacing is an option for GraphicsArray which specifies the spacing between
elements in the array.
GraphicsSpacing -> 0 inserts no horizontal or vertical spacing, so that all adjacent rectangular areas in the array
are shown abutting. GraphicsSpacing -> {h, v} specifies horizontal and vertical spacing to use.

GraphicsSpacing -> s is equivalent to GraphicsSpacing -> {s, s}. The spacing is given in scaled coordinates,
relative to each rectangular area in the array. Example: a horizontal spacing of 0.1 yields an array in which the
rectangular areas are separated horizontally by distances equal to 0.1 of their widths. See page 141. See also:
TableSpacing. New in Version 2.

GrayLevel
GrayLevel[level] is a graphics directive which specifies the gray-level intensity with which
graphical objects that follow should be displayed.
The gray level must be a number between 0 and 1. 0 represents black; 1 represents white. On display devices
with no native gray-level capability, dither patterns are typically used, as generated by the PostScript interpreter.

See page 499. See also: RGBColor, Hue, Raster. New in Version 1.



1166 Greater — GridBox Mathematica Reference Guide

Greater
x > y yields True if x is determined to be greater than y.
x� > x� > x yields True if the xi form a strictly decreasing sequence.
Greater gives True or False when its arguments are real numbers. Greater does some simplification when its
arguments are not numbers. For exact numeric quantities, Greater internally uses numerical approximations to
establish numerical ordering. This process can be affected by the setting of the global variable $MaxExtraPrecision.

See page 86. See also: GreaterEqual, Less, Positive, Element. New in Version 1; modified in Version 3.

GreaterEqual
x >= y or x � y yields True if x is determined to be greater than or equal to y.
x� � x� � x yields True if the xi form a non-increasing sequence.
x � y can be entered as x H>= H y or x \[GreaterEqual] y. GreaterEqual gives True or False when its
arguments are real numbers. GreaterEqual does some simplification when its arguments are not numbers. For
exact numeric quantities, GreaterEqual internally uses numerical approximations to establish numerical ordering.
This process can be affected by the setting of the global variable $MaxExtraPrecision. In StandardForm,
GreaterEqual is printed using �. x � y, entered as x H>/ H y or x \[GreaterSlantEqual] y, can be used on
input as an alternative to x � y. See page 86. See also: Greater, LessEqual, Element. New in Version 1;
modified in Version 3.

- GridBaseline
GridBaseline is an option for GridBox which specifies where the baseline of the grid
represented by the GridBox should be assumed to be.
GridBaseline determines how a GridBox will be positioned vertically with respect to other boxes, say in a RowBox.

GridBaseline->pos specifies that position pos in the GridBox should be assumed to be the baseline of the
GridBox and should therefore be aligned with baselines of other boxes. Possible settings are:

Axis axis of the middle row in the grid (default)
Baseline baseline of the middle row in the grid
Bottom bottom of the whole grid
Center halfway from top to bottom
Top top of the whole grid
, A setting of {pos, {i, j}} specifies that the position pos in the i, j element of the GridBox should be assumed to
be the baseline for the whole GridBox. See page 449. See also: RowAlignments, AdjustmentBox, CellBaseline.

New in Version 3; modified in Version 5.0.

GridBox
GridBox[{{box��, box��, . . . }, {box��, box��, . . . }, . . . }] represents a two-dimensional grid
of boxes or strings in input and output.
In a notebook, columns of a GridBox can be added using ��,� and rows using ��J� (CONTROL-RETURN). ��,�
or a menu item can be used to start building a GridBox. You can use tab to move from one entry in a GridBox
to the next. ���� moves out of the whole GridBox. In StandardForm and InputForm, GridBox[list] is
interpreted as list. You can place parentheses around a GridBox to make it look more like a matrix, but these are
by default ignored when the GridBox is interpreted.

(continued)



A.10 Major Built-in Mathematica Objects GridBox (continued) — GridLines 1167

GridBox (continued)

The following options can be given:

ColumnAlignments Center how to align columns
ColumnLines False whether to draw lines between columns
ColumnsEqual False whether to make all columns equal width
ColumnSpacings 0.8 spacings between columns in ems
ColumnWidths Automatic actual widths of columns in ems
GridBaseline Axis the position of the baseline for the whole grid
GridDefaultElement "\[Placeholder]" what to insert when a new entry is created
RowAlignments Baseline how to align rows
RowLines False whether to draw lines between rows
RowMinHeight 1.0 the minimum total row height in x-heights
RowsEqual False whether to make all rows equal total height
RowSpacings 1.0 spacings between rows in x-heights

GridBox is a low-level construct that works only for two-dimensional arrays; TableForm and MatrixForm are
higher-level constructs that can also be used for higher-dimensional arrays. In StandardForm, explicit GridBox
objects are output literally. You can use DisplayForm to see the display form of such objects. See page 445. See
also: TableForm, MatrixForm, RowBox, OverscriptBox, UnderscriptBox, AdjustmentBox. New in Version 3.

GridDefaultElement
GridDefaultElement is an option for GridBox which specifies what to insert when a new
element is created interactively in a GridBox.
The default setting for GridDefaultElement is "\[Placeholder]" or "�". When creating palettes,
GridDefaultElement is typically set to ButtonBox["�"]. The setting for GridDefaultElement is used to
determine the contents of new columns or rows created with ��,� or ��J� (CONTROL-RETURN). See page 449.

New in Version 3.

GridLines
GridLines is an option for two-dimensional graphics functions that specifies grid lines.
The following settings can be given for GridLines:

None no grid lines drawn
Automatic grid lines placed automatically
{xgrid, ygrid} grid lines specified separately in each direction

With the Automatic setting, grid lines are usually placed at points whose coordinates have the minimum number
of digits in their decimal representation. For each direction, the following grid line options can be given:

None no grid lines drawn
Automatic grid line positions chosen automatically
{x�, x�, . . . } grid lines drawn at the specified positions
{{x�, style�}, . . . } grid lines with specified styles
func a function to be applied to xmin, xmax to get the grid line option

Grid line styles can involve graphics directives such as RGBColor and Thickness. Grid lines are by default
colored light blue. The grid line function func[xmin, xmax] may return any other grid line option.

AbsoluteOptions gives the explicit form of GridLines specifications when Automatic settings are used. See
pages 511 and 515. See also: Ticks, FrameTicks, FaceGrids, ColumnLines, RowLines. New in Version 2.



1168 GroebnerBasis — Head Mathematica Reference Guide

GroebnerBasis
GroebnerBasis[{poly�, poly�, . . . }, {x�, x�, . . . }] gives a list of polynomials that form a
Gröbner basis for the set of polynomials polyi.
GroebnerBasis[{poly�, poly�, . . . }, {x�, x�, . . . }, {y�, y�, . . . }] finds a Gröbner basis in
which the yi have been eliminated.
The set of polynomials in a Gröbner basis have the same collection of roots as the original polynomials. For
polynomials in one variable, GroebnerBasis reduces to PolynomialGCD. For linear functions in any number of
variables, GroebnerBasis is equivalent to Gaussian elimination. The Gröbner basis in general depends on the
ordering assigned to monomials. This ordering is affected by the ordering of the xi. The following options can be
given:

MonomialOrder Lexicographic the criterion used for ordering monomials
CoefficientDomain Automatic the type of objects assumed to be coefficients
Modulus 0 the modulus for numerical coefficients

Possible settings for MonomialOrder are Lexicographic, DegreeLexicographic, DegreeReverseLexicographic or
an explicit weight matrix. Monomials are specified for the purpose of MonomialOrder by lists of the exponents with
which the xi appear in them. The ordering of the xi and the setting for MonomialOrder can substantially affect
the efficiency of GroebnerBasis. Possible settings for CoefficientDomain are InexactNumbers, Rationals,
RationalFunctions and Polynomials[x]. See page 803. Implementation notes: see page 1070. See also:
PolynomialReduce, PolynomialGCD, Reduce, Solve, RowReduce, Eliminate, FindInstance,
CylindricalDecomposition. New in Version 2; modified in Version 3.

GroupPageBreakWithin
GroupPageBreakWithin is an option for Cell which specifies whether a page break should be
allowed within the group of cells if the notebook that contains the group is printed.
See page 609. See also: PageBreakWithin, ShowPageBreaks. New in Version 3.

HarmonicNumber

HarmonicNumber[n] gives the nth harmonic number Hn.

HarmonicNumber[n, r] gives the harmonic number H�r�n of order r.

Mathematical function (see Section A.3.10). The harmonic numbers are given by H�r�n � �n
i�� ��i

r with Hn � H���n .
See page 757. See also: EulerGamma, PolyGamma, Zeta, Log. New in Version 4.

Head
Head[expr] gives the head of expr.
Examples: Head[f[x]] ��# f ; Head[a + b] ��# Plus ; Head[4] ��# Integer ; Head[x] ��# Symbol . See
page 231. New in Version 1.



A.10 Major Built-in Mathematica Objects Heads — HoldAllComplete 1169

Heads
Heads is an option for functions which use level specifications that specifies whether heads of
expressions should be included.
Heads -> True treats heads just like other elements of expressions for the purpose of levels. Heads -> False
never includes heads as part of any level of an expression. Most functions which use level specifications have the
default setting Heads -> False. One exception is Position, for which the default is Heads -> True. See
page 238. See also: Level. New in Version 2.

HermiteH
HermiteH[n, x] gives the Hermite polynomial Hn�x�.
Mathematical function (see Section A.3.10). Explicit polynomials are given for non-negative integers n. The
Hermite polynomials satisfy the differential equation y$$ � �xy$ � �ny � �. They are orthogonal polynomials with

weight function e�x
�

in the interval ������. HermiteH[n, x] is an entire function of x with no branch cut
discontinuities. See page 766. See also: LaguerreL. New in Version 1.

HiddenSurface
HiddenSurface is an option for SurfaceGraphics which specifies whether hidden surfaces are
to be eliminated.
HiddenSurface -> True eliminates hidden surfaces. See page 151. See also: Shading. New in Version 1.

Hold
Hold[expr] maintains expr in an unevaluated form.
Hold has attribute HoldAll, and performs no operation on its arguments. Example: Hold[1+1] ��# Hold1 � 1� .

Hold is removed by ReleaseHold. Hold[e�, e�, . . . ] maintains a sequence of unevaluated expressions to which
a function can be applied using Apply. Even though expr itself is not evaluated, Hold[expr] may still evaluate if
expr is of the form f[args], and upvalues for f have been defined. See page 338. See also: HoldPattern,
HoldForm, HoldComplete, Unevaluated, HoldAll, Symbol. New in Version 1.

HoldAll
HoldAll is an attribute which specifies that all arguments to a function are to be maintained in
an unevaluated form.
You can use Evaluate to evaluate the arguments of a HoldAll function in a controlled way. Even when a
function has attribute HoldAll, Sequence objects that appear in its arguments are still by default flattened,
Unevaluated wrappers are stripped, and upvalues associated with the arguments are used. See pages 329
and 336. See also: Unevaluated, Hold, NHoldAll, HoldAllComplete, SequenceHold, Extract. New in Version 1.

HoldAllComplete
HoldAllComplete is an attribute which specifies that all arguments to a function are not to be
modified or looked at in any way in the process of evaluation.
By setting the attribute HoldAllComplete you can effectively shield the arguments of a function from all aspects of
the standard Mathematica evaluation process. HoldAllComplete not only prevents arguments from being evaluated,
but also prevents Sequence objects from being flattened, Unevaluated wrappers from being stripped, and upvalues
associated with arguments from being used. Evaluate cannot be used to override HoldAllComplete. See
pages 329 and 340. See also: HoldComplete, HoldAll, SequenceHold, Extract. New in Version 3.



1170 HoldComplete — HoldRest Mathematica Reference Guide

HoldComplete
HoldComplete[expr] shields expr completely from the standard Mathematica evaluation process,
preventing even upvalues associated with expr from being used.
HoldComplete has attribute HoldAllComplete, and performs no operations on its arguments. HoldComplete is
removed by ReleaseHold. HoldComplete can be inserted as a wrapper by such functions as ToExpression and
ReplacePart. HoldComplete is generated by default by MakeExpression. See pages 339 and 1048. See also:
Hold, HoldPattern, HoldForm, Unevaluated, HoldAllComplete, Symbol. New in Version 3.

HoldFirst
HoldFirst is an attribute which specifies that the first argument to a function is to be
maintained in an unevaluated form.
See pages 329 and 336. New in Version 1.

HoldForm
HoldForm[expr] prints as the expression expr, with expr maintained in an unevaluated form.
HoldForm allows you to see the output form of an expression without evaluating the expression. HoldForm has
attribute HoldAll. HoldForm is removed by ReleaseHold. See pages 338 and 434. See also: ToString,
WriteString. New in Version 1.

HoldPattern
HoldPattern[expr] is equivalent to expr for pattern matching, but maintains expr in an
unevaluated form.
HoldPattern has attribute HoldAll. The left-hand sides of rules are usually evaluated, as are parts of the
left-hand sides of assignments. You can use HoldPattern to stop any part from being evaluated. Example:
expr /. HoldPattern[Integrate[y_, x_]] -> rhs transforms any subexpression of the form Integrate[y_, x_] in
expr. Without the HoldPattern, the Integrate[y_, x_] in the rule would immediately be evaluated to give x_ y_,
and the replacement would not work. Example: f[HoldPattern[Integrate[y_, x_]]] := value can be used to
make an assignment for expressions of the form f[Integrate[y_, x_]]. Without HoldPattern, the Integrate
function would be evaluated at the time of assignment. See page 340. See also: Hold, Verbatim. New in
Version 3.

HoldRest
HoldRest is an attribute which specifies that all but the first argument to a function are to be
maintained in an unevaluated form.
See pages 329 and 336. New in Version 1.



A.10 Major Built-in Mathematica Objects HTMLSave — Hypergeometric1F1 1171

- HTMLSave
HTMLSave["file.html"] saves an HTML version of the currently selected notebook in the front
end.
HTMLSave["file.html", "source.nb"] saves an HTML version of the notebook from the file
source.nb.
HTMLSave["file.html", notebook] saves an HTML version of the notebook corresponding to the
specified notebook object.
HTMLSave has options for specifying such features as how to include formulas, whether to make links for closed
cell groups, and what correspondence to set up between notebook styles and HTML tags. HTMLSave normally
saves graphics in separate image files. , HTMLSave generates CSS style sheets to mimic notebook styles.

HTMLSave can often be accessed from an item in the Save As Special menu in the notebook front end. , The
output from HTMLSave is compliant with XHTML 1.0. See page 211. See also: Export, MathMLForm, TeXSave,
Display. New in Version 3; modified in Version 5.0.

Hue
Hue[h] is a graphics directive which specifies that graphical objects which follow are to be
displayed, if possible, in a color corresponding to hue h.
Hue[h, s, b] specifies colors in terms of hue, saturation and brightness.
The parameters h, s and b must all be between 0 and 1. Values of s and b outside this range are clipped. Values of
h outside this range are treated cyclically. As h varies from 0 to 1, the color corresponding to Hue[h] runs
through red, yellow, green, cyan, blue, magenta, and back to red again. Hue[h] is equivalent to Hue[h, 1, 1].

On monochrome displays, a gray level based on the brightness value is used. See page 499. See also:
RGBColor, GrayLevel, CMYKColor. Related package: Graphics`Colors`. New in Version 2.

Hypergeometric0F1
Hypergeometric0F1[a, z] is the confluent hypergeometric function �F��g ag z�.

Mathematical function (see Section A.3.10). The �F� function has the series expansion �F��g ag z� � ��k�� ���a�k zk�kd .
See page 778. See also: Pochhammer, Hypergeometric1F1, HypergeometricPFQ,

Hypergeometric0F1Regularized. New in Version 1.

Hypergeometric0F1Regularized
Hypergeometric0F1Regularized[a, z] is the regularized confluent hypergeometric function
�F��ag z����a�.
Mathematical function (see Section A.3.10). Hypergeometric0F1Regularized[a, z] is finite for all finite values of
a and z. See notes for Hypergeometric0F1. See page 778. New in Version 3.

Hypergeometric1F1
Hypergeometric1F1[a, b, z] is the Kummer confluent hypergeometric function �F��ag bg z�.
Mathematical function (see Section A.3.10). The �F� function has the series expansion

�F��ag bg z� � ��k���a�k��b�k zk�kd . See page 778. See also: HypergeometricU, Hypergeometric2F1,
HypergeometricPFQ, Hypergeometric1F1Regularized. New in Version 1.



1172 Hypergeometric1F1Regularized — HypergeometricU Mathematica Reference Guide

Hypergeometric1F1Regularized
Hypergeometric1F1Regularized[a, b, z] is the regularized confluent hypergeometric
function �F��ag bg z����b�.
Mathematical function (see Section A.3.10). Hypergeometric1F1Regularized[a, b, z] is finite for all finite values
of a, b and z. See notes for Hypergeometric1F1. See page 779. New in Version 3.

Hypergeometric2F1
Hypergeometric2F1[a, b, c, z] is the hypergeometric function �F��a� bg cg z�.
Mathematical function (see Section A.3.10). The �F� function has the series expansion

�F��a� bg cg z� � ��k���a�k�b�k��c�k zk�kd . Hypergeometric2F1[a, b, c, z] has a branch cut discontinuity in the
complex z plane running from � to �. FullSimplify and FunctionExpand include transformation rules for
Hypergeometric2F1. See page 780. See also: AppellF1, Hypergeometric1F1, HypergeometricPFQ,
Hypergeometric2F1Regularized. New in Version 1.

Hypergeometric2F1Regularized
Hypergeometric2F1Regularized[a, b, c, z] is the regularized hypergeometric function
�F��a� bg cg z����c�.
Mathematical function (see Section A.3.10). Hypergeometric2F1Regularized[a, b, c, z] is finite for all finite
values of a, b, c and z so long as /z/ ) �. See notes for Hypergeometric2F1. See page 780. New in Version 3.

HypergeometricPFQ
HypergeometricPFQ[{a�, . . . , ap}, {b�, . . . , bq}, z] is the generalized hypergeometric
function pFq�agbg z�.

Mathematical function (see Section A.3.10). pFq�agbg z� has series expansion ��k���a��k			�ap�k��b��k			�bq�k zk�kd .
Hypergeometric0F1, Hypergeometric1F1, and Hypergeometric2F1 are special cases of HypergeometricPFQ. In

many special cases, HypergeometricPFQ is automatically converted to other functions. For p � q � �,
HypergeometricPFQ[alist, blist, z] has a branch cut discontinuity in the complex z plane running from � to �.

FullSimplify and FunctionExpand include transformation rules for HypergeometricPFQ. See page 780. See
also: MeijerG, Hypergeometric0F1, Hypergeometric1F1, Hypergeometric2F1, AppellF1,
HypergeometricPFQRegularized. New in Version 3.

HypergeometricPFQRegularized
HypergeometricPFQRegularized[{a�, . . . , ap}, {b�, . . . , bq}, z] is the regularized
generalized hypergeometric function pFq�agbg z�����b��			��bq��.
Mathematical function (see Section A.3.10). HypergeometricPFQRegularized is finite for all finite values of its
arguments so long as p * q. See notes for HypergeometricPFQ. See page 780. New in Version 3.

HypergeometricU
HypergeometricU[a, b, z] is the confluent hypergeometric function U�a� b� z�.
Mathematical function (see Section A.3.10). The function U�a� b� z� has the integral representation
U�a� b� z� � ����a� � �� e�ztta���� � t�b�a�� dt. HypergeometricU[a, b, z] has a branch cut discontinuity in the
complex z plane running from �� to �. See page 778. See also: Hypergeometric1F1, Hypergeometric0F1.

New in Version 1.



A.10 Major Built-in Mathematica Objects Hyphenation — Im 1173

Hyphenation
Hyphenation is an option for Cell which specifies whether to allow hyphenation for words of
text.
The choice of hyphenation points is based when possible on dictionaries and algorithms for the language in which
the text is specified to be written. See page 609. See also: TextJustification, LanguageCategory. New in
Version 4.

I

I represents the imaginary unit
 

��.
Numbers containing I are converted to the type Complex. I can be entered in StandardForm and InputForm as �,
,ii , or \[ImaginaryI]. �, ,jj , and \[ImaginaryJ] can also be used. In StandardForm and TraditionalForm,
I is output as �. See page 765. See also: Re, Im, ComplexExpand, GaussianIntegers. New in Version 1; modified
in Version 3.

Identity
Identity[expr] gives expr (the identity operation).
See page 253. See also: Composition, Through, InverseFunction, Sequence, Hold. New in Version 1.

IdentityMatrix
IdentityMatrix[n] gives the n � n identity matrix.
See page 896. See also: DiagonalMatrix, KroneckerDelta, Table. Related package:
LinearAlgebra`MatrixManipulation`. New in Version 1.

If
If[condition, t, f] gives t if condition evaluates to True, and f if it evaluates to False.
If[condition, t, f, u] gives u if condition evaluates to neither True nor False.
If evaluates only the argument determined by the value of the condition. If[condition, t, f] is left unevaluated
if condition evaluates to neither True nor False. If[condition, t] gives Null if condition evaluates to False. See
page 345. See also: Switch, Which, Condition, DiracDelta. New in Version 1.

IgnoreCase
IgnoreCase is an option for string manipulation and searching functions which specifies
whether lower- and upper-case letters should be treated as equivalent.
With the default setting IgnoreCase -> False, lower- and upper-case letters are treated as totally different. With
the setting IgnoreCase -> True, lower- and upper-case letters are treated as equivalent. IgnoreCase is an option
for StringPosition, StringReplace, StringMatchQ, Find and FindList. IgnoreCase in no way affects the
parsing of Mathematica expressions. See page 410. See also: ToUpperCase, ToLowerCase, SpellingCorrection.

New in Version 2.

Im
Im[z] gives the imaginary part of the complex number z.
Im[expr] is left unevaluated if expr is not a numeric quantity. See page 746. See also: Re, Abs, Arg,
ComplexExpand. New in Version 1.



1174 ImageMargins — Implies Mathematica Reference Guide

ImageMargins
ImageMargins is an option for Cell which specifies the absolute margins in printer’s points to
leave around graphics in a cell.
Possible settings are:

dist the same margins on all sides
{{left, right}, {bottom, top}} different margins on different sides

ImageMargins represent space to be left inside whatever CellMargins are specified for a particular cell. See
page 616. See also: ImageSize, CellMargins. New in Version 3.

ImageResolution
ImageResolution is an option for Export and Display which specifies at what resolution
bitmap images should be rendered.
ImageResolution->r specifies that a bitmap should be rendered at a resolution of r dpi. ImageResolution is
relevant only for bitmap graphics formats such as "TIFF", and not for resolution-independent formats such as
"EPS". The default setting ImageResolution->Automatic typically uses a resolution of 72 dpi for bitmap graphics
formats. See page 569. See also: ImageSize. New in Version 3.

ImageRotated
ImageRotated is an option for Export and Display which specifies whether images should be
rotated into landscape mode.
The default setting for ImageRotated is False. See page 569. See also: ImageSize, RotateLabel. New in
Version 3.

ImageSize
ImageSize is an option for Export, Display and other graphics functions, as well as for Cell,
which specifies the absolute size of an image to render.
ImageSize->x specifies that the image should have a width of x printer’s points. ImageSize->72 xi specifies that
the image should have a width of xi inches. ImageSize->{x, y} specifies that the image should be rendered
within a region x printer’s points wide by y printer’s points high. The image will fill the region only if its aspect
ratio is exactly y/x. In Display and other graphics functions, the default setting for ImageSize is Automatic.
This specifies that when output is sent to the front end, the front end should determine the size of the image.
When output is sent elsewhere, the effective default is 288, corresponding to 4 inches. In the front end, the
typical default setting for ImageSize is also 288, corresponding to 4 inches. See page 616. See also:
ImageResolution, ImageMargins, AspectRatioFixed. New in Version 3.

Implies
Implies[p, q] represents the logical implication p n q.
Implies[p, q] is equivalent to !p || q. Implies[p, q] can be input in StandardForm and InputForm as p � q.
The character � can be entered as ,=> , or \[Implies]. See page 834. See also: LogicalExpand, If. New in
Version 1; modified in Version 3.



A.10 Major Built-in Mathematica Objects Import — Import 1175

- Import
Import["file.ext"] imports data from a file, assuming that it is in the format indicated by the
file extension ext, and converts it to a Mathematica expression.
Import["file", "format"] imports data in the specified format from a file.
Import attempts to give a Mathematica expression whose meaning is as close as possible to the data in the external
file. Import can handle numerical and textual data, graphics, sounds, material from notebooks, and general
expressions in various formats. - The following basic formats are supported for textual and tabular data:

"CSV" comma-separated value tabular data (.csv)
"Lines" lines of text
"List" lines consisting of numbers or strings
"Table" two-dimensional array of numbers or strings
"Text" string of ordinary characters
"TSV" tab-separated value tabular data (.tsv)
"UnicodeText" string of 16-bit Unicode characters
"Words" words separated by spaces or newlines

"Text" and "UnicodeText" return single Mathematica strings. "Lines" and "Words" return lists of Mathematica
strings. "List" returns a list of Mathematica numbers or strings. - "Table", "CSV" and "TSV" return a list of lists
of Mathematica numbers or strings. - In "List", "Table", "CSV" and "TSV" formats, numbers can be read in C or
Fortran-like “E” notation. Numbers without explicit decimal points are returned as exact integers. In "Table"
format, columns can be separated by spaces or tabs. In "Words" format, words can be separated by any form of
white space. - In "CSV" format, columns are taken to be separated by commas, unless other settings are specified
using ConversionOptions. Import["file.txt"] uses "Text" format. Import["file.dat"] uses "Table" format.

Import["file.csv"] uses "CSV" format. - The following additional formats are also supported for numerical data:

"FITS" FITS astronomical data format (.fit, .fits)
"HarwellBoeing" Harwell-Boeing matrix format
"HDF" Hierarchical Data Format (.hdf)
"MAT" MAT matrix format (.mat)
"MTX" Matrix Market format (.mtx)
"SDTS" SDTS spatial GIS data format (.ddf)
, When appropriate, numerical data is imported as SparseArray objects. , The following format yields a list of
expressions suitable for input to NMinimize:
"MPS" MPS Mathematical Programming System format (.mps)

Two-dimensional graphics formats are imported as Graphics objects; sound formats are imported as Sound
objects. Animated graphics are imported as lists of Graphics objects. The following formats yield expressions of
the form Graphics[data, opts]:

"EPS" Encapsulated PostScript (.eps)
"EPSI" Encapsulated PostScript with image preview (.epsi)
"EPSTIFF" Encapsulated PostScript with TIFF preview
"MPS" Mathematica abbreviated PostScript (.mps)
- The following formats yield expressions of the form Graphics[Raster[data], opts]:

"BMP" Microsoft bitmap format (.bmp)
"DICOM" DICOM medical imaging format (.dcm, .dic)
"GIF" GIF and animated GIF (.gif)
"JPEG" JPEG (.jpg, .jpeg)
"MGF" Mathematica system-independent raster graphics format (.mgf)
"PBM" portable bitmap format (.pbm)
"PGM" portable graymap format (.pgm)

(continued)



1176 Import (continued) — ImportString Mathematica Reference Guide

- Import (continued)

"PNG" PNG format (.png)
"PNM" portable anymap format (.pnm)
"PPM" portable pixmap format (.ppm)
"TIFF" TIFF (.tif, .tiff)
"XBitmap" X window system bitmap (.xbm)

Imported raster data normally consists of integers; ColorFunction is often used to specify a color map. The
following formats return objects of the form Graphics3D[data, opts]:

"DXF" AutoCAD drawing interchange format (.dxf)
"STL" STL stereolithography format (.stl)

The following formats yield expressions of the form Sound[SampledSoundList[data, r]]:

"AIFF" AIFF format (.aif, .aiff)
"AU" Μ law encoding (.au)
"SND" sound file format (.snd)
"WAV" Microsoft wave format (.wav)
, The following gives a notebook expression Notebook[. . . ] from a Mathematica notebook file:
"NB" Mathematica notebook format (.nb)
- The following XML formats give various types of expressions:

"ExpressionML" arbitrary expression
"MathML" mathematical expression or boxes (.mml)
"NotebookML" notebook expression (.nbml)
"SymbolicXML" SymbolicXML expression
"XML" determined by content (.xml)
- With format "MathML", MathML presentation elements are if possible imported as mathematical expressions
using TraditionalForm interpretation rules. Otherwise, they are imported as box expressions. - With format
"SymbolicXML", XML data of any document type is imported as a SymbolicXML expression. - With format "XML",
Import will recognize MathML, NotebookML, and ExpressionML and interpret them accordingly. Other XML will
be imported as SymbolicXML. , The following formats can be used for general expressions:

"Dump" internal binary format (.mx)
"Expression" InputForm textual format (.m)
"ExpressionML" XML-based ExpressionML format

The following general options can be given:

ByteOrdering $ByteOrdering what byte order to use for binary data
CharacterEncoding Automatic the encoding to use for characters in text
ConversionOptions {} private options for specific formats
Path $Path the path to search for files

Possible formats accepted by Import are given in the list $ImportFormats. Import["!prog", "format"] imports
data from a pipe. See pages 207, 570 and 642. See also: Export, ImportString, $ImportFormats, ReadList.

New in Version 4; modified in Version 5.0.

- ImportString
ImportString["data", "format"] imports data in the specified format from a string.
See notes for Import. See page 570. See also: ExportString. New in Version 4; modified in Version 5.0.



A.10 Major Built-in Mathematica Objects In — Infix 1177

In

In[n] is a global object that is assigned to have a delayed value of the nth input line.

Typing In[n] causes the nth input line to be re-evaluated. In[ ] gives the last input line. In[-k] gives the
input k lines back. See pages 48 and 702. See also: InString, Out, $Line, $HistoryLength. New in Version 1.

Increment
x++ increases the value of x by 1, returning the old value of x.
Increment has attribute HoldFirst. See page 305. See also: PreIncrement, AddTo, Set. New in Version 1.

Indeterminate
Indeterminate is a symbol that represents a numerical quantity whose magnitude cannot be
determined.
Computations like 0/0 generate Indeterminate. A message is produced whenever an operation first yields
Indeterminate as a result. See page 742. See also: DirectedInfinity, Check. New in Version 1.

Infinity
Infinity or 	 is a symbol that represents a positive infinite quantity.
	 can be entered as \[Infinity] or ,inf ,. In StandardForm, Infinity is printed as 	. Infinity is converted
to DirectedInfinity[1]. Certain arithmetic operations work with Infinity. Example: 1/Infinity ��# 0 .

NumberQ[Infinity] yields False. See pages 743 and 765. See also: ComplexInfinity, Indeterminate. New
in Version 1; modified in Version 3.

Infix
Infix[f[e�, e�, . . . ]] prints with f[e�, e�, . . . ] given in default infix form:
e� M f M e� M f M e . . . .
Infix[expr, h] prints with arguments separated by h: e� h e� h e . . . .
Infix[expr, h, precedence, grouping] can be used to specify how the output form should be parenthesized.

Precedence levels are specified by integers. In OutputForm, some precedence levels are:
x . y . z 210

x y z 150

x + y + z 140

x == y 130

x = y 60

Possible grouping (associativity) specifications are:

NonAssociative not associative—always parenthesized
None always associative—never parenthesized
Left left associative (e.g., (a/b)/c)
Right right associative (e.g., a^(b^c))

See page 474. See also: Postfix, Prefix, PrecedenceForm. New in Version 1.



1178 Information — InputAliases Mathematica Reference Guide

Information
Information[symbol] prints information about a symbol.
Information[symbol] prints the same information as the input escape ??symbol would give. Information has
attribute HoldAll. See pages 58 and 1038. See also: Definition, Names, ValueQ, DownValues, UpValues. New
in Version 1.

InitializationCell
InitializationCell is an option for Cell which specifies whether the cell should
automatically be sent for evaluation by the Mathematica kernel when the notebook that contains
it is opened.
See page 608. See also: Evaluator. New in Version 3.

Inner
Inner[f, list�, list�, g] is a generalization of Dot in which f plays the role of multiplication
and g of addition.
Example: Inner[f,{a,b},{x,y},g] ��# gfa, x�, fb, y�� .

Inner[f,{{a,b},{c,d}},{x,y},g] ��# �gfa, x�, fb, y��, gfc, x�, fd, y��� . Like Dot, Inner
effectively contracts the last index of the first tensor with the first index of the second tensor. Applying Inner to a
rank r tensor and a rank s tensor gives a rank r � s � � tensor. Inner[f, list�, list�] uses Plus for g.

Inner[f, list�, list�, g, n] contracts index n of the first tensor with the first index of the second tensor. The
heads of list� and list� must be the same, but need not necessarily be List. See page 917. See also: Outer,
Thread, MapThread, ListCorrelate. New in Version 1.

Input
Input[ ] interactively reads in one Mathematica expression.
Input["prompt"] requests input, using the specified string as a prompt.
Input returns the expression it read. The operation of Input may vary from one computer system to another.
When a Mathematica front end is used, Input may work through a dialog box. When no front end is used, Input
reads from standard input. If the standard input is a file, then Input returns EndOfFile if you try to read past
the end of the file. On most systems, Input[ ] uses ? as a prompt. When Input is evaluated, Mathematica
stops until the input has been read. See page 478. See also: InputString, Read, Get, Dialog, ButtonBox. New
in Version 1.

InputAliases
InputAliases is an option for cells and notebooks which specifies additional HnameH aliases to
be allowed on input.
The setting InputAliases->{"name�"->expr�, . . . } specifies that the HnameiH should be replaced on input by the
corresponding expri. The expri should be strings or box expressions. See page 613. See also:
InputAutoReplacements, $PreRead, Set. New in Version 4.



A.10 Major Built-in Mathematica Objects InputAutoReplacements — InputString 1179

InputAutoReplacements
InputAutoReplacements is an option for cells and notebooks which specifies strings of
characters that should be replaced immediately on input.
The default setting of InputAutoReplacements for Input styles typically includes such rules as "->" -> "�". In
expression input, automatic replacements can be performed only on strings of characters that correspond to
complete input tokens. In textual input, automatic replacements can be performed on strings of alphanumeric
characters delimited by spaces or other punctuation characters. When material is copied from a notebook to the
clipboard, replacements specified by ExportAutoReplacements are by default performed. Typically these
replacements include ones that reverse the action of the replacements in InputAutoReplacements. When material
is pasted from the clipboard into a notebook, replacements specified by ImportAutoReplacements are by default
performed. Typically these replacements are a subset of those given in InputAutoReplacements. See page 613.

See also: InputAliases, $PreRead, Set. New in Version 4.

InputForm
InputForm[expr] prints as a version of expr suitable for input to Mathematica.
Example: InputForm[x^2 + 1/a] ��# a^��1� � x^2 . InputForm always produces one-dimensional output,
suitable to be typed as lines of Mathematica input. InputForm acts as a “wrapper”, which affects printing, but not
evaluation. Put (>>) produces InputForm by default. Short[InputForm[expr]] can be used, but may generate
skeleton objects which cannot be given as Mathematica input. The option NumberMarks can be used to specify
whether ` marks should be used to indicate type, precision or accuracy of approximate numbers. See page 424.

See also: OutputForm, FullForm, StandardForm. New in Version 1; modified in Version 3.

InputNotebook
InputNotebook[ ] gives the current notebook into which keyboard input in the front end will
be directed.
InputNotebook returns a NotebookObject. If there is no current input notebook, InputNotebook[ ] will return
$Failed. The current input notebook is the notebook to which textual commands in the front end are normally
directed. A palette window can be a currently selected notebook but cannot normally be an input notebook. See
page 579. See also: Notebooks, SelectedNotebook, EvaluationNotebook, ButtonNotebook. New in Version 3.

InputStream
InputStream["name", n] is an object that represents an input stream for functions such as
Read and Find.
OpenRead returns an InputStream object. The serial number n is unique across all streams, regardless of their
name. StringToStream returns an object of the form InputStream[String, n]. See page 631. See also:
$Input, Streams, OutputStream. New in Version 2.

InputString
InputString[ ] interactively reads in a character string.
InputString["prompt"] requests input, using the specified string as a prompt.
See notes for Input. See page 478. New in Version 1.



1180 Insert — Integer Mathematica Reference Guide

Insert
Insert[list, elem, n] inserts elem at position n in list. If n is negative, the position is counted
from the end.
Insert[expr, elem, {i, j, . . . }] inserts elem at position {i, j, . . . } in expr.
Insert[expr, elem, {{i�, j�, . . . }, {i�, j�, . . . }, . . . }] inserts elem at several positions.
Examples: Insert[{a, b, c}, x, 2] ��# �a, x, b, c� .

Insert[{a, b, c}, x, {{1}, {-1}}] ��# �x, a, b, c, x� .
Insert[{{a, b}, {c, d}}, x, {2, 1}] ��# ��a, b�, �x, c, d�� . list can have any head, not necessarily

List. , Insert works on SparseArray objects by effectively inserting into the corresponding ordinary lists. See
pages 125 and 288. See also: Prepend, Append, StringInsert, Take, Drop, Delete, ReplacePart, FlattenAt,
Position, Sequence. New in Version 1.

Install
Install["name"] starts a MathLink-compatible external program and installs Mathematica
definitions to call functions in it.
The Mathematica definitions set up by Install are typically specified in the MathLink template file used to create
the source code for the external program. Install["prog"] will launch the specified program, then connect to it
via MathLink. If prog is a directory, Install["prog"] will try to execute prog/$SystemID/prog.

Install["name`"] searches all directories on $Path for a file or directory called name.exe. Install[link] will
take an existing LinkObject and set up what is needed to call functions in the program corresponding to that
LinkObject. Install returns a LinkObject representing the MathLink connection it is using.

LinkPatterns[link] gives a list of the patterns defined when the specified link was set up. You can remove
these definitions, and terminate the execution of the external program by calling Uninstall[link].

Install[LinkConnect["port"]] will install an external program that has created a link on the specified port. You
can use this to call external programs that have been started in a debugger or on a remote computer system. If
you call Install["command"] multiple times with the same command, the later calls will overwrite definitions set
up by earlier ones, unless the definitions depend on the values of global variables which have changed. Install
sets up definitions which send CallPacket objects to the external program whenever functions in it are called, and
waits for results to be returned in ReturnPacket objects. The external program can send EvaluatePacket objects
back to Mathematica to request evaluations while the program is running. See page 659. See also: Get, Run,
RunThrough, LinkLaunch, Uninstall, $CurrentLink. New in Version 2; modified in Version 3.

InString

InString[n] is a global object that is assigned to be the text of the nth input line.

InString[n] gives the string that Mathematica read for the nth input line. The string includes all intermediate
newlines in the input, but not the newline at the end. The value of InString[n] is assigned after the input is
verified to be syntactically correct, and after any function given as the value of $PreRead has been applied.

InString[ ] gives the text of the last input line. InString[-k] gives the text of the input k lines back. See
pages 48 and 702. See also: In, $SyntaxHandler. New in Version 2.

Integer
Integer is the head used for integers.
_Integer can be used to stand for an integer in a pattern. Integers can be of any length. You can enter an
integer in base b using b^^digits. The base must be less than 36. The letters are used in sequence to stand for digits
10 through 35. See page 722. See also: IntegerDigits, BaseForm, IntegerQ, Integers. New in Version 1.



A.10 Major Built-in Mathematica Objects IntegerDigits — Integers 1181

IntegerDigits
IntegerDigits[n] gives a list of the decimal digits in the integer n.
IntegerDigits[n, b] gives a list of the base-b digits in the integer n.
IntegerDigits[n, b, len] pads the list on the left with zeros to give a list of length len.
Examples: IntegerDigits[5810] ��# �5, 8, 1, 0� ; IntegerDigits[5810, 16] ��# �1, 6, 11, 2� .

IntegerDigits[n] discards the sign of n. If len is less than the number of digits in n then the len least
significant digits are returned. , IntegerDigits[0] gives {0}. FromDigits can be used as the inverse of
IntegerDigits. See page 725. Implementation notes: see page 1067. See also: DigitCount, RealDigits,
BaseForm, NumberForm, FromDigits, IntegerExponent, IntegerPart, ContinuedFraction. New in Version 2;
modified in Version 3.

IntegerExponent
IntegerExponent[n, b] gives the highest power of b that divides n.
IntegerExponent[n] is equivalent to IntegerExponent[n, 10]. IntegerExponent[n, b] gives the number of
trailing zeros in the digits of n in base b. See page 749. See also: IntegerDigits, FactorInteger,
MantissaExponent, DigitCount, Exponent. New in Version 4.

IntegerPart
IntegerPart[x] gives the integer part of x.
Mathematical function (see Section A.3.10). IntegerPart[x] in effect takes all digits to the left of the decimal
point and drops the others. Examples: IntegerPart[2.4] ��# 2 ; IntegerPart[2.6] ��# 2 ;
IntegerPart[-2.4] ��# �2 ; IntegerPart[-2.6] ��# �2 . IntegerPart[x] + FractionalPart[x] is always
exactly x. IntegerPart[x] returns an integer when x is any numeric quantity, whether or not it is an explicit
number. Example: IntegerPart[Pi^2] ��# 9 . For exact numeric quantities, IntegerPart internally uses
numerical approximations to establish its result. This process can be affected by the setting of the global variable
$MaxExtraPrecision. See page 745. See also: FractionalPart, Round, Floor, Ceiling, Chop. New in
Version 3.

IntegerQ
IntegerQ[expr] gives True if expr is an integer, and False otherwise.
IntegerQ[expr] returns False unless expr is manifestly an integer (i.e., has head Integer).

Simplify[expr � Integers] can be used to try to determine whether an expression is mathematically equal to an
integer. See pages 267 and 723. See also: EvenQ, OddQ, NumberQ, TrueQ, Element. New in Version 1.

Integers
Integers represents the domain of integers, as in x � Integers.
x � Integers evaluates immediately only if x is a numeric quantity. Simplify[expr � Integers] can be used to
try to determine whether an expression is an integer. IntegerQ[expr] tests only whether expr is manifestly an
integer (i.e., has head Integer). Integers is output in TraditionalForm as �. See pages 73, 817 and 839. See
also: Element, Simplify, IntegerQ, Reals, Primes, Algebraics. New in Version 4.



1182 Integrate — InterpolatingFunction Mathematica Reference Guide

- Integrate

Integrate[f, x] gives the indefinite integral � f dx.

Integrate[f, {x, xmin, xmax}] gives the definite integral � xmax

xmin
f dx.

Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] gives the multiple integral

� xmax

xmin
dx � ymax

ymin
dy f .

Integrate[f, x] can be entered as � f7 x. � can be entered as ,int , or \[Integral]. 7 is not an ordinary d; it
is entered as ,dd , or \[DifferentialD]. Integrate[f, {x, xmin, xmax}] can be entered with xmin as a
subscript and xmax as a superscript to � . Multiple integrals use a variant of the standard iterator notation. The
first variable given corresponds to the outermost integral, and is done last. Integrate can evaluate integrals of
rational functions. It can also evaluate integrals that involve exponential, logarithmic, trigonometric and inverse
trigonometric functions, so long as the result comes out in terms of the same set of functions. Integrate can
give results in terms of many special functions. Integrate carries out some simplifications on integrals it cannot
explicitly do. You can get a numerical result by applying N to a definite integral. You can assign values to
patterns involving Integrate to give results for new classes of integrals. The integration variable can be any
expression. However, Integrate uses only its literal form. The object d�xn�, for example, is not converted to
nxn��dx. For indefinite integrals, Integrate tries to find results that are correct for almost all values of
parameters. For definite integrals, the following options can be given:

Assumptions $Assumptions assumptions to make about parameters
GenerateConditions Automatic whether to generate answers that involve conditions on parameters
PrincipalValue False whether to find Cauchy principal values

Integrate can evaluate essentially all indefinite integrals and most definite integrals listed in standard books of
tables. In StandardForm, Integrate[f, x] is output as � f 7 x. See page 859. Implementation notes: see
page 1070. See also: NIntegrate, DSolve, Sum, LaplaceTransform, FourierTransform. New in Version 1;
modified in Version 5.0.

InterpolatingFunction
InterpolatingFunction[domain, table] represents an approximate function whose values are
found by interpolation.
InterpolatingFunction works like Function. InterpolatingFunction[ . . . ][x] finds the value of an
approximate function with a particular argument x. In standard output format, only the domain element of an
InterpolatingFunction object is printed explicitly. The remaining elements are indicated by <>. domain specifies
the domain of the data from which the InterpolatingFunction was constructed. If you supply arguments
outside of the domain, a warning is generated, and then an extrapolated value is returned.

InterpolatingFunction objects that take any number of real arguments may be constructed. You can take
derivatives of InterpolatingFunction objects using D and Derivative. NDSolve returns its results in terms of
InterpolatingFunction objects. See page 930. Implementation notes: see page 1069. See also: Interpolation,
CompiledFunction, FunctionInterpolation. Related package: NumericalMath`SplineFit`. New in Version 2;
modified in Version 3.



A.10 Major Built-in Mathematica Objects InterpolatingPolynomial — InterpretationBox 1183

InterpolatingPolynomial
InterpolatingPolynomial[data, var] gives a polynomial in the variable var which provides
an exact fit to a list of data.
The data can have the forms {{x�, f�}, {x�, f�}, . . . } or {f�, f�, . . . }, where in the second
case, the xi are taken to have values 1, 2, . . . .
The fi can be replaced by {fi, dfi, ddfi, . . . }, specifying derivatives at the points xi.
With a list of data of length n, InterpolatingPolynomial gives a polynomial of degree n � �. Example:

InterpolatingPolynomial[{4, 5, 8}, x] ��# 4 � ��1 � x�2 . InterpolatingPolynomial gives the interpolating
polynomial in Newton form, suitable for numerical evaluation. See page 808. See also: Fit, Roots. Related
package: NumericalMath`PolynomialFit`. New in Version 2.

Interpolation
Interpolation[data] constructs an InterpolatingFunction object which represents an
approximate function that interpolates the data.
The data can have the forms {{x�, f�}, {x�, f�}, . . . } or {f�, f�, . . . }, where in the second
case, the xi are taken to have values 1, 2, . . . .
Data can be given in the form {{x�, {f�, df�, ddf�, . . . }}, . . . } to specify derivatives as well as values of the
function at the points xi. You can specify different numbers of derivatives at different points. Function values and
derivatives may be real or complex numbers, or arbitrary symbolic expressions. The xi must be real numbers.

Multidimensional data can be given in the form {{x�, y�, . . . , f�}, . . . }. Derivatives in this case can be given
by replacing f� and so on by {f�, {dxf�, dyf�, . . . }}. Interpolation works by fitting polynomial curves between
successive data points. The degree of the polynomial curves is specified by the option InterpolationOrder.

The default setting is InterpolationOrder -> 3. You can do linear interpolation by using the setting
InterpolationOrder -> 1. Interpolation[data] generates an InterpolatingFunction object which returns
values with the same precision as those in data. See page 931. See also: ListInterpolation,
FunctionInterpolation, InterpolatingPolynomial, Fit, Quantile. Related packages:
NumericalMath`SplineFit`, NumericalMath`PolynomialFit`, NumericalMath`Approximations`,
DiscreteMath`ComputationalGeometry` . New in Version 2; modified in Version 3.

InterpretationBox
InterpretationBox[boxes, expr] displays as boxes but is interpreted on input as expr.
InterpretationBox provides a way to store hidden information in Mathematica output. InterpretationBox is
generated sometimes in StandardForm output, and often in TraditionalForm output. The following options can
be given:

AutoDelete False whether to strip the InterpretationBox if boxes is modified
DeletionWarning False whether to issue a warning if boxes is deleted
Editable False whether to allow boxes to be edited
Selectable True whether to allow boxes to be selected

If you modify the displayed form of InterpretationBox[boxes, expr] only boxes will be modified, and there is
no guarantee that correct correspondence with expr will be maintained. InterpretationBox has attribute
HoldComplete. See page 447. See also: TagBox, FormBox, ToExpression, ButtonBox. New in Version 3.



1184 Interrupt — IntervalUnion Mathematica Reference Guide

Interrupt
Interrupt[ ] generates an interrupt.
You can call Interrupt anywhere within a computation. It has the same effect as an interactive interrupt at that
point. See page 371. See also: Abort, TimeConstrained, MemoryConstrained, Throw, $Inspector,
LinkInterrupt. New in Version 2.

Intersection
Intersection[list�, list�, . . . ] gives a sorted list of the elements common to all the listi.
If the listi are considered as sets, Intersection gives their intersection. Intersection[list�, list�, . . . ] can be
input in StandardForm and InputForm as list� � list� � . . . . The character � can be entered as ,inter , or
\[Intersection]. The listi must have the same head, but it need not be List.

Intersection[list�, . . . , SameTest->test] applies test to each pair of elements in the listi to determine whether
they should be considered the same. Intersection[a, b] can be entered in StandardForm and InputForm as
a � b or a \[Intersection] b. See page 127. See also: Union, Complement. New in Version 1; modified in
Version 3.

Interval
Interval[{min, max}] represents the range of values between min and max.
Interval[{min�, max�}, {min�, max�}, . . . ] represents the union of the ranges min� to max�,
min� to max�, ....
You can perform arithmetic and other operations on Interval objects. Example:
Interval[{1, 6}] + Interval[{0, 2}] ��# Interval�1, 8�� . Min[interval] and Max[interval] give the end
points of an interval. For approximate machine- or arbitrary-precision numbers x, Interval[x] yields an interval
reflecting the uncertainty in x. In operations on intervals that involve approximate numbers, Mathematica always
rounds lower limits down and upper limits up. Interval can be generated by functions such as Limit.

Relational operators such as Equal and Less yield explicit True or False results whenever they are given disjoint
intervals. See page 894. See also: Range. New in Version 3.

IntervalIntersection
IntervalIntersection[interval�, interval�, . . . ] gives the interval representing all points
common to each of the intervali.
See page 741. See also: Interval. New in Version 3.

IntervalMemberQ
IntervalMemberQ[interval, x] gives True if the number x lies within the specified interval,
and False otherwise.
IntervalMemberQ[interval�, interval�] gives True if interval� is completely contained within
interval�.
IntervalMemberQ has attribute Listable. See page 741. See also: Interval, MemberQ. New in Version 3.

IntervalUnion
IntervalUnion[interval�, interval�, . . . ] gives the interval representing the set of all points in
any of the intervali.
See page 741. See also: Interval. New in Version 3.



A.10 Major Built-in Mathematica Objects Inverse — InverseErfc 1185

Inverse
Inverse[m] gives the inverse of a square matrix m.
Inverse works on both symbolic and numerical matrices. For matrices with approximate real or complex
numbers, the inverse is generated to the maximum possible precision given the input. A warning is given for
ill-conditioned matrices. Inverse[m, Modulus->n] evaluates the inverse modulo n.

Inverse[m, ZeroTest -> test] evaluates test[ m[[i, j]] ] to determine whether matrix elements are zero. The
default setting is ZeroTest -> (# == 0 &). A Method option can also be given. Possible settings are as for
LinearSolve. See page 903. Implementation notes: see page 1069. See also: PseudoInverse, LinearSolve,
RowReduce, NullSpace, LinearSolveFunction. Related package: LinearAlgebra`Tridiagonal`. New in
Version 1; modified in Version 3.

InverseBetaRegularized
InverseBetaRegularized[s, a, b] gives the inverse of the regularized incomplete beta
function.
Mathematical function (see Section A.3.10). With the regularized incomplete beta function defined by
I�z� a� b� � h�z� a� b��h�a� b�, InverseBetaRegularized[s, a, b] is the solution for z in s � I�z� a� b�.

InverseBetaRegularized[z�, s, a, b] gives the inverse of BetaRegularized[z�, z, a, b]. Note that the
arguments of InverseBetaRegularized are arranged differently than in InverseGammaRegularized. See
page 770. See also: InverseGammaRegularized, InverseErf. New in Version 3.

InverseEllipticNomeQ
InverseEllipticNomeQ[q] gives the parameter m corresponding to the nome q in an elliptic
function.
Mathematical function (see Section A.3.10). InverseEllipticNomeQ[q] yields the unique value of the parameter m
which makes EllipticNomeQ[m] equal to q. The nome q must always satisfy /q/ ) �. See page 782. See also:
EllipticNomeQ. New in Version 3.

InverseErf
InverseErf[s] gives the inverse error function obtained as the solution for z in s � erf�z�.
Mathematical function (see Section A.3.10). Explicit numerical values are given only for real values of s between
�� and ��. InverseErf[z�, s] gives the inverse of the generalized error function Erf[z�, z]. See page 775.

See also: Erf, InverseGammaRegularized, InverseBetaRegularized. New in Version 3.

InverseErfc
InverseErfc[s] gives the inverse complementary error function obtained as the solution for z
in s � erfc�z�.
Mathematical function (see Section A.3.10). Explicit numerical values are given only for real values of s between 0
and 2. See page 775. See also: Erfc, InverseGammaRegularized, InverseBetaRegularized. New in Version 3.



1186 InverseFourier — InverseFourierSinTransform Mathematica Reference Guide

InverseFourier
InverseFourier[list] finds the discrete inverse Fourier transform of a list of complex
numbers.

The inverse Fourier transform ur of a list vs of length n is defined to be �
 

n
�n

s�� vse��Πi�r����s����n . Note that the

zero frequency term must appear at position 1 in the input list. Other definitions are used in some scientific and
technical fields. Different choices of definitions can be specified using the option FourierParameters. With the
setting FourierParameters -> {a, b} the discrete Fourier transform computed by Fourier is
�

n���a���
�n

s�� vse��Πib�r����s����n . Some common choices for {a, b} are {0, 1} (default), {-1, 1} (data analysis),
{1, -1} (signal processing). The setting b � �� effectively corresponds to reversing both input and output lists.

To ensure a unique discrete Fourier transform, /b/ must be relatively prime to n. The list of data need not have
a length equal to a power of two. The list given in InverseFourier[list] can be nested to represent an array of
data in any number of dimensions. The array of data must be rectangular. If the elements of list are exact
numbers, InverseFourier begins by applying N to them. See page 935. See also: Fourier,
InverseFourierTransform. New in Version 1; modified in Version 4.

InverseFourierCosTransform
InverseFourierCosTransform[expr, Ω, t] gives the symbolic inverse Fourier cosine
transform of expr.
InverseFourierCosTransform[expr, {Ω�, Ω�, . . . }, {t�, t�, . . . }] gives the
multidimensional inverse Fourier cosine transform of expr.

The inverse Fourier cosine transform of a function F�Ω� is by default defined as
!

�
Π � �� F�Ω� cos�Ωt� dΩ. Other

definitions are used in some scientific and technical fields. Different choices of definitions can be specified using
the option FourierParameters. With the setting FourierParameters->{a, b} the inverse Fourier transform

computed by InverseFourierCosTransform is �
"

/b/
��Π���a � �� F�Ω� cos�bΩt� dΩ. See notes for

InverseFourierTransform. See page 878. See also: InverseFourierSinTransform, FourierCosTransform,
InverseFourierTransform, InverseFourier. New in Version 4.

InverseFourierSinTransform
InverseFourierSinTransform[expr, Ω, t] gives the symbolic inverse Fourier sine transform
of expr.
InverseFourierSinTransform[expr, {Ω�, Ω�, . . . }, {t�, t�, . . . }] gives the
multidimensional inverse Fourier sine transform of expr.

The inverse Fourier sine transform of a function F�Ω� is by default defined as
!

�
Π � �� F�Ω� sin�Ωt� dΩ. Other

definitions are used in some scientific and technical fields. Different choices of definitions can be specified using
the option FourierParameters. With the setting FourierParameters->{a, b} the inverse Fourier transform

computed by InverseFourierSinTransform is �
"

/b/
��Π���a � �� F�Ω� sin�bΩt� dΩ. See notes for

InverseFourierTransform. See page 878. See also: InverseFourierCosTransform, FourierSinTransform,
InverseFourierTransform, InverseFourier. New in Version 4.



A.10 Major Built-in Mathematica Objects InverseFourierTransform — InverseFunctions 1187

InverseFourierTransform
InverseFourierTransform[expr, Ω, t] gives the symbolic inverse Fourier transform of expr.
InverseFourierTransform[expr, {Ω�, Ω�, . . . }, {t�, t�, . . . }] gives the multidimensional
inverse Fourier transform of expr.

The inverse Fourier transform of a function F�Ω� is by default defined as �
 

�Π
� ��� F�Ω� e�iΩt dΩ. Other definitions

are used in some scientific and technical fields. Different choices of definitions can be specified using the option
FourierParameters. With the setting FourierParameters->{a, b} the inverse Fourier transform computed by

InverseFourierTransform is
"

/b/
��Π���a � ��� F�Ω� e�ibΩt dΩ. Some common choices for {a, b} are {0, 1} (default;

modern physics), {1, -1} (pure mathematics; systems engineering), {-1, 1} (classical physics), {0, -2 Pi} (signal
processing). Assumptions and other options to Integrate can also be given in InverseFourierTransform.

InverseFourierTransform[expr, Ω, t] yields an expression depending on the continuous variable t that
represents the symbolic inverse Fourier transform of expr with respect to the continuous variable Ω.
InverseFourier[list] takes a finite list of numbers as input, and yields as output a list representing the discrete
inverse Fourier transform of the input. In TraditionalForm, InverseFourierTransform is output using � ��.

See page 876. See also: InverseFourierSinTransform, InverseFourierCosTransform, InverseFourier,
FourierTransform, InverseLaplaceTransform, Integrate. New in Version 4.

InverseFunction
InverseFunction[f] represents the inverse of the function f, defined so that
InverseFunction[f][y] gives the value of x for which f[x] is equal to y.
For a function with several arguments, InverseFunction[f, n, tot] represents the inverse
with respect to the nth argument when there are tot arguments in all.

In OutputForm and StandardForm, InverseFunction[f] is printed as f ����. As discussed in Section 3.2.7, many
mathematical functions do not have unique inverses. In such cases, InverseFunction[f] can represent only one of
the possible inverses for f. Example: InverseFunction[Sin] ��# ArcSin . InverseFunction is generated by
Solve when the option InverseFunctions is set to Automatic or True. See pages 253 and 825. See also:
Solve, InverseSeries, Composition, Derivative. New in Version 2.

InverseFunctions
InverseFunctions is an option for Solve and related functions which specifies whether
inverse functions should be used.
Settings for InverseFunctions are:

True always use inverse functions
Automatic use inverse functions, printing a warning message (default)
False never use inverse functions

Example: Solve[f[x] == a, x, InverseFunctions->True] ��# ��x � f��1�a��� . Inverse functions provide a
way to get some, but not in general all, solutions to equations that involve functions which are more complicated
than polynomials. Solve[Sin[x] == a, x, InverseFunctions->True] ��# ��x � ArcSina��� gives a single
solution in terms of ArcSin. In fact, there is an infinite number of solutions to the equation, differing by arbitrary
multiples of �Π. Solve gives only one of these solutions. When there are several simultaneous equations to be
solved in terms of inverse functions, Solve may fail to find any solutions, even when one exists. When inverse
functions are allowed, Solve solves for f[expr] first, then applies InverseFunction[f] to the result, equates it to
expr, and continues trying to solve for the remainder of the variables. See page 824. See also: FindRoot. New
in Version 2.



1188 InverseGammaRegularized — InverseWeierstrassP Mathematica Reference Guide

InverseGammaRegularized
InverseGammaRegularized[a, s] gives the inverse of the regularized incomplete gamma
function.
Mathematical function (see Section A.3.10). With the regularized incomplete gamma function defined by
Q�a� z� � ��a� z����a�, InverseGammaRegularized[a, s] is the solution for z in s � Q�a� z�.

InverseGammaRegularized[a, z�, s] gives the inverse of GammaRegularized[a, z�, z]. Note that the
arguments of InverseGammaRegularized are arranged differently than in InverseBetaRegularized. See
page 770. See also: InverseBetaRegularized, InverseErf. New in Version 3.

InverseJacobiSN, InverseJacobiCN, ...
InverseJacobiSN[v, m], InverseJacobiCN[v, m], etc. give the inverse Jacobi elliptic
functions sn���v/m� etc.
There are a total of twelve functions, with names of the form InverseJacobiPQ, where P and
Q can be any distinct pair of the letters S, C, D and N.

Mathematical functions (see Section A.3.10). sn���v/m� gives the value of u for which v � sn�u/m�. The inverse
Jacobi elliptic functions are related to elliptic integrals. See page 785. New in Version 1.

InverseLaplaceTransform
InverseLaplaceTransform[expr, s, t] gives the inverse Laplace transform of expr.
InverseLaplaceTransform[expr, {s�, s�, . . . }, {t�, t�, . . . }] gives the multidimensional
inverse Laplace transform of expr.

The inverse Laplace transform of a function F�s� is defined to be ��Πi � Γ�i�Γ�i� F�s�est ds, where Γ is an arbitrary positive
constant chosen so that the contour of integration lies to the right of all singularities in F�s�. Assumptions and
other options to Integrate can also be given in InverseLaplaceTransform. In TraditionalForm,
InverseLaplaceTransform is output using ���. See page 875. See also: LaplaceTransform,
InverseFourierTransform, InverseZTransform, Integrate. New in Version 4.

InverseSeries
InverseSeries[s, x] takes the series s generated by Series, and gives a series for the inverse
of the function represented by s.
InverseSeries performs “reversion” of series. Given a series s�y�, InverseSeries[s, x] gives a series for y such
that s�y� � x. InverseSeries can be applied to any SeriesData object with the appropriate structure, whether or
not it has been generated by Series. See page 887. See also: Solve, InverseFunction. New in Version 1.

InverseWeierstrassP
InverseWeierstrassP[p, {g�, g}] gives a value of u for which the Weierstrass function
j�ug g�� g� is equal to p.
Mathematical function (see Section A.3.10). The value of u returned always lies in the fundamental period
parallelogram defined by the complex half-periods Ω and Ω$. InverseWeierstrassP[{p, q}, {g�, g}] finds the
unique value of u for which p � j�ug g�� g� and q � j$�ug g�� g�. For such a value to exist, p and q must be related
by q� � 
p � g�p � g. See page 782 for a discussion of argument conventions for elliptic functions. See
page 785. See also: WeierstrassP, WeierstrassPPrime, WeierstrassHalfPeriods. New in Version 3.



A.10 Major Built-in Mathematica Objects InverseZTransform — JacobiZeta 1189

InverseZTransform
InverseZTransform[expr, z, n] gives the inverse Z transform of expr.

The inverse Z transform of a function F�z� is defined to be the contour integral ��Πi ) F�z�zn�� dz. See page 879.
See also: ZTransform, InverseLaplaceTransform. New in Version 4.

JacobiAmplitude
JacobiAmplitude[u, m] gives the amplitude am�u/m� for Jacobi elliptic functions.
Mathematical function (see Section A.3.10). JacobiAmplitude[u, m] converts from the argument u for an elliptic
function to the amplitude Φ. JacobiAmplitude is the inverse of the elliptic integral of the first kind. If u � F�Φ/m�,
then Φ � am�u/m�. See page 785. New in Version 1.

JacobiP

JacobiP[n, a, b, x] gives the Jacobi polynomial P�a�b�n �x�.

Mathematical function (see Section A.3.10). Explicit polynomials are given when possible. P�a�b�n �x� satisfies the
differential equation �� � x��y$$ � �b � a � �a � b � ��x�y$ � n�n � a � b � ��y � �. The Jacobi polynomials are orthogonal
with weight function �� � x�a�� � x�b . JacobiP[n, a, b, z] has a branch cut discontinuity in the complex z plane
running from �� to ��. See page 766. See also: LegendreP, ChebyshevT, ChebyshevU, GegenbauerC. New in
Version 1.

JacobiSN, JacobiCN, ...
JacobiSN[u, m], JacobiCN[u, m], etc. give the Jacobi elliptic functions sn�u/m�, cn�u/m�, etc.
There are a total of twelve functions, with the names of the form JacobiPQ, where P and Q
can be any distinct pair of the letters S, C, D and N.

Mathematical functions (see Section A.3.10). sn�u� � sin�Φ�, cn�u� � cos�Φ� and dn�u� �
!

� �m sin��Φ�, where
Φ � am�u/m�. Other Jacobi elliptic functions can be found from the relation pq�u� � pr�u��qr�u�, where for these
purposes pp�u� � �. See page 785. See also: InverseJacobiSN. New in Version 1.

JacobiSymbol

JacobiSymbol[n, m] gives the Jacobi symbol � n
m �.

Integer mathematical function (see Section A.3.10). For prime m, the Jacobi symbol reduces to the Legendre
symbol. The Legendre symbol is equal to M� depending on whether n is a quadratic residue modulo m. See
page 752. See also: FactorInteger, MoebiusMu. New in Version 1.

JacobiZeta
JacobiZeta[Φ, m] gives the Jacobi zeta function Z�Φ/m�.
Mathematical function (see Section A.3.10). The Jacobi zeta function is given in terms of elliptic integrals by
Z�Φ/m� � E�Φ/m� � E�m�F�Φ/m��K�m�. Argument conventions for elliptic integrals are discussed on page 782. See
page 783. See also: EllipticE, EllipticF, EllipticK. New in Version 2.



1190 Join — Label Mathematica Reference Guide

Join
Join[list�, list�, . . . ] concatenates lists together. Join can be used on any set of expressions
that have the same head.
, Join works on SparseArray objects by effectively concatenating the corresponding ordinary lists. See
page 126. See also: Union, StringJoin, Append, Prepend, PadLeft. New in Version 1.

JordanDecomposition
JordanDecomposition[m] yields the Jordan decomposition of a square matrix m. The result is
a list {s, j} where s is a similarity matrix and j is the Jordan canonical form of m.
The original matrix m is equal to s . j . Inverse[s]. The matrix m can be either numerical or symbolic. See
page 915. See also: Eigensystem, SingularValueDecomposition, QRDecomposition, SchurDecomposition,
MatrixExp. New in Version 3.

Khinchin
Khinchin is Khinchin’s constant, with numerical value � �	���
�.
Mathematical constant (see Section A.3.11). Khinchin’s constant (sometimes called Khintchine’s constant) is given
by ��s���� � �

s�s��� �
log� s. See page 765. See also: ContinuedFraction. New in Version 4.

KleinInvariantJ
KleinInvariantJ[Τ] gives the Klein invariant modular elliptic function J�Τ�.
Mathematical function (see Section A.3.10). The argument Τ is the ratio of Weierstrass half-periods Ω$�Ω.

KleinInvariantJ is given in terms of Weierstrass invariants by g���g

� � ��g

�
�. J�Τ� is invariant under any

combination of the modular transformations Τ # Τ � � and Τ # ���Τ. See page 782 for a discussion of argument
conventions for elliptic functions. See page 787. See also: ModularLambda, DedekindEta,
WeierstrassInvariants, EllipticTheta. New in Version 3.

KroneckerDelta
KroneckerDelta[n�, n�, . . . ] gives the Kronecker delta ∆n�n�� � �, equal to 1 if all the ni are
equal, and 0 otherwise.
KroneckerDelta[0] gives 1; KroneckerDelta[n] gives 0 for other numeric n. KroneckerDelta has attribute
Orderless. See page 749. See also: DiscreteDelta, IdentityMatrix, Equal, UnitStep, If, Signature,
DiracDelta. New in Version 4.

Label
Label[tag] represents a point in a compound expression to which control can be transferred
using Goto.
Label must appear as an explicit element of a CompoundExpression object. Label has attribute HoldFirst. See
page 354. See also: Catch. New in Version 1.



A.10 Major Built-in Mathematica Objects LaguerreL — LatticeReduce 1191

LaguerreL
LaguerreL[n, x] gives the Laguerre polynomial Ln�x�.
LaguerreL[n, a, x] gives the generalized Laguerre polynomial La

n�x�.
Mathematical function (see Section A.3.10). Explicit polynomials are given when possible. Ln�x� � L�n�x�. The
Laguerre polynomials are orthogonal with weight function xae�x. They satisfy the differential equation
xy$$ � �a � � � x�y$ � ny � �. LaguerreL[n, x] is an entire function of x with no branch cut discontinuities. See
page 766. See also: HermiteH. New in Version 1.

LanguageCategory
LanguageCategory is an option for Cell which determines in what category of language the
contents of the cell should be assumed to be for purposes of spell checking and hyphenation.
Possible settings for LanguageCategory are:

"Formula" mathematical formula
"Mathematica" Mathematica input
"NaturalLanguage" human natural language
None do no spell checking or hyphenation

LanguageCategory is normally set to "NaturalLanguage" for text cells, and to "Mathematica" for input and
output cells. LanguageCategory is more often set at the level of styles than at the level of individual cells. See
page 613. See also: $Language, Hyphenation, FormatType. New in Version 4.

LaplaceTransform
LaplaceTransform[expr, t, s] gives the Laplace transform of expr.
LaplaceTransform[expr, {t�, t�, . . . }, {s�, s�, . . . }] gives the multidimensional Laplace
transform of expr.

The Laplace transform of a function f�t� is defined to be � �� f�t�e�st dt. The lower limit of the integral is effectively
taken to be ��, so that the Laplace transform of the Dirac delta function ∆�t� is equal to 1. Assumptions and
other options to Integrate can also be given in LaplaceTransform. In TraditionalForm, LaplaceTransform is
output using �. See page 875. See also: InverseLaplaceTransform, FourierTransform, ZTransform,
Integrate. New in Version 4.

Last
Last[expr] gives the last element in expr.
Last[expr] is equivalent to expr[[-1]]. See page 122. See also: Part, First, Take, Most. New in Version 1.

LatticeReduce
LatticeReduce[{v�, v�, . . . }] gives a reduced basis for the set of vectors vi.
The elements of the vi can be integers, Gaussian integers, or Gaussian rational numbers. See page 752.

Implementation notes: see page 1067. See also: Rationalize, ContinuedFraction. Related package:
NumberTheory`Recognize`. New in Version 1.



1192 LCM — Length Mathematica Reference Guide

LCM
LCM[n�, n�, . . . ] gives the least common multiple of the integers ni.
Integer mathematical function (see Section A.3.10). LCM also works with rational numbers; LCM[r�, r�, . . . ] gives
the least rational number r for which all the r/ri are integers. LCM has attributes Flat and Orderless. See
page 749. See also: GCD, PolynomialLCM. New in Version 1.

LeafCount
LeafCount[expr] gives the total number of indivisible subexpressions in expr.
LeafCount gives a measure of the total “size” of an expression. LeafCount counts the number of subexpressions
in expr which correspond to “leaves” on the expression tree. Example: LeafCount[1 + a + b^2] ��# 6 .

LeafCount is based on FullForm representation of expressions. Numbers with heads Rational and Complex are
treated as composite objects, just as in FullForm. See page 714. See also: ByteCount, Length, Depth, AtomQ.

New in Version 1.

- LegendreP
LegendreP[n, x] gives the Legendre polynomial Pn�x�.
LegendreP[n, m, x] gives the associated Legendre polynomial Pm

n �x�.
Mathematical function (see Section A.3.10). Explicit formulas are given for integer n and m. The Legendre
polynomials satisfy the differential equation �� � x���d�y�dx�� � �x�dy�dx� � n�n � ��y � �. The Legendre polynomials
are orthogonal with unit weight function. The associated Legendre polynomials are defined by
Pm

n �x� � ����
m�� � x��m���dm�dxm�Pn�x�. For arbitrary complex values of n, m and z, LegendreP[n, z] and

LegendreP[n, m, z] give Legendre functions of the first kind. LegendreP[n, m, a, z] gives Legendre functions
of type a. The default is type 1. - The symbolic form of type 1 involves �� � z��m��, of type 2 involves
�� � z�m����� � z�m�� and of type 3 involves �� � z�m������ � z�m��. Type 1 is defined only for z within the unit circle
in the complex plane. Type 2 represents an analytic continuation of type 1 outside the unit circle. Type 2
functions have branch cuts from �� to �� and from �� to �� in the complex z plane. Type 3 functions have a
single branch cut from �� to ��. - LegendreP[n, m, a, z] is defined to be
Hypergeometric2F1Regularized[-n,n+1,1-m,(1-z)/2] multiplied by �� � z�m����� � z�m�� for type 2 and by
�� � z�m������ � z�m�� for type 3. See pages 766 and 777. See also: SphericalHarmonicY. New in Version 1;
modified in Version 5.0.

LegendreQ
LegendreQ[n, z] gives the Legendre function of the second kind Qn�z�.
LegendreQ[n, m, z] gives the associated Legendre function of the second kind Qm

n �z�.
Mathematical function (see Section A.3.10). For integer n and m, explicit formulas are generated. The Legendre
functions satisfy the differential equation �� � z��y$$ � �zy$ � en�n � �� �m���� � z��fy � �. LegendreQ[n, m, a, z]
gives Legendre functions of type a. The default is type 1. LegendreQ of types 1, 2 and 3 are defined in terms of
LegendreP of these types, and have the same branch cut structure. See page 777. New in Version 1; modified in
Version 3.

- Length
Length[expr] gives the number of elements in expr.
See page 236. , When expr is a SparseArray object, Length[expr] returns the length of corresponding ordinary
list. - Otherwise, Length[expr] returns 0 whenever AtomQ[expr] is True. See also: LeafCount, ByteCount, Depth.

New in Version 1; modified in Version 5.0.



A.10 Major Built-in Mathematica Objects LerchPhi — Level 1193

LerchPhi
LerchPhi[z, s, a] gives the Lerch transcendent E�z� s� a�.

Mathematical function (see Section A.3.10). E�z� s� a� � ��k�� zk��a � k�s, where any term with k � a � � is excluded.
LerchPhi[z, s, a, DoublyInfinite->True] gives the sum ��k��� zk��a � k�s. LerchPhi is a generalization of

Zeta and PolyLog. See page 772. Related package: NumberTheory`Ramanujan`. New in Version 1.

Less
x < y yields True if x is determined to be less than y.
x� < x� < x yields True if the xi form a strictly increasing sequence.
Less gives True or False when its arguments are real numbers. Less does some simplification when its
arguments are not numbers. For exact numeric quantities, Less internally uses numerical approximations to
establish numerical ordering. This process can be affected by the setting of the global variable $MaxExtraPrecision.

See page 86. See also: LessEqual, Greater, Positive, Element. New in Version 1; modified in Version 3.

LessEqual
x <= y or x � y yields True if x is determined to be less than or equal to y.
x� � x� � x yields True if the xi form a non-decreasing sequence.
x � y can be entered as x H<= H y or x \[LessEqual] y. LessEqual gives True or False when its arguments are
real numbers. LessEqual does some simplification when its arguments are not numbers. For exact numeric
quantities, LessEqual internally uses numerical approximations to establish numerical ordering. This process can be
affected by the setting of the global variable $MaxExtraPrecision. In StandardForm, LessEqual is printed
using �. x ( y, entered as x H</ H y or x \[LessSlantEqual] y, can be used on input as an alternative to x � y.

See page 86. See also: Less, GreaterEqual, Element. New in Version 1; modified in Version 3.

LetterQ
LetterQ[string] yields True if all the characters in the string are letters, and yields False
otherwise.
LetterQ[string] by default gives False if string contains any space or punctuation characters. LetterQ handles
both ordinary and special characters. LetterQ treats as letters all special characters explicitly listed as letters in
the table on pages 1354–1401. In general, LetterQ treats as letters all characters that appear as ordinary text in
any language. LetterQ treats as letters such special characters as Α, �, � and æ. LetterQ does not treat as
letters Z (\[EmptySet]),  (\[HBar]), � (\[Angstrom]) or � (\[Sum]). See page 413. See also: DigitQ,
UpperCaseQ, LowerCaseQ, CharacterRange. New in Version 2; modified in Version 3.

Level
Level[expr, levelspec] gives a list of all subexpressions of expr on levels specified by levelspec.
Level[expr, levelspec, f] applies f to the list of subexpressions.
Level uses the standard level specification described on page 1041. Level[expr, {-1}] gives a list of all “atomic”
objects in expr. Level traverses expressions in depth-first order, so that the subexpressions in the final list are
ordered lexicographically by their indices. See page 239. See also: Apply, Map, Scan. New in Version 1.



1194 Lighting — LimitsPositioning Mathematica Reference Guide

Lighting
Lighting is an option for Graphics3D and related functions that specifies whether to use
simulated illumination in three-dimensional pictures.
Lighting -> True uses simulated illumination. The ambient light level is specified by the option AmbientLight.
The option LightSources gives the positions and intensities of point light sources. Lighting -> False uses no
simulated illumination. In SurfaceGraphics, polygons are then shaded according to their height, or according to
the ColorFunction option that is given. See pages 526 and 544. See also: Shading, ColorFunction,
SurfaceColor. New in Version 1.

LightSources
LightSources is an option for Graphics3D and related functions that specifies the properties
of point light sources for simulated illumination.
The basic form is LightSources -> {s�, s�, . . . }, where the si are the specifications for each light source. Each si
has the form {direction, color}. The direction is specified as {x, y, z}, where the components are with respect to
the final display area. The x and y are horizontal and vertical in the plane of the display; z is orthogonal to the
display. Positive z is in front. Only the relative magnitude of the components is relevant; the overall normalization
of the vector is ignored. The color can be specified by GrayLevel, Hue or RGBColor. Simulated illumination
determines the shading of polygons in three-dimensional pictures. The shading of a particular polygon is
computed as a sum of contributions from point light sources, plus a contribution from ambient light. Surface
properties of polygons are specified by SurfaceColor directives. Light reflection properties assumed for polygons
are described in the notes for SurfaceColor. See page 545. See also: AmbientLight. New in Version 1.

- Limit
Limit[expr, x->x�] finds the limiting value of expr when x approaches x�.
Example: Limit[Sin[x]/x, x->0] ��# 1 . Limit[expr, x->x�, Direction -> 1] computes the limit as x
approaches x� from smaller values. Limit[expr, x->x�, Direction -> -1] computes the limit as x approaches x�
from larger values. Limit returns Interval objects to represent ranges of possible values, for example at essential
singularities. Limit returns unevaluated when it encounters functions about which it has no specific information.
Limit therefore by default makes no explicit assumptions about symbolic functions. - Assumptions can be
specified as a setting for the option Assumptions. See page 893. See also: Series, Residue. Related package:
NumericalMath`NLimit`. New in Version 1; modified in Version 5.0.

LimitsPositioning
LimitsPositioning is an option for UnderoverscriptBox and related boxes which specifies
whether to change the positioning of underscripts and overscripts in the way conventional for
limits.
UnderoverscriptBox[x, y, z, LimitsPositioning->False] is always displayed with explicit underscripts and
overscripts, as x

y

z
. UnderoverscriptBox[x, y, z, LimitsPositioning->True] is displayed as x

y

z
when large, and

xy
z when small. The xy

z form is used when the box appears in a subscript or other script, or inline in a piece of
text. With the default setting LimitsPositioning->Automatic the display of UnderoverscriptBox[x, y, z]
depends on x. If x is \[Sum], \[Product] or another form conventionally displayed with limits, then
LimitsPositioning->True is effectively used. Otherwise, LimitsPositioning->False is used.

LimitsPositioningTokens is a Cell option which can be set to a list of forms for which
LimitsPositioning->True should be used. See page 458. See also: ScriptSizeMultipliers. New in
Version 3.



A.10 Major Built-in Mathematica Objects Line — LinearSolve 1195

Line
Line[{pt�, pt�, . . . }] is a graphics primitive which represents a line joining a sequence of points.
Line can be used in both Graphics and Graphics3D (two- and three-dimensional graphics). The positions of
points can be specified either in ordinary coordinates, as {x, y} or {x, y, z}, or in scaled coordinates as
Scaled[{x, y}] or Scaled[{x, y, z}]. Offset can be used to specify coordinates in two dimensions. The line
consists of a sequence of straight segments joining the specified points. Line thickness can be specified using
Thickness or AbsoluteThickness. Line dashing can be specified using Dashing or AbsoluteDashing. Line
shading or coloring can be specified using CMYKColor, GrayLevel, Hue or RGBColor. See pages 492 and 520. See
also: Polygon, PlotJoined. Related packages: Graphics`Arrow`, Graphics`Spline`. New in Version 1; modified
in Version 3.

- LinearProgramming
LinearProgramming[c, m, b] finds a vector x which minimizes the quantity c.x subject to the
constraints m	x ! b and x ! �.
, LinearProgramming[c, m, {{b�, s�}, {b�, s�}, . . . }] finds a vector x which minimizes c.x
subject to x ! � and linear constraints specified by the matrix m and the pairs {bi, si}. For each
row mi of m, the corresponding constraint is mi . x � bi if si == 1, or mi . x == bi if si == 0, or
mi . x � bi if si == -1.
, LinearProgramming[c, m, b, l] minimizes c.x subject to the constraints specified by m and
b and x ! l.
, LinearProgramming[c, m, b, {l�, l�, . . . }] minimizes c.x subject to the constraints
specified by m and b and xi ! li.
, LinearProgramming[c, m, b, {{l�, u�}, {l�, u�}, . . . }] minimizes c.x subject to the
constraints specified by m and b and li * xi * ui.
All entries in the vectors c and b and the matrix m must be real numbers. , The bounds li and ui must be real
numbers or Infinity or -Infinity. LinearProgramming gives exact rational number results if its input is exact.
, LinearProgramming returns unevaluated if no solution can be found. , LinearProgramming finds approximate
numerical results if its input contains approximate numbers. The option Tolerance specifies the tolerance to be used
for internal comparisons. The default is Tolerance->Automatic, which does exact comparisons for exact numbers,
and uses tolerance ���� for approximate numbers. , SparseArray objects can be used in LinearProgramming.
, With Method->"InteriorPoint", LinearProgramming uses interior point methods. See page 975.

Implementation notes: see page 1068. See also: NMinimize, Minimize. New in Version 2; modified in Version 5.0.

- LinearSolve
LinearSolve[m, b] finds an x which solves the matrix equation m.x==b.
, LinearSolve[m] generates a LinearSolveFunction[. . . ] which can be applied repeatedly
to different b.
- LinearSolve works on both numerical and symbolic matrices, as well as SparseArray objects. The argument
b can be either a vector or a matrix. The matrix m can be square or rectangular. , LinearSolve[m] and
LinearSolveFunction[. . . ] provide an efficient way to solve the same approximate numerical linear system many
times. , LinearSolve[m, b] is equivalent to LinearSolve[m][b]. For underdetermined systems, LinearSolve
will return one of the possible solutions; Solve will return a general solution. LinearSolve[m, b, Modulus -> n]
takes the matrix equation to be modulo n. LinearSolve[m, b, ZeroTest -> test] evaluates test[ m[[i, j]] ] to
determine whether matrix elements are zero. The default setting is ZeroTest -> (# == 0 &). - A Method option
can also be given. Settings for exact and symbolic matrices include "CofactorExpansion",
"DivisionFreeRowReduction" and "OneStepRowReduction". Settings for approximate numerical matrices include
"Cholesky", and for sparse arrays "Multifrontal" and "Krylov". The default setting of Automatic switches
between these methods depending on the matrix given. See page 907. Implementation notes: see page 1069.

See also: Inverse, PseudoInverse, Solve, NullSpace, CoefficientArrays, CholeskyDecomposition. New in
Version 1; modified in Version 5.0.



1196 LinearSolveFunction — LinkClose Mathematica Reference Guide

, LinearSolveFunction
LinearSolveFunction[dimensions, data] represents a function for providing solutions to a
matrix equation.
LinearSolveFunction[. . . ] is generated by LinearSolve[m]. LinearSolveFunction works like Function.

LinearSolveFunction[. . . ][b] finds the solution to the matrix equation m . x == b for the specific vector or
matrix b. In standard output format, only the dimensions element of a LinearSolveFunction object is printed
explicitly. The remaining elements are indicated by <>. dimensions specifies the dimensions of the matrix m from
which the LinearSolveFunction was constructed. See page 252. See also: LinearSolve, Inverse,
LUDecomposition, CholeskyDecomposition. New in Version 5.0.

LineIndent
LineIndent is an option for Cell, StyleBox and StyleForm which specifies how many ems of
indentation to add at the beginnings of lines for each level of nesting in an expression.
The typical default setting is LineIndent->1. The setting for LineIndent determines the amount of indentation
that will be inserted after any explicit RETURN is entered when AutoIndent->True. See also:
LineIndentMaxFraction, PageWidth. New in Version 3.

LineIndentMaxFraction
LineIndentMaxFraction is an option for Cell, StyleBox and StyleForm which specifies the
maximum fraction of the total page width to indent at the beginnings of lines.
The typical default setting is LineIndentMaxFraction->0.5. The setting for LineIndentMaxFraction is relevant
in formatting deeply nested expressions. See also: LineIndent, PageWidth. New in Version 3.

LineSpacing
LineSpacing is an option for Cell, StyleBox and StyleForm which specifies the spacing
between successive lines of text.
LineSpacing->{c, 0} leaves space so that the total height of each line is c times the height of its contents.

LineSpacing->{0, n} makes the total height of each line exactly n printer’s points. LineSpacing->{c, n}
makes the total height c times the height of the contents plus n printer’s points. A typical default setting is
LineSpacing->{1, 1}, which leaves space for the contents of the line, plus 1 printer’s point (approximately ��� of
an inch) of extra space. LineSpacing->{2, 0} makes text “double spaced”. LineSpacing-> {1, -n} tightens
text by n printer’s points. LineSpacing applies both to ordinary text and Mathematica expressions. In ordinary
text, LineSpacing determines the spacing between lines produced by automatic linebreaking. For lines produced by
explicit RETURN characters ParagraphSpacing is added. In Mathematica expressions, LineSpacing is used whether
lines are produced by automatic linebreaking or by explicit RETURN characters. Extra space specified by
LineSpacing is inserted equally above and below a line, except that no extra space is inserted before the first line
or after the last line of an expression or cell. See page 611. See also: FontSize, ParagraphSpacing. New in
Version 3.

LinkClose
LinkClose[link] closes an open MathLink connection.
link must be an active LinkObject, as returned by functions like LinkLaunch and Links. Closing a MathLink
connection does not necessarily terminate the program at the other end of the connection. See page 680. See
also: LinkInterrupt, Close. New in Version 3.



A.10 Major Built-in Mathematica Objects LinkConnect — LinkLaunch 1197

LinkConnect
LinkConnect["name"] connects to a MathLink link created by another program.
LinkConnect by default operates with internet TCP links, with names of the form port@host. Ports are typically
specified by numbers. LinkConnect can connect to a port on a remote computer system. On some computer
systems, LinkConnect[ ] will bring up a port browser. LinkConnect returns a LinkObject. You can use
LinkConnect with LinkCreate to set up peer-to-peer communication between two Mathematica processes.

LinkConnect can be used to connect to a link created by calling LinkCreate in another Mathematica process.
LinkConnect can be used to connect to an external program that has created a MathLink link by calling the

appropriate MathLink library functions. External programs built from MathLink templates using mcc and mprep can
typically create MathLink links whenever they are given -linkcreate command-line arguments. The option
LinkProtocol specifies the underlying data transport protocol that LinkConnect should use. LinkConnect
internally calls a function analogous to the MLOpenArgv() function in the MathLink library. Even though no
program may yet be connected to the other end of the MathLink link, the function LinkConnect will return
immediately and will not block. See page 680. See also: LinkCreate, LinkLaunch, LinkClose. New in
Version 3.

LinkCreate
LinkCreate["name"] creates a MathLink link with the specified name for another program to
connect to.
LinkCreate[ ] picks an unused port on your computer system and creates a MathLink link
on it.
LinkCreate returns a LinkObject. You can use LinkCreate and LinkConnect to set up peer-to-peer
communication between two Mathematica processes. The option LinkProtocol specifies the underlying data
transport protocol to use. LinkCreate internally calls a function analogous to the MLOpenArgv() function in the
MathLink library. See page 680. See also: LinkConnect, LinkLaunch, LinkClose. New in Version 3.

LinkInterrupt
LinkInterrupt[link] sends an interrupt to the program at the other end of the specified
MathLink connection.
link must be an active LinkObject, as returned by functions such as LinkLaunch or Links. It is up to the
external program to determine how it will handle the interrupt. External programs created from MathLink
templates will by default set the global variable MLAbort if they receive an abort. See page 686. See also:
Interrupt, LinkClose. New in Version 3.

LinkLaunch
LinkLaunch["prog"] starts the external program prog and opens a MathLink connection to it.
LinkLaunch["prog"] runs prog as a subsidiary or child process to your current Mathematica session. You can use a
command such as LinkLaunch["math -mathlink"] to launch a subsidiary Mathematica kernel process from within
your Mathematica session. On most computer systems calling LinkLaunch["prog"] multiple times with the same
argument will start several prog processes running. On some computer systems, LinkLaunch[ ] will bring up a
program browser. LinkLaunch returns a LinkObject. The option LinkProtocol specifies the underlying data
transport protocol to use. LinkLaunch internally calls a function analogous to the MLOpenArgv() function in the
MathLink library. See page 683. See also: Install, LinkCreate, LinkConnect, LinkClose. New in Version 3.



1198 LinkObject — Links Mathematica Reference Guide

LinkObject
LinkObject["name", n] is an object that represents an active MathLink connection for
functions such as LinkRead and LinkWrite.
LinkConnect, LinkCreate, LinkLaunch and Install all return LinkObject objects. The integer n is a serial
number used to distinguish links with the same name. name is typically the name of an external program, or an
internet TCP specification of the form port@host. See pages 659 and 687. See also: Links, LinkReadyQ,
InputStream. New in Version 3.

LinkPatterns
LinkPatterns[link] gives a list of the patterns for which definitions were set up when the
external program associated with the specified MathLink connection was installed.
Each element of the list returned by LinkPatterns is wrapped in HoldForm to prevent evaluation. The patterns
in LinkPatterns typically originate in :Pattern: specifications in the MathLink templates used to create source
code for the external program. Uninstall[link] calls Unset on the patterns in LinkPatterns[link]. See
page 662. See also: Install. New in Version 3.

- LinkProtocol
LinkProtocol is an option to LinkLaunch, Install and related functions which specifies the
underlying data transport protocol to use for a new MathLink link.
- Typical settings for LinkProtocol are "SharedMemory" and "FileMap" (Windows), "Pipes" (Unix, Macintosh)
and "TCPIP" (all systems). See page 677. New in Version 3; modified in Version 5.0.

LinkRead
LinkRead[link] reads one expression from the specified MathLink connection.
LinkRead[link, h] wraps h around the expression read before evaluating it.
link must be an active LinkObject, as returned by functions like LinkLaunch or Links. LinkRead will wait until
it has read a complete expression before returning. You can test whether an expression is ready to be read from a
particular link using LinkReadyQ. You can use LinkRead[link, Hold] to get an expression from a link without
evaluating it. See page 680. See also: LinkReadyQ, LinkWrite, Read. New in Version 3.

LinkReadyQ
LinkReadyQ[link] tests whether there is an expression ready to read from the specified
MathLink connection.
link must be an active LinkObject, as returned by functions like LinkLaunch or Links. If LinkReadyQ[link]
returns True, then LinkRead[link] will not block under any normal circumstances. If LinkReadyQ[link] returns
False, then LinkRead[link] will block, and will not return until something becomes available to read on link.

LinkReadyQ[link] tests whether there is any data to read; it cannot determine whether the data represents a
complete expression. LinkReadyQ corresponds to the MathLink library function MLReady(). See page 680. See
also: LinkRead, LinkWrite, LinkInterrupt. New in Version 3.

Links
Links[ ] gives a list of all MathLink connections that are currently open.
Links["name"] lists only links with the specified name.
Links returns a list of LinkObject objects. See page 662. See also: $ParentLink, $CurrentLink, Streams,
LinkReadyQ, LinkLaunch, LinkClose. New in Version 3.



A.10 Major Built-in Mathematica Objects LinkWrite — ListConvolve 1199

LinkWrite
LinkWrite[link, expr] writes expr to the specified MathLink connection.
link must be an active LinkObject, as returned by functions like LinkLaunch or Links. You can use
LinkWrite[link, Unevaluated[expr]] to write expr to the link without evaluating it. The head of expr will often
be a packet which specifies how expr should be processed by the program which receives it. When LinkWrite is
used to send data to a Mathematica kernel, EnterTextPacket["string"] enters the text of an input line, and
EvaluatePacket[expr] sends an expression for evaluation. See page 680. See also: LinkRead, Write,
FrontEndExecute. New in Version 3.

List
{e�, e�, . . . } is a list of elements.
Lists are very general objects that represent collections of expressions. Functions with attribute Listable are
automatically “threaded” over lists, so that they act separately on each list element. Most built-in mathematical
functions are Listable. {a, b, c} represents a vector. {{a, b}, {c, d}} represents a matrix. Nested lists can
be used to represent tensors. See page 115. See also: Sequence. New in Version 1.

Listable
Listable is an attribute that can be assigned to a symbol f to indicate that the function f
should automatically be threaded over lists that appear as its arguments.
Listable functions are effectively applied separately to each element in a list, or to corresponding elements in each
list if there is more than one list. Most built-in mathematical functions are Listable. Example: Log is Listable.
Log[{a,b,c}] ��# �Loga�, Logb�, Logc�� . All the arguments which are lists in a Listable function must
be of the same length. Arguments that are not lists are copied as many times as there are elements in the lists.

Example: Plus is Listable. {a, b, c} + x ��# �a � x, b � x, c � x� . See page 329. See also: Thread, Map,
Sequence, SparseArray. New in Version 1.

ListContourPlot
ListContourPlot[array] generates a contour plot from an array of height values.
ListContourPlot returns a ContourGraphics object. ListContourPlot has the same options as
ContourGraphics. Successive rows of array are arranged up the page; successive columns across the page. See
notes for ContourGraphics. See page 159. New in Version 1.

ListConvolve
ListConvolve[ker, list] forms the convolution of the kernel ker with list.
ListConvolve[ker, list, k] forms the cyclic convolution in which the kth element of ker is
aligned with each element in list.
ListConvolve[ker, list, {kL, kR}] forms the cyclic convolution whose first element contains
list[[1]] ker[[kL]] and whose last element contains list[[-1]] ker[[kR]].
ListConvolve[ker, list, klist, p] forms the convolution in which list is padded at each end
with repetitions of the element p.
ListConvolve[ker, list, klist, {p�, p�, . . . }] forms the convolution in which list is padded at
each end with cyclic repetitions of the pi.
ListConvolve[ker, list, klist, padding, g, h] forms a generalized convolution in which g is
used in place of Times and h in place of Plus.
ListConvolve[ker, list, klist, padding, g, h, lev] forms a convolution using elements at level
lev in ker and list.

(continued)



1200 ListConvolve (continued) — ListCorrelate Mathematica Reference Guide

ListConvolve (continued)

With kernel Kr and list as, ListConvolve[ker, list] computes �r Kras�r, where the limits of the sum are such that
the kernel never overhangs either end of the list. Example:
ListConvolve[{x,y}, {a,b,c}] ��# �b x � a y, c x � b y� . ListConvolve[ker, list] gives a result of length
Length[list]-Length[ker]+1. ListConvolve[ker, list] allows no overhangs and is equivalent to
ListConvolve[ker, list, {-1, 1}]. ListConvolve[ker, list, k] is equivalent to ListConvolve[ker, list, {k, k}].

The values of kL and kR in ListConvolve[ker, list, {kL, kR}] determine the amount of overhang to allow at
each end of list. Common settings for {kL, kR} are:

{-1, 1} no overhangs (default)
{-1, -1} maximal overhang at the right-hand end
{1, 1} maximal overhang at the left-hand end
{1, -1} maximal overhangs at both beginning and end

Examples: ListConvolve[{x,y}, {a,b,c}, {1,1}] ��# �a x � c y, b x � a y, c x � b y� .
ListConvolve[{x,y}, {a,b,c}, {1,-1}] ��# �a x � c y, b x � a y, c x � b y, a x � c y� . With maximal overhang

at one end only, the result from ListConvolve is the same length as list.
ListConvolve[ker, list, {kL, kR}, padlist] effectively lays down repeated copies of padlist, then superimposes one

copy of list on them and forms a convolution of the result. Common settings for padlist are:

p pad with repetitions of a single element
{p�, p�, . . . } pad with cyclic repetitions of a sequence of elements
list pad by treating list as cyclic (default)
{} do no padding

ListConvolve works with multidimensional kernels and lists of data.
ListConvolve[ker, list, {{kL�, kL�, . . . }, {kR�, kR�, . . . }}] forms the cyclic convolution whose {1,1,. . . }

element contains ker[[kL�, kL�, . . . ]] list[[1,1,. . . ]] and whose {-1,-1,. . . } element contains
ker[[kR�, kR�, . . . ]] list[[-1,-1,. . . ]]. {kL, kR} is taken to be equivalent to {{kL, kL, . . . }, {kR, kR, . . . }}.

When a function h is specified to use in place of Plus, explicit nested h expressions are generated with a depth
equal to the depth of ker. ListConvolve works with exact numbers and symbolic data as well as approximate
numbers. See page 937. Implementation notes: see page 1069. See also: ListCorrelate, Partition, Inner,
CellularAutomaton, PadLeft. New in Version 4.

ListCorrelate
ListCorrelate[ker, list] forms the correlation of the kernel ker with list.
ListCorrelate[ker, list, k] forms the cyclic correlation in which the kth element of ker is
aligned with each element in list.
ListCorrelate[ker, list, {kL, kR}] forms the cyclic correlation whose first element contains
list[[1]] ker[[kL]] and whose last element contains list[[-1]] ker[[kR]].
ListCorrelate[ker, list, klist, p] forms the correlation in which list is padded at each end
with repetitions of the element p.
ListCorrelate[ker, list, klist, {p�, p�, . . . }] forms the correlation in which list is padded at
each end with cyclic repetitions of the pi.
ListCorrelate[ker, list, klist, padding, g, h] forms a generalized correlation in which g is
used in place of Times and h in place of Plus.
ListCorrelate[ker, list, klist, padding, g, h, lev] forms a correlation using elements at level
lev in ker and list.

(continued)



A.10 Major Built-in Mathematica Objects ListCorrelate (continued) — ListPlay 1201

ListCorrelate (continued)

With kernel Kr and list as, ListCorrelate[ker, list] computes �r Kras�r, where the limits of the sum are such
that the kernel never overhangs either end of the list. Example:
ListCorrelate[{x,y}, {a,b,c}] ��# �a x � b y, b x � c y� . For a one-dimensional list ListCorrelate[ker, list]
is equivalent to ListConvolve[Reverse[ker], list]. For higher-dimensional lists, ker must be reversed at every
level. See notes for ListConvolve. Settings for kL and kR are negated in ListConvolve relative to
ListCorrelate. Common settings for {kL, kR} in ListCorrelate are:

{1, -1} no overhangs (default)
{1, 1} maximal overhang at the right-hand end
{-1, -1} maximal overhang at the left-hand end
{-1, 1} maximal overhangs at both beginning and end

See page 937. Implementation notes: see page 1069. See also: ListConvolve, Partition, Inner,
CellularAutomaton, PadLeft. New in Version 4.

ListDensityPlot
ListDensityPlot[array] generates a density plot from an array of height values.
ListDensityPlot returns a DensityGraphics object. ListDensityPlot has the same options as
DensityGraphics. Successive rows of array are arranged up the page; successive columns across the page. See
notes for DensityGraphics. See page 159. New in Version 1.

ListInterpolation
ListInterpolation[array] constructs an InterpolatingFunction object which represents an
approximate function that interpolates the array of values given.
ListInterpolation[array, {{xmin, xmax}, {ymin, ymax}, . . . }] specifies the domain of the
grid from which the values in array are assumed to come.
You can replace {xmin, xmax} etc. by explicit lists of positions for grid lines. The grid lines are otherwise assumed
to be equally spaced. ListInterpolation[array] assumes grid lines at integer positions in each direction. array
can be an array in any number of dimensions, corresponding to a list with any number of levels of nesting.

ListInterpolation[array, domain] generates an InterpolatingFunction object which returns values with the
same precision as those in {array, domain}. See notes for Interpolation. See page 934. See also:
FunctionInterpolation, ListContourPlot, Quantile. New in Version 3.

ListPlay
ListPlay[{a�, a�, . . . }] plays a sound whose amplitude is given by the sequence of levels ai.
ListPlay returns a Sound object. The following options can be given:

DisplayFunction $SoundDisplayFunction function for generating output
Epilog {} sound or graphics to be used as an epilog
PlayRange Automatic the range of amplitude levels to include
Prolog {} sound or graphics to be used as a prolog
SampleDepth 8 how many bits to use to represent each amplitude level
SampleRate 8192 how many times per second amplitude samples should be

generated

ListPlay[{list�, list�}] generates stereo sound. The left-hand channel is given first.
ListPlay[{list�, list�, . . . }] generates sound on any number of channels. If the lists are of different lengths,

silence is inserted at the ends of the shorter lists. See page 172. See also: Play, SampledSoundList, Show.
Related package: Miscellaneous`Audio`. New in Version 2.



1202 ListPlot — LogGamma Mathematica Reference Guide

ListPlot
ListPlot[{y�, y�, . . . }] plots a list of values. The x coordinates for each point are taken to be
1, 2, . . . .
ListPlot[{{x�, y�}, {x�, y�}, . . . }] plots a list of values with specified x and y coordinates.
ListPlot returns a Graphics object. ListPlot has the same options as Graphics, with the following additions:

PlotJoined False whether to draw a line joining the points
PlotStyle Automatic graphics directives to determine the style of the points or line

Setting PlotJoined -> True gives a line joining the points. ListPlot has the default option setting
Axes -> True. See page 159. See also: Plot, Fit. Related packages: Graphics`MultipleListPlot`,
Graphics`Graphics`. New in Version 1.

ListPlot3D
ListPlot3D[array] generates a three-dimensional plot of a surface representing an array of
height values.
ListPlot3D[array, shades] generates a plot with each element of the surface shaded according
to the specification in shades.
ListPlot3D returns a SurfaceGraphics object. ListPlot3D has the same options as SurfaceGraphics.

ListPlot3D has the default option setting Axes -> True. array should be a rectangular array of real numbers,
representing z values. There will be holes in the surface corresponding to any array elements that are not real
numbers. If array has dimensions m � n, then shades must have dimensions �m � �� � �n � ��. The elements of
shades must be either GrayLevel, Hue or RGBColor, or SurfaceColor objects. See page 159. See also: Plot3D.

Related packages: Graphics`Graphics3D`, DiscreteMath`ComputationalGeometry` . New in Version 1.

Locked
Locked is an attribute which, once assigned, prevents modification of any attributes of a
symbol.
See page 329. See also: Protected, ReadProtected. New in Version 1.

Log
Log[z] gives the natural logarithm of z (logarithm to base e).
Log[b, z] gives the logarithm to base b.
Mathematical function (see Section A.3.10). Log gives exact rational number results when possible. Log[z] has a
branch cut discontinuity in the complex z plane running from �� to �. See page 761. See also: Exp, Power, Arg,
MantissaExponent, ProductLog, HarmonicNumber. New in Version 1.

LogGamma
LogGamma[z] gives the logarithm of the gamma function log ��z�.
Mathematical function (see Section A.3.10). Unlike Log[Gamma[z]], LogGamma[z] is analytic throughout the
complex z plane, except for a branch cut discontinuity along the negative real axis. See page 770. New in
Version 2.



A.10 Major Built-in Mathematica Objects LogicalExpand — MachinePrecision 1203

LogicalExpand
LogicalExpand[expr] expands out expressions containing logical connectives such as &&
and ||.
LogicalExpand applies distributive laws for logical operations. Example:
LogicalExpand[p && !(q || r)] ��# p && 9 q && 9 r . LogicalExpand generates ORs of ANDs corresponding to
disjunctive normal form, with some contractions. See pages 87 and 889. See also: Expand. New in Version 1.

LogIntegral
LogIntegral[z] is the logarithmic integral function li�z�.

Mathematical function (see Section A.3.10). The logarithmic integral function is defined by li�z� � � z
�

dt�log t , where
the principal value of the integral is taken. LogIntegral[z] has a branch cut discontinuity in the complex z
plane running from �� to ��. See page 774. See also: ExpIntegralE. New in Version 1.

LowerCaseQ
LowerCaseQ[string] yields True if all the characters in the string are lower-case letters, and
yields False otherwise.
LowerCaseQ treats both ordinary and special characters. See page 413. See also: UpperCaseQ, LetterQ,
ToLowerCase, ToCharacterCode. New in Version 2; modified in Version 3.

LUDecomposition
LUDecomposition[m] generates a representation of the LU decomposition of a square
matrix m.
LUDecomposition returns a list of three elements. The first element is a combination of upper and lower triangular
matrices, the second element is a vector specifying rows used for pivoting, and for approximate numerical matrices
m the third element is an estimate of the L� condition number of m. See page 914. Implementation notes: see
page 1069. See also: LinearSolveFunction, CholeskyDecomposition, QRDecomposition, SchurDecomposition.

Related package: LinearAlgebra`Orthogonalization` . New in Version 3.

MachineNumberQ
MachineNumberQ[expr] returns True if expr is a machine-precision real or complex number,
and returns False otherwise.
See page 728. See also: Precision, NumberQ. Related package: NumericalMath`ComputerArithmetic` . New in
Version 2.

, MachinePrecision
MachinePrecision is a symbol used to indicate machine-number precision.
The numerical value of MachinePrecision is $MachinePrecision. Precision[1.] gives MachinePrecision.

MachinePrecision is the default specification for precision in N and other numerical functions. Approximate real
numbers are assumed to have precision specified by MachinePrecision if fewer than $MachinePrecision explicit
digits are entered. The option setting WorkingPrecision->MachinePrecision specifies that internal computations
in numerical functions should be done with machine numbers. MachinePrecision is treated as a numeric
constant, with attribute Constant. See page 728. See also: $MachinePrecision, Precision. New in Version 5.0.



1204 Magnification — MantissaExponent Mathematica Reference Guide

Magnification
Magnification is an option for Cell which specifies at what magnification to display the cell.
Magnification is often set for styles of cells or whole notebooks instead of individual cells. Magnification
affects spaces between cells as well as individual cells. See page 604. New in Version 3.

MakeBoxes
MakeBoxes[expr, form] is the low-level function used in Mathematica sessions to convert
expressions into boxes.
MakeBoxes does not evaluate expr. form can be StandardForm, TraditionalForm, or any other output form. You
can give definitions for MakeBoxes[expr, form] to specify your own rules for how expressions should be converted
to boxes. MakeBoxes is not automatically called on the results it generates. This means that explicit MakeBoxes
calls must typically be inserted into definitions that are given. If you change the output format for an expression
by giving a definition for MakeBoxes, there is no guarantee that output you get will subsequently be able to be
interpreted by Mathematica. Definitions you give for MakeBoxes will override built-in Mathematica rules for
generating output. See page 475. See also: MakeExpression, ToBoxes, Format. New in Version 3.

MakeExpression
MakeExpression[boxes, form] is the low-level function used in Mathematica sessions to
construct expressions from boxes.
MakeExpression returns its result wrapped in HoldComplete. form can be StandardForm, TraditionalForm, or
other forms for which interpretation rules have been defined. You can give definitions for
MakeExpression[expr, form] to specify your own rules for how boxes should be converted to expressions.

MakeExpression is not automatically called on the results it generates. This means that explicit MakeExpression
calls must typically be inserted into definitions for MakeExpression. MakeExpression is used whenever boxes are
supplied as input to Mathematica. The boxes that are fed to MakeExpression are constructed from textual input
by forming tokens, then grouping these according to standard Mathematica operator precedence rules, stripping out
spacing characters. StyleBox and other objects not intended for interpretation are removed. Definitions you give
for MakeExpression will override built-in Mathematica rules for processing input. Giving input prefaced by \!
makes Mathematica effectively perform MakeExpression. See page 475. See also: MakeBoxes, ToExpression.

New in Version 3.

MantissaExponent
MantissaExponent[x] gives a list containing the mantissa and exponent of a number x.
MantissaExponent[x, b] gives the base-b mantissa and exponent of x.
Example: MantissaExponent[3.4 10^25] ��# �0.34, 26� . The mantissa always lies between ��b and � or ��
and ���b. MantissaExponent works with exact as well as approximate numeric quantities. Example:

MantissaExponent[Exp[Pi], 2] ��# 	 �Π
������������
32

, 5
 . See page 726. See also: Log, RealDigits, IntegerExponent.

New in Version 2; modified in Version 4.



A.10 Major Built-in Mathematica Objects Map — MapIndexed 1205

Map
Map[f, expr] or f /@ expr applies f to each element on the first level in expr.
Map[f, expr, levelspec] applies f to parts of expr specified by levelspec.
Examples: Map[f, {a, b, c}] ��# �fa�, fb�, fc�� ; Map[f, a + b + c] ��# fa� � fb� � fc� . Level
specifications are described on page 1041. The default value for levelspec in Map is {1}. Examples:
Map[f, {{a,b},{c,d}}] ��# �f�a, b��, f�c, d��� ;
Map[f, {{a,b},{c,d}}, 2] ��# �f�fa�, fb���, f�fc�, fd���� ;
Map[f, {{a,b},{c,d}}, -1] ��# �f�fa�, fb���, f�fc�, fd���� . , If expr is a SparseArray object,
Map[f, expr] applies f to the values or subarrays that appear in expr. See page 244. See also: Apply, Scan,
MapAll, MapAt, MapIndexed, MapThread, Level, Operate. New in Version 1.

MapAll
MapAll[f, expr] or f //@ expr applies f to every subexpression in expr.
Example: MapAll[f, {{a,b},{c,d}}] ��# f�f�fa�, fb���, f�fc�, fd����� . MapAll[f, expr] is
equivalent to Map[f, expr, {0, Infinity}]. MapAll[f, expr, Heads -> True] applies f inside the heads of the
parts of expr. See page 245. See also: ExpandAll, ReplaceAll. New in Version 1.

MapAt
MapAt[f, expr, n] applies f to the element at position n in expr. If n is negative, the position is
counted from the end.
MapAt[f, expr, {i, j, . . . }] applies f to the part of expr at position {i, j, . . . }.
MapAt[f, expr, {{i�, j�, . . . }, {i�, j�, . . . }, . . . }] applies f to parts of expr at several
positions.
Example: MapAt[f, {a, b, c}, 2] ��# �a, fb�, c� .

MapAt[f, {a, b, c, d}, {{1}, {4}}] ��# �fa�, b, c, fd�� . MapAt[f, expr, {i, j, . . . }] or
MapAt[f, expr, {{i, j, . . . }}] applies f to the part expr[[i, j, . . . ]].

MapAt[f, expr, {{i�, j�, . . . }, {i�, j�, . . . }, . . . }] applies f to parts expr[[i�, j�, . . . ]], expr[[i�, j�, . . . ]], . . . .
The list of positions used by MapAt is in the same form as is returned by the function Position. MapAt applies

f repeatedly to a particular part if that part is mentioned more than once in the list of positions. Example:
MapAt[f, {a, b, c}, {{1}, {3}, {1}}] ��# �ffa��, b, fc�� . See page 245. See also: ReplacePart,
Delete, FlattenAt. New in Version 1.

MapIndexed
MapIndexed[f, expr] applies f to the elements of expr, giving the part specification of each
element as a second argument to f.
MapIndexed[f, expr, levspec] applies f to all parts of expr on levels specified by levspec.
Example: MapIndexed[f, {a, b, c}] ��# �fa, �1��, fb, �2��, fc, �3��� . Level specifications are
described on page 1041. The default value for levelspec in MapIndexed is {1}. Example:
MapIndexed[f, {{a, b}, {c, d}}, Infinity] ��#�f�fa, �1, 1��, fb, �1, 2���, �1��, f�fc, �2, 1��, fd, �2, 2���, �2��� . See page 246. See also:
MapAt. New in Version 2.



1206 MapThread — MathieuCharacteristicB Mathematica Reference Guide

MapThread
MapThread[f, {{a�, a�, . . . }, {b�, b�, . . . }, . . . }] gives
{f[a�, b�, . . . ], f[a�, b�, . . . ], . . . }.
MapThread[f, {expr�, expr�, . . . }, n] applies f to the parts of the expri at level n.
Example: MapThread[f, {{a1, a2}, {b1, b2}}] ��# �fa1, b1�, fa2, b2�� .

MapThread[f, {{{a1, a2}}, {{b1, b2}}}] ��# �f�a1, a2�, �b1, b2��� .
MapThread[f, {{{a1, a2}}, {{b1, b2}}}, 2] ��# ��fa1, b1�, fa2, b2��� . See page 247. See also: Map,

Thread, Inner. New in Version 2.

MatchLocalNames
MatchLocalNames is an option for Trace and related functions which specifies whether
symbols such as x should match symbols with local names of the form x$nnn.
The default setting is MatchLocalNames -> True. With the default setting, Trace[expr, x = rhs] will show
assignments to local variables whose names are of the form x$nnn.

Trace[expr, x = rhs, MatchLocalNames->False] shows assignments only for the global symbol x. See
page 365. New in Version 2.

MatchQ
MatchQ[expr, form] returns True if the pattern form matches expr, and returns False
otherwise.
See page 268. See also: StringMatchQ. New in Version 1.

MathieuC
MathieuC[a, q, z] gives the even Mathieu function with characteristic value a and
parameter q.
Mathematical function (see Section A.3.10). The Mathieu functions satisfy the equation y$$ � �a � �q cos��z��y � �.

See page 789. See also: MathieuCPrime. New in Version 3.

MathieuCharacteristicA
MathieuCharacteristicA[r, q] gives the characteristic value ar for even Mathieu functions
with characteristic exponent r and parameter q.
Mathematical function (see Section A.3.10). The characteristic value ar gives the value of the parameter a in
y$$ � �a � �q cos��z��y � � for which the solution has the form eirzf�z� where f�z� is an even function of z with period
�Π. See page 789. See also: MathieuCharacteristicB. New in Version 3.

MathieuCharacteristicB
MathieuCharacteristicB[r, q] gives the characteristic value br for odd Mathieu functions
with characteristic exponent r and parameter q.
Mathematical function (see Section A.3.10). The characteristic value br gives the value of the parameter a in
y$$ � �a � �q cos��z��y � � for which the solution has the form eirzf�z� where f�z� is an odd function of z with period
�Π. When r is not a real integer, MathieuCharacteristicB gives the same results as MathieuCharacteristicA.

See notes for MathieuCharacteristicA. See page 789. New in Version 3.



A.10 Major Built-in Mathematica Objects MathieuCharacteristicExponent — MatrixForm 1207

MathieuCharacteristicExponent
MathieuCharacteristicExponent[a, q] gives the characteristic exponent r for Mathieu
functions with characteristic value a and parameter q.

Mathematical function (see Section A.3.10). All Mathieu functions have the form eirzf�z� where f�z� has period �Π
and r is the Mathieu characteristic exponent. See page 789. New in Version 3.

MathieuCPrime
MathieuCPrime[a, q, z] gives the derivative with respect to z of the even Mathieu function
with characteristic value a and parameter q.
Mathematical function (see Section A.3.10). See page 789. New in Version 3.

MathieuS
MathieuS[a, q, z] gives the odd Mathieu function with characteristic value a and
parameter q.
Mathematical function (see Section A.3.10). The Mathieu functions satisfy the equation y$$ � �a � �q cos��z��y � �.

See page 789. New in Version 3.

MathieuSPrime
MathieuSPrime[a, q, z] gives the derivative with respect to z of the odd Mathieu function
with characteristic value a and parameter q.
Mathematical function (see Section A.3.10). See page 789. New in Version 3.

, MathMLForm
MathMLForm[expr] prints as a MathML form of expr.
MathMLForm gives presentation MathML, although its output can normally be interpreted by Mathematica.

MathMLForm[expr] gives MathML for the TraditionalForm of expr. MathMLForm[StandardForm[expr]] gives
MathML for the StandardForm of expr. MathMLForm acts as a “wrapper”, which affects printing, but not
evaluation. MathMLForm gives special characters using HTML aliases. See pages 211 and 425. See also:
HTMLSave, Export, TeXForm, Import. New in Version 4.1.

MatrixExp
MatrixExp[mat] gives the matrix exponential of mat.
MatrixExp[mat] effectively evaluates the power series for the exponential function, with ordinary powers replaced
by matrix powers. MatrixExp works only on square matrices. See page 906. Implementation notes: see
page 1069. See also: MatrixPower, Dot, JordanDecomposition, QRDecomposition. New in Version 2.

- MatrixForm
MatrixForm[list] prints with the elements of list arranged in a regular array.
In StandardForm the array is shown enclosed in parentheses. MatrixForm prints a single-level list in a column. It
prints a two-level list in standard matrix form. More deeply nested lists are by default printed with successive
dimensions alternating between rows and columns. Elements in each column are by default centered.
, MatrixForm prints SparseArray objects like the corresponding ordinary lists. MatrixForm takes the same set
of options as TableForm. MatrixForm acts as a “wrapper”, which affects printing, but not evaluation. See
page 439. See also: TableForm, ColumnForm, GridBox, GraphicsArray. New in Version 1; modified in Version 5.0.



1208 MatrixPower — MaxBend Mathematica Reference Guide

MatrixPower

MatrixPower[mat, n] gives the nth matrix power of mat.
MatrixPower[mat, n] effectively evaluates the product of a matrix with itself n times. When n is negative,
MatrixPower finds powers of the inverse of mat. MatrixPower works only on square matrices. , MatrixPower
can be used on SparseArray objects. See page 906. See also: Dot, MatrixExp. New in Version 2.

MatrixQ
- MatrixQ[expr] gives True if expr is a list of lists or a two-dimensional SparseArray object
that can represent a matrix, and gives False otherwise.
MatrixQ[expr, test] gives True only if test yields True when applied to each of the matrix
elements in expr.
- MatrixQ[expr] gives True only if expr is a list, and each of its elements is a list of the same length, containing
no elements that are themselves lists, or is a two-dimensional SparseArray object. MatrixQ[expr, NumberQ] tests
whether expr is a numerical matrix. See pages 267 and 900. See also: VectorQ, ArrayQ, ArrayDepth. Related
package: LinearAlgebra`MatrixManipulation` . New in Version 1; modified in Version 2.

, MatrixRank
MatrixRank[m] gives the rank of the matrix m.
MatrixRank works on both numerical and symbolic matrices. The rank of a matrix is the number of linearly
independent rows or columns. MatrixRank[m, Modulus->n] finds the rank for integer matrices modulo n.

MatrixRank[m, ZeroTest -> test] evaluates test[ m[[i, j]] ] to determine whether matrix elements are zero.
The default setting is ZeroTest -> Automatic. MatrixRank[m, Tolerance -> t] gives the minimum rank with
each element in a numerical matrix assumed to be correct only to within tolerance t. See page 907.

Implementation notes: see page 1069. See also: NullSpace, Det, Eigensystem, RowReduce, SingularValueList.
New in Version 5.0.

Max
Max[x�, x�, . . . ] yields the numerically largest of the xi.
Max[{x�, x�, . . . }, {y�, . . . }, . . . ] yields the largest element of any of the lists.
Max yields a definite result if all its arguments are real numbers. In other cases, Max carries out some
simplifications. Max[ ] gives -Infinity. , Max works on SparseArray objects. See page 745. See also: Min,
Ordering, Maximize, FindMaximum. New in Version 1.

MaxBend
MaxBend is an option for Plot which measures the maximum bend angle between successive
line segments on a curve.
Plot uses an adaptive algorithm to try and include enough sample points so that there are no bends larger than
MaxBend between successive segments of the plot. Plot will not, however, subdivide by a factor of more than
PlotDivision. Smaller settings for MaxBend will lead to smoother curves, based on more sample points. See
page 138. New in Version 1.



A.10 Major Built-in Mathematica Objects Maximize — MeijerG 1209

, Maximize
Maximize[f, {x, y, . . . }] maximizes f with respect to x, y, . . . .
Maximize[{f, cons}, {x, y, . . . }] maximizes f subject to the constraints cons.
Maximize returns a list of the form {fmax, {x -> xmax, y -> ymax, . . . }}. cons can contain equations, inequalities
or logical combinations of these. If f and cons are linear or polynomial, Maximize will always find a global
maximum. Maximize will return exact results if given exact input. If the maximum is achieved only
infinitesimally outside the region defined by the constraints, or only asymptotically, Maximize will return the
supremum and the closest specifiable point. By default, all variables are assumed to be real. x � Integers can
be used to specify that a variable can take on only integer values. If the constraints cannot be satisfied, Maximize
returns {-Infinity, {x -> Indeterminate, . . . }}. See page 850. Implementation notes: see page 1070. See
also: Minimize, NMaximize, FindMaximum, Max, D, LinearProgramming. New in Version 5.0.

MaxMemoryUsed
MaxMemoryUsed[ ] gives the maximum number of bytes used to store all data for the current
Mathematica session.
On most computer systems, MaxMemoryUsed[ ] will give results close to those obtained from external process status
requests. MaxMemoryUsed[ ] will not typically account for code space, stack space or the effects of heap
fragmentation. See page 712. See also: MemoryInUse, ByteCount. New in Version 1.

, Mean
Mean[list] gives the statistical mean of the elements in list.
Mean[list] is equivalent to Total[list]/Length[list]. Mean handles both numerical and symbolic data.

Mean[{{x�, y�, . . . }, {x�, y�, . . . }, . . . }] gives {Mean[{x�, x�, . . . }], Mean[{y�, y�, . . . }]}. Mean works
with SparseArray objects. See pages 794 and 924. See also: Total, StandardDeviation, Variance, Median.

Related packages: Statistics`DescriptiveStatistics` , Statistics`MultiDescriptiveStatistics` . New in
Version 5.0.

, Median
Median[list] gives the median of the elements in list.
Median[list] gives the center element in the sorted version of list, or the average of the two center elements if list
is of even length. Median[{{x�, y�, . . . }, {x�, y�, . . . }, . . . }] gives
{Median[{x�, x�, . . . }], Median[{y�, y�, . . . }]}. Median works with SparseArray objects. See page 924.

See also: Mean, Quantile, Sort, Max, Ordering. Related packages: Statistics`DescriptiveStatistics`,
Statistics`MultiDescriptiveStatistics` . New in Version 5.0.

MeijerG
MeijerG[{{a�, . . . , an}, {an��, . . . , ap}}, {{b�, . . . , bm}, {bm��, . . . , bq}}, z] is the Meijer

G function Gmn
pq �z 	 a������ap

b������bq
�.

Mathematical function (see Section A.3.10). The generalized form MeijerG[alist, blist, z, r] is defined for real r by
r���Πi� � e��� � a� � rs� � � � ��� � an � rs���b� � rs� � � � ��bm � rs�f�e��an�� � rs� � � � ��ap � rs���� � bm�� � rs� � � � ��� � bq � rs�fz�sds,
where in the default case r � �. In many special cases, MeijerG is automatically converted to other functions.

See page 780. See also: HypergeometricPFQ. New in Version 3.



1210 MemberQ — MeshStyle Mathematica Reference Guide

MemberQ
MemberQ[list, form] returns True if an element of list matches form, and False otherwise.
MemberQ[list, form, levelspec] tests all parts of list specified by levelspec.
form can be a pattern. Example: MemberQ[{x^2, y^2}, x^_] ��# True . The first argument of MemberQ can have
any head, not necessarily List. MemberQ[list, form] immediately tests whether any expression in list matches
form; Element[x, dom] asserts that x is an element of the symbolic domain dom. See page 268. See also: FreeQ,
Element, Count, Cases, IntervalMemberQ. New in Version 1.

MemoryConstrained
MemoryConstrained[expr, b] evaluates expr, stopping if more than b bytes of memory are
requested.
MemoryConstrained[expr, b, failexpr] returns failexpr if the memory constraint is not met.
MemoryConstrained generates an interrupt to stop the evaluation of expr if the amount of additional memory
requested during the evaluation of expr exceeds b bytes. MemoryConstrained evaluates failexpr only if the
evaluation is aborted. MemoryConstrained returns $Aborted if the evaluation is aborted and no failexpr is
specified. Aborts generated by MemoryConstrained are treated just like those generated by Abort, and can thus
be overruled by AbortProtect. See page 713. See also: TimeConstrained, MaxMemoryUsed, $RecursionLimit,
Abort. New in Version 1.

MemoryInUse
MemoryInUse[ ] gives the number of bytes currently being used to store all data in the current
Mathematica session.
See page 712. See also: MaxMemoryUsed, ByteCount, Share. Related package: Utilities`MemoryConserve`.

New in Version 1.

Mesh
Mesh is an option for SurfaceGraphics and DensityGraphics that specifies whether an
explicit x–y mesh should be drawn.
See page 539. See also: FaceGrids, Boxed. New in Version 1.

MeshRange
MeshRange is an option for ListPlot3D, SurfaceGraphics, ListContourPlot,
ListDensityPlot and related functions which specifies the range of x and y coordinates that
correspond to the array of z values given.
MeshRange->{{xmin, xmax}, {ymin, ymax}} specifies ranges in x and y. Mesh lines are taken to be equally
spaced. MeshRange->Automatic takes x and y to be a grid of integers determined by indices in the array.

Settings for MeshRange are produced automatically by Plot3D, etc. for insertion into SurfaceGraphics etc.
MeshRange is used to determine tick values for surface, contour and density plots. See page 539. See also:

PlotRange, PlotPoints. New in Version 2.

MeshStyle
MeshStyle is an option for Plot3D, DensityPlot and related functions which specifies how
mesh lines should be rendered.
MeshStyle can be set to a list of graphics directives including Dashing, Thickness, GrayLevel, Hue and RGBColor.

See pages 503 and 539. See also: Mesh, AxesStyle, Prolog, Epilog, DisplayFunction. New in Version 2.



A.10 Major Built-in Mathematica Objects Message — Messages 1211

Message
Message[symbol::tag] prints the message symbol::tag unless it has been switched off.
Message[symbol::tag, e�, e�, . . . ] prints a message, inserting the values of the ei as needed.
Message generates output on the channel $Messages. You can switch off a message using Off[symbol::tag]. You
can switch on a message using On[symbol::tag]. Between any two successive input lines, Mathematica prints a
message with a particular name at most three times. On the last occurrence, it prints the message General::stop.

During the evaluation of a particular input line, names of messages associated with that input line are appended
to the list $MessageList, wrapped with HoldForm. At the end of the evaluation of the nth input line, the value of
$MessageList is assigned to MessageList[n]. Message[mname, e�, e�, . . . ] is printed as
StringForm[mess, e�, e�, . . . ] where mess is the value of the message mname. Entries of the form `i` in the string
mess are replaced by the corresponding ei. Given a message specified as symbol::tag, Message first searches for
messages symbol::tag::langi for each of the languages in the list $Language. If it finds none of these, it then
searches for the actual message symbol::tag. If it does not find this, it then performs the same search procedure for
General::tag. If it still finds no message, it applies any value given for the global variable $NewMessage to symbol
and "tag". If you specify a message as symbol::tag::lang, then Message will search only for messages with the
particular language lang. See page 482. See also: Print, CellPrint, Write, On, Off, Check, MessageList. New
in Version 1.

MessageList
MessageList[n] is a global object assigned to be a list of the names of messages generated
during the processing of the nth input line.
Only messages that are actually output are included in the list MessageList[n]. The message names in the list
are wrapped with HoldForm. MessageList[n] includes messages generated both by built-in functions and by
explicit invocations of Message. See pages 481 and 702. See also: $MessageList. New in Version 2.

MessageName
symbol::tag is a name for a message.
You can specify messages by defining values for symbol::tag. symbol::tag is converted to
MessageName[symbol, "tag"]. tag can contain any characters that can appear in symbol names. symbol::"tag" can
also be used. Assignments for s::tag are stored in the Messages value of the symbol s. The following messages
are typically defined for built-in functions:

f::template a template showing a typical case of the function
f::usage a description of how to use the function

?f prints out the message f::usage. When ?form finds more than one function, only the names of each function
are printed. You can switch on and off messages using On[s::tag] and Off[s::tag].

MessageName[symbol, "tag", "lang"] or symbol::tag::lang represents a message in a particular language. See
page 479. See also: Message, MessageList, $MessageList. New in Version 1; modified in Version 4.

Messages
Messages[symbol] gives all the messages assigned to a particular symbol.
Messages that have been switched off using Off are enclosed in $Off. See page 479. New in Version 1.



1212 Min — Minus Mathematica Reference Guide

Min
Min[x�, x�, . . . ] yields the numerically smallest of the xi.
Min[{x�, x�, . . . }, {y�, . . . }, . . . ] yields the smallest element of any of the lists.
Min yields a definite result if all its arguments are real numbers. In other cases, Min carries out some
simplifications. Min[ ] gives Infinity. , Min works on SparseArray objects. See page 745. See also: Max,
Ordering, Minimize, FindMinimum. New in Version 1.

, Minimize
Minimize[f, {x, y, . . . }] minimizes f with respect to x, y, . . . .
Minimize[{f, cons}, {x, y, . . . }] minimizes f subject to the constraints cons.
Minimize returns a list of the form {fmin, {x -> xmin, y -> ymin, . . . }}. cons can contain equations, inequalities
or logical combinations of these. If f and cons are linear or polynomial, Minimize will always find a global
minimum. Minimize will return exact results if given exact input. If the minimum is achieved only
infinitesimally outside the region defined by the constraints, or only asymptotically, Minimize will return the
infimum and the closest specifiable point. By default, all variables are assumed to be real. x � Integers can be
used to specify that a variable can take on only integer values. If the constraints cannot be satisfied, Minimize
returns {+Infinity, {x -> Indeterminate, . . . }}. Even if the same minimum is achieved at several points, only
one is returned. See page 850. Implementation notes: see page 1070. See also: Maximize, NMinimize,
FindMinimum, Min, D, FindInstance, LinearProgramming. New in Version 5.0.

Minors
Minors[m] gives the minors of a matrix m.

Minors[m, k] gives kth minors.

For an n � n matrix the �i� j�th element of Minors[m] gives the determinant of the matrix obtained by deleting the
�n � i � ��th row and the �n � j � ��th column of m. Map[Reverse, Minors[m], {0,1}] makes the �i� j�th element
correspond to deleting the ith row and jth column of m. Minors[m] is equivalent to Minors[m, n-1].

Minors[m, k] gives the determinants of the k � k submatrices obtained by picking each possible set of k rows and
k columns from m. Each element in the result corresponds to taking rows and columns with particular lists of
positions. The ordering of the elements is such that reading across or down the final matrix the successive lists of
positions appear in lexicographic order. For an n� � n� matrix Minors[m, k] gives a � n�

k � � � n�
k � matrix.

Minors[m, k, f] applies the function f rather than Det to each of the submatrices picked out. See page 905.
See also: Det, Delete. New in Version 1; modified in Version 4.

Minus
-x is the arithmetic negation of x.
-x is converted to Times[-1, x] on input. See page 29. See also: Subtract. New in Version 1.



A.10 Major Built-in Mathematica Objects Mod — Modulus 1213

Mod
Mod[m, n] gives the remainder on division of m by n.
Mod[m, n, d] uses an offset d.
For integers m and n Mod[m, n] lies between 0 and n � �. Mod[m, n, 1] gives a result in the range � to n,
suitable for use in functions such as Part. Mod[m, n, d] gives a result x such that d * x ) d � n and
x mod n � m mod n. The sign of Mod[m, n] is always the same as the sign of n, at least so long as m and n are
both real. Mod[m, n] is equivalent to m - n Quotient[m, n]. Mod[m, n, d] is equivalent to
m - n Quotient[m, n, d]. The arguments of Mod can be any numeric quantities, not necessarily integers.

Mod[x, 1] gives the fractional part of x. For exact numeric quantities, Mod internally uses numerical
approximations to establish its result. This process can be affected by the setting of the global variable
$MaxExtraPrecision. See page 749. See also: PowerMod, Quotient, FractionalPart, MantissaExponent,
PolynomialMod, PolynomialRemainder, Xor. New in Version 1; modified in Version 4.

ModularLambda
ModularLambda[Τ] gives the modular lambda elliptic function Λ�Τ�.
Mathematical function (see Section A.3.10). ModularLambda is defined only in the upper half of the complex Τ
plane. It is not defined for real Τ. The argument Τ is the ratio of Weierstrass half-periods Ω$�Ω. ModularLambda
gives the parameter m for elliptic functions in terms of Τ according to m � Λ�Τ�. ModularLambda is related to
EllipticTheta by Λ�Τ� � i
���� q��i



��� q� where the nome q is given by eiΠΤ. Λ�Τ� is invariant under any

combination of the modular transformations Τ # Τ � � and Τ # Τ��� � �Τ�. See page 782 for a discussion of
argument conventions for elliptic functions. See page 787. See also: DedekindEta, KleinInvariantJ,
WeierstrassHalfPeriods. New in Version 3.

Module
Module[{x, y, . . . }, expr] specifies that occurrences of the symbols x, y, . . . in expr should be
treated as local.
Module[{x = x�, . . . }, expr] defines initial values for x, . . . .
Module allows you to set up local variables with names that are local to the module. Module creates new symbols
to represent each of its local variables every time it is called. Module creates a symbol with name xxx$nnn to
represent a local variable with name xxx. The number nnn is the current value of $ModuleNumber. The value of
$ModuleNumber is incremented every time any module is used. Before evaluating expr, Module substitutes new
symbols for each of the local variables that appear anywhere in expr except as local variables in scoping constructs.

Symbols created by Module carry the attribute Temporary. Symbols created by Module can be returned from
modules. You can use Module[{vars}, body /; cond] as the right-hand side of a transformation rule with a
condition attached. Module has attribute HoldAll. Module is a scoping construct (see Section A.3.8). Module
constructs can be nested in any way. Module implements lexical scoping. See page 378. See also: With, Block,
Unique, GeneratedParameters. New in Version 2.

Modulus
Modulus->n is an option that can be given in certain algebraic functions to specify that
integers should be treated modulo n.
Equations for Modulus can be given in Solve and related functions.
Modulus appears as an option in Factor, PolynomialGCD and PolynomialLCM, as well as in linear algebra functions
such as Inverse, LinearSolve and Det. Arithmetic is usually done over the full ring � of integers; setting the
option Modulus specifies that arithmetic should instead be done in the finite ring �n. The setting Modulus -> 0
specifies the full ring � of integers. Some functions require that Modulus be set to a prime, or a power of a
prime. �n is a finite field when n is prime. See page 809. See also: Extension. New in Version 1.



1214 MoebiusMu — N Mathematica Reference Guide

MoebiusMu
MoebiusMu[n] gives the Möbius function Μ�n�.
Integer mathematical function (see Section A.3.10). Μ�n� is � if n is a product of an even number of distinct
primes, �� if it is a product of an odd number of primes, and � if it has a multiple prime factor. See page 752.

See also: Divisors, FactorInteger, JacobiSymbol. New in Version 1.

, Most
Most[expr] gives expr with the last element removed.
Example: Most[{a, b, c}] ��# �a, b� . Most[expr] is equivalent to Drop[expr, -1]. See page 123. See also:
Rest, Drop, Last, Part, Take. New in Version 5.0.

Multinomial
Multinomial[n�, n�, . . . ] gives the multinomial coefficient �n� � n� � 			�d��n�dn�d			�.
Integer mathematical function (see Section A.3.10). The multinomial coefficient Multinomial[n�, n�, . . . ],
denoted �Ngn��n�� 			�nm �, gives the number of ways of partitioning N distinct objects into m sets, each of size ni
(with N � �m

i�� ni). See page 757. See also: Binomial. New in Version 1.

MultiplicativeOrder
MultiplicativeOrder[k, n] gives the multiplicative order of k modulo n, defined as the
smallest integer m such that km Q � mod n.
MultiplicativeOrder[k, n, {r�, r�, . . . }] gives the generalized multiplicative order of k
modulo n, defined as the smallest integer m such that km Q ri mod n for some i.
Integer mathematical function (see Section A.3.10). MultiplicativeOrder returns unevaluated if there is no
integer m satisfying the necessary conditions. See page 752. See also: EulerPhi, PowerMod, CarmichaelLambda,
RealDigits. New in Version 4.

- N
N[expr] gives the numerical value of expr.
N[expr, n] attempts to give a result with n-digit precision.
Unless numbers in expr are exact, or of sufficiently high precision, N[expr, n] may not be able to give results with
n-digit precision. N[expr, n] may internally do computations to more than n digits of precision.

$MaxExtraPrecision specifies the maximum number of extra digits of precision that will ever be used internally.
The precision n is given in decimal digits; it need not be an integer. n must lie between $MinPrecision and

$MaxPrecision. $MaxPrecision can be set to Infinity. , n can be smaller than $MachinePrecision. N[expr]
gives a machine-precision number, so long as its magnitude is between $MinMachineNumber and
$MaxMachineNumber. , N[expr] is equivalent to N[expr, MachinePrecision]. N[0] gives the number 0. with
machine precision. N converts all non-zero numbers to Real or Complex form. N converts each successive
argument of any function it encounters to numerical form, unless the head of the function has an attribute such as
NHoldAll. You can define numerical values of functions using N[f[args]] := value and N[f[args], n] := value.
, N[expr, {p, a}] attempts to generate a result with precision at most p and accuracy at most a.
, N[expr, {Infinity, a}] attempts to generate a result with accuracy a. , N[expr, {Infinity, 1}] attempts to
find a numerical approximation to the integer part of expr. See pages 30, 33, 728 and 735. Implementation notes:
see page 1067. See also: Chop, CompiledFunction, Rationalize, MachinePrecision, NHoldAll, RealDigits.

New in Version 1; modified in Version 5.0.



A.10 Major Built-in Mathematica Objects NameQ — NDSolve 1215

NameQ
NameQ["string"] yields True if there are any symbols whose names match the string pattern
given, and yields False otherwise.
You can test for classes of symbol names using string patterns with metacharacters such as *, as specified on
page 1044. See page 403. See also: Names. New in Version 1.

Names
Names["string"] gives a list of the names of symbols which match the string.
Names["string", SpellingCorrection->True] includes names which match after spelling
correction.
Names["string"] gives the same list of names as ?string. Names returns a list of strings corresponding to the
names of symbols. The string can be a string pattern, with metacharacters such as * and @, as described on
page 1044. Names["context`*"] lists all symbols in the specified context. With SpellingCorrection -> True,
Names includes names which differ in a small fraction of their characters from those specifically requested. With
IgnoreCase -> True or SpellingCorrection -> True, Names treats lower- and upper-case letters as equivalent
when matching names. Names[ ] lists all names in all contexts. See page 403. See also: Information,
Contexts, Unique, ValueQ, FileNames, NameQ. New in Version 1.

, Nand
Nand[e�, e�, . . . ] is the logical NAND function. It evaluates its arguments in order, giving
True immediately if any of them are False, and False if they are all True.
Nand[e�, e�, . . . ] can be input in StandardForm and InputForm as e� � e� � . . . . The character � can be entered
as ,nand , or \[Nand]. Nand[e�, e�, . . . ] is equivalent to Not[And[e�, e�, . . . ]]. Nand evaluates its arguments
in a non-standard way (see page 1046). Nand gives symbolic results when necessary, removing initial arguments
that are True. Nand is not Flat. See page 87. See also: LogicalExpand, And. New in Version 4.1.

- NDSolve
NDSolve[eqns, y, {x, xmin, xmax}] finds a numerical solution to the ordinary differential
equations eqns for the function y with the independent variable x in the range xmin to xmax.
NDSolve[eqns, y, {x, xmin, xmax}, {t, tmin, tmax}] finds a numerical solution to the partial
differential equations eqns.
NDSolve[eqns, {y�, y�, . . . }, {x, xmin, xmax}] finds numerical solutions for the
functions yi.
NDSolve gives results in terms of InterpolatingFunction objects. NDSolve[eqns, y[x], {x, xmin, xmax}] gives
solutions for y[x] rather than for the function y itself. Differential equations must be stated in terms of derivatives
such as y'[x], obtained with D, not total derivatives obtained with Dt. NDSolve solves a wide range of ordinary
differential equations as well as many partial differential equations. In ordinary differential equations the functions
yi must depend only on the single variable x. In partial differential equations they may depend on more than one
variable. The differential equations must contain enough initial or boundary conditions to determine the solutions
for the yi completely. Initial and boundary conditions are typically stated in form y[x�] == c�, y'[x�] == dc�, etc.,
but may consist of more complicated equations. , The c�, dc�, etc. can be lists, specifying that y[x] is a function
with vector or general list values. , Periodic boundary conditions can be specified using y[x�] == y[x�]. The
point x� that appears in the initial or boundary conditions need not lie in the range xmin to xmax over which the
solution is sought. The differential equations in NDSolve can involve complex numbers. , NDSolve can solve
many differential-algebraic equations, in which some of the eqns are purely algebraic, or some of the variables are
implicitly algebraic. , The yi can be functions of the dependent variables, and need not include all such variables.

(continued)



1216 NDSolve (continued) — NDSolve (continued) Mathematica Reference Guide

- NDSolve (continued)

- The following options can be given:

AccuracyGoal Automatic digits of absolute accuracy sought
Compiled True whether to compile the original equations
DependentVariables Automatic the list of all dependent variables
EvaluationMonitor None expression to evaluate whenever the function is evaluated
MaxStepFraction 1/10 maximum fraction of range to cover in each step
MaxSteps 10000 maximum number of steps to take
MaxStepSize Infinity maximum size of each step
Method Automatic method to use
NormFunction Automatic the norm to use for error estimation
PrecisionGoal Automatic digits of precision sought
StartingStepSize Automatic initial step size used
StepMonitor None expression to evaluate when a step is taken
WorkingPrecision MachinePrecision precision to use in internal computations
, NDSolve adapts its step size so that the estimated error in the solution is just within the tolerances specified by
PrecisionGoal and AccuracyGoal. , The option NormFunction -> f specifies that the estimated errors for each of
the yi should be combined using f[{e�, e�, . . . }]. - AccuracyGoal effectively specifies the absolute local error
allowed at each step in finding a solution, while PrecisionGoal specifies the relative local error. If solutions
must be followed accurately when their values are close to zero, AccuracyGoal should be set larger, or to
Infinity. - The default setting of Automatic for AccuracyGoal and PrecisionGoal is equivalent to
WorkingPrecision/2. , The setting for MaxStepFraction specifies the maximum step to be taken by NDSolve as
a fraction of the range of values for each independent variable. , With DependentVariables->Automatic ,
NDSolve attempts to determine the dependent variables by analyzing the equations given. , Possible explicit
settings for the Method option include:

"Adams" predictor-corrector Adams method with orders 1 through 12
"BDF" implicit backward differentiation formulas with orders 1 through 5
"ExplicitRungeKutta" adaptive embedded pairs of 2(1) through 9(8) Runge-Kutta methods
"ImplicitRungeKutta" families of arbitrary-order implicit Runge-Kutta methods
"SymplecticPartitionedRungeKutta" interleaved Runge-Kutta methods for separable Hamiltonian systems
, With Method->{"controller", Method->"submethod"} or Method->{"controller", Method->{m�, m�, . . . }} possible
controller methods include:
"Composition" compose a list of submethods
"DoubleStep" adapt step size by the double-step method
"Extrapolation" adapt order and step size using polynomial extrapolation
"FixedStep" use a constant step size
"OrthogonalProjection" project solutions to fulfill orthogonal constraints
"Projection" project solutions to fulfill general constraints
"Splitting" split equations and use different submethods
"StiffnessSwitching" switch from explicit to implicit methods if stiffness is detected
, Methods used mainly as submethods include:

"ExplicitEuler" forward Euler method
"ExplicitMidpoint" midpoint rule method
"ExplicitModifiedMidpoint" midpoint rule method with Gragg smoothing
"LinearlyImplicitEuler" linearly implicit Euler method
"LinearlyImplicitMidpoint" linearly implicit midpoint rule method
"LinearlyImplicitModifiedMidpoint" linearly implicit Bader-smoothed midpoint rule method
"LocallyExact" numerical approximation to locally exact symbolic solution

See page 961. Implementation notes: see page 1068. See also: DSolve, NIntegrate. New in Version 2; modified
in Version 5.0.



A.10 Major Built-in Mathematica Objects Needs — NestWhile 1217

Needs
Needs["context`"] loads an appropriate file if the specified context is not already in
$Packages.
Needs["context`", "file"] loads file if the specified context is not already in $Packages.
Needs["context`"] calls Get["context`"]. By convention, the file loaded in this way is the one which contains a
package that defines context`. Example: Needs["Collatz`"] typically reads in a file named Collatz.m. See
page 400. See also: Get, DeclarePackage, FileNames. Related package: Utilities`Package`. New in
Version 1.

Negative
Negative[x] gives True if x is a negative number.
Negative[x] gives False if x is manifestly a non-negative or complex numerical quantity. Otherwise, it remains
unevaluated. See also: NonNegative, Positive, Sign, Less, Simplify, Assumptions. New in Version 1.

Nest
Nest[f, expr, n] gives an expression with f applied n times to expr.
Example: Nest[f, x, 3] ��# fffx��� . You can use Throw to exit from Nest before it is finished. See
page 241. See also: NestList, NestWhile, Fold, Function, FixedPoint, Do. New in Version 1; modified in
Version 3.

NestList
NestList[f, expr, n] gives a list of the results of applying f to expr 0 through n times.
Example: NestList[f, x, 3] ��# �x, fx�, ffx��, fffx���� . NestList[f, expr, n] gives a list of length
n + 1. See page 241. See also: Nest, NestWhileList, FoldList, ComposeList. New in Version 1.

NestWhile
NestWhile[f, expr, test] starts with expr, then repeatedly applies f until applying test to the
result no longer yields True.
NestWhile[f, expr, test, m] supplies the most recent m results as arguments for test at each
step.
NestWhile[f, expr, test, All] supplies all results so far as arguments for test at each step.
NestWhile[f, expr, test, m, max] applies f at most max times.
NestWhile[f, expr, test, m, max, n] applies f an extra n times.
NestWhile[f, expr, test, m, max, -n] returns the result found when f had been applied n
fewer times.
NestWhile[f, expr, test] returns the first expression f[f[. . . f[expr]. . . ]] to which applying test does not yield True.

If test[expr] does not yield True, NestWhile[f, expr, test] returns expr. NestWhile[f, expr, test, m] at each
step evaluates test[res�, res�, . . . , resm]. It does not put the results resi in a list. The resi are given in the order
they are generated, with the most recent coming last. NestWhile[f, expr, test, m] does not start applying test
until at least m results have been generated. NestWhile[f, expr, test, {mmin, m}] does not start applying test
until at least mmin results have been generated. At each step it then supplies as arguments to test as many recent
results as possible, up to a maximum of m. NestWhile[f, expr, test, m] is equivalent to
NestWhile[f, expr, test, {m, m}]. NestWhile[f, expr, UnsameQ, 2] is equivalent to FixedPoint[f, expr].

(continued)



1218 NestWhile (continued) — NHoldFirst Mathematica Reference Guide

NestWhile (continued)

NestWhile[f, expr, test, All] is equivalent to NestWhile[f, expr, test, {1, Infinity}].
NestWhile[f, expr, UnsameQ, All] goes on applying f until the same result first appears more than once.
NestWhile[f, expr, test, m, max, n] applies f an additional n times after test fails, or max applications have

already been performed. NestWhile[f, expr, test, m, max, -n] is equivalent to
Part[NestWhileList[f, expr, test, m, max], -n-1]. NestWhile[f, expr, test, m, Infinity, -1] returns, if
possible, the last expression in the sequence expr, f[expr], f[f[expr]], . . . for which test yields True. See page 242.

See also: NestWhileList, FixedPoint, Nest, While. New in Version 4.

NestWhileList
NestWhileList[f, expr, test] generates a list of the results of applying f repeatedly, starting
with expr, and continuing until applying test to the result no longer yields True.
NestWhileList[f, expr, test, m] supplies the most recent m results as arguments for test at
each step.
NestWhileList[f, expr, test, All] supplies all results so far as arguments for test at each step.
NestWhileList[f, expr, test, m, max] applies f at most max times.
The last element of the list returned by NestWhileList[f, expr, test] is always an expression to which applying
test does not yield True. NestWhileList[f, expr, test, m] at each step evaluates test[res�, res�, . . . , resm]. It
does not put the results resi in a list. The resi are given in the order they are generated, with the most recent
coming last. NestWhileList[f, expr, test, m] does not start applying test until at least m results have been
generated. NestWhileList[f, expr, test, {mmin, m}] does not start applying test until at least mmin results have
been generated. At each step it then supplies as arguments to test as many recent results as possible, up to a
maximum of m. NestWhileList[f, expr, test, m] is equivalent to NestWhileList[f, expr, test, {m, m}].

NestWhileList[f, expr, UnsameQ, 2] is equivalent to FixedPointList[f, expr].
NestWhileList[f, expr, test, All] is equivalent to NestWhileList[f, expr, test, {1, Infinity}].
NestWhileList[f, expr, UnsameQ, All] goes on applying f until the same result first appears more than once.
NestWhileList[f, expr, test, m, max, n] applies f an extra n times, appending the results to the list generated.
NestWhileList[f, expr, test, m, max, -n] drops the last n elements from the list generated. See page 242.
See also: NestWhile, FixedPointList, NestList, While. New in Version 4.

NHoldAll
NHoldAll is an attribute which specifies that none of the arguments to a function should be
affected by N.
NHoldAll, NHoldFirst and NHoldRest are useful in ensuring that arguments to functions are maintained as exact
integers, rather than being converted by N to approximate numbers. See page 329. See also: NumericFunction,
HoldAll. New in Version 3.

NHoldFirst
NHoldFirst is an attribute which specifies that the first argument to a function should not be
affected by N.
See page 329. New in Version 3.



A.10 Major Built-in Mathematica Objects NHoldRest — NMaximize 1219

NHoldRest
NHoldRest is an attribute which specifies that all but the first argument to a function should
not be affected by N.
See page 329. New in Version 3.

- NIntegrate

NIntegrate[f, {x, xmin, xmax}] gives a numerical approximation to the integral � xmax

xmin
f dx.

Multidimensional integrals can be specified, as in Integrate. NIntegrate tests for singularities at the end points
of the integration range. NIntegrate[f, {x, x�, x�, . . . , xk}] tests for singularities at each of the intermediate
points xi. If there are no singularities, the result is equivalent to an integral from x� to xk. You can use complex
numbers xi to specify an integration contour in the complex plane. - The following options can be given:

AccuracyGoal Infinity digits of absolute accuracy sought
Compiled True whether the integrand should be compiled
GaussPoints Automatic initial number of sample points
EvaluationMonitor None expression to evaluate whenever expr is evaluated
MaxPoints Automatic maximum total number of sample points
MaxRecursion 6 maximum number of recursive subdivisions
Method Automatic method to use
MinRecursion 0 minimum number of recursive subdivisions
PrecisionGoal Automatic digits of precision sought
SingularityDepth 4 number of recursive subdivisions before changing variables
WorkingPrecision MachinePrecision the precision used in internal computations

NIntegrate usually uses an adaptive algorithm, which recursively subdivides the integration region as needed. In
one dimension, GaussPoints specifies the number of initial points to choose. The default setting for GaussPoints is
Floor[WorkingPrecision/3]. In any number of dimensions, MinRecursion specifies the minimum number of
recursive subdivisions to try. MaxRecursion gives the maximum number. NIntegrate usually continues doing
subdivisions until the error estimate it gets implies that the final result achieves either the AccuracyGoal or the
PrecisionGoal specified. The default setting for PrecisionGoal is usually equal to the setting for
WorkingPrecision minus 10 digits. If an explicit setting for MaxPoints is given, NIntegrate uses quasi Monte
Carlo methods to get an estimate of the result, sampling at most the number of points specified. The default
setting for PrecisionGoal is taken to be 2 in this case. You should realize that with sufficiently pathological
functions, the algorithms used by NIntegrate can give wrong answers. In most cases, you can test the answer by
looking at its sensitivity to changes in the setting of options for NIntegrate. N[Integrate[ . . . ]] calls
NIntegrate for integrals that cannot be done symbolically. NIntegrate has attribute HoldAll. Possible settings
for Method are GaussKronrod, DoubleExponential, Trapezoidal, Oscillatory, MultiDimensional, MonteCarlo,
and QuasiMonteCarlo. GaussKronrod and MultiDimensional are adaptive methods. MonteCarlo and
QuasiMonteCarlo are randomized methods, appropriate for high-dimensional integrals. See page 954.

Implementation notes: see page 1068. See also: NDSolve, NSum. Related packages:
NumericalMath`ListIntegrate`, NumericalMath`CauchyPrincipalValue` , NumericalMath`GaussianQuadrature` .

New in Version 1; modified in Version 5.0.

, NMaximize
NMaximize[f, {x, y, . . . }] maximizes f numerically with respect to x, y, . . . .
NMaximize[{f, cons}, {x, y, . . . }] maximizes f numerically subject to the constraints cons.
See notes for NMinimize. See page 974. See also: NMinimize, Maximize, FindMaximum. New in Version 5.0.



1220 NMinimize — NonNegative Mathematica Reference Guide

, NMinimize
NMinimize[f, {x, y, . . . }] minimizes f numerically with respect to x, y, . . . .
NMinimize[{f, cons}, {x, y, . . . }] minimizes f numerically subject to the constraints cons.
NMinimize returns a list of the form {fmin, {x -> xmin, y -> ymin, . . . }}. cons can contain equations, inequalities
or logical combinations of these. NMinimize always attempts to find a global minimum of f subject to the
constraints given. Unless f and cons are both linear, NMinimize may sometimes find only a local minimum. By
default, all variables are assumed to be real. x � Integers can be used to specify that a variable can take on
only integer values. If NMinimize determines that the constraints cannot be satisfied, it returns
{Infinity, {x -> Indeterminate, . . . }}. The following options can be given:

AccuracyGoal Automatic the accuracy sought
EvaluationMonitor None expression to evaluation whenever f is evaluated
MaxIterations 100 maximum number of iterations to use
Method Automatic method to use
PrecisionGoal Automatic the precision sought
StepMonitor None expression to evaluate whenever a step is taken
WorkingPrecision MachinePrecision the precision used in internal computations

The default settings for AccuracyGoal and PrecisionGoal are WorkingPrecision/2. The settings for
AccuracyGoal and PrecisionGoal specify the number of digits to seek in both the value of the position of the
maximum, and the value of the function at the minimum. NMinimize continues until either of the goals specified
by AccuracyGoal or PrecisionGoal is achieved. Possible settings for the Method option include "NelderMead",
"DifferentialEvolution", "SimulatedAnnealing" and "RandomSearch". See page 974. Implementation notes:
see page 1068. See also: NMaximize, Minimize, FindMinimum, FindFit. New in Version 5.0.

NonCommutativeMultiply
a ** b ** c is a general associative, but non-commutative, form of multiplication.
NonCommutativeMultiply has attribute Flat. Instances of NonCommutativeMultiply are automatically flattened,
but no other simplification is performed. You can use NonCommutativeMultiply as a generalization of ordinary
multiplication for special mathematical objects. See page 1026. See also: Dot, Times, Cross. New in Version 1.

NonConstants
NonConstants is an option for D which gives a list of objects to be taken to depend implicitly
on the differentiation variables.
If c does not appear in the list of NonConstants, then D[c, x] is taken to be 0 unless c and x are identical
expressions. See page 853. See also: Dt. New in Version 1.

None
None is a setting used for certain options.
See also: All, Automatic. New in Version 1.

NonNegative
NonNegative[x] gives True if x is a non-negative number.
NonNegative[x] gives False if x is manifestly a negative or complex numerical quantity. Otherwise, it remains
unevaluated. See also: Negative, Positive, Sign, Greater, Simplify, Assumptions. New in Version 1.



A.10 Major Built-in Mathematica Objects NonPositive — Notebook 1221

NonPositive
NonPositive[x] gives True if x is a non-positive number.
See notes for NonNegative. New in Version 3.

, Nor
Nor[e�, e�, . . . ] is the logical NOR function. It evaluates its arguments in order, giving False
immediately if any of them are True, and True if they are all False.
Nor[e�, e�, . . . ] can be input in StandardForm and InputForm as e� � e� � . . . . The character � can be entered as
,nor , or \[Nor]. Nor[e�, e�, . . . ] is equivalent to Not[Or[e�, e�, . . . ]]. Nor evaluates its arguments in a
non-standard way (see page 1046). Nor gives symbolic results when necessary, removing initial arguments that are
False. Nor is not Flat. See page 87. See also: LogicalExpand, Or, Xor. New in Version 4.1.

, Norm
Norm[expr] gives the norm of a number or array.
Norm[expr, p] gives the p-norm.
For complex numbers, Norm[z] is Abs[z]. For vectors, Norm[v] is Sqrt[v . Conjugate[v]]. Norm[v, p] is
Total[Abs[v^p]]^(1/p). Norm[v, Infinity] is the �-norm given by Max[Abs[v]]. For matrices, Norm[m]
gives the maximum singular value of m. Norm can be used on SparseArray objects. See page 119. See also:
Abs, Dot, Total, SingularValueList, Integrate. New in Version 5.0.

- Normal
Normal[expr] converts expr to a normal expression, from a variety of special forms.
Normal[expr] converts a power series to a normal expression by truncating higher-order terms. , Normal[expr]
converts SparseArray objects into ordinary arrays. Normal[expr] converts RootSum objects into explicit sums
involving Root objects. When additional “data types” are introduced, Normal should be defined to convert them,
when possible, to normal expressions. See page 888. See also: SeriesCoefficient. New in Version 1.0; modified
in Version 5.0.

Not
!expr is the logical NOT function. It gives False if expr is True, and True if it is False.
Not[expr] can be input in StandardForm and InputForm as �expr. The character � can be entered as ,! ,, ,not , or
\[Not]. Not gives symbolic results when necessary, applying various simplification rules to them. If you are
using Mathematica with a text-based front end, then you cannot use the notation !expr for Not[expr] if it appears at
the very beginning of a line. In this case, !expr is interpreted as a shell escape. See page 87. See also:
LogicalExpand, BitNot, Nand, Nor. New in Version 1; modified in Version 3.

Notebook
Notebook[{cell�, cell�, . . . }] represents a notebook that can be manipulated by the
Mathematica front end.
Notebook files contain explicit Notebook expressions written out in textual form. You can manipulate open
notebooks in the front end using standard commands in the front end, and using the options inspector. Open
notebooks in the front end are referred to in the kernel by NotebookObject constructs. You can use Options and
SetOptions to look at and modify options for open notebooks. See page 576. See also: Cell. New in Version 3.



1222 NotebookApply — NotebookDelete Mathematica Reference Guide

NotebookApply
NotebookApply[notebook, data] writes data into a notebook at the current selection, replacing
the first selection placeholder in data by the current selection, and then setting the current
selection to be just after the data written.
NotebookApply[notebook, data, sel] writes data into a notebook and then sets the current
selection to be as specified by sel.
The first argument of NotebookApply is a NotebookObject. NotebookApply does the same as NotebookWrite,
except that it replaces the first selection placeholder in data by the current selection. NotebookApply is often used
in setting up actions for buttons in palettes. Selection placeholders are represented by the character � or
\[SelectionPlaceholder]. Possible settings for sel are as in NotebookWrite. See page 585. See also:
NotebookWrite, NotebookRead, SelectionMove, ButtonFunction. New in Version 3.

NotebookAutoSave
NotebookAutoSave is an option for Notebook which specifies whether the notebook should
automatically be saved after each piece of output generated by evaluation in it.
See page 618. See also: NotebookSave. New in Version 3.

NotebookClose
NotebookClose[notebook] closes the notebook corresponding to the specified notebook object.
NotebookClose will make a notebook disappear from your screen, and will invalidate all notebook objects which
refer to that notebook. See page 591. See also: NotebookSave, Close. New in Version 3.

NotebookCreate
NotebookCreate[ ] creates a new open notebook in the front end.
NotebookCreate[options] sets up the specified options for the new notebook.
NotebookCreate will by default create a notebook with name "Untitled-n". Unless you set the option
Visible->False, NotebookCreate will cause a new window to appear on your screen. See page 591. See also:
NotebookOpen, NotebookClose. New in Version 3.

NotebookDelete
NotebookDelete[notebook] deletes the current selection corresponding to the specified
notebook object.
Using NotebookDelete in the kernel is equivalent to using the Clear command in the front end. After
NotebookDelete, the current selection becomes an insertion point at the position of the deleted material. notebook
must be a NotebookObject, as returned by NotebookOpen, etc. See page 585. See also: NotebookRead,
NotebookWrite. New in Version 3.



A.10 Major Built-in Mathematica Objects NotebookFind — NotebookLocate 1223

NotebookFind
NotebookFind[notebook, data] sets the current selection in the specified notebook object to be
the next occurrence of data.
NotebookFind[notebook, data, Previous] sets the current selection to be the previous
occurrence.
NotebookFind[notebook, data, All] sets the current selection to be all occurrences.
NotebookFind[notebook, data, dir, elems] searches the elements of cells specified by elems.
NotebookFind returns $Failed if the search it performs finds no occurrence of data. notebook must be a
NotebookObject, as returned by NotebookOpen, etc. data can be a string, box expressions, or a complete cell.

The possible elements are:

CellContents contents of each cell, represented as a string
CellLabel setting for the CellLabel option of each cell
CellStyle name of style for each cell
CellTags parts of the setting for the CellTags option for each cell
{elem�, elem�, . . . } list of different types of elements

The default for elems is CellContents. Unless the option setting AutoScroll->False is given, the front end
will scroll a notebook so that the result of NotebookFind is visible. The front end will also usually highlight the
region corresponding to the result. See page 584. See also: NotebookLocate, SelectionMove, NotebookOpen,
Find. New in Version 3.

NotebookGet
NotebookGet[obj] gets the expression corresponding to the notebook represented by the
notebook object obj.
NotebookGet[ ] gets the expression corresponding to the currently selected notebook.
NotebookGet allows you to take a notebook that is open in the front end, and get the expression corresponding to
it in the kernel. NotebookGet returns an expression with head Notebook. See page 578. See also:
NotebookOpen, NotebookPut, Get. New in Version 3.

NotebookLocate
NotebookLocate["tag"] locates all cells with the specified tag in your currently selected
notebook, selecting the cells and scrolling to the position of the first one.
NotebookLocate[{"file", "tag"}] if necessary opens the notebook stored in file, then locates
cells with the specified tag.
NotebookLocate sets the current selection to contain all cells with the specified tag. If the cells are in closed
groups, NotebookLocate will open all these groups. NotebookLocate is used for following hyperlinks within one
notebook or between notebooks. NotebookLocate searches for tags in the list given as the setting for the
CellTags option of each cell. See page 585. See also: NotebookFind, NotebookOpen, SetSelectedNotebook,
ButtonBox. New in Version 3.



1224 NotebookObject — NotebookPut Mathematica Reference Guide

NotebookObject
NotebookObject[fe, id] is an object that represents an open notebook in the front end.
fe is a FrontEndObject which specifies the front end in which the notebook is open. id is an integer that gives a
unique serial number for this open notebook. In StandardForm and OutputForm notebook objects are printed so
as to indicate the current title of the window that would be used to display the notebook. Functions such as
NotebookPrint and NotebookClose take NotebookObject as their argument. Within any open notebook, there is
always a current selection. The current selection can be modified by applying functions such as SelectionMove to
NotebookObject. See page 579. See also: NotebookSelection, NotebookOpen, Notebooks, SelectedNotebook.

New in Version 3; modified in Version 4.

NotebookOpen
NotebookOpen["name"] opens an existing notebook with the specified name, returning the
corresponding notebook object.
NotebookOpen["name", options] opens a notebook using the options given.
NotebookOpen will usually cause a new notebook window to be opened on your screen. NotebookOpen returns
$Failed if it cannot open a notebook with the specified name. NotebookOpen searches the directories specified by
the NotebookPath global option for the front end. With the option Visible->False set, NotebookOpen will return
a NotebookObject, but will not cause a window to appear on your screen. NotebookOpen initially sets the
current selection to be before the first cell in the notebook. See pages 578 and 591. See also: NotebookCreate,
NotebookLocate, NotebookSelection, OpenRead, Get, SetSelectedNotebook. New in Version 3.

NotebookPrint
NotebookPrint[notebook] sends a notebook to your printer.
NotebookPrint[notebook, stream] sends a PostScript version of the notebook to the specified
stream.
If notebook is a NotebookObject, then NotebookPrint will print the complete notebook. If it is a
NotebookSelection, then NotebookPrint will print just the selection. NotebookPrint uses the printing options
set for the specified notebook, taking defaults from the global options set for the whole front end.

NotebookPrint[notebook, "file.ps"] saves the PostScript form of the notebook in a file.
NotebookPrint[notebook, "!command"] gives the PostScript form of the notebook as input to a command. See

page 591. See also: NotebookSave, NotebookWrite, PrintingStyleEnvironment. New in Version 3.

NotebookPut
NotebookPut[expr] creates a notebook corresponding to expr and makes it the currently
selected notebook in the front end.
NotebookPut[expr, obj] replaces the notebook represented by the notebook object obj with one
corresponding to expr.
NotebookPut allows you to take a notebook expression in the kernel and make it an open notebook in the front
end. expr must be a notebook expression with head Notebook. NotebookPut returns a NotebookObject
corresponding to the notebook it creates. NotebookPut[expr, obj] overwrites whatever data was contained in the
notebook represented by the notebook object obj. See page 578. See also: NotebookGet, NotebookCreate, Put.

New in Version 3.



A.10 Major Built-in Mathematica Objects NotebookRead — NotebookWrite 1225

NotebookRead
NotebookRead[notebook] gives the expression corresponding to the current selection in the
specified notebook object.
NotebookRead is the basic way to get into the kernel pieces of notebooks that are being manipulated by the front
end. See page 585. See also: Get, NotebookWrite, NotebookDelete, ButtonSource. New in Version 3.

Notebooks
Notebooks[ ] gives a list of notebooks currently open in the front end.
Notebooks[ ] returns a list of NotebookObject constructs. Notebooks[fe] gives a list of notebooks open in a
specific front end, specified by a FrontEndObject. The default is $FrontEnd. See page 579. See also:
SelectedNotebook, EvaluationNotebook, NotebookOpen, Streams. New in Version 3.

NotebookSave
NotebookSave[notebook] saves the current version of a notebook in a file.
NotebookSave[notebook, "file"] saves the notebook in the specified file.
NotebookSave[notebook, stream] sends the expression corresponding to the current version of
the notebook to the specified stream.
notebook must be a NotebookObject. NotebookSave[notebook] saves the notebook in a file whose name is given
by the notebook object notebook. NotebookSave writes out the Mathematica expression corresponding to the
notebook, together with Mathematica comments which make it easier for the front end to read the notebook in
again. See page 591. See also: NotebookAutoSave, NotebookPrint. New in Version 3.

NotebookSelection
NotebookSelection[notebook] represents the current selection in an open notebook in the
front end.
NotebookSelection takes a NotebookObject as its argument. You can use Options and SetOptions to read and
write options associated with your current selection. See page 591. See also: SelectionMove. New in Version 3.

NotebookWrite
NotebookWrite[notebook, data] writes data into a notebook at the current selection, setting the
current selection to be just after the data written.
NotebookWrite[notebook, data, sel] writes data into a notebook setting the current selection to
be as specified by sel.
The first argument of NotebookWrite is a NotebookObject. NotebookWrite does essentially the same as a Paste
operation in the front end: it replaces by data whatever the current selection in the notebook is. NotebookWrite is
the basic way to use the Mathematica kernel to modify the contents of notebooks that are being manipulated by the
front end. NotebookWrite automatically wraps Cell around the data you specify if this is necessary. Possible
settings for sel are:

After place the current selection immediately after the data written
All make the current selection be the data written
Before place the current selection immediately before the data written
None leave the current selection unchanged
Placeholder make the current selection be the first placeholder in the data written

The default for sel is After, so that NotebookWrite[obj, data] can be called repeatedly to insert several pieces of
data in sequence. See page 585. See also: NotebookApply, NotebookRead, NotebookDelete, SelectionMove.

New in Version 3.



1226 NProduct — Null Mathematica Reference Guide

NProduct

NProduct[f, {i, imin, imax}] gives a numerical approximation to the product �imax
i�imin f .

NProduct[f, {i, imin, imax, di}] uses a step di in the product.
See notes for NSum. The options NSumExtraTerms and NSumTerms are replaced by NProductExtraFactors and
NProductFactors. See page 957. Related package: NumericalMath`NLimit`. New in Version 1.

- NSolve
NSolve[lhs==rhs, var] gives a list of numerical approximations to the roots of a polynomial
equation.
, NSolve[{eqn�, eqn�, . . . }, {var�, var�, . . . }] solves a system of polynomial equations.
NSolve[eqns, vars, n] gives results to n-digit precision. NSolve[eqns, vars] gives the same final result as
N[Solve[eqns, vars]], apart from issues of numerical precision. See page 959. Implementation notes: see
page 1068. See also: Solve, FindRoot, NDSolve. Related package: NumberTheory`Recognize`. New in
Version 2; modified in Version 4.1.

- NSum

NSum[f, {i, imin, imax}] gives a numerical approximation to the sum �imax
i�imin f .

NSum[f, {i, imin, imax, di}] uses a step di in the sum.
NSum can be used for sums with both finite and infinite limits. NSum[f, {i, . . . }, {j, . . . }, . . . ] can be used to
evaluate multidimensional sums. - The following options can be given:

AccuracyGoal Infinity number of digits of final accuracy to try and get
Compiled True whether to compile the summand
EvaluationMonitor None expression to evaluate whenever f is evaluated
Method Automatic method to use: Integrate or Fit

NSumExtraTerms 12 maximum number of terms to use in extrapolation
NSumTerms 15 number of terms to use before extrapolation
PrecisionGoal Automatic number of digits of final precision to try and get
VerifyConvergence True whether to explicitly test for convergence
WorkingPrecision MachinePrecision the precision used in internal computations

NSum uses either the Euler-Maclaurin (Integrate) or Wynn epsilon (Fit) method. With the Euler-Maclaurin
method, the options AccuracyGoal and PrecisionGoal can be used to specify the accuracy and precision to try
and get in the final answer. NSum stops when the error estimates it gets imply that either the accuracy or precision
sought has been reached. You should realize that with sufficiently pathological summands, the algorithms used by
NSum can give wrong answers. In most cases, you can test the answer by looking at its sensitivity to changes in the
setting of options for NSum. VerifyConvergence is only used for sums with infinite limits. N[Sum[ . . . ]] calls
NSum. NSum has attribute HoldAll. See page 957. Implementation notes: see page 1068. See also: NProduct.

Related packages: NumericalMath`ListIntegrate`, NumericalMath`NLimit`. New in Version 1; modified in
Version 5.0.

Null
Null is a symbol used to indicate the absence of an expression or a result. When it appears as
an output expression, no output is printed.
e�; e�; . . . ; ek; returns Null, and prints no output. Expressions like f[e�,,e�] are interpreted to have Null
between each pair of adjacent commas. New in Version 1.



A.10 Major Built-in Mathematica Objects NullRecords — NumberForm 1227

NullRecords
NullRecords is an option for Read and related functions which specifies whether null records
should be taken to exist between repeated record separators.
With the default setting NullRecords -> False, repeated record separators are treated like single record separators.

See page 646. See also: WordSeparators. New in Version 2.

NullSpace
NullSpace[m] gives a list of vectors that forms a basis for the null space of the matrix m.
NullSpace works on both numerical and symbolic matrices. NullSpace[m, Modulus->n] finds null spaces for
integer matrices modulo n. NullSpace[m, ZeroTest -> test] evaluates test[ m[[i, j]] ] to determine whether
matrix elements are zero. The default setting is ZeroTest -> Automatic. A Method option can also be given.
Possible settings are as for LinearSolve. See page 907. Implementation notes: see page 1069. See also:
MatrixRank, LinearSolve, RowReduce, SingularValueList. New in Version 1; modified in Version 3.

NullWords
NullWords is an option for Read and related functions which specifies whether null words
should be taken to exist between repeated word separators.
With the default setting NullWords -> False, repeated word separators are treated like single word separators.

See page 646. See also: TokenWords, RecordSeparators. New in Version 2.

Number
Number represents an exact integer or an approximate real number in Read.
An integer is returned if no explicit decimal point is present. Approximate real numbers can be given in C or
Fortran forms, such as 2.4E5 or -3.4e-4. See page 646. See also: Real, DigitQ. New in Version 1.

NumberForm
NumberForm[expr, n] prints with approximate real numbers in expr given to n-digit precision.
NumberForm[expr, {n, f}] prints with approximate real numbers having n digits, with f digits to the right of the
decimal point. NumberForm works on integers as well as approximate real numbers. - The following options can
be given:

DigitBlock Infinity number of digits between breaks
ExponentFunction Automatic function to apply to exponents
NumberFormat Automatic function used to assemble mantissa, base, exponent
NumberMultiplier "�" string to use to indicate multiplication
NumberPadding {"", ""} strings to use for left and right padding
NumberPoint "." decimal point string
NumberSeparator "," string to insert at breaks between blocks
NumberSigns {"-", "+"} strings to use for signs of negative and positive numbers
SignPadding False whether to insert padding after the sign

All options except ExponentFunction apply to integers as well as approximate real numbers. You can mix
NumberForm and BaseForm. NumberForm acts as a “wrapper”, which affects printing, but not evaluation. See
page 435. See also: ScientificForm, EngineeringForm, AccountingForm, BaseForm, PaddedForm, N. New in
Version 1; modified in Version 3.



1228 NumberFormat — NumberQ Mathematica Reference Guide

NumberFormat
NumberFormat is an option for NumberForm and related functions which specifies how the
mantissa, base and exponent should be assembled into a final print form.
With the setting NumberFormat -> f, the function f is supplied with three arguments: the mantissa, base and
exponent of each number to be printed. The arguments are all given as strings. When no exponent is to be
printed, the third argument is given as "". The function f must return the final format for the number. See
page 436. See also: ExponentFunction. New in Version 2.

NumberMarks
NumberMarks is an option for InputForm and related functions that specifies whether ` marks
should be included in the printed forms of approximate numbers.
The default setting for NumberMarks is given by the value of $NumberMarks. NumberMarks->True indicates that `
should be used in all approximate numbers, both machine-precision and arbitrary-precision ones.

NumberMarks -> Automatic indicates that ` should be used in arbitrary-precision but not machine-precision
numbers. NumberMarks -> False indicates that ` should never be used in outputting numbers. Number marks
are used to indicate the type of numbers, and their precision or accuracy. The *^ form for scientific notation is
always used in InputForm, and is independent of NumberMarks. See page 730. See also: NumberForm. New in
Version 3.

NumberMultiplier
NumberMultiplier is an option for NumberForm and related functions which gives the string
to use as a multiplication sign in scientific notation.
The default is NumberMultiplier -> "\[Times]". In OutputForm, \[Times] is rendered as x. See page 436.

New in Version 3.

NumberPadding
NumberPadding is an option for NumberForm and related functions which gives strings to use
as padding on the left- and right-hand sides of numbers.
NumberPadding -> {"sleft", "sright"} specifies strings to use for padding on the left and right. In NumberForm,
the default setting is NumberPadding -> {"", ""}. In PaddedForm, the default setting is
NumberPadding -> {" ", "0"}. The strings specified as padding are inserted in place of digits. See page 436.

See also: SignPadding. New in Version 2.

NumberPoint
NumberPoint is an option for NumberForm and related functions which gives the string to use
as a decimal point.
The default is NumberPoint -> ".". See page 436. New in Version 1.

NumberQ
NumberQ[expr] gives True if expr is a number, and False otherwise.
NumberQ[expr] returns False unless expr is manifestly a number (i.e., has head Complex, Integer, Rational or
Real). NumberQ[Infinity] gives False. NumberQ[Overflow[ ]] and NumberQ[Underflow[ ]] give True. You
can use NumberQ[x] ^= True to override the normal operation of NumberQ, and effectively define x to be a number.

See pages 267 and 723. See also: NumericQ, IntegerQ, MachineNumberQ, TrueQ, Complexes. New in Version 1;
modified in Version 3.



A.10 Major Built-in Mathematica Objects NumberSeparator — NumericQ 1229

NumberSeparator
NumberSeparator is an option for NumberForm and related functions which gives the string to
insert at breaks between digits.
NumberSeparator -> "s" specifies that the string s should be inserted at every break between digits specified by
DigitBlock. NumberSeparator -> {"sleft", "sright"} specifies different strings to be used on the left and right of
the decimal point. The default setting is NumberSeparator -> ",". See page 436. New in Version 1.

NumberSigns
NumberSigns is an option for NumberForm and related functions which gives strings to use as
signs for negative and positive numbers.
NumberSigns -> {"sneg", "spos"} specifies that "sneg" should be given as the sign for negative numbers, and
"spos" for positive numbers. The default setting is NumberSigns -> {"-", ""}.

NumberSigns -> {{"snleft", "snright"}, {"spleft", "spright"}} specifies strings to put both on the left and right
of numbers to specify their signs. In AccountingForm, the default setting is NumberSigns -> {{"(", ")"}, ""}.

See page 436. See also: SignPadding. New in Version 2.

Numerator
Numerator[expr] gives the numerator of expr.
Numerator picks out terms which do not have superficially negative exponents. Denominator picks out the
remaining terms. An exponent is “superficially negative” if it has a negative number as a factor. The standard
representation of rational expressions as products of powers means that you cannot simply use Part to extract
numerators. Numerator can be used on rational numbers. See page 74. See also: ExpandNumerator. New in
Version 1.

NumericFunction
NumericFunction is an attribute that can be assigned to a symbol f to indicate that
f[arg�, arg�, . . . ] should be considered a numeric quantity whenever all the argi are numeric
quantities.
Most standard built-in mathematical functions have the attribute NumericFunction. NumericQ checks the
NumericFunction attribute of every function it encounters. If you assign the attribute NumericFunction to a
function that does not yield numerical values, then NumericQ will give misleading results. See pages 329 and 724.

See also: NumericQ, NHoldAll. New in Version 3.

NumericQ
NumericQ[expr] gives True if expr is a numeric quantity, and False otherwise.
An expression is considered a numeric quantity if it is either an explicit number or a mathematical constant such as
Pi, or is a function that has attribute NumericFunction and all of whose arguments are numeric quantities. In
most cases, NumericQ[expr] gives True whenever N[expr] would yield an explicit number. See page 724. See
also: NumberQ. New in Version 3.



1230 O — On Mathematica Reference Guide

O
O[x]^n represents a term of order xn.
O[x]^n is generated to represent omitted higher-order terms in power series.
O[x, x�]^n represents a term of order �x � x��n.
Normal can be used to truncate power series, and remove O terms. See page 885. See also: Series, SeriesData.

New in Version 1.

OddQ
OddQ[expr] gives True if expr is an odd integer, and False otherwise.
OddQ[expr] returns False unless expr is manifestly an odd integer (i.e., has head Integer, and is odd). You can
use OddQ[x] ^= True to override the normal operation of OddQ, and effectively define x to be an odd integer. See
pages 267 and 723. See also: IntegerQ, EvenQ, TrueQ. New in Version 1.

Off
Off[symbol::tag] switches off a message, so that it is no longer printed.
Off[s] switches off tracing messages associated with the symbol s.
Off[m�, m�, . . . ] switches off several messages.
Off[ ] switches off all tracing messages.
The value of symbol::tag is not affected by Off. Off[s] is equivalent to Off[s::trace]. Off[ ] is equivalent to
Off[s::trace] for all symbols. See pages 61 and 479. See also: On, Message, Check. New in Version 1.

Offset
Offset[{dx, dy}, position] gives the position of a graphical object obtained by starting at the
specified position and then moving by absolute offset {dx, dy}.
Offset can be used to specify offsets in any two-dimensional graphics primitive. position can be either {x, y} or
Scaled[{x, y}, . . . ]. The offset is measured in units of printer’s points, approximately equal to ��� of an inch.

Offset[{dx, dy}] can be used to specify an absolute radius in a Circle or Disk object. See page 506. See
also: Scaled, AbsolutePointSize, AbsoluteThickness. New in Version 3.

On
On[symbol::tag] switches on a message, so that it can be printed.
On[s] switches on tracing for the symbol s.
On[m�, m�, . . . ] switches on several messages.
On[ ] switches on tracing for all symbols.
When tracing is switched on, each evaluation of a symbol, on its own, or as a function, is printed, together with
the result. Note that the tracing information is printed when a function returns. As a result, traces of recursive
functions appear in the opposite order from their calls. On[s] is equivalent to On[s::trace]. On[ ] is equivalent
to On[s::trace] for all symbols. See pages 61 and 479. See also: Off, TracePrint. New in Version 1.



A.10 Major Built-in Mathematica Objects OneIdentity — OpenTemporary 1231

OneIdentity
OneIdentity is an attribute that can be assigned to a symbol f to indicate that f[x], f[f[x]],
etc. are all equivalent to x for the purpose of pattern matching.
, OneIdentity has an effect only if f has attribute Flat. Functions like Plus and Times have the attribute
OneIdentity. The fact that Times has attribute OneIdentity allows a pattern like n_. x_ to match x. See
pages 271 and 329. See also: Flat, Nest. New in Version 1.

OpenAppend
OpenAppend["file"] opens a file to append output to it, and returns an OutputStream object.
The following options can be given:

CharacterEncoding "ASCII" what raw character encoding to use
FormatType InputForm default format for printing expressions
NameConversion None function for converting symbol names with special characters
NumberMarks $NumberMarks when to use ` marks in approximate numbers
PageWidth 78 number of character widths per line
TotalWidth Infinity maximum number of character widths for a single expression

On computer systems that support pipes, OpenAppend["!command"] runs the external program specified by
command, and opens a pipe to send input to it. If OpenRead does not succeed in opening a particular file or pipe,
it generates a message, and returns $Failed. OpenAppend resolves file names according to the procedure
described in Section A.6.1. OpenAppend returns OutputStream["name", n], where name is the full name of a file
or command, and n is a serial number that is unique across all streams opened in the current Mathematica session.

SetOptions can be used to change the properties of an output stream, after it is already open. Functions like
Put and Write automatically open the files or pipes they need, if they are not already open. Setting the option
DOSTextFormat->True causes newlines specified by \n to be output as \r\n pairs, suitable for text-mode files on
MS-DOS and related systems. See page 632. See also: Close, Put, Streams, LinkCreate. New in Version 1;
modified in Version 3.

OpenRead
OpenRead["file"] opens a file to read data from, and returns an InputStream object.
OpenRead prepares to read from a file, starting at the beginning of the file. On systems that support pipes,
OpenRead["!command"] runs the external program specified by command, and opens a pipe to get input from it.

If OpenRead does not succeed in opening a particular file or pipe, it generates a message, and returns $Failed.
OpenRead resolves file names according to the procedure described in Section A.6.1. The function ReadList

automatically opens files or pipes that it needs. OpenRead returns InputStream["name", n], where name is the
full name of a file or command, and n is a serial number that is unique across all streams opened in the current
Mathematica session. Setting the option DOSTextFormat->True causes all input to be treated as coming from a
text-mode file on an MS-DOS or related system. This means that \r\n pairs are interpreted as single newlines, and
��Z� is interpreted as EndOfFile. See page 649. See also: Close, Read, ReadList, Streams, LinkCreate. New
in Version 1; modified in Version 3.

OpenTemporary
OpenTemporary[ ] opens a temporary file to which output can be written, and returns an
OutputStream object.
OpenTemporary is often used in conjunction with Put and Get as a way of preparing data that is exchanged
between Mathematica and external programs. OpenTemporary always creates a new file, that does not already
exist. On Unix systems, OpenTemporary typically creates a file in the /tmp directory. The global variable
$TemporaryPrefix gives the base of the file name used by OpenTemporary. See page 629. See also: Close, Run.

New in Version 1.



1232 OpenWrite — Options Mathematica Reference Guide

OpenWrite
OpenWrite["file"] opens a file to write output to it, and returns an OutputStream object.
OpenWrite deletes any existing contents in a file, and prepares to write output starting at the beginning of the file.

For output to pipes, OpenWrite and OpenAppend are equivalent. See notes for OpenAppend. See page 632.
New in Version 1.

Operate
Operate[p, f[x, y]] gives p[f][x, y].
Operate[p, expr, n] applies p at level n in the head of expr.
Examples: Operate[p, f[x,y]] ��# pf�x, y� ; Operate[p, f[x][y][z], 1] ��# pfx�y��z� ;
Operate[p, f[x][y][z], 2] ��# pfx��y�z� . Operate[p, f[x]] effectively applies the functional operator p
to the function f. Operate is essentially a generalization of Apply, which allows you to apply an operator to the
head of an expression, rather than simply to replace the head. See page 254. See also: Through, Apply, Heads.

New in Version 1.

Optional
p:v is a pattern object which represents an expression of the form p, which, if omitted, should
be replaced by v.
Optional is used to specify “optional arguments” in functions represented by patterns. The pattern object p gives
the form the argument should have, if it is present. The expression v gives the “default value” to use if the
argument is absent. Example: the pattern f[x_, y_:1] is matched by f[a], with x taking the value a, and y
taking the value 1. It can also be matched by f[a, b], with y taking the value b. The form s_:v is equivalent to
Optional[s_, v]. This form is also equivalent to s:_:v. There is no syntactic ambiguity since s must be a symbol
in this case. The special form s_. is equivalent to Optional[s_] and can be used to represent function arguments
which, if omitted, should be replaced by default values globally specified for the functions in which they occur.

Values for Default[f, . . . ] specify default values to be used when _. appears as an argument of f. Any
assignments for Default[f, . . . ] must be made before _. first appears as an argument of f. Optional[s_h]
represents a function which can be omitted, but which, if present, must have head h. There is no simpler syntactic
form for this case. Functions with built-in default values include Plus, Times and Power. See pages 274
and 1030. See also: Alternatives. New in Version 1.

Options
Options[symbol] gives the list of default options assigned to a symbol.
Options[expr] gives the options explicitly specified in a particular expression such as a
graphics object.
Options[stream] or Options["sname"] gives options associated with a particular stream.
Options[object] gives options associated with an external object such as a NotebookObject.
Options[obj, name] gives the setting for the option name.
Options[obj, {name�, name�, . . . }] gives a list of the settings for the options namei.
Many built-in functions allow you to give additional arguments that specify options with rules of the form
name -> value. Options[f] gives the list of rules to be used for the options associated with a function f if no
explicit rules are given when the function is called. Options always returns a list of transformation rules for
option names. You can assign a value to Options[symbol] to redefine all the default option settings for a
function. SetOptions[symbol, name -> value] can be used to specify individual default options. You can use
Options on InputStream and OutputStream objects. If there is only one stream with a particular name, you can
give the name as a string as the argument of Options. If you ask for Options[NotebookObject[ . . . ], name] the
kernel will send a request to the front end to find the result. Explicit values are found for options associated with
cells even if these options are only set at the style, notebook or global level. See pages 144 and 1040. See also:
AbsoluteOptions. Related package: Utilities`FilterOptions`. New in Version 1; modified in Version 3.



A.10 Major Built-in Mathematica Objects Or — Orderless 1233

Or
e� || e� || . . . is the logical OR function. It evaluates its arguments in order, giving True
immediately if any of them are True, and False if they are all False.
Or[e�, e�, . . . ] can be input in StandardForm and InputForm as e� � e� � . . . . The character � can be entered as
,|| ,, ,or , or \[Or]. Or evaluates its arguments in a non-standard way (see page 1046). Or gives symbolic
results when necessary, removing initial arguments that are False. See page 87. See also: Xor, LogicalExpand,
BitOr, Nor. New in Version 1; modified in Version 3.

Order
Order[expr�, expr�] gives 1 if expr� is before expr� in canonical order, and -1 if expr� is after
expr� in canonical order. It gives 0 if expr� is identical to expr�.
Examples: Order[a, b] ��# 1 ; Order[b, a] ��# �1 . Order uses canonical order as described in the notes for
Sort. See page 255. See also: Equal, SameQ, Sort. New in Version 1.

OrderedQ
OrderedQ[h[e�, e�, . . . ]] gives True if the ei are in canonical order, and False otherwise.
See notes for Order. OrderedQ[{e, e}] gives True. By default, OrderedQ uses canonical order as described in
the notes for Sort. OrderedQ[list, p] uses the function p to determine whether each pair of elements in list is in
order. See page 268. See also: Signature, Sort. New in Version 1.

, Ordering
Ordering[list] gives the positions in list at which each successive element of Sort[list]
appears.
Ordering[list, n] gives the positions in list at which the first n elements of Sort[list] appear.
Ordering[list, -n] gives the positions of the last n elements of Sort[list].
Ordering[list, n, p] uses Sort[list, p].
Example: Ordering[{c, a, b}] ��# �2, 3, 1�. In a numerical list Ordering[list, n] gives the positions of the n
smallest elements. Ordering[list, -n] gives the positions of the n largest elements. If there are several smallest
elements in list, Ordering[list, 1] will give only the position of the one that appears first. list[[Ordering[list]]]
is the same as Sort[list]. Ordering[list, seq] is equivalent to Take[Ordering[list], seq].

Ordering[list, All, p] gives the position at which all elements of list appear in Sort[list, p]. Ordering can
be used on expressions with any head, not only List. See page 129. See also: Max, Min, Position, OrderedQ,
Median. New in Version 4.1.

Orderless
Orderless is an attribute that can be assigned to a symbol f to indicate that the elements ei in
expressions of the form f[e�, e�, . . . ] should automatically be sorted into canonical order. This
property is accounted for in pattern matching.
The Orderless attribute for a function corresponds to the mathematical property of commutativity. Functions
with the Orderless attribute use canonical order as described in the notes for Sort. For an object that represents
a matrix or a tensor, the Orderless attribute represents symmetry among indices. Functions like Plus and Times
are Orderless. In matching patterns with Orderless functions, all possible orders of arguments are tried. The
Orderless attribute must be assigned before defining any values for an Orderless function. See page 329. See
also: Sort, Flat, OneIdentity. New in Version 1.



1234 Out — OutputStream Mathematica Reference Guide

Out

%n or Out[n] is a global object that is assigned to be the value produced on the nth output line.
% gives the last result generated.

%% gives the result before last. %% . . . % (k times) gives the kth previous result.
Out[ ] is equivalent to %. Out[-k] is equivalent to %% . . . % (k times). See page 702. See also: In, $Line,
$HistoryLength, MessageList. New in Version 1.

Outer
Outer[f, list�, list�, . . . ] gives the generalized outer product of the listi, forming all possible
combinations of the lowest-level elements in each of them, and feeding them as arguments to f.
Outer[f, list�, list�, . . . , n] treats as separate elements only sublists at level n in the listi.
Outer[f, list�, list�, . . . , n�, n�, . . . ] treats as separate elements only sublists at level ni in
the corresponding listi.
Example: Outer[f,{a,b},{x,y}] ��# ��fa, x�, fa, y��, �fb, x�, fb, y��� . Outer[Times, list�, list�]
gives an outer product. The result of applying Outer to the tensors Ti�i�			ir and Uj�j�			js is the tensor Vi�i�			irj�j�			js
with elements f[Ti�i�			ir ,Uj�j�			js]. Applying Outer to two tensors of ranks r and s gives a tensor of rank r � s.

The heads of both listi must be the same, but need not necessarily be List. The listi need not necessarily be
cuboidal arrays. The specifications ni of levels must be integers. If only a single level specification is given, it is
assumed to apply to all the listi. If there are several ni, but fewer than the number of listi, all levels in the
remaining listi will be used. , Outer can be used on SparseArray objects, returning a SparseArray object when
possible. See page 917. See also: Inner, Distribute, Cross. New in Version 1; modified in Version 3.

OutputForm
OutputForm[expr] prints as a two-dimensional representation of expr using only keyboard
characters.
OutputForm is an approximation to StandardForm which uses only ordinary keyboard characters. The OutputForm
of many kinds of expressions is quite different from their internal representation. OutputForm acts as a
“wrapper”, which affects printing, but not evaluation. OutputForm cannot be used directly for input to
Mathematica. When possible, OutputForm uses approximations to special characters. Thus � is given as >= and é
as e'. See page 424. See also: StandardForm, TraditionalForm, InputForm, TeXForm, MathMLForm, Short,
FullForm. New in Version 1; modified in Version 3.

OutputStream
OutputStream["name", n] is an object that represents an output stream for functions such as
Write.
OpenWrite and OpenAppend return OutputStream objects. The serial number n is unique across all streams,
regardless of their name. See page 631. See also: Streams, InputStream. New in Version 2.



A.10 Major Built-in Mathematica Objects OverscriptBox — PadLeft 1235

OverscriptBox

OverscriptBox[x, y] represents x
y

in input and output.
Inside \( . . . \) OverscriptBox[x, y] can be input as x \& y. In a notebook an OverscriptBox can be created
using ��7� or ��&� . ���� moves out of the overscript position. In StandardForm and InputForm,
OverscriptBox[x, y] is interpreted on input as Overscript[x, y]. The following special interpretations are
made:
OverscriptBox[x, "_"] OverBar[x] x̄
OverscriptBox[x, "�"] OverVector[x]

�x
OverscriptBox[x, "M"] OverTilde[x] x̃
OverscriptBox[x, "^"] OverHat[x] x̂
OverscriptBox[x, "."] OverDot[x] ẋ

For these special cases special input forms such as x\&_ can be used. The baseline of OverscriptBox[x, y] is
taken to be the baseline of x. OverscriptBox[x, y] is usually output with y in a smaller font than x. With the
option setting LimitsPositioning->True y is placed in an overscript position when the whole OverscriptBox is
displayed large, and in a superscript position when it is displayed smaller. In StandardForm, explicit
OverscriptBox objects are output literally. You can use DisplayForm to see the display form of such objects. See
page 445. See also: UnderscriptBox, UnderoverscriptBox, SuperscriptBox, GridBox, FractionBox,
ScriptSizeMultipliers. New in Version 3.

PaddedForm
PaddedForm[expr, n] prints with all numbers in expr padded to leave room for a total of n
digits.
PaddedForm[expr, {n, f}] prints with approximate real numbers having exactly f digits to the
right of the decimal point.
By default, PaddedForm pads with spaces on the left to leave room for n digits. PaddedForm pads with zeros on
the right in approximate real numbers. The length n specified in PaddedForm counts only digits, and not signs,
breaks between digits, and so on. PaddedForm takes the same options as NumberForm, but with some defaults
different. You can use PaddedForm to align columns of numbers. PaddedForm acts as a “wrapper”, which affects
printing, but not evaluation. See page 437. See also: ColumnForm, TableForm. New in Version 2.

PadLeft
PadLeft[list, n] makes a list of length n by padding list with zeros on the left.
PadLeft[list, n, x] pads by repeating the element x.
PadLeft[list, n, {x�, x�, . . . }] pads by cyclically repeating the elements xi.
PadLeft[list, n, padding, m] leaves a margin of m elements of padding on the right.
PadLeft[list, {n�, n�, . . . }] makes a nested list with length ni at level i.

(continued)



1236 PadLeft (continued) — PageBreakBelow Mathematica Reference Guide

PadLeft (continued)

Example: PadLeft[{a,b,c}, 7] ��# �0, 0, 0, 0, a, b, c� . - PadLeft[list, n, . . . ] always returns a list of
length n, except in some special cases where padding is {}. With padding {x�, x�, . . . , xs} cyclic repetitions of
the xi are effectively laid down and then the list is superimposed on top of them, with the last element of the list
lying on an occurrence of xs. Examples: PadLeft[{a,b}, 7, {x,y,z}] ��# �z, x, y, z, x, a, b� .

PadLeft[{a,b}, 7, {x,y,z}, 2] ��# �y, z, x, a, b, x, y� . PadLeft[list, n, padding, -m] truncates the last
m elements of list. A margin of Round[(n-Length[list])/2] effectively centers list. PadLeft[list, n, list]
effectively treats list as cyclic. PadLeft[list, n, {xlist}] can be used to repeat an individual element that is itself
a list. Example: PadLeft[{a,b,c}, 5, {{u}}] ��# ��u�, �u�, a, b, c� . PadLeft[{}, n, {x�, x�, . . . }]
repeats the sequence of xi as many times as fits in a list of length n. PadLeft[list, {n�, n�, . . . }] creates a full
array with dimensions {n�, n�, . . . } even if list is ragged. Negative ni specify to pad on the right.

PadLeft[list, {n�, n�}, {{x��, x��, . . . }, {x��, . . . }, . . . }] pads by repeating the block of xij.
PadLeft[list, {n�, n�, . . . }, list] effectively treats list as cyclic in every dimension.
PadLeft[list, {n�, n�, . . . }, padding, {m�, m�, . . . }] uses margin mi at level i. The object list need not have

head List. , PadLeft can be used on SparseArray objects. See page 294. See also: PadRight, Join,
Partition, ListCorrelate, RotateLeft. New in Version 4.

PadRight
PadRight[list, n] makes a list of length n by padding list with zeros on the right.
PadRight[list, n, x] pads by repeating the element x.
PadRight[list, n, {x�, x�, . . . }] pads by cyclically repeating the elements xi.
PadRight[list, n, padding, m] leaves a margin of m elements of padding on the left.
PadRight[list, {n�, n�, . . . }] makes a nested list with length ni at level i.
PadRight[list, n, . . . ] always returns a list of length n. Example:
PadRight[{a,b,c}, 7] ��# �a, b, c, 0, 0, 0, 0� . With padding {x�, x�, . . . } cyclic repetitions of the xi are
effectively laid down and then the list is superimposed on top of them, with the first element of the list lying on
an occurrence of x�. Examples: PadRight[{a,b}, 7, {x,y,z}] ��# �a, b, z, x, y, z, x� .

PadRight[{a,b}, 7, {x,y,z}, 2] ��# �y, z, a, b, z, x, y� . See additional notes for PadLeft. See
page 294. See also: PadLeft, Join, Partition, ListCorrelate, RotateRight. New in Version 4.

PageBreakAbove
PageBreakAbove is an option for Cell which specifies whether a page break should be made
immediately above the cell if the notebook that contains the cell is printed.
A setting of Automatic specifies that a page break should be made if necessary. A setting of True specifies that a
page break should always be made, while a setting of False specifies that it should never be made. See
page 609. See also: PageBreakBelow, ShowPageBreaks. New in Version 3.

PageBreakBelow
PageBreakBelow is an option for Cell which specifies whether a page break should be made
immediately below the cell if the notebook that contains the cell is printed.
A setting of Automatic specifies that a page break should be made if necessary. A setting of True specifies that a
page break should always be made, while a setting of False specifies that it should never be made. See
page 609. See also: PageBreakAbove, ShowPageBreaks. New in Version 3.



A.10 Major Built-in Mathematica Objects PageBreakWithin — ParametricPlot 1237

PageBreakWithin
PageBreakWithin is an option for Cell which specifies whether a page break should be
allowed within the cell if the notebook that contains the cell is printed.
See page 609. See also: PageBreakAbove, GroupPageBreakWithin, ShowPageBreaks. New in Version 3.

PageWidth
PageWidth is an option for output streams and for cells which specifies how wide each line of
text should be allowed to be.
- Possible settings for output streams are:

Infinity an infinite width (no linebreaking)
n explicit width in characters

SetOptions[stream, PageWidth -> val] resets the line width allowed for an open stream. Possible settings for
cells are:
WindowWidth the width of the window on the screen
PaperWidth the width of the page as it would be printed
n explicit width given in printer’s points

PageWidth->WindowWidth allows each line to use the full width of the displayed window, taking into account
settings for CellMargins. See pages 609 and 634. See also: TotalWidth, TextJustification, AutoIndent.

New in Version 1; modified in Version 3.

ParagraphIndent
ParagraphIndent is an option for Cell which specifies how far in printer’s points to indent
the first line of each paragraph of text.
A new paragraph is taken to start at the beginning of a cell, and after every explicit RETURN character in your text.

Negative settings for ParagraphIndent make the first line of each paragraph stick out to the left. See page 609.
See also: AutoIndent, LineIndent, ParagraphSpacing. New in Version 3.

ParagraphSpacing
ParagraphSpacing is an option for Cell, StyleBox and StyleForm which specifies how much
extra space to leave between successive paragraphs of text.
ParagraphSpacing->{c, 0} leaves an extra space of c times the height of the font in the paragraph.

ParagraphSpacing->{0, n} leaves an extra space of exactly n printer’s points. ParagraphSpacing->{c, n}
leaves an extra space of c times the height of the font plus n printer’s points. Paragraph breaks are taken to
occur whenever an explicit RETURN character appears in a block of text. ParagraphSpacing is added to
LineSpacing to determine spacing between paragraphs. A typical default setting is ParagraphSpacing->{0, 0}.

ParagraphSpacing applies only to ordinary text, not Mathematica expressions. Extra space specified by
ParagraphSpacing is inserted before the first line of each paragraph. No extra space is inserted if the paragraph is
at the beginning of a cell or a string. See page 611. See also: LineSpacing, ParagraphIndent. New in
Version 3.

ParametricPlot
ParametricPlot[{fx, fy}, {t, tmin, tmax}] produces a parametric plot with x and y
coordinates fx and fy generated as a function of t.

ParametricPlot[{{fx, fy}, {gx, gy}, . . . }, {t, tmin, tmax}] plots several parametric curves.
ParametricPlot evaluates its arguments in a non-standard way (see page 1046). You should use Evaluate to
evaluate the function to be plotted if this can safely be done before specific numerical values are supplied. The
options that can be given for ParametricPlot are the same as for Plot. ParametricPlot has the default option
setting Axes -> True. ParametricPlot returns a Graphics object. See page 161. See also: ContourPlot.

Related packages: Graphics`ImplicitPlot`, Graphics`PlotField`. New in Version 1.



1238 ParametricPlot3D — Part Mathematica Reference Guide

ParametricPlot3D
ParametricPlot3D[{fx, fy, fz}, {t, tmin, tmax}] produces a three-dimensional space curve
parametrized by a variable t which runs from tmin to tmax.
ParametricPlot3D[{fx, fy, fz}, {t, tmin, tmax}, {u, umin, umax}] produces a
three-dimensional surface parametrized by t and u.
ParametricPlot3D[{fx, fy, fz, s}, . . . ] shades the plot according to the color specification s.

ParametricPlot3D[{{fx, fy, fz}, {gx, gy, gz}, . . . }, . . . ] plots several objects together.
ParametricPlot3D evaluates its arguments in a non-standard way (see page 1046). You should use Evaluate to
evaluate the function to be plotted if this can safely be done before specific numerical values are supplied.

ParametricPlot3D has the same options as Graphics3D, with the following additions:

Compiled True whether to compile the function to plot
PlotPoints Automatic the number of sample points for each parameter

ParametricPlot3D has the default option setting Axes -> True. - With the default setting
PlotPoints -> Automatic, ParametricPlot3D uses PlotPoints -> 75 for curves and PlotPoints -> {30, 30} for
surfaces. ParametricPlot3D returns a Graphics3D object. See page 163. Related packages:
Graphics`PlotField3D`, Graphics`ContourPlot3D`, Graphics`SurfaceOfRevolution`, Graphics`Shapes`. New
in Version 2.

ParentDirectory
ParentDirectory[ ] gives the parent of the current working directory.
ParentDirectory["dir"] gives the parent of the directory dir.
ParentDirectory returns the full name of the directory as a string. ParentDirectory works only under
operating systems which support hierarchical file systems. See page 637. See also: Directory, $HomeDirectory,
DirectoryName. New in Version 2.

- Part

expr[[i]] or Part[expr, i] gives the ith part of expr.
expr[[-i]] counts from the end.
expr[[0]] gives the head of expr.
expr[[i, j, . . . ]] or Part[expr, i, j, . . . ] is equivalent to expr[[i]] [[j]] . . . .
expr[[ {i�, i�, . . . } ]] gives a list of the parts i�, i�, . . . of expr.
You can make an assignment like t[[i]] = value to modify part of an expression. When expr is a list,
expr[[ {i�, i�, . . . } ]] gives a list of parts. In general, the head of expr is applied to the list of parts. You can
get a nested list of parts from expr[[list�, list�, . . . ]]. Each part has one index from each list. If any of the listi

are All, all parts at that level are kept. expr[[All, i]] effectively gives the ith column in expr. Notice that lists
are used differently in Part than in functions like Extract, MapAt and Position. expr[[ Range[i, j] ]] can be
used to extract sequences of parts. , If expr is a SparseArray object, expr[[. . . ]] gives the parts in the
corresponding ordinary array. In StandardForm and InputForm, expr[[spec]] can be input as expr+spec,. + and, can be entered as ,[[ , and ,]] , or \[LeftDoubleBracket] and \[RightDoubleBracket]. In StandardForm,
expr[[spec]] can be input as exprspec�� or expr+spec, See pages 235 and 285. See also: First, Head, Last,
Extract, Position, ReplacePart, MapAt, Take, PadLeft. Related package: LinearAlgebra`MatrixManipulation` .

New in Version 1; modified in Version 5.0.



A.10 Major Built-in Mathematica Objects Partition — Partition 1239

Partition
Partition[list, n] partitions list into non-overlapping sublists of length n.
Partition[list, n, d] generates sublists with offset d.
Partition[list, {n�, n�, . . . }] partitions a nested list into blocks of size n� � n� � � � � .
Partition[list, {n�, n�, . . . }, {d�, d�, . . . }] uses offset di at level i in list.
Partition[list, n, d, {kL, kR}] specifies that the first element of list should appear at
position kL in the first sublist, and the last element of list should appear at or after position kR
in the last sublist. If additional elements are needed, Partition fills them in by treating list as
cyclic.
Partition[list, n, d, {kL, kR}, x] pads if necessary by repeating the element x.
Partition[list, n, d, {kL, kR}, {x�, x�, . . . }] pads if necessary by cyclically repeating the
elements xi.
Partition[list, n, d, {kL, kR}, {}] uses no padding, and so can yield sublists of different
lengths.
Partition[list, nlist, dlist, {klistL, klistR}, padlist] specifies alignments and padding in a
nested list.
Example: Partition[{a,b,c,d,e,f}, 2] ��# ��a, b�, �c, d�, �e, f�� . All the sublists generated by
Partition[list, n, d] are of length n. Some elements at the end of list may therefore not appear in any sublist.

The element e in Partition[{a,b,c,d,e}, 2] ��# ��a, b�, �c, d�� is dropped.
Partition[{a,b,c,d,e}, 3, 1] ��# ��a, b, c�, �b, c, d�, �c, d, e�� generates sublists with offset 1. All

elements of list appear in the sublists generated by Partition[list, n, 1]. If d is greater than n in
Partition[list, n, d], then elements in the middle of list are skipped. Partition[list, 1, d] picks out elements
in the same way as Take[list, {1, -1, d}]. Partition[list, n, d, {kL, kR}] effectively allows sublists that have
overhangs that extend past the beginning or end of list. Partition[list, n, d, k] is equivalent to
Partition[list, n, d, {k, k}]. Common settings for {kL, kR} are:

{1, -1} allow no overhangs
{1, 1} allow maximal overhang at the end
{-1, -1} allow maximal overhang at the beginning
{-1, 1} allow maximal overhangs at both beginning and end

Example: Partition[{a,b,c,d},2,1,{-1,1}] ��# ��d, a�, �a, b�, �b, c�, �c, d�, �d, a�� .
Partition[list, n, d, {kL, kR}, padlist] effectively lays down repeated copies of padlist, then superimposes one

copy of list on them, and partitions the result. Common settings for padlist are:

x pad with repetitions of a single element
{x�, x�, . . . } pad with cyclic repetitions of a sequence of elements
list pad by treating list as cyclic (default)
{} do no padding, potentially leaving sublists of different lengths

(continued)



1240 Partition (continued) — Pattern Mathematica Reference Guide

Partition (continued)

Example: Partition[{a,b,c,d},2,1,{-1,1},{x,y}] ��# ��y, a�, �a, b�, �b, c�, �c, d�, �d, x�� .
Partition[{a,b,c,d},2,1,{-1,1},{}] ��# ��a�, �a, b�, �b, c�, �c, d�, �d�� . If list has length s, then

Partition[list, n, d] yields Max[0, Floor[(s + d - n)/d]] sublists. Partition[list, {n�, n�, . . . , nr}]
effectively replaces blocks of elements at level r in list by depth r nested lists of neighboring elements. If no
offsets are specified, the neighborhoods are adjacent and non-overlapping. Partition[list, {n�, n�, . . . }, d] uses
offset d at every level. Partition[list, nlist, dlist, {{kL�, kL�, . . . }, {kR�, kR�, . . . }}] specifies that element
{1,1,. . . } of list should appear at position {kL�, kL�, . . . } in the {1,1,. . . } block of the result, while element
{-1,-1,. . . } of list should appear at or after position {kR�, kR�, . . . } in the {-1,-1,. . . } block of the result.

{kL, kR} is taken to be equivalent to {{kL, kL, . . . }, {kR, kR, . . . }}. {{k�, k�, . . . }} is taken to be equivalent
to {{k�, k�, . . . }, {k�, k�, . . . }}. Partition[list, {n�, n�, . . . , nr}, klist, padlist] effectively makes a depth r
array of copies of padlist, then superimposes list on them, and partitions the result. If list has dimensions
{s�, s�, . . . , sr} then Partition[list, {n�, n�, . . . , nr}] will have dimensions
{q�, q�, . . . , qr, n�, n�, . . . , nr} where qi is given by Floor[si/ni]. The object list need not have head List.

Partition[f[a,b,c,d], 2] ��# ffa, b�, fc, d�� . , Partition can be used on SparseArray objects. See
page 292. See also: Flatten, RotateLeft, Split, Take, PadLeft, ListConvolve, CellularAutomaton. New in
Version 1; modified in Version 4.

PartitionsP
PartitionsP[n] gives the number p�n� of unrestricted partitions of the integer n.
Integer mathematical function (see Section A.3.10). See page 757. Implementation notes: see page 1067. See
also: PartitionsQ, DedekindEta. New in Version 1.

PartitionsQ
PartitionsQ[n] gives the number q�n� of partitions of the integer n into distinct parts.
Integer mathematical function (see Section A.3.10). See page 757. See also: PartitionsP. New in Version 1.

Path
Path is an option for Get and related functions which gives a list of directories to search in
attempting to find an external file.
The default setting is Path :> $Path. The possible settings for Path are the same as those for $Path. See
page 637. See also: $Path, SetDirectory, $Input. New in Version 4.

Pattern
s:obj represents the pattern object obj, assigned the name s.
The name s must be a symbol. The object obj can be any pattern object. When a transformation rule is used,
any occurrence of s on the right-hand side is replaced by whatever expression it matched on the left-hand side.

The operator : has a comparatively low precedence. The expression x:_+_ is thus interpreted as x:(_+_), not
(x:_)+_. The form s_ is equivalent to s:_. Similarly, s_h is equivalent to s:_h, s__ to s:__, and so on. See
pages 263 and 1030. New in Version 1.



A.10 Major Built-in Mathematica Objects PatternTest — Play 1241

PatternTest
p?test is a pattern object that stands for any expression which matches p, and on which the
application of test gives True.
Any result for test[pval] other than True is taken to signify failure. Example: _?NumberQ represents a number of
any type. The _ matches any expression, and ?NumberQ restricts to any expression which gives True on application
of the number test NumberQ. The operator ? has a high precedence. Thus _^_?t is _^(_?t) not (_^_)?t. In a
form such as __?test every element in the sequence matched by __ must yield True when test is applied. See
page 269. See also: Condition, Element. New in Version 1.

Pause
Pause[n] pauses for at least n seconds.
Pause is accurate only down to a granularity of at least $TimeUnit seconds. - The time elapsed during the
execution of Pause is counted in SessionTime and AbsoluteTiming, but not in TimeUsed or Timing. Under
multitasking operating systems, there may be a delay of significantly more than n seconds when you execute
Pause[n]. See page 710. New in Version 2.

Permutations
Permutations[list] generates a list of all possible permutations of the elements in list.
Example: Permutations[{a,b,c}] ��# ��a, b, c�, �a, c, b�, �b, a, c�, �b, c, a�, �c, a, b�, �c, b, a�� .

There are nd permutations of a list of n distinct elements. Repeated elements are treated as identical. The
object list need not have head List. See page 129. See also: Sort, Signature, Reverse, RotateLeft. Related
packages: DiscreteMath`Permutations`, DiscreteMath`Combinatorica`. New in Version 1.

Pi
Pi is Π, with numerical value � 	�
���.
Mathematical constant (see Section A.3.11). Pi can be entered in StandardForm and InputForm as Π, ,pi ,, ,p , or
\[Pi]. In StandardForm, Pi is printed as Π. See page 765. Implementation notes: see page 1067. See also:
Degree. New in Version 1; modified in Version 3.

Play
Play[f, {t, tmin, tmax}] plays a sound whose amplitude is given by f as a function of time t
in seconds between tmin and tmax.
Play evaluates its arguments in a non-standard way (see page 1046). Play[{f�, f�}, {t, tmin, tmax}] produces
stereo sound. The left-hand channel is given first. Play[{f�, f�, . . . }, . . . ] generates sound output on any
number of channels. The following options can be given:

Compiled True whether to compile f for evaluation
DisplayFunction $SoundDisplayFunction function for generating output
Epilog {} sound or graphics to be used as an epilog
PlayRange Automatic the range of amplitude levels to include
Prolog {} sound or graphics to be used as a prolog
SampleDepth 8 how many bits to use to represent each amplitude level
SampleRate 8192 how many times per second amplitude samples should be

generated

Play returns a Sound object. See page 171. See also: ListPlay, SampledSoundFunction, Show. Related
packages: Miscellaneous`Audio`, Miscellaneous`Music`. New in Version 2.



1242 PlayRange — Plot3D Mathematica Reference Guide

PlayRange
PlayRange is an option for Play and related functions which specifies what range of sound
amplitude levels should be included.
All amplitudes are scaled so that the amplitude levels to be included lie within the range that can be output.

Amplitude levels outside the range specified are clipped. The possible settings for PlayRange are:

All include all amplitude levels
Automatic outlying levels are dropped
{amin, amax} explicit amplitude limits

See page 172. See also: SampleDepth. New in Version 2.

Plot
Plot[f, {x, xmin, xmax}] generates a plot of f as a function of x from xmin to xmax.
Plot[{f�, f�, . . . }, {x, xmin, xmax}] plots several functions fi.
Plot evaluates its arguments in a non-standard way (see page 1046). You should use Evaluate to evaluate the
function to be plotted if this can safely be done before specific numerical values are supplied. Plot has the same
options as Graphics, with the following additions:

Compiled True whether to compile the function to plot
MaxBend 10. maximum bend between segments
PlotDivision 20. maximum subdivision factor in sampling
PlotPoints 25 initial number of sample points
PlotStyle Automatic graphics directives to specify the style for each curve

Plot uses the default setting Axes -> True. Plot initially evaluates f at a number of equally spaced sample
points specified by PlotPoints. Then it uses an adaptive algorithm to choose additional sample points, attempting
to produce a curve in which the bend between successive segments is less than MaxBend. It subdivides a given
interval by a factor of at most PlotDivision. You should realize that with the finite number of sample points
used, it is possible for Plot to miss features in your function. To check your results, you should increase the
setting for PlotPoints. Plot returns a Graphics object. See page 131. See also: ListPlot, Graphics.

Related packages: Graphics`FilledPlot`, Graphics`Graphics`. New in Version 1.

Plot3D
Plot3D[f, {x, xmin, xmax}, {y, ymin, ymax}] generates a three-dimensional plot of f as a
function of x and y.
Plot3D[{f, s}, {x, xmin, xmax}, {y, ymin, ymax}] generates a three-dimensional plot in
which the height of the surface is specified by f, and the shading is specified by s.
Plot3D evaluates its arguments in a non-standard way (see page 1046). You should use Evaluate to evaluate the
function to be plotted if this can safely be done before specific numerical values are supplied. Plot3D has the
same options as SurfaceGraphics, with the following additions:

Compiled True whether to compile the function to plot
PlotPoints 25 the number of sample points in each direction

Plot3D has the default option setting Axes -> True. Plot3D returns a SurfaceGraphics object. The function f
should give a real number for all values of x and y at which it is evaluated. There will be holes in the final surface
at any values of x and y for which f does not yield a real number value. If Lighting->False and no shading
function s is specified, the surface is shaded according to height. The shading is determined by the option
ColorFunction; the default is gray levels. The shading function s must yield GrayLevel, Hue or RGBColor
directives, or SurfaceColor objects. Plot3D includes a setting for the MeshRange option in the SurfaceGraphics
object it returns. See page 149. See also: ListPlot3D, ContourPlot, DensityPlot, Graphics3D. New in
Version 1.



A.10 Major Built-in Mathematica Objects PlotDivision — PlotRange 1243

PlotDivision
PlotDivision is an option for Plot which specifies the maximum amount of subdivision to be
used in attempting to generate a smooth curve.
Plot initially uses PlotPoints equally spaced sample points. In attempting to generate curves with no bends larger
than MaxBend, Plot subdivides by at most a factor of PlotDivision. The finest resolution in Plot is of order
1/(PlotPoints PlotDivision). See page 138. See also: MaxBend. New in Version 1.

PlotJoined
PlotJoined is an option for ListPlot that specifies whether the points plotted should be
joined by a line.
The style of the line can be specified using the option PlotStyle. See page 159. See also: Line. New in
Version 1.

PlotLabel
PlotLabel is an option for graphics functions that specifies an overall label for a plot.
PlotLabel -> None specifies that no label should be given. PlotLabel -> label specifies a label to give. Any
expression can be used as a label. It will be given in OutputForm. Arbitrary strings of text can be given as "text".

See page 511. See also: AxesLabel. Related package: Graphics`Legend`. New in Version 1.

PlotPoints
PlotPoints is an option for plotting functions that specifies how many sample points to use.
The sample points are equally spaced. In Plot, an adaptive procedure is used to choose more sample points.

With a single variable, PlotPoints -> n specifies the total number of sample points to use. With two variables,
PlotPoints -> n specifies that n points should be used in both x and y directions. PlotPoints -> {nx, ny}
specifies different numbers of sample points for the x and y directions. See page 138. See also: PlotDivision.

New in Version 1.

PlotRange
PlotRange is an option for graphics functions that specifies what points to include in a plot.
PlotRange can be used for both two- and three-dimensional graphics. The following settings can be used:

All all points are included
Automatic outlying points are dropped
{min, max} explicit limits for y (2D) or z (3D)
{{xmin, xmax}, . . . } explicit limits

When no explicit limits are given for a particular coordinate, a setting of Automatic is assumed. With the
Automatic setting, the distribution of coordinate values is found, and any points sufficiently far out in the
distribution are dropped. Such points are often produced as a result of singularities in functions being plotted. A
setting of the form {min, Automatic} specifies a particular minimum value for a coordinate, and a maximum
value to be determined automatically. AbsoluteOptions gives the explicit form of PlotRange specifications when
Automatic settings are given. See page 137. See also: PlotRegion, AspectRatio, AbsoluteOptions. New in
Version 1.



1244 PlotRegion — Point Mathematica Reference Guide

PlotRegion
PlotRegion is an option for graphics functions that specifies what region of the final display
area a plot should fill.
PlotRegion -> {{sxmin, sxmax}, {symin, symax}} specifies the region in scaled coordinates that the plot should
fill in the final display area. The scaled coordinates run from 0 to 1 in each direction. The default setting
PlotRegion -> {{0, 1}, {0, 1}} specifies that the plot should fill the whole display area. When the plot does
not fill the whole display area, the remainder of the area is rendered according to the setting for the option
Background. See page 507. See also: PlotRange, AspectRatio, Scaled, SphericalRegion. New in Version 2.

PlotStyle
PlotStyle is an option for Plot and ListPlot that specifies the style of lines or points to be
plotted.
PlotStyle -> style specifies that all lines or points are to be generated with the specified graphics directive, or list
of graphics directives. PlotStyle -> {{style�}, {style�}, . . . } specifies that successive lines generated should use
graphics directives style�, . . . . The styles must be enclosed in lists, perhaps of length one. The stylei are used
cyclically. Styles can be specified using graphics directives such as Dashing, Hue and Thickness. See pages 138
and 503. See also: Graphics, TextStyle. New in Version 1.

Plus
x + y + z represents a sum of terms.
Plus has attributes Flat, Orderless and OneIdentity. The default value for arguments of Plus, as used in x_.
patterns, is 0. Plus[ ] is taken to be 0. Plus[x] is x. x + 0 evaluates to x, but x + 0.0 is left unchanged.

Unlike other functions, Plus applies built-in rules before user-defined ones. As a result, it is not possible to make
definitions such as 2+2=5. See page 29. See also: Minus, Subtract, AddTo, Increment, Total. New in Version 1;
modified in Version 3.

Pochhammer
Pochhammer[a, n] gives the Pochhammer symbol �a�n.
Mathematical function (see Section A.3.10). �a�n � a�a � �� � � � �a � n � �� � ��a � n����a�. See page 770. See also:
Beta, Binomial, Gamma, Factorial, Hypergeometric0F1, Hypergeometric1F1, Hypergeometric2F1. New in
Version 1.

Point
Point[coords] is a graphics primitive that represents a point.
The coordinates can be given either in the ordinary form {x, y} or {x, y, z} or in scaled form Scaled[{x, y}] or
Scaled[{x, y, z}]. Offset can be used to specify coordinates in two dimensions. Points are rendered if
possible as circular regions. Their diameters can be specified using the graphics primitive PointSize. Point
diameters are not accounted for in hidden surface elimination for three-dimensional graphics. Shading and
coloring of points can be specified using CMYKColor, GrayLevel, Hue or RGBColor. See pages 492 and 520. See
also: Text. New in Version 1; modified in Version 3.



A.10 Major Built-in Mathematica Objects PointSize — PolygonIntersections 1245

PointSize
PointSize[d] is a graphics directive which specifies that points which follow are to be shown
if possible as circular regions with diameter d. The diameter d is given as a fraction of the total
width of the graph.
PointSize can be used in both two- and three-dimensional graphics. The initial default is PointSize[0.008] for
two-dimensional graphics, and PointSize[0.01] for three-dimensional graphics. See page 500. See also:
AbsolutePointSize, Thickness. New in Version 1.

PolyGamma
PolyGamma[z] gives the digamma function Ψ�z�.

PolyGamma[n, z] gives the nth derivative of the digamma function Ψ�n��z�.
PolyGamma[z] is the logarithmic derivative of the gamma function, given by Ψ�z� � �$�z����z�. PolyGamma[n, z] is
given by Ψ�n��z� � dnΨ�z��dzn. The digamma function is Ψ�z� � Ψ����z�; Ψ�n��z� is the �n � ��th logarithmic derivative
of the gamma function. PolyGamma[z] and PolyGamma[n, z] are meromorphic functions of z with no branch cut
discontinuities. FullSimplify and FunctionExpand include transformation rules for PolyGamma. See page 770.

Implementation notes: see page 1068. See also: Gamma, LogGamma, EulerGamma. New in Version 1.

Polygon
Polygon[{pt�, pt�, . . . }] is a graphics primitive that represents a filled polygon.
Polygon can be used in both Graphics and Graphics3D (two- and three-dimensional graphics). The positions of
points can be specified either in ordinary coordinates as {x, y} or {x, y, z}, or in scaled coordinates as
Scaled[{x, y}] or Scaled[{x, y, z}]. Offset can be used to specify coordinates in two dimensions. The
boundary of the polygon is formed by joining the last point you specify to the first one. In two dimensions,
self-intersecting polygons are allowed. In three dimensions, planar polygons that do not intersect themselves will
be drawn exactly as you specify them. Other polygons will be broken into triangles. You can use graphics
directives such as GrayLevel and RGBColor to specify how polygons should be filled. In three dimensions, the
shading can be produced from simulated illumination. In three-dimensional graphics, polygons are considered to
have both a front and a back face. The sense of a polygon is defined in terms of its first three vertices. When taken
in order, these vertices go in a counterclockwise direction when viewed from the front. (The frontward normal is thus
obtained from a right-hand rule.) You can use FaceForm to specify colors for the front and back faces of polygons.

In three-dimensional graphics, edges of polygons are shown as lines, with forms specified by the graphics
directive EdgeForm. See pages 492 and 520. See also: Raster, Rectangle, Cuboid, SurfaceColor. Related
packages: Geometry`Polytopes`, Graphics`Polyhedra`. New in Version 1; modified in Version 3.

PolygonIntersections
PolygonIntersections is an option for Graphics3D which specifies whether intersecting
polygons should be left unchanged.
With the default setting PolygonIntersections -> True, Graphics3D objects are returned unchanged whether or
not they contain intersecting polygons. With the setting PolygonIntersections -> False, Graphics3D objects are
modified by breaking polygons into smaller pieces which do not intersect each other.

PolygonIntersections -> False is useful in creating graphics objects which can be sent to certain external
three-dimensional rendering programs. See page 556. See also: RenderAll. New in Version 2.



1246 PolyLog — PolynomialQ Mathematica Reference Guide

PolyLog
PolyLog[n, z] gives the polylogarithm function Lin�z�.
PolyLog[n, p, z] gives the Nielsen generalized polylogarithm function Sn�p�z�.

Mathematical function (see Section A.3.10). Lin�z� � ��k�� zk�kn.

Sn�p�z� � ����n�p�����n � ��dpd� � �� logn���t� logp�� � zt��t dt. Sn�����z� � Lin�z�. PolyLog[n, z] has a branch cut
discontinuity in the complex z plane running from � to �. FullSimplify and FunctionExpand include
transformation rules for PolyLog. See page 772. Implementation notes: see page 1068. See also: Zeta,
PolyGamma, LerchPhi. New in Version 1; modified in Version 4.

PolynomialGCD
PolynomialGCD[poly�, poly�, . . . ] gives the greatest common divisor of the polynomials polyi.
PolynomialGCD[poly�, poly�, . . . , Modulus->p] evaluates the GCD modulo the prime p.
Example: PolynomialGCD[1 + x y, x + x^2 y] ��# 1 � x y . In PolynomialGCD[poly�, poly�, . . . ], all symbolic
parameters are treated as variables. PolynomialGCD[poly�, poly�, . . . ] will by default treat algebraic numbers that
appear in the polyi as independent variables. PolynomialGCD[poly�, poly�, . . . , Extension->Automatic] extends
the coefficient field to include algebraic numbers that appear in the polyi. See page 803. See also:
PolynomialLCM, PolynomialQuotient, GCD, Cancel, Together, PolynomialMod. Related package:
Algebra`PolynomialExtendedGCD`. New in Version 2; modified in Version 3.

PolynomialLCM
PolynomialLCM[poly�, poly�, . . . ] gives the least common multiple of the polynomials polyi.
PolynomialLCM[poly�, poly�, . . . , Modulus->p] evaluates the LCM modulo the prime p.

Example: PolynomialLCM[1 + x y, x + x^2 y] ��# x � x2 y . PolynomialLCM[poly�, poly�, . . . ] will by default
treat algebraic numbers that appear in the polyi as independent variables.

PolynomialLCM[poly�, poly�, . . . , Extension->Automatic] extends the coefficient field to include algebraic
numbers that appear in the polyi. See page 803. See also: PolynomialGCD, LCM. New in Version 2; modified in
Version 3.

PolynomialMod
PolynomialMod[poly, m] gives the polynomial poly reduced modulo m.
PolynomialMod[poly, {m�, m�, . . . }] reduces modulo all of the mi.
PolynomialMod[poly, m] for integer m gives a polynomial in which all coefficients are reduced modulo m.

Example: PolynomialMod[3x^2 + 2x + 1, 2] ��# 1 � x2 . When m is a polynomial, PolynomialMod[poly, m]
reduces poly by subtracting polynomial multiples of m, to give a result with minimal degree and leading coefficient.

PolynomialMod gives results according to a definite convention; other conventions could yield results differing by
multiples of m. Unlike PolynomialRemainder, PolynomialMod never performs divisions in generating its results.

See page 803. See also: PolynomialGCD, Mod, PolynomialRemainder, PolynomialReduce, GroebnerBasis.
Related package: Algebra`PolynomialPowerMod`. New in Version 2.

PolynomialQ
PolynomialQ[expr, var] yields True if expr is a polynomial in var, and yields False otherwise.
PolynomialQ[expr, {var�, . . . }] tests whether expr is a polynomial in the vari.
The vari need not be symbols; PolynomialQ[f[a] + f[a]^2, f[a]] ��# True . See page 799. See also:
Collect, Series. New in Version 1.



A.10 Major Built-in Mathematica Objects PolynomialQuotient — Positive 1247

PolynomialQuotient
PolynomialQuotient[p, q, x] gives the quotient of p and q, treated as polynomials in x, with
any remainder dropped.
See page 803. See also: PolynomialRemainder, PolynomialReduce, PolynomialGCD, Apart, Cancel, Quotient.

New in Version 1.

PolynomialReduce
PolynomialReduce[poly, {poly�, poly�, . . . }, {x�, x�, . . . }] yields a list representing a
reduction of poly in terms of the polyi.
The list has the form {{a�, a�, . . . }, b}, where b is minimal and a� poly� + a� poly� + . . . + b is
exactly poly.
The polynomial b has the property that none of its terms are divisible by leading terms of any of the polyi. If the
polyi form a Gröbner basis then this property uniquely determines the remainder obtained from PolynomialReduce.

The following options can be given, as for GroebnerBasis:

MonomialOrder Lexicographic the criterion used for ordering monomials
CoefficientDomain Rationals the type of objects assumed to be coefficients
Modulus 0 the modulus for numerical coefficients

See page 803. See also: GroebnerBasis, PolynomialRemainder, PolynomialMod. Related package:
Algebra`SymmetricPolynomials`. New in Version 3.

PolynomialRemainder
PolynomialRemainder[p, q, x] gives the remainder from dividing p by q, treated as
polynomials in x.
The degree of the result in x is guaranteed to be smaller than the degree of q. Unlike PolynomialMod,
PolynomialRemainder performs divisions in generating its results. See page 803. See also: PolynomialQuotient,
Apart, Cancel, PolynomialMod, Mod, PolynomialReduce. New in Version 1.

Position
Position[expr, pattern] gives a list of the positions at which objects matching pattern appear
in expr.
Position[expr, pattern, levspec] finds only objects that appear on levels specified by levspec.
Position[expr, pattern, levspec, n] gives the positions of the first n objects found.
Example: Position[{1+x^2, 5, x^4}, x^_] ��# ��1, 2�, �3�� . Position[expr, pattern] tests all the subparts
of expr in turn to try and find ones that match pattern. Position returns a list of positions in a form suitable for
use in Extract, ReplacePart and MapAt. The form is different from the one used in Part. The default level
specification for Position is {0, Infinity}, with Heads -> True. A part specification {} returned by Position
represents the whole of expr. Position[list, pattern, {1}, Heads -> False] finds positions only of objects that
appear as complete elements of list. Level specifications are described on page 1041. See page 261. See also:
Cases, Count, StringPosition, Ordering, SparseArray, ReplaceList, Insert, Delete. New in Version 1.

Positive
Positive[x] gives True if x is a positive number.
Positive[x] gives False if x is manifestly a negative numerical quantity, a complex numerical quantity, or zero.
Otherwise, it remains unevaluated. See also: Negative, NonNegative, Sign, Greater, Simplify, Assumptions.

New in Version 1.



1248 Postfix — PowerMod Mathematica Reference Guide

Postfix
Postfix[f[expr]] prints with f[expr] given in default postfix form: expr // f.
Postfix[f[expr], h] prints as exprh.
Postfix[expr, h, precedence, grouping] can be used to specify how the output form should be parenthesized. See
the notes for Infix about precedence and grouping. See page 474. See also: Infix, Prefix. New in Version 1.

PostScript
PostScript["string"] is a graphics primitive which gives PostScript code to include verbatim
in graphics output.
Mathematica by default renders a point with coordinates 0 0 in the PostScript code at the bottom left-hand corner of
your plot, and a point with coordinates 1 r at the top right-hand corner, where r is the aspect ratio of the whole
plot. You can specify a bounding box for the objects represented by your PostScript code by including a standard
conforming PostScript comment of the form %%BoundingBox pxmin pymin pxmax pymax.

PostScript["string", {{xmin, ymin}, {xmax, ymax}}] then renders the point with coordinates pxmin pymin in
the PostScript code at position {xmin, ymin} in the Mathematica graphic, and the point with coordinates
pxmax pymax at position {xmax, ymax}. Mathematica will transform graphics represented by a PostScript
command to make it fill the specified rectangle. After execution of PostScript code included by the PostScript
command, all PostScript stacks must be restored to their original states. The utility of the PostScript command
depends on your PostScript interpreter’s ability to process the PostScript commands you specify. Display may or
may not convert graphics produced by PostScript commands to other formats. See page 554. See also: Raster,
RGBColor, Dashing, Thickness, PointSize, StyleForm. New in Version 2; modified in Version 3.

Power
x^y gives x to the power y.
Mathematical function (see Section A.3.10). Exact rational number results are given when possible for roots of the
form n��m. For complex numbers x and y, Power gives the principal value of ey log�x�. (a b)^c is automatically
converted to a^c b^c only if c is an integer. (a^b)^c is automatically converted to a^(b c) only if c is an integer.

See page 29. See also: Sqrt, Exp, PowerExpand, PowerMod, Log. New in Version 1.

PowerExpand
PowerExpand[expr] expands all powers of products and powers.

Example: PowerExpand[Sqrt[x y]] ��# ����
x
����

y . PowerExpand converts (a b)^c to a^c b^c, whatever the form of
c is. PowerExpand also converts (a^b)^c to a^(b c), whatever the form of c is. The transformations made by
PowerExpand are correct in general only if c is an integer or a and b are positive real numbers. PowerExpand
converts Log[a^b] to b Log[a]. See page 798. See also: Expand, Distribute, ComplexExpand, FullSimplify,
FunctionExpand, Refine. New in Version 2; modified in Version 3.

PowerMod

PowerMod[a, b, n] gives ab mod n.
For negative b, PowerMod[a, b, n] gives modular inverses.
Integer mathematical function (see Section A.3.10). For positive b, PowerMod[a, b, n] gives the same answers as
Mod[a^b, n] but is much more efficient. For negative b, PowerMod[a, b, n] gives the integer k such that
ka�b Q � mod n. If no such integer exists, PowerMod returns unevaluated. See page 752. See also: Mod,
ExtendedGCD, MultiplicativeOrder, EulerPhi. Related package: Algebra`PolynomialPowerMod`. New in
Version 1.



A.10 Major Built-in Mathematica Objects PrecedenceForm — PreIncrement 1249

PrecedenceForm
PrecedenceForm[expr, prec] prints with expr parenthesized as it would be if it contained an
operator with precedence prec.
prec must be an integer. See notes for Infix. Example: a + PrecedenceForm[b c, 10] ��# a � �b c� .

PrecedenceForm acts as a “wrapper”, which affects printing, but not evaluation. See page 474. New in
Version 1.

- Precision
Precision[x] gives the effective number of digits of precision in the number x.
, Precision[x] gives a measure of the relative uncertainty in the value of x. , With absolute uncertainty dx,
Precision[x] is -Log[10, dx/x]. For exact numbers such as integers, Precision[x] is Infinity.
, Precision[x] does not normally yield an integer result. , For machine-precision numbers Precision[x] yields
MachinePrecision. , Numbers entered in the form digits`p are taken to have precision p. , Numbers such as
0``a whose overall scale cannot be determined are treated as having zero precision. , Numbers with zero
precision are output in StandardForm as �	 � ���a , where a is their accuracy. If x is not a number, Precision[x]
gives the minimum value of Precision for all the numbers that appear in x. See page 727. See also: Accuracy,
N, Chop, SetPrecision, MachineNumberQ. New in Version 1; modified in Version 5.0.

- PrecisionGoal
PrecisionGoal is an option for various numerical operations which specifies how many
effective digits of precision should be sought in the final result.
PrecisionGoal is an option for such functions as NIntegrate and NDSolve. - PrecisionGoal -> Automatic
normally yields a precision goal equal to half the setting for WorkingPrecision. PrecisionGoal -> Infinity
specifies that precision should not be used as the criterion for terminating the numerical procedure. AccuracyGoal
is typically used in this case. Even though you may specify PrecisionGoal->n, the results you get may
sometimes have much less than n-digit precision. In most cases, you must set WorkingPrecision to be at least as
large as PrecisionGoal. PrecisionGoal effectively specifies the relative error allowed in a numerical procedure.

With PrecisionGoal->p and AccuracyGoal->a, Mathematica attempts to make the numerical error in a result of
size x be less than ���a � /x/ ���p . See pages 956 and 976. See also: AccuracyGoal, WorkingPrecision. New in
Version 2; modified in Version 5.0.

PreDecrement
--x decreases the value of x by 1, returning the new value of x.
PreDecrement has attribute HoldFirst. --x is equivalent to x=x-1. See page 305. See also: Decrement,
SubtractFrom, Set. New in Version 1.

Prefix
Prefix[f[expr]] prints with f[expr] given in default prefix form: f @ expr.
Prefix[f[expr], h] prints as hexpr.
Prefix[expr, h, precedence, grouping] can be used to specify how the output form should be parenthesized. See
the notes for Infix about precedence and grouping. See page 474. See also: Infix, Postfix. New in Version 1.

PreIncrement
++x increases the value of x by 1, returning the new value of x.
PreIncrement has attribute HoldFirst. ++x is equivalent to x=x+1. See page 305. See also: Increment, AddTo,
Set. New in Version 1.



1250 Prepend — Primes Mathematica Reference Guide

Prepend
Prepend[expr, elem] gives expr with elem prepended.
Examples: Prepend[{a,b}, x] ��# �x, a, b� ; Prepend[f[a], x+y] ��# fx � y, a� . , Prepend works on
SparseArray objects, returning ordinary lists if necessary. See pages 125 and 288. See also: Append, Insert,
PadRight. New in Version 1.

PrependTo
PrependTo[s, elem] prepends elem to the value of s, and resets s to the result.
PrependTo[s, elem] is equivalent to s = Prepend[s, elem]. PrependTo[s, elem] does not evaluate s. - You can
use PrependTo repeatedly to build up a list, though Sow and Reap will usually be more efficient. , PrependTo
works on SparseArray objects, returning ordinary lists if necessary. See page 306. See also: AppendTo, Sow.

New in Version 1.

Prime

Prime[n] gives the nth prime number.

Prime[1] is 2. On most computer systems, Prime[n] for n up to ��� can be obtained quite quickly. See
page 750. Implementation notes: see page 1067. See also: FactorInteger, PrimeQ, PrimePi, Primes. Related
package: NumberTheory`NumberTheoryFunctions` . New in Version 1.

PrimePi
PrimePi[x] gives the number of primes Π�x� less than or equal to x.
The argument of PrimePi can be any positive real number. PrimePi[1] gives 0. See page 750.

Implementation notes: see page 1067. See also: Prime, Zeta. New in Version 2.

PrimeQ
PrimeQ[expr] yields True if expr is a prime number, and yields False otherwise.
PrimeQ[1] gives False. PrimeQ[-n], where n is prime, gives True. PrimeQ[n, GaussianIntegers->True]
determines whether n is a Gaussian prime. , PrimeQ[m + I m] automatically works over the Gaussian integers.

Simplify[expr � Primes] can be used to try to determine whether a symbolic expression is mathematically a
prime. See page 750. Implementation notes: see page 1067. See also: FactorInteger, Primes. Related
package: NumberTheory`PrimeQ`. New in Version 1.

Primes
Primes represents the domain of prime numbers, as in x � Primes.
x � Primes evaluates only if x is a numeric quantity. Simplify[expr � Primes] can be used to try to determine
whether an expression corresponds to a prime number. The domain of primes is taken to be a subset of the
domain of integers. PrimeQ[expr] returns False unless expr explicitly has head Integer. Primes is output in
TraditionalForm as �. See pages 73 and 817. See also: Element, Simplify, PrimeQ, Prime, Integers. New in
Version 4.



A.10 Major Built-in Mathematica Objects PrincipalValue — Product 1251

PrincipalValue
PrincipalValue is an option for Integrate that specifies whether the Cauchy principal value
should be found for a definite integral.
The default setting PrincipalValue->False computes ordinary Riemann integrals. Setting PrincipalValue->True
gives finite answers for integrals that had single pole divergences with PrincipalValue->False. See page 866.

See also: Residue, Limit, GenerateConditions, DiracDelta. Related package:
NumericalMath`CauchyPrincipalValue` . New in Version 3.

Print
Print[expr�, expr�, . . . ] prints the expri, followed by a newline (line feed).
Print sends its output to the channel $Output. Print uses the format type of $Output as its default format type.

Print concatenates the output from each expri together, effectively using SequenceForm. You can arrange to
have expressions on several lines by using ColumnForm. See page 477. See also: CellPrint, Message, Put,
Write, Reap. New in Version 1.

PrintingStyleEnvironment
PrintingStyleEnvironment is an option for notebooks which specifies the style environment
to be used in printing the notebook on paper.
See notes for ScreenStyleEnvironment. Style environments appropriate for printed output are typically
substantially denser than those appropriate for on-screen display. See page 197. See also:
ScreenStyleEnvironment, StyleDefinitions, NotebookPrint. New in Version 3.

Product

Product[f, {i, imax}] evaluates the product �imax
i�� f .

Product[f, {i, imin, imax}] starts with i = imin. Product[f, {i, imin, imax, di}] uses steps
di.
Product[f, {i, imin, imax}, {j, jmin, jmax}, . . . ] evaluates the multiple product
�imax

i�imin �jmax
j�jmin 			 f .

Product[f, {i, imax}] can be entered as *i
imax f . * can be entered as ,prod , or \[Product].

Product[f, {i, imin, imax}] can be entered as *i=imin
imax f . The limits should be underscripts and overscripts of* in normal input, and subscripts and superscripts when embedded in other text. Product evaluates its

arguments in a non-standard way (see page 1046). Product uses the standard Mathematica iteration specification.
The iteration variable i is treated as local. In multiple products, the range of the outermost variable is given

first. The limits of a product need not be numbers. They can be Infinity or symbolic expressions. If a product
cannot be carried out explicitly by multiplying a finite number of terms, Product will attempt to find a symbolic
result. In this case, f is first evaluated symbolically. Product can do essentially all products that are given in
standard books of tables. Product is output in StandardForm using *. See page 83. Implementation notes:
see page 1071. See also: Do, Sum, Table, NProduct, RSolve. New in Version 1; modified in Version 3.



1252 ProductLog — PseudoInverse Mathematica Reference Guide

ProductLog
ProductLog[z] gives the principal solution for w in z � wew.

ProductLog[k, z] gives the kth solution.
Mathematical function (see Section A.3.10). The solutions are ordered according to their imaginary parts. For
z c ���e, ProductLog[z] is real. ProductLog[z] satisfies the differential equation dw�dz � w��z�� � w��.

ProductLog[z] has a branch cut discontinuity in the complex z plane running from �� to ���e.
ProductLog[k, z] for integer k c � has a branch cut discontinuity from �� to �. See page 781. See also: Log.

New in Version 3.

Prolog
Prolog is an option for graphics functions which gives a list of graphics primitives to be
rendered before the main part of the graphics is rendered.
Graphics primitives specified by Prolog are rendered after axes, boxes and frames are rendered. In
three-dimensional graphics, two-dimensional graphics primitives can be specified by the Prolog option. The
graphics primitives are rendered in a 0,1 coordinate system. See page 504. See also: Background, DefaultColor,
Epilog, AxesStyle, PlotStyle, DisplayFunction. New in Version 2.

Protect
Protect[s�, s�, . . . ] sets the attribute Protected for the symbols si.
Protect["form�", "form�", . . . ] protects all symbols whose names match any of the string
patterns formi.
Protect["form"] allows metacharacters such as *, as specified on page 1044. Protect["context`*"] protects all
symbols in a particular context. See pages 321 and 1044. See also: Unprotect. New in Version 1.

Protected
Protected is an attribute which prevents any values associated with a symbol from being
modified.
Many built-in Mathematica functions have the attribute Protected. See page 329. See also: Locked,
ReadProtected, Editable. New in Version 1.

- PseudoInverse
PseudoInverse[m] finds the pseudoinverse of a rectangular matrix.
PseudoInverse works on both symbolic and numerical matrices. , For numerical matrices, PseudoInverse is based
on SingularValueDecomposition. PseudoInverse[m, Tolerance -> t] specifies that singular values smaller
than t times the maximum singular value should be dropped. With the default setting Tolerance->Automatic,
singular values are dropped when they are less than 100 times ���p , where p is Precision[m]. For non-singular
square matrices M, the pseudoinverse M���� is equivalent to the standard inverse. See page 914. See also:
Inverse, SingularValueDecomposition, Fit, CholeskyDecomposition. New in Version 1; modified in Version 5.0.



A.10 Major Built-in Mathematica Objects Put — Quantile 1253

Put
expr >> filename writes expr to a file.
Put[expr�, expr�, . . . , "filename"] writes a sequence of expressions expri to a file.
On systems with advanced graphical interfaces, there will usually be graphical tools for saving expressions in files.

Put uses the format type InputForm by default. Put starts writing output at the beginning of the file. It deletes
whatever was previously in the file. Put inserts a newline (line feed) at the end of its output. expr >> filename is
equivalent to expr >> "filename". The double quotes can be omitted if the file name is of the form specified on
page 1033. It is conventional to use names that end with .m for files containing Mathematica input. See
page 624. See also: PutAppend, Save, Definition, DumpSave, Export, Get, NotebookPut. New in Version 1.

PutAppend
expr >>> filename appends expr to a file.
PutAppend[expr�, expr�, . . . , "filename"] appends a sequence of expressions expri to a file.
PutAppend works the same as Put, except that it adds output to the end of the file, rather than replacing the
complete contents of the file. See page 624. See also: Write. New in Version 1.

QRDecomposition
QRDecomposition[m] yields the QR decomposition for a numerical matrix m. The result is a
list {q, r}, where q is an orthogonal matrix and r is an upper triangular matrix.
The original matrix m is equal to Conjugate[Transpose[q]] . r. For non-square matrices, q is row orthonormal.

The matrix r has zeros for all entries below the leading diagonal. QRDecomposition[m, Pivoting -> True]
yields a list {q, r, p} where p is a permutation matrix such that m . p is equal to Conjugate[Transpose[q]] . r.

See page 914. Implementation notes: see page 1069. See also: SchurDecomposition, LUDecomposition,
SingularValueDecomposition, JordanDecomposition, CholeskyDecomposition. Related package:
LinearAlgebra`Orthogonalization`. New in Version 2.

, Quantile

Quantile[list, q] gives the qth quantile of list.
Quantile[list, {q�, q�, . . . }] gives a list of quantiles q�, q�, . . . .
Quantile[list, q, {{a, b}, {c, d}}] uses the quantile definition specified by parameters a, b,
c, d.
Quantile[list, q] gives Sort[list, Less][[Ceiling[q Length[list]]]].

Quantile[{{x�, y�, . . . }, {x�, y�, . . . }, . . . }, q] gives
{Quantile[{x�, x�, . . . }, q], Quantile[{y�, y�, . . . }, q]}. For a list of length n,
Quantile[list, q, {{a, b}, {c, d}}] depends on x = a + (n + b) q. If x is an integer, the result is s[[x]], where
s = Sort[list, Less]. Otherwise the result is
s[[Floor[x]]] + (s[[Ceiling[x]]] - s[[Floor[x]]]) (c + d FractionalPart[x]), with the indices taken to be 1
or n if they are out of range. The default choice of parameters is {{0, 0}, {1, 0}}. Quantile[list, q] always
gives a result equal to an element of list. The same is true whenever d � �. When d � �, Quantile is piecewise
linear as a function of q. Median[list] is equivalent to Quantile[list, 1/2, {{1/2, 0}, {0, 1}}]. About ten
different choices of parameters are in use in statistical work. Quantile works with SparseArray objects. See
pages 794 and 924. See also: Median, Ordering, Variance, Sort, ListInterpolation. Related packages:
Statistics`DescriptiveStatistics`, Statistics`MultiDescriptiveStatistics` . New in Version 5.0.



1254 Quit — Random Mathematica Reference Guide

Quit
Quit[ ] terminates a Mathematica kernel session.
, Quit[ ] quits only the Mathematica kernel, not the front end. , To quit a notebook front end, choose the Quit
menu item. All kernel definitions are lost when the kernel session terminates. If you have kept the definitions in
a file or in a notebook you can always re-enter them in a subsequent session. Before terminating a kernel session,
Mathematica executes any delayed value that has been assigned to the global variable $Epilog. Conventionally, this
attempts to read in a file end.m of commands to be executed before termination. On most computer systems,
Quit[n] terminates the Mathematica kernel, passing the integer n as an exit code to the operating system. Exit is
a synonym for Quit. See pages 706 and 1057. See also: Return, $IgnoreEOF. New in Version 1.

Quotient
Quotient[m, n] gives the integer quotient of m and n.
Quotient[m, n, d] uses an offset d.
Integer mathematical function (see Section A.3.10). Quotient[m, n] is equivalent to Floor[m/n] for integers m
and n. Quotient[m, n, d] gives a result x such that d * m� nx ) d � n. n*Quotient[m, n, d] + Mod[m, n, d]
is always equal to m. See page 749. See also: Mod, PolynomialQuotient. New in Version 1; modified in
Version 4.

RadicalBox

RadicalBox[x, n] represents ����xn in input and output.
Inside \( . . . \) RadicalBox[x, n] can be input as \@x\%n. In a notebook a RadicalBox can be created using
��@� or ��2� , then using ��%� to move to the index position. ���� moves out of the radical. In
StandardForm and InputForm, RadicalBox[x, n] is interpreted on input as x^(1/n). The baseline of
RadicalBox[x, n] is taken to be the baseline of x. If RadicalBox[x, n] does not fit on a single line, it is output
as x ^ (1/n). In StandardForm, explicit RadicalBox objects are output literally. You can use DisplayForm to see
the display form of such objects. See page 445. See also: SqrtBox, OverscriptBox, GridBox. New in Version 3.

Random
Random[ ] gives a uniformly distributed pseudorandom Real in the range 0 to 1.
Random[type, range] gives a pseudorandom number of the specified type, lying in the specified
range. Possible types are: Integer, Real and Complex. The default range is 0 to 1. You can
give the range {min, max} explicitly; a range specification of max is equivalent to {0, max}.

Random[Integer] gives 0 or 1 with probability �� . Random[Complex] gives a pseudorandom complex number in
the rectangle with corners � and � � i. Random[Complex, {zmin, zmax}] uses the rectangle defined by zmin and
zmax. Random[Real, range, n] generates a pseudorandom real number with n-digit precision. Both leading and
trailing digits may be chosen as 0. Random gives a different sequence of pseudorandom numbers whenever you
run Mathematica. You can start Random with a particular seed using SeedRandom. See page 747. Implementation
notes: see page 1067. See also: $RandomState, FindInstance. Related packages:
Statistics`ContinuousDistributions` , Statistics`DiscreteDistributions` . New in Version 1.



A.10 Major Built-in Mathematica Objects Range — Rational 1255

Range
Range[imax] generates the list {1, 2, . . . , imax}.
Range[imin, imax] generates the list {imin, . . . , imax}. Range[imin, imax, di] uses step di.
Example: Range[4] ��# �1, 2, 3, 4� . The arguments to Range need not be integers. Range starts from imin,
and successively adds increments of di until the result is greater than imax.

Range[0, 1, .3] ��# �0, 0.3, 0.6, 0.9� . Range[x, x+2] ��# �x, 1 � x, 2 � x� . Range uses the standard
Mathematica iteration specification, as applied to a single variable. See page 119. See also: Table, Interval,
CharacterRange. New in Version 1.

Raster
Raster[{{a��, a��, . . . }, . . . }] is a two-dimensional graphics primitive which represents a
rectangular array of gray cells.
Raster[array, ColorFunction -> f] specifies that each cell should be rendered using the graphics directives
obtained by applying the function f to the scaled value of the cell. Raster[array, ColorFunction -> Hue]
generates an array in which cell values are specified by hues. With the option ColorFunctionScaling -> False
the original cell values aij, rather than scaled cell values, are fed to the color function. With the default setting
ColorFunctionScaling -> True cell values in Raster[array] outside the range 0 to 1 are clipped. If array has
dimensions {m, n}, then Raster[array] is assumed to occupy the rectangle Rectangle[{0, 0}, {m, n}].

Raster[array, {{xmin, ymin}, {xmax, ymax}}] specifies that the raster should be taken instead to fill the
rectangle Rectangle[{xmin, ymin}, {xmax, ymax}]. Scaled and Offset can be used to specify the coordinates
for the rectangle. Raster[array, rect, {zmin, zmax}] specifies that cell values should be scaled so that zmin
corresponds to 0 and zmax corresponds to 1. Cell values outside this range are clipped. , array can be a
SparseArray object. See page 497. See also: RasterArray, DensityGraphics, GraphicsArray. New in
Version 2; modified in Version 4.

RasterArray
RasterArray[{{g��, g��, . . . }, . . . }] is a two-dimensional graphics primitive which
represents a rectangular array of cells colored according to the graphics directives gij.
Each of the gij must be GrayLevel, RGBColor or Hue. If array has dimensions {m, n}, then RasterArray[array]

is assumed to occupy the rectangle Rectangle[{0, 0}, {m, n}].
RasterArray[array, {{xmin, ymin}, {xmax, ymax}}] specifies that the raster should be taken instead to fill the

rectangle Rectangle[{xmin, ymin}, {xmax, ymax}]. Scaled and Offset can be used to specify the coordinates
for the rectangle. See page 497. See also: Raster, GraphicsArray. New in Version 2; modified in Version 3.

Rational
Rational is the head used for rational numbers.
You can enter a rational number in the form n/m. The pattern object _Rational can be used to stand for a
rational number. It cannot stand for a single integer. You have to use Numerator and Denominator to extract
parts of Rational numbers. See page 722. See also: Rationals, Integer, Numerator, Denominator. New in
Version 1.



1256 Rationalize — Read Mathematica Reference Guide

Rationalize
Rationalize[x] takes Real numbers in x that are close to rationals, and converts them to
exact Rational numbers.
Rationalize[x, dx] performs the conversion whenever the error made is smaller in
magnitude than dx.
Example: Rationalize[3.78] ��# 189�50 . Rationalize[x, dx] yields the rational number with the smallest
denominator that lies within dx of x. Rationalize[N[Pi]] ��# 3.14159 does not give a rational number, since
there is none “sufficiently close” to N[Pi]. A rational number p�q is considered “sufficiently close” to a Real x if
/p�q � x/ ) c�q�, where c is chosen to be ���
 . Rationalize[x, 0] converts any x to rational form. See page 746.

See also: Chop, Round, ContinuedFraction, LatticeReduce. Related package: NumberTheory`Rationalize`.
New in Version 1.

Rationals
Rationals represents the domain of rational numbers, as in x � Rationals.
x � Rationals evaluates immediately only if x is a numeric quantity. Simplify[expr � Rationals] can be used
to try to determine whether an expression corresponds to a rational number. The domain of integers is taken to
be a subset of the domain of rationals. Rationals is output in TraditionalForm as �. See page 817. See
also: Element, Simplify, Algebraics, Integers, Rational, Denominator. New in Version 4.

Raw
Raw[h, "hexstring"] constructs a raw data object with head h, and with contents corresponding to
the binary bit pattern represented by the string hexstring, interpreted as a hexadecimal number.

Raw should be used only under very special circumstances. It is possible to crash Mathematica by creating a
fundamental Mathematica data object with Raw, and specifying illegal internal data for it. If you create an object
with head Real, but with internal data incompatible with Mathematica Real numbers, you may end up crashing
your whole Mathematica session. Raw encodes data so that two hexadecimal digits represent one byte. Identical
hexstring may lead to different internal data on different computer systems. You cannot necessarily transport raw
arrays of bytes from one type of computer to another without encountering byte swap incompatibilities. See
page 1016. See also: Run. Related package: Utilities`BinaryFiles`. New in Version 1.

Re
Re[z] gives the real part of the complex number z.
Re[expr] is left unevaluated if expr is not a numeric quantity. See page 746. See also: Im, Abs, Arg,
ComplexExpand. New in Version 1.

Read
Read[stream] reads one expression from an input stream, and returns the expression.
Read[stream, type] reads one object of the specified type.
Read[stream, {type�, type�, . . . }] reads a sequence of objects of the specified types.
Possible types to read are:

Byte single byte, returned as an integer code
Character single character, returned as a one-character string
Expression complete Mathematica expression
Number integer or an approximate number, given in “E” format

(continued)



A.10 Major Built-in Mathematica Objects Read (continued) — ReadList 1257

Read (continued)

Possible types to read are:

Real approximate number, given in “E” format
Record sequence of characters delimited by record separators
String string terminated by a newline
Word sequence of characters delimited by word separators

Objects of type Real can be given in the scientific notation format used by languages such as C and Fortran, as
well as in standard Mathematica format. A form like 2.e5 or 2E5 as well as 2*^5 can be used to represent the
number � � ���. Objects read as type Real are always returned as approximate numbers. Objects read as type
Number are returned as integers if they contain no explicit decimal points. The following options can be given:

NullRecords False whether to assume a null record between repeated record separators
NullWords False whether to assume a null word between repeated word separators
RecordSeparators {"\n"} separators allowed between records
TokenWords {} words taken as delimiters
WordSeparators {" ", "\t"} separators allowed between words

Objects of type String must be terminated by newlines ("\n" characters). You can specify any nested list of
types for Read to look for. Each successive object read will be placed in the next position in the list structure. A
depth-first traversal of the list structure is used. Example: Read[stream, {Number, Number}] reads a pair of
numbers from an input stream, and gives the result as a two-element list.

Read[stream, {{Number, Number}, {Number, Number}}] reads a � � � matrix, going through each column, then
each row. You can use Read to get objects to insert into any expression structure, not necessarily a list. Example:
Read[stream, Hold[Expression]] gets an expression and places it inside Hold. The first argument to Read can be
InputStream["name", n], or simply "name" if there is only one open input stream with the specified name. You
can open a file or pipe to get an InputStream object using OpenRead. There is always a “current point”
maintained for any stream. When you read an object from a stream, the current point is left after the input you
read. Successive calls to Read can therefore be used to read successive objects in a stream such as a file. Read
returns EndOfFile for each object you try to read after you have reached the end of a file. Read returns $Failed
if it cannot read an object of the type you requested. If there is a syntax error in a Mathematica expression that
you try to read, then Read leaves the current point at the position of the error, and returns $Failed. See page 649.

See also: Input, Get, Skip, Find, StringToStream, LinkRead, Import. New in Version 1; modified in Version 3.

ReadList
ReadList["file"] reads all the remaining expressions in a file, and returns a list of them.
ReadList["file", type] reads objects of the specified type from a file, until the end of the file is
reached. The list of objects read is returned.
ReadList["file", {type�, type�, . . . }] reads objects with a sequence of types, until the end of
the file is reached.
ReadList["file", types, n] reads only the first n objects of the specified types.
The option setting RecordLists -> True makes ReadList create separate sublists for objects that appear in
separate records. With the default setting RecordSeparators -> {"\n"}, RecordLists -> True puts objects on
separate lines into separate sublists. The option RecordSeparators gives a list of strings which are taken to
delimit records. ReadList takes the same options as Read, with the addition of RecordLists. If file is not
already open for reading, ReadList opens it, then closes it when it is finished. If the file is already open, ReadList
does not close it at the end. ReadList prints a message if any of the objects remaining in the file are not of the
specified types. ReadList["file", {type�, . . . }] looks for the sequence of typei in order. If the end of file is
reached while part way through the sequence of typei, EndOfFile is returned in place of the elements in the
sequence that have not yet been read. ReadList[stream] reads from an open input stream, as returned by
OpenRead. See notes for Read. See page 644. See also: Import, FindList. New in Version 1.



1258 ReadProtected — Reals Mathematica Reference Guide

ReadProtected
ReadProtected is an attribute which prevents values associated with a symbol from being
seen.
Individual values associated with read-protected symbols can be used during evaluation. Definition[f], ?f, and
related functions give only the attributes for read-protected symbols f. See page 329. See also: Locked,
Protected, Copyable. New in Version 1.

Real
Real is the head used for real (floating-point) numbers.
_Real can be used to stand for a real number in a pattern. You can enter a floating-point number of any length.

You can enter a number in scientific notation by using the form mantissa*^exponent. You can enter a
floating-point number in base b using b^^digits. The base must be less than 36. The letters a–z or A–Z are used in
sequence to stand for digits 10 through 35. Real is also used to indicate an approximate real number in Read.

See page 722. See also: RealDigits, BaseForm, Number, Reals. New in Version 1; modified in Version 3.

RealDigits
RealDigits[x] gives a list of the digits in the approximate real number x, together with the
number of digits that are to the left of the decimal point.
RealDigits[x, b] gives a list of base-b digits in x.
RealDigits[x, b, len] gives a list of len digits.
RealDigits[x, b, len, n] gives len digits starting with the coefficient of bn.
RealDigits[x] normally returns a list of digits whose length is equal to Precision[x]. RealDigits[x] and
RealDigits[x, b] normally require that x be an approximate real number, returned for example by N.
RealDigits[x, b, len] also works on exact numbers. - For integers and rational numbers with terminating digit
expansions, RealDigits[x] returns an ordinary list of digits. For rational numbers with non-terminating digit
expansions it yields a list of the form {a�, a�, . . . , {b�, b�, . . . }} representing the digit sequence consisting of the
ai followed by infinite cyclic repetitions of the bi. If len is larger than Log[10, b] Precision[x], then remaining
digits are filled in as Indeterminate. RealDigits[x, b, len, n] starts with the digit which is the coefficient of
bn, truncating or padding with zeros as necessary. RealDigits[x, b, len, -1] starts with the digit immediately
to the right of the base-b decimal point in x. The base b in RealDigits[x, b] need not be an integer. For any
real b such that b c �, RealDigits[x, b] successively finds the largest integer multiples of powers of b that can be
removed while leaving a non-negative remainder. RealDigits[x] discards the sign of x. FromDigits can be
used as the inverse of RealDigits. See page 725. Implementation notes: see page 1067. See also:
MantissaExponent, IntegerDigits, BaseForm, FromDigits, ContinuedFraction, MultiplicativeOrder. New in
Version 2; modified in Version 4.

Reals
Reals represents the domain of real numbers, as in x � Reals.
x � Reals evaluates immediately only if x is a numeric quantity. Simplify[expr � Reals] can be used to try to
determine whether an expression corresponds to a real number. Within Simplify and similar functions, objects
that satisfy inequalities are always assumed to be real. Reals is output in TraditionalForm as �. See pages 73,
817 and 839. See also: Element, Simplify, Real, Integers, Complexes, Algebraics, ComplexExpand,
PowerExpand. New in Version 4.



A.10 Major Built-in Mathematica Objects Reap — RecordSeparators 1259

, Reap
Reap[expr] gives the value of expr together with all expressions to which Sow has been applied
during its evaluation.
Expressions sown using Sow[e] or Sow[e, tagi] with different tags are given in different lists.
Reap[expr, patt] reaps only expressions sown with tags that match patt.
Reap[expr, {patt�, patt�, . . . }] puts expressions associated with each of patti in a separate list.
Reap[expr, patt, f] returns {expr, {f[tag�, {e��, e��, . . . }], . . . }}.
Sow and Reap provide a convenient way to accumulate a list of intermediate results in a computation. Reap
accumulates expressions in the order in which Sow is applied to them. Expressions sown with a particular tag are
collected by the innermost Reap whose pattern matches the tag. Reap[expr] is equivalent to Reap[expr, _].

Reap has attribute HoldFirst. See page 355. See also: Sow, Catch, AppendTo, Print. New in Version 5.0.

Record
Record represents a record in Read, Find and related functions.
The record is delimited by strings in the list given as the setting for RecordSeparators. See page 646. See also:
Word. Related package: Utilities`BinaryFiles`. New in Version 2.

RecordLists
RecordLists is an option for ReadList which specifies whether objects from separate records
should be returned in separate sublists.
With the default setting RecordSeparators -> {"\n"}, setting RecordLists -> True makes RecordLists return
objects that appear on different lines in different sublists. With RecordLists -> False, ReadList returns a single
list of all objects it reads. With RecordLists -> True, ReadList returns a list containing a sublist for each record.

See page 644. New in Version 2.

RecordSeparators
RecordSeparators is an option for Read, Find and related functions which specifies the list of
strings to be taken as delimiters for records.
The default setting is RecordSeparators -> {"\n"}. With this setting, each complete line of input is considered as
a record. Strings used as record separators may contain several characters. With the option setting
NullRecords -> False, any number of record separators may appear between any two successive records.

RecordSeparators -> { } specifies that everything is to be included in a single record.
RecordSeparators -> {{lsep�, . . . }, {rsep�, . . . }} specifies different left and right separators for records. When

there are nested left and right separators, records are taken to be delimited by the innermost balanced pairs of
separators. Example: with RecordSeparators -> {{"<"}, {">"}}, the records aaa and bbb are extracted from
<x<aaa>yyy<<bbb>>>. Text that does not appear between left and right separators is discarded. See page 646.

See also: WordSeparators. New in Version 2.



1260 Rectangle — Reduce Mathematica Reference Guide

Rectangle
Rectangle[{xmin, ymin}, {xmax, ymax}] is a two-dimensional graphics primitive that
represents a filled rectangle, oriented parallel to the axes.
Rectangle[{xmin, ymin}, {xmax, ymax}, graphics] gives a rectangle filled with the specified
graphics.
Scaled and Offset can be used to specify the coordinates for the rectangle.

Rectangle[Scaled[{xmin, ymin}], Scaled[{xmax, ymax}]] yields a rectangle with corners specified by scaled
coordinates. Any combination of ordinary coordinates, as well as Scaled and Offset, can be used to specify the
corners of the rectangle. Rectangle[{xmin, ymin}, {xmax, ymax}] is equivalent to a suitable Polygon with four
corners. You can use graphics directives such as GrayLevel and RGBColor to specify how
Rectangle[{xmin, ymin}, {xmax, ymax}] should be filled. In
Rectangle[{xmin, ymin}, {xmax, ymax}, graphics], graphics can be any graphics object. The rectangle is taken as
the complete display area in which the graphics object is rendered. When rectangles overlap, their backgrounds
are effectively taken to be transparent. Fonts and absolute size specifications are not affected by the size of the
rectangle in which the graphics are rendered. The options DisplayFunction, ColorOutput and
CharacterEncoding are ignored for graphics objects given inside Rectangle. See page 492. See also: Polygon,
Raster, RasterArray, Cuboid, GraphicsArray. New in Version 1; modified in Version 3.

- Reduce
- Reduce[expr, vars] reduces the statement expr by solving equations or inequalities for vars
and eliminating quantifiers.
, Reduce[expr, vars, dom] does the reduction over the domain dom. Common choices of dom
are Reals, Integers and Complexes.
, The statement expr can be any logical combination of:

lhs == rhs equations
lhs != rhs inequations
lhs > rhs or lhs >= rhs inequalities
expr � dom domain specifications
ForAll[x, cond, expr] universal quantifiers
Exists[x, cond, expr] existential quantifiers
, The result of Reduce[expr, vars] always describes exactly the same mathematical set as expr.

Reduce[{expr�, expr�, . . . }, vars] is equivalent to Reduce[expr� && expr� && . . . , vars]. , Reduce[expr, vars]
assumes by default that quantities appearing algebraically in inequalities are real, while all other quantities are
complex. , Reduce[expr, vars, dom] restricts all variables and parameters to belong to the domain dom. , If dom
is Reals, or a subset such as Integers or Rationals, then all constants and function values are also restricted to
be real. , Reduce[expr && vars � Reals, vars, Complexes] performs reductions with variables assumed real, but
function values allowed to be complex. , Reduce[expr, vars, Integers] reduces Diophantine equations over the
integers. , Reduce[expr, {x�, x�, . . . }, . . . ] effectively writes expr as a combination of conditions on x�, x�, . . . ,
where each condition involves only the earlier xi. , Algebraic variables in expr free of the xi are treated as
independent parameters. , Applying LogicalExpand to the results of Reduce[expr, . . . ] yields an expression of
the form e� || e� || . . . , where each of the ei can be thought of as representing a separate component in the set
defined by expr. , The ei may not be disjoint, and may have different dimensions. After LogicalExpand, each of
the ei have the form e && e && . . . . , Without LogicalExpand, Reduce by default returns a nested collection of
conditions on the xi, combined alternately by Or and And on successive levels. , When expr involves only
polynomial equations and inequalities over real or complex domains then Reduce can always in principle solve
directly for all the xi. , When expr involves transcendental conditions or integer domains Reduce will often
introduce additional parameters in its results. , When expr involves only polynomial conditions,
Reduce[expr, vars, Reals] gives a cylindrical algebraic decomposition of expr.

(continued)



A.10 Major Built-in Mathematica Objects Reduce (continued) — Remove 1261

- Reduce (continued)

, Reduce can give explicit representations for solutions to all linear equations and inequalities over the integers,
and can solve a large fraction of Diophantine equations described in the literature. , When expr involves only
polynomial conditions over real or complex domains, Reduce[expr, vars] will always eliminate quantifiers, so that
quantified variables do not appear in the result. , The following options can be given:

Backsubstitution False whether to give results unwound by backsubstitution
Cubics False whether to use explicit radicals to solve all cubics
GeneratedParameters C how to name parameters that are generated
Modulus 0 modulus to assume for integers
Quartics False whether to use explicit radicals to solve all quartics
, Reduce[expr, {x�, x�, . . . }, Backsubstitution->True] yields a form in which values from equations generated
for earlier xi are backsubstituted so that the conditions for a particular xi have only minimal dependence on earlier
xi. See page 839. Implementation notes: see page 1070. See also: Solve, FindInstance, Roots, Eliminate,
Resolve, LogicalExpand, ToRules, GroebnerBasis, Simplify. New in Version 1; modified in Version 5.0.

, Refine
Refine[expr, assum] gives the form of expr that would be obtained if symbols in it were
replaced by explicit numerical expressions satisfying the assumptions assum.
Refine[expr] uses default assumptions specified by any enclosing Assuming constructs.
Example: Refine[Sqrt[x^2], x > 0] ��# x . Assumptions can consist of equations, inequalities, domain
specifications such as x � Integers, and logical combinations of these. Example:
Refine[Sqrt[x^2], x � Reals] ��# Absx� . Refine can be used on equations, inequalities and domain
specifications. Quantities that appear algebraically in inequalities are always assumed to be real. Refine is one
of the transformations tried by Simplify. Refine has the option Assumptions, with default setting
$Assumptions. Refine[expr, a, Assumptions->b] uses assumptions a && b. See page 815. See also: Simplify,
PowerExpand, Assuming. New in Version 5.0.

ReleaseHold
ReleaseHold[expr] removes Hold, HoldForm, HoldPattern and HoldComplete in expr.
Example: ReleaseHold[{2, Hold[1 + 1]}] ��# �2, 2� . ReleaseHold removes only one layer of Hold etc.; it
does not remove inner occurrences in nested Hold etc. functions. See page 339. See also: Evaluate. New in
Version 2.

Remove
Remove[symbol�, . . . ] removes symbols completely, so that their names are no longer
recognized by Mathematica.
Remove["form�", "form�", . . . ] removes all symbols whose names match any of the string
patterns formi.
You can use Remove to get rid of symbols that you do not need, and which may shadow symbols in contexts later
on your context path. Remove["form"] allows metacharacters such as *, as specified on page 1044.

Remove["context`*"] removes all symbols in a particular context. Remove does not affect symbols with the
attribute Protected. Once you have removed a symbol, you will never be able to refer to it again, unless you
recreate it. If you have an expression that contains a symbol which you remove, the removed symbol will be
printed as Removed["name"], where its name is given in a string. See pages 395, 403 and 1052. See also: Clear.

New in Version 1.



1262 RenameDirectory — Replace Mathematica Reference Guide

RenameDirectory
RenameDirectory["dir�", "dir�"] renames the directory dir� to dir�.
dir� must already exist; dir� must not. RenameDirectory sets the modification date for dir� to be the same as for
dir�. RenameDirectory returns the full new directory name, or $Failed if the directory cannot be renamed. See
page 641. See also: CopyDirectory, CreateDirectory, DeleteDirectory. New in Version 2.

RenameFile
RenameFile["file�", "file�"] renames file� to file�.
file� must already exist; file� must not. RenameFile sets the modification date for file� to be the same as for file�.

RenameFile returns the full new file name, or $Failed if the file cannot be renamed. See page 641. See also:
CopyFile, DeleteFile, RenameDirectory. New in Version 2.

RenderAll
RenderAll is an option for Graphics3D which specifies whether or not PostScript should be
generated for all polygons.
When RenderAll->False, PostScript will be generated only for those polygons or parts of polygons which are
visible in the final picture. If RenderAll->True, PostScript is generated for all polygons. The PostScript for
polygons that are further back is given before the PostScript for those in front. If the PostScript is displayed
incrementally, you can see the object being drawn from the back. Setting RenderAll->False will usually lead to
a smaller amount of PostScript code, but may take longer to run. There may be slight differences in the images
obtained with different settings for RenderAll, primarily as a result of different numerical roundoff in the
PostScript code, and the rendering system. See page 555. See also: PolygonIntersections. New in Version 1.

Repeated
p.. is a pattern object which represents a sequence of one or more expressions, each
matching p.
p.. can appear as an argument of any function. It represents any sequence of arguments. All the objects in the
sequence represented by p.. must match p, but the objects need not be identical. The expression p may, but need
not, itself be a pattern object. See pages 277 and 1028. See also: RepeatedNull, BlankSequence. New in
Version 1.

RepeatedNull
p... is a pattern object which represents a sequence of zero or more expressions, each
matching p.
See notes for Repeated. See pages 277 and 1028. New in Version 1.

Replace
Replace[expr, rules] applies a rule or list of rules in an attempt to transform the entire
expression expr.
Replace[expr, rules, levelspec] applies rules to parts of expr specified by levelspec.
Examples: Replace[x^2, x^2 -> a] ��# a . Replace[x + 1, x -> a] ��# 1 � x . The rules must be of the
form lhs -> rhs or lhs :> rhs. A list of rules can be given. The rules are tried in order. The result of the first one
that applies is returned. If none of the rules apply, the original expr is returned. If the rules are given in nested
lists, Replace is effectively mapped onto the inner lists. Thus Replace[expr, {{r��, r��}, {r��, . . . }, . . . }] is
equivalent to {Replace[expr, {r��, r��}], Replace[expr, {r��, . . . }], . . . }. Delayed rules defined with :> can
contain /; conditions. Level specifications are described on page 1041. The default value for levelspec in Replace
is {0}. Replacements are performed to parts specified by levelspec even when those parts have Hold or related
wrappers. Replace takes a Heads option, with default setting Heads -> False. See page 301. See also: Rule,
Set, ReplacePart, ReplaceList, StringReplace, PolynomialReduce. New in Version 1; modified in Version 4.



A.10 Major Built-in Mathematica Objects ReplaceAll — ReplaceRepeated 1263

ReplaceAll
expr /. rules applies a rule or list of rules in an attempt to transform each subpart of an
expression expr.
Example: x + 2 /. x -> a ��# 2 � a . ReplaceAll looks at each part of expr, tries all the rules on it, and then
goes on to the next part of expr. The first rule that applies to a particular part is used; no further rules are tried on
that part, or on any of its subparts. ReplaceAll applies a particular rule only once to an expression. Example:
x /. x -> x + 1 ��# 1 � x . See the notes on Replace for a description of how rules are applied to each part of
expr. expr /. rules returns expr if none of the rules apply. See page 299. See also: Rule, Set, MapAll,
ReplaceRepeated, TransformationFunctions. New in Version 1.

ReplaceList
ReplaceList[expr, rules] attempts to transform the entire expression expr by applying a rule
or list of rules in all possible ways, and returns a list of the results obtained.
ReplaceList[expr, rules, n] gives a list of at most n results.
When no transformation is possible, ReplaceList returns {}. See notes for Replace. See pages 263 and 302.

See also: Cases, StringPosition, Trace, Position, Split. New in Version 3.

ReplacePart

ReplacePart[expr, new, n] yields an expression in which the nth part of expr is replaced by
new.
ReplacePart[expr, new, {i, j, . . . }] replaces the part at position {i, j, . . . }.
ReplacePart[expr, new, {{i�, j�, . . . }, {i�, j�, . . . }, . . . }] replaces parts at several
positions by new.
ReplacePart[expr, new, pos, npos] replaces parts at positions pos in expr by parts at positions
npos in new.
Example: ReplacePart[{a, b, c, d}, x, 3] ��# �a, b, x, d� . The list of positions used by ReplacePart is in
the same form as is returned by the function Position. ReplacePart[expr, Hold[new], pos, 1] can be used to
replace a part without evaluating it. If pos and npos both specify multiple parts, each part in pos is replaced by
the corresponding part in npos. , ReplacePart can be used on SparseArray objects. See pages 235 and 288.

See also: Part, Extract, MapAt, FlattenAt, Insert, Delete, Sequence, StringReplacePart. New in Version 2;
modified in Version 3.

ReplaceRepeated
expr //. rules repeatedly performs replacements until expr no longer changes.
expr //. rules effectively applies /. repeatedly, until the results it gets no longer change. It performs one
complete pass over the expression using /., then carries out the next pass. You should be very careful to avoid
infinite loops when you use the //. operator. The command x //. x -> x + 1 will, for example, lead to an infinite
loop. ReplaceRepeated takes the option MaxIterations, which specifies the maximum number of times it will
try to apply the rules you give. The default setting is MaxIterations -> 65536. With MaxIterations -> Infinity
there is no limit. See page 300. See also: ReplaceAll, Rule, Set, FixedPoint. New in Version 1.



1264 ResetDirectory — Resultant Mathematica Reference Guide

ResetDirectory
ResetDirectory[ ] resets the current working directory to its previous value.
Successive calls to ResetDirectory yield earlier and earlier current directories. ResetDirectory uses the
directory stack given by DirectoryStack[ ]. ResetDirectory removes the last element from the directory stack,
and makes the second-to-last element current. See page 636. See also: SetDirectory, Directory, $Path. New
in Version 2.

Residue
Residue[expr, {x, x�}] finds the residue of expr at the point x � x�.
The residue is defined as the coefficient of (x - x�)^-1 in the Laurent expansion of expr. Mathematica can usually
find residues at a point only when it can evaluate power series at that point. See page 895. See also: Series,
Limit, PrincipalValue. Related package: Algebra`RootIsolation`. New in Version 2.

, Resolve
Resolve[expr] attempts to resolve expr into a form that eliminates ForAll and Exists
quantifiers.
Resolve[expr, dom] works over the domain dom. Common choices of dom are Complexes,
Reals and Booleans.
Resolve is in effect automatically applied by Reduce. expr can contain equations, inequalities, domain
specifications and quantifiers, in the same form as in Reduce. The result of Resolve[expr] always describes
exactly the same mathematical set as expr, but without quantifiers. Resolve[expr] assumes by default that
quantities appearing algebraically in inequalities are real, while all other quantities are complex. When a
quantifier such as ForAll[x, . . . ] is eliminated the result will contain no mention of the localized variable x.

Resolve[expr] can in principle always eliminate quantifiers if expr contains only polynomial equations and
inequalities over the reals or complexes. See page 848. Implementation notes: see page 1070. See also: Reduce,
FindInstance, Exists, ForAll. New in Version 5.0.

Rest
Rest[expr] gives expr with the first element removed.
Example: Rest[{a, b, c}] ��# �b, c� . Rest[expr] is equivalent to Drop[expr, 1]. See page 123. See also:
Most, Drop, First, Part, Take. New in Version 1.

Resultant
Resultant[poly�, poly�, var] computes the resultant of the polynomials poly� and poly� with
respect to the variable var.
Resultant[poly�, poly�, var, Modulus->p] computes the resultant modulo the prime p.
The resultant of two polynomials a and b, both with leading coefficient one, is the product of all the differences
ai � bj between roots of the polynomials. The resultant is always a number or a polynomial. See page 803. See
also: Subresultants, PolynomialGCD, Eliminate. New in Version 1.



A.10 Major Built-in Mathematica Objects Return — Root 1265

Return
Return[expr] returns the value expr from a function.
Return[ ] returns the value Null.
Return[expr] exits control structures within the definition of a function, and gives the value expr for the whole
function. Return takes effect as soon as it is evaluated, even if it appears inside other functions. Return can be
used inside functions like Scan. See page 353. See also: Break, Throw, Abort. New in Version 1.

Reverse
Reverse[expr] reverses the order of the elements in expr.
Example: Reverse[{a, b, c}] ��# �c, b, a� . , Reverse works on SparseArray objects, reversing the elements
in the corresponding ordinary array. See page 127. See also: Permutations, RotateLeft, RotateRight,
StringReverse. New in Version 1.

RGBColor
RGBColor[red, green, blue] is a graphics directive which specifies that graphical objects which
follow are to be displayed, if possible, in the color given.
Red, green and blue color intensities outside the range 0 to 1 will be clipped. On monochrome displays, a gray
level based on the average of the color intensities is used. See page 499. See also: Hue, GrayLevel, CMYKColor,
ColorOutput. Related package: Graphics`Colors`. New in Version 1.

RiemannSiegelTheta
RiemannSiegelTheta[t] gives the Riemann-Siegel function i�t�.

Mathematical function (see Section A.3.10). i�t� � Imelog�� �
 � i t
� � � t log Π��f for real t. i�t� arises in the study of

the Riemann zeta function on the critical line. It is closely related to the number of zeros of Ζ� �� � iu� for � ) u ) t.
i�t� is an analytic function of t except for branch cuts on the imaginary axis running from Mi�� to Mi�. See

page 772. See also: RiemannSiegelZ, Zeta. New in Version 2.

RiemannSiegelZ
RiemannSiegelZ[t] gives the Riemann-Siegel function Z�t�.

Mathematical function (see Section A.3.10). Z�t� � e ii �t�Ζ� �� � it�, where i is the Riemann-Siegel theta function, and
Ζ is the Riemann zeta function. 	 Z�t� 	 � 	 Ζ� �� � it� 	 for real t. Z�t� is an analytic function of t except for branch
cuts on the imaginary axis running from Mi�� to Mi�. See page 772. See also: RiemannSiegelTheta, Zeta.

New in Version 2.

Root

Root[f, k] represents the kth root of the polynomial equation f[x] == 0.
f must be a Function object such as (#^5 - 2 # + 1)&. Root[f, k] is automatically reduced so that f has the
smallest possible degree and smallest integer coefficients. The ordering used by Root takes real roots to come
before complex ones, and takes complex conjugate pairs of roots to be adjacent. The coefficients in the polynomial
f[x] can involve symbolic parameters. For linear and quadratic polynomials f[x], Root[f, k] is automatically
reduced to explicit rational or radical form. N finds the approximate numerical value of a Root object. Operations
such as Abs, Re, Round and Less can be used on Root objects. Root[f, k] is treated as a numeric quantity if f
contains no symbolic parameters. Root by default isolates the roots of a polynomial using approximate numerical
methods. No cases are known where this approach fails. SetOptions[Root, ExactRootIsolation->True] will
however make Root use much slower but fully rigorous methods. See page 821. See also: Solve, RootReduce,
ToRadicals, RootSum, Extension, Algebraics. Related package: Algebra`RootIsolation`. New in Version 3.



1266 RootReduce — RotateLeft Mathematica Reference Guide

RootReduce
RootReduce[expr] attempts to reduce expr to a single Root object.
If expr consists only of integers and Root objects combined using algebraic operations, then the result from
RootReduce[expr] will always be a single Root object. Simple Root objects may in turn automatically evaluate to
rational expressions or combinations of radicals. See page 826. See also: FullSimplify, Solve, ToRadicals.

Related package: NumberTheory`PrimitiveElement`. New in Version 3.

Roots
Roots[lhs==rhs, var] yields a disjunction of equations which represent the roots of a
polynomial equation.
Roots uses Factor and Decompose in trying to find roots. You can find numerical values of the roots by
applying N. Roots can take the following options:

Cubics True whether to generate explicit solutions for cubics
EquatedTo Null expression to which the variable solved for should be equated
Modulus 0 integer modulus
Multiplicity 1 multiplicity in final list of solutions
Quartics True whether to generate explicit solutions for quartics
Using True subsidiary equations to be solved

Roots is generated when Solve and related functions cannot produce explicit solutions. Options are often given
in such cases. Roots gives several identical equations when roots with multiplicity greater than one occur. See
page 819. See also: Solve, NSolve, FindRoot, Reduce, ToRules, Root, Factor, Decompose,
InterpolatingPolynomial. Related package: Algebra`RootIsolation`. New in Version 1.

RootSum
RootSum[f, form] represents the sum of form[x] for all x that satisfy the polynomial equation
f[x] == 0.
f must be a Function object such as (#^5 - 2 # + 1)&. form need not correspond to a polynomial function.

Normal[expr] expands RootSum objects into explicit sums involving Root objects. f and form can contain
symbolic parameters. RootSum[f, form] is automatically simplified whenever form is a rational function. RootSum
is often generated in computing integrals of rational functions. See page 827. See also: Root. Related package:
Algebra`SymmetricPolynomials`. New in Version 3.

RotateLabel
RotateLabel is an option for two-dimensional graphics functions which specifies whether
labels on vertical frame axes should be rotated to be vertical.
For frame labels, the default is RotateLabel -> True. With RotateLabel -> True, vertical frame axes labels read
from bottom to top. See page 514. See also: Text, ImageRotated. New in Version 2.

RotateLeft
RotateLeft[expr, n] cycles the elements in expr n positions to the left.
RotateLeft[expr] cycles one position to the left.
RotateLeft[expr, {n�, n�, . . . }] cycles elements at successive levels ni positions to the left.
Example: RotateLeft[{a, b, c}, 1] ��# �b, c, a� . RotateLeft[expr, -n] rotates n positions to the right.
, RotateLeft can be used on SparseArray objects. See pages 127 and 130. See also: RotateRight, Reverse,
PadLeft. New in Version 1.



A.10 Major Built-in Mathematica Objects RotateRight — RowBox 1267

RotateRight
RotateRight[expr, n] cycles the elements in expr n positions to the right.
RotateRight[expr] cycles one position to the right.
RotateRight[expr, {n�, n�, . . . }] cycles elements at successive levels ni positions to the
right.
Example: RotateRight[{a, b, c}, 1] ��# �c, a, b� . RotateRight[expr, -n] rotates n positions to the left.
, RotateRight can be used on SparseArray objects. See pages 127 and 130. See also: RotateLeft, Reverse,
PadRight. New in Version 1.

Round
Round[x] gives the integer closest to x.
Mathematical function (see Section A.3.10). Examples: Round[2.4] ��# 2 ; Round[2.6] ��# 3 ;
Round[-2.4] ��# �2 ; Round[-2.6] ��# �3 . Round rounds numbers of the form x.5 toward the nearest even
integer. Round[x] returns an integer when x is any numeric quantity, whether or not it is an explicit number.

Example: Round[Pi^2] ��# 10 . For exact numeric quantities, Round internally uses numerical approximations to
establish its result. This process can be affected by the setting of the global variable $MaxExtraPrecision. See
page 745. See also: IntegerPart, Floor, Ceiling, Chop. New in Version 1; modified in Version 3.

RowAlignments
RowAlignments is an option for GridBox which specifies how entries in each row should be
aligned.
The following settings can be given:

Center centered
Top tops aligned
Bottom bottoms aligned
Baseline baselines aligned (default)
Axis axes aligned
{pos�, pos�, . . . } separate settings for each row in the grid

Lists of settings are used cyclically if there are more rows in the grid than elements in the list. See page 449.
See also: ColumnAlignments, RowsEqual, RowMinHeight, TableAlignments. New in Version 3.

RowBox
RowBox[{box�, box�, . . . }] represents a row of boxes or strings in input and output.
RowBox objects are generated automatically to correspond to each operator and its operands in input given as
\(input\). The default arrangement of RowBox objects in \(input\) is based on operator precedence. Additional
\( . . . \) can be inserted like parentheses to specify different arrangements of RowBox objects. The boxes or strings
in a RowBox are output in a row with their baselines aligned. In InputForm, RowBox objects are output using
\( . . . \). In StandardForm, explicit RowBox objects are output literally. You can use DisplayForm to see the
display form of such objects. See page 445. See also: SequenceForm, GridBox, AdjustmentBox. New in
Version 3.



1268 RowLines — RowSpacings Mathematica Reference Guide

RowLines
RowLines is an option for GridBox which specifies whether lines should be drawn between
adjacent rows.
The default setting is RowLines->False. RowLines->{v��, v�, . . . } specifies whether lines should be drawn
between successive pairs of rows. The vij can be True or False. If there are more rows than entries in the list,
the last element is used repeatedly for remaining pairs of rows. Lines can be drawn around the outside of a
GridBox using FrameBox. See page 446. See also: ColumnLines, FrameBox, GridLines. New in Version 3.

RowMinHeight
RowMinHeight is an option for GridBox which specifies the minimum total height in units of
font size that should be allowed for each row.
The default setting RowMinHeight->1 forces each row to have a total height which at least accommodates all the
characters in the current font. RowMinHeight->0 reduces the total height of each entry as much as possible,
allowing entries containing characters such as x and X to be different heights. See page 449. See also:
RowSpacings, RowAlignments, RowsEqual, ButtonMinHeight. New in Version 3.

RowReduce
RowReduce[m] gives the row-reduced form of the matrix m.
Example: RowReduce[{{3, 1, a}, {2, 1, b}}] ��# ��1, 0, a � b�, �0, 1, �2 a � 3 b�� . RowReduce performs a
version of Gaussian elimination, adding multiples of rows together so as to produce zero elements when possible.
The final matrix is in reduced row echelon form. If m is a non-degenerate square matrix, RowReduce[m] is
IdentityMatrix[Length[m]]. If m is a sufficiently non-degenerate rectangular matrix with k rows and more than
k columns, then the first k columns of RowReduce[m] will form an identity matrix. RowReduce works on both
numerical and symbolic matrices. RowReduce[m, Modulus -> n] performs row reduction modulo n.

RowReduce[m, ZeroTest -> test] evaluates test[ m[[i, j]] ] to determine whether matrix elements are zero.
See page 907. Implementation notes: see page 1069. See also: LinearSolve, Inverse, NullSpace,

GroebnerBasis. New in Version 1; modified in Version 3.

RowsEqual
RowsEqual is an option for GridBox which specifies whether all rows in the grid should be
assigned equal total height.
The default setting RowsEqual->False determines the total height of each row from the entry in that row with the
largest total height. RowsEqual->True makes all rows the same total height, with the total height determined by
the entry with the largest total height in the whole GridBox. See page 449. See also: RowAlignments,
RowSpacings, RowMinHeight, ColumnsEqual, MatrixForm. New in Version 3.

RowSpacings
RowSpacings is an option for GridBox which specifies the spaces in x-heights that should be
inserted between successive rows.
The default setting is RowSpacings->1.0. RowSpacings effectively specifies the minimum distance between entries
in successive rows; individual entries will often not fill their rows and will therefore be further apart.

RowSpacings->n uses a column spacing equal to n times the height of an “x” character in the current font.
RowSpacings->{s��, s�, . . . } can be used to specify different spacings between different rows. If there are more

rows than entries in this list, then the last element of the list is used repeatedly for the remaining rows. See
page 449. See also: RowAlignments, RowMinHeight, RowsEqual, ColumnSpacings, TableSpacing. New in
Version 3.



A.10 Major Built-in Mathematica Objects RSolve — Run 1269

, RSolve
RSolve[eqn, a[n], n] solves a recurrence equation for a[n].
RSolve[{eqn�, eqn�, . . . }, {a�[n], a�[n], . . . }, n] solves a system of recurrence equations.
RSolve[eqn, a[n�, n�, . . . ], {n�, n�, . . . }] solves a partial recurrence equation.
RSolve[eqn, a, n] gives solutions for a as pure functions. The equations can involve objects of the form a[n+i]
where i is any fixed integer, or objects of the form a[q^i n]. Equations such as a[0]==val can be given to specify
end conditions. If not enough end conditions are specified, RSolve will give general solutions in which
undetermined constants are introduced. The constants introduced by RSolve are indexed by successive integers.
The option GeneratedParameters specifies the function to apply to each index. The default is
GeneratedParameters->C, which yields constants C[1], C[2], . . . . GeneratedParameters->(Module[{C}, C]&)
guarantees that the constants of integration are unique, even across different invocations of RSolve. For partial
recurrence equations, RSolve generates arbitrary functions C[n][. . . ]. Solutions given by RSolve sometimes
include sums that cannot be carried out explicitly by Sum. Dummy variables with local names are used in such
sums. RSolve sometimes gives implicit solutions in terms of Solve. RSolve handles both ordinary difference
equations and q-difference equations. RSolve handles difference-algebraic equations as well as ordinary difference
equations. RSolve can solve linear recurrence equations of any order with constant coefficients. It can also solve
many linear equations up to second order with non-constant coefficients, as well as many nonlinear equations.

See page 891. Implementation notes: see page 1071. See also: Sum, ZTransform, DSolve. New in Version 5.0.

Rule
lhs -> rhs or lhs � rhs represents a rule that transforms lhs to rhs.
The character � can be entered as ,-> , or \[Rule]. lhs -> rhs evaluates rhs immediately. You can apply rules
using Replace. The assignment lhs = rhs specifies that the rule lhs -> rhs should be used whenever it applies.

lhs � rhs can be entered as lhs \[Rule] rhs or lhs H-> H rhs. In StandardForm, Rule is printed using �. Rule
is a scoping construct (see Section A.3.8). Symbols that occur as pattern names in lhs are treated as local to the
rule. This is true when the symbols appear on the right-hand side of /; conditions in lhs, and when the symbols
appear anywhere in rhs, even inside other scoping constructs. See pages 299 and 1052. Implementation notes:
see page 1066. See also: Replace, Set, RuleDelayed, PolynomialReduce. Related package:
Utilities`FilterOptions`. New in Version 1; modified in Version 3.

RuleDelayed
lhs :> rhs or lhs  rhs represents a rule that transforms lhs to rhs, evaluating rhs only after the
rule is used.
The character  can be entered as ,:> , or \[RuleDelayed]. RuleDelayed has the attribute HoldRest. You can
apply rules using Replace. The assignment lhs := rhs specifies that the rule lhs :> rhs should be used whenever
it applies. You can use Condition to specify when a particular rule applies. lhs  rhs can be entered as
lhs \[RuleDelayed] rhs or lhs H:> H rhs. In StandardForm, RuleDelayed is printed using . See notes for Rule.

See pages 299 and 1052. See also: Replace, SetDelayed, Rule. New in Version 1; modified in Version 3.

Run
Run[expr�, expr�, . . . ] generates the printed form of the expressions expri, separated by spaces,
and runs it as an external, operating system, command.
Run is not available on all computer systems. Run prints the expri in InputForm format. Run returns an integer
which corresponds, when possible, to the exit code for the command returned by the operating system. The
command executed by Run cannot usually require interactive input. On most computer systems, it can, however,
generate textual output. You can enter the input line !command to execute an external command. See page 629.

See also: Put, Splice. New in Version 1.



1270 RunThrough — SampleRate Mathematica Reference Guide

RunThrough
RunThrough["command", expr] executes an external command, giving the printed form of expr
as input, and taking the output, reading it as Mathematica input, and returning the result.
RunThrough is not available on all computer systems. RunThrough writes the InputForm of expr on the standard
input for command, then reads its standard output, and feeds it into Mathematica. RunThrough starts command, then
gives input to command, then terminates the input. See page 630. See also: Install, Put, Get, Splice. New in
Version 1.

SameQ
lhs === rhs yields True if the expression lhs is identical to rhs, and yields False otherwise.
SameQ requires exact correspondence between expressions, except that it considers Real numbers equal if their
difference is less than the uncertainty of either of them. 2 === 2. gives False. e� === e� === e gives True if
all the ei are identical. See page 268. See also: UnsameQ, Equal, Order. New in Version 1.

SampleDepth
SampleDepth is an option for sound primitives which specifies how many bits should be used
to encode sound amplitude levels.
The default setting is SampleDepth -> 8. With the default setting, 256 distinct sound amplitudes are allowed.

See page 566. See also: PlayRange, SampleRate. New in Version 2.

SampledSoundFunction
SampledSoundFunction[f, n, r] is a sound primitive, which represents a sound whose
amplitude sampled r times a second is generated by applying the function f to successive
integers from 1 to n.
SampledSoundFunction[{f�, f�, . . . }, n, r] yields sound on several channels. SampledSoundFunction is
generated by Play. SampledSoundFunction primitives can appear inside Sound, Graphics and Graphics3D
objects. See page 566. New in Version 2.

SampledSoundList
SampledSoundList[{a�, a�, . . . }, r] is a sound primitive, which represents a sound whose
amplitude has levels ai sampled r times a second.
SampledSoundList[{list�, list�, . . . }, r] yields sound on several channels. If the lists are of different lengths,
silence is inserted at the ends of shorter lists. SampledSoundList is generated by ListPlay. SampledSoundList
primitives can appear inside Sound, Graphics and Graphics3D objects. See page 566. New in Version 2.

SampleRate
SampleRate is an option for sound primitives which specifies the number of samples per
second to generate for sounds.
The default setting is SampleRate -> 8192. The highest frequency in hertz that can be present in a particular
sound is equal to half the setting for SampleRate. See page 172. See also: SampleDepth. New in Version 2.



A.10 Major Built-in Mathematica Objects Save — SchurDecomposition 1271

Save
Save["filename", symbol] appends definitions associated with the specified symbol to a file.
Save["filename", "form"] appends definitions associated with all symbols whose names match
the string pattern form.
Save["filename", "context`"] appends definitions associated with all symbols in the specified
context.
Save["filename", {object�, object�, . . . }] appends definitions associated with several objects.
Save uses FullDefinition to include subsidiary definitions. Save writes out definitions in InputForm. Save
uses Names to find symbols whose names match a given string pattern. You can use Save["filename", "s"] to
write out the definition for the value of a symbol s itself. See pages 204 and 625. See also: PutAppend, Get,
DumpSave. New in Version 1; modified in Version 3.

Scaled
Scaled[{x, y, . . . }] gives the position of a graphical object in terms of coordinates scaled to
run from 0 to 1 across the whole plot in each direction.
Scaled[{dx, dy, . . . }, {x�, y�, . . . }] gives a position obtained by starting at ordinary
coordinates {x�, y�, . . . }, then moving by a scaled offset {dx, dy, . . . }.
Scaled can be used to specify scaled coordinates in any two- or three-dimensional graphics primitive. You can
use Scaled to represent objects that occupy a fixed region in a plot, independent of the specific range of
coordinates in the plot. See pages 505 and 531. See also: PlotRange, PlotRegion, Offset. New in Version 1.

Scan
Scan[f, expr] evaluates f applied to each element of expr in turn.
Scan[f, expr, levelspec] applies f to parts of expr specified by levelspec.
Scan[f, expr] discards the results of applying f to the subexpressions in expr. Unlike Map, Scan does not build up a
new expression to return. You can use Return to exit from Scan. Return[ret] causes the final value of Scan to be
ret. If no explicit return values are specified, the final result from Scan is Null. You can also use Throw to exit
from Scan. Scan is useful in carrying out an operation on parts of expressions where the operation has a “side
effect”, such as making an assignment. Level specifications are described on page 1041. The default value for
levelspec in Scan is {1}. , If expr is a SparseArray object, Scan[f, expr] applies f only to the values or subarrays
that explicitly appear in expr. See page 247. See also: Apply, Map, Level, Sow. New in Version 1; modified in
Version 3.

- SchurDecomposition
SchurDecomposition[m] yields the Schur decomposition for a numerical matrix m. The result
is a list {q, t} where q is an orthonormal matrix and t is a block upper triangular matrix.
, SchurDecomposition[{m, a}] gives the generalized Schur decomposition of m with respect
to a.
The original matrix m is equal to q . t . Conjugate[Transpose[q]].

SchurDecomposition[m, Pivoting -> True] yields a list {q, t, d} where d is a permuted diagonal matrix such
that m . d is equal to d . q . t . Conjugate[Transpose[q]]. , SchurDecomposition[{m, a}] yields a list of
matrices {q, s, p, t} where q and p are orthonormal matrices, s and t are upper triangular matrices, such that m is
given by q . s . Conjugate[Transpose[p]] and a is given by q . t . Conjugate[Transpose[p]]. See page 915.

Implementation notes: see page 1069. See also: QRDecomposition, LUDecomposition,
SingularValueDecomposition, JordanDecomposition. New in Version 2; modified in Version 5.0.



1272 ScientificForm — ScriptSizeMultipliers Mathematica Reference Guide

ScientificForm
ScientificForm[expr] prints with all real numbers in expr given in scientific notation.
ScientificForm[expr, n] prints with numbers given to n-digit precision.
ScientificForm takes the same options as NumberForm, but uses a different default function for
ExponentFunction. You can mix ScientificForm and BaseForm. ScientificForm acts as a “wrapper”, which
affects printing, but not evaluation. See page 435. See also: EngineeringForm, NumberForm. New in Version 1.

ScreenStyleEnvironment
ScreenStyleEnvironment is an option for notebooks which specifies the style environment to
be used in displaying a notebook on the screen.
Style environments provided in typical style sheets include:

"Condensed" environment for maximum display density
"Presentation" environment for presentations
"Printout" environment for paper printouts
"Working" environment for typical on-screen working

See page 197. See also: PrintingStyleEnvironment, StyleDefinitions. New in Version 3.

ScriptBaselineShifts
ScriptBaselineShifts is an option for StyleBox which specifies the minimum distance in
x-heights to shift subscripts and superscripts.
The setting ScriptBaselineShifts->{sub, sup} uses shift sub for subscripts and sup for superscripts. A typical
setting is ScriptBaselineShifts->{0.6, 0.9}. The default setting
ScriptBaselineShifts->{Automatic, Automatic} shifts subscripts and superscripts by a distance which depends
on their height. See page 457. See also: AdjustmentBox, RowMinHeight, ScriptMinSize. New in Version 3.

ScriptMinSize
ScriptMinSize is an option for StyleBox which specifies the minimum font size to use in
rendering subscripts, etc.
Settings for ScriptMinSize are in units of printer’s points. ScriptMinSize is used for characters that appear in
constructs such as subscripts, superscripts, underscripts, overscripts and built-up fractions. ScriptMinSize is
typically set larger in styles used for screen display than in those used for printing. See page 457. See also:
ScriptSizeMultipliers, FontSize, ScriptBaselineShifts. New in Version 3.

ScriptSizeMultipliers
ScriptSizeMultipliers is an option for StyleBox which specifies how much smaller to
render each successive level of subscripts, etc.
ScriptSizeMultipliers is applied to FontSize for characters that appear in constructs such as subscripts,
superscripts, underscripts, overscripts and built-up fractions. The default setting for ScriptSizeMultipliers is
0.71, yielding approximately a factor 2 reduction in character area at each level.

ScriptSizeMultipliers -> {s�, s�, . . . , sn} uses multiplier si for level i, and multiplier sn for levels n and
beyond. See page 457. See also: ScriptMinSize, ScriptBaselineShifts. New in Version 3.



A.10 Major Built-in Mathematica Objects Sec — SelectedNotebook 1273

Sec
Sec[z] gives the secant of z.
Mathematical function (see Section A.3.10). The argument of Sec is assumed to be in radians. (Multiply by Degree
to convert from degrees.) sec�z� � ��cos�z�. 1/Cos[z] is automatically converted to Sec[z]. TrigFactorList[expr]
does decomposition. See page 761. See also: ArcSec, TrigToExp, TrigExpand. New in Version 1.

Sech
Sech[z] gives the hyperbolic secant of z.
Mathematical function (see Section A.3.10). sech�z� � ��cosh�z�. 1/Cosh[z] is automatically converted to Sech[z].
TrigFactorList[expr] does decomposition. See page 761. See also: ArcSech, TrigToExp, TrigExpand. New in
Version 1; modified in Version 3.

SeedRandom
SeedRandom[n] resets the pseudorandom number generator, using the integer n as a seed.
SeedRandom[ ] resets the generator, using as a seed the time of day.
You can use SeedRandom[n] to make sure you get the same sequence of pseudorandom numbers on different
occasions. You can also use SeedRandom["string"], although the seed set in this way may be different on different
computer systems. See page 747. See also: Random, $RandomState. New in Version 1.

Select
Select[list, crit] picks out all elements ei of list for which crit[ei] is True.
Select[list, crit, n] picks out the first n elements for which crit[ei] is True.
Example: Select[{1,4,2,7,6}, EvenQ] ��# �4, 2, 6� . The object list can have any head, not necessarily List.
, Select can be used on SparseArray objects. See page 251. See also: Cases, Take, Drop. Related package:
Statistics`DataManipulation`. New in Version 1.

Selectable
Selectable is an option for boxes, cells and notebooks which specifies whether their contents
can be selected interactively using the front end.
Even with the setting Selectable->False, an object can be selected as a whole. With Selectable->False set at
the notebook level, no cells in the notebook can be selected. See pages 448 and 607. See also: Editable,
WindowClickSelect, StructuredSelection, ShowSelection. New in Version 3.

SelectedNotebook
SelectedNotebook[ ] gives the currently selected notebook in the front end.
SelectedNotebook returns a NotebookObject. The currently selected notebook will normally have its title bar
highlighted. The currently selected notebook is the one to which notebook-oriented menu commands in the front
end will be directed. Textual commands are however directed to the input notebook. A palette window can be a
currently selected notebook but cannot normally be an input notebook. See page 579. See also:
SetSelectedNotebook, Notebooks, InputNotebook, EvaluationNotebook, ButtonNotebook. New in Version 3.



1274 SelectionAnimate — SelectionEvaluateCreateCell Mathematica Reference Guide

SelectionAnimate
SelectionAnimate[notebook] animates graphics in the current selection in a notebook.
SelectionAnimate[notebook, t] animates graphics for t seconds.
The first argument of SelectionAnimate is a NotebookObject. The current selection for SelectionAnimate will
typically be a cell group. SelectionAnimate stops the animation as soon as you do any interactive operation in
the front end, such as pressing a key or clicking the mouse. The timing in SelectionAnimate does not count
setup or initial rendering of frames. See page 588. See also: AnimationDisplayTime, SelectionEvaluate. New
in Version 3.

SelectionCreateCell
SelectionCreateCell[notebook] copies the contents of the current selection in a notebook into
a new cell.
SelectionCreateCell[notebook, sel] sets the current selection after the copy to be as specified
by sel.
The first argument of SelectionCreateCell is a NotebookObject. If the current selection is a cell group, then
SelectionCreateCell will create a new cell group. Possible settings for sel are as in NotebookWrite. The
default for sel is After. SelectionCreateCell[notebook, All] sets the current selection to be the whole of the
newly created cell. See page 588. See also: SelectionEvaluateCreateCell, NotebookRead, NotebookWrite.

New in Version 3.

SelectionEvaluate
SelectionEvaluate[notebook] replaces the current selection in a notebook with the result
obtained by evaluating the contents of the selection in the kernel.
SelectionEvaluate[notebook, sel] sets the current selection after the evaluation to be as
specified by sel.
The first argument of SelectionEvaluate is a NotebookObject. Possible settings for sel are as in NotebookWrite.

The default for sel is After. Unless sel is None, the current selection after evaluation is complete will always be
as specified by sel, even if you moved the selection interactively in the front end during the course of the
evaluation. See page 588. See also: SelectionEvaluateCreateCell, NotebookRead, NotebookWrite,
ButtonEvaluator, SelectionAnimate. New in Version 3.

SelectionEvaluateCreateCell
SelectionEvaluateCreateCell[notebook] takes the current selection in a notebook and
creates a new cell containing the result obtained by evaluating the contents of the selection
using the kernel.
SelectionEvaluateCreateCell[notebook, sel] sets the current selection after the evaluation to
be as specified by sel.
The first argument of SelectionEvaluateCreateCell is a NotebookObject. Possible settings for sel are as in
NotebookWrite. The default for sel is After. SelectionEvaluateCreateCell[notebook, All] sets the current
selection to be the cell corresponding the result from the evaluation. SelectionEvaluateCreateCell performs the
same underlying operation as typing SHIFT-ENTER in the front end. It does not, however, have side effects such as
incrementing $Line. See page 588. See also: SelectionEvaluate, SelectionCreateCell, NotebookRead,
NotebookWrite. New in Version 3.



A.10 Major Built-in Mathematica Objects SelectionMove — SequenceForm 1275

SelectionMove
SelectionMove[obj, dir, unit] moves the current selection in an open notebook in the front
end in the direction dir by the specified unit.
SelectionMove[obj, dir, unit, n] repeats the move n times.
The first argument of SelectionMove must be a NotebookObject. Possible direction specifications are:

Next make the selection be the next unit of the specified type
Previous make the selection be the previous unit of the specified type
After make the selection be just after the end of the present unit
Before make the selection be just before the beginning of the present unit
All make the selection be the whole of the present unit

Possible unit specifications are:

Character individual character
Word word or other token
Expression complete subexpression
TextLine line of text
CellContents the contents of the cell
Cell complete cell
CellGroup cell group
EvaluationCell cell associated with the current evaluation
ButtonCell cell associated with any button that initiated the evaluation
GeneratedCell cell generated by the current evaluation
Notebook complete notebook

Unless the option setting AutoScroll->False is given, the front end will scroll a notebook so that the result of
SelectionMove is visible. The front end will also usually highlight the region corresponding to the result. With
direction specifications After and Before, SelectionMove will usually make the current selection be an insertion
point between two units of the specified type. SelectionMove returns $Failed if it cannot move the selection in
the way you request. The EvaluationCell defines the point after which output from the current evaluation will
by default be placed. A GeneratedCell corresponds to an element of the output. See page 582. See also:
NotebookSelection, NotebookWrite, NotebookRead. New in Version 3.

Sequence
Sequence[expr�, expr�, . . . ] represents a sequence of arguments to be spliced automatically
into any function.
Example: f[a, Sequence[b, c]] ��# fa, b, c� . Sequence objects will automatically be flattened out in all
functions except those with attribute SequenceHold or HoldAllComplete. See page 258. See also: FlattenAt,
BlankSequence, SlotSequence, List, Listable. New in Version 3.

SequenceForm
SequenceForm[expr�, expr�, . . . ] prints as the textual concatenation of the printed forms of
the expri.
Expressions printed by SequenceForm have their baselines aligned. SequenceForm acts as a “wrapper”, which
affects printing, but not evaluation. See page 434. See also: RowBox, ColumnForm, TableForm. New in Version 1.



1276 SequenceHold — SeriesData Mathematica Reference Guide

SequenceHold
SequenceHold is an attribute which specifies that Sequence objects appearing in the arguments
of a function should not automatically be flattened out.
The attribute HoldAllComplete prevents Sequence objects from being flattened out. See pages 329 and 340. See
also: HoldAll, HoldAllComplete. New in Version 3.

Series
Series[f, {x, x�, n}] generates a power series expansion for f about the point x � x� to order
�x � x��n.
Series[f, {x, x�, nx}, {y, y�, ny}] successively finds series expansions with respect to y,
then x.
Series can construct standard Taylor series, as well as certain expansions involving negative powers, fractional
powers and logarithms. Series detects certain essential singularities. Series can expand about the point x � �.

Series[f, {x, 0, n}] constructs Taylor series for any function f according to the formula
f��� � f $���x � f $$���x��� � 			f �n����xn�nd. Series effectively evaluates partial derivatives using D. It assumes that
different variables are independent. The result of Series is usually a SeriesData object, which you can
manipulate with other functions. Normal[series] truncates a power series and converts it to a normal expression.

SeriesCoefficient[series, n] finds the coefficient of the nth order term. See page 883. Implementation notes:
see page 1071. See also: InverseSeries, ComposeSeries, Limit, Normal, InverseZTransform, RSolve. Related
packages: Calculus`Pade`, NumericalMath`Approximations`, NumericalMath`NSeries`. New in Version 1;
modified in Version 3.

SeriesCoefficient

SeriesCoefficient[series, n] finds the coefficient of the nth order term in a power series.
SeriesCoefficient[series, {n�, n�, . . . }] finds a coefficient in a multivariate series.

See page 889. See also: Coefficient, Normal, CoefficientList, CoefficientArrays. New in Version 3.

SeriesData
SeriesData[x, x�, {a�, a�, . . . }, nmin, nmax, den] represents a power series in the variable
x about the point x�. The ai are the coefficients in the power series. The powers of (x-x�) that
appear are nmin/den, (nmin+1)/den, . . . , nmax/den.
SeriesData objects are generated by Series. SeriesData objects are printed as sums of the coefficients ai,
multiplied by powers of x - x�. A SeriesData object representing a power series is printed with O[x - x�]^p
added, to represent omitted higher-order terms. When you apply certain mathematical operations to SeriesData
objects, new SeriesData objects truncated to the appropriate order are produced. The operations you can perform
on SeriesData objects include arithmetic ones, mathematical functions with built-in derivatives, and integration and
differentiation. Normal[expr] converts a SeriesData object into a normal expression, truncating omitted
higher-order terms. If the variable in a SeriesData object is itself a SeriesData object, then the composition of
the SeriesData objects is computed. Substituting one series into another series with the same expansion parameter
therefore automatically leads to composition of the series. Composition is only possible if the first term of the inner
series involves a positive power of the variable. InverseSeries can be applied to SeriesData objects to give
series for inverse functions. See page 885. New in Version 1.



A.10 Major Built-in Mathematica Objects SessionTime — SetAttributes 1277

SessionTime
SessionTime[ ] gives the total number of seconds of real time that have elapsed since the
beginning of your Mathematica session.
SessionTime starts counting time as soon as your operating system considers your Mathematica process to be
executing. SessionTime is accurate only down to a granularity of at least $TimeUnit seconds. See page 710.

See also: TimeUsed, AbsoluteTime, Date. New in Version 2.

Set
lhs = rhs evaluates rhs and assigns the result to be the value of lhs. From then on, lhs is
replaced by rhs whenever it appears.
{l�, l�, . . . } = {r�, r�, . . . } evaluates the ri, and assigns the results to be the values of the
corresponding li.
lhs can be any expression, including a pattern. f[x_] = x^2 is a typical assignment for a pattern. Notice the
presence of _ on the left-hand side, but not the right-hand side. An assignment of the form f[args] = rhs sets up
a transformation rule associated with the symbol f. Different rules associated with a particular symbol are usually
placed in the order that you give them. If a new rule that you give is determined to be more specific than existing
rules, it is, however, placed before them. When the rules are used, they are tested in order. New assignments
with identical lhs overwrite old ones. You can see all the assignments associated with a symbol f using ?f or
Definition[f]. If you make assignments for functions that have attributes like Flat and Orderless, you must
make sure to set these attributes before you make assignments for the functions. Set has attribute HoldFirst. If
lhs is of the form f[args], then args are evaluated. There are some special functions for which an assignment to
s[f[args]] is automatically associated with f rather than s. These functions include: Attributes, Default, Format,
MessageName, Messages, N and Options. When it appears in an unevaluated symbolic form, Set is treated as a
scoping construct (see Section A.3.8). lhs = rhs returns rhs even if for some reason the assignment specified cannot
be performed. Some global variables such as $RecursionLimit can only be assigned a certain range or class of
values. See pages 311 and 1051. See also: TagSet, Unset, Clear, HoldPattern, DownValues. New in Version 1.

SetAccuracy
SetAccuracy[expr, a] yields a version of expr in which all numbers have been set to have
accuracy a.
When SetAccuracy is used to increase the accuracy of a number, the number is padded with zeros. The zeros are
taken to be in base 2. In base 10, the additional digits are usually not zero. SetAccuracy returns an
arbitrary-precision number even if the number of significant digits obtained will be less than $MachinePrecision.

When expr contains machine-precision numbers, SetAccuracy[expr, a] can give results which differ from one
computer system to another. SetAccuracy will first expose any hidden extra digits in the internal binary
representation of a number, and only after these are exhausted add trailing zeros. 0.004``25 generates a number
with all trailing digits zero and accuracy 25 on any computer system. SetAccuracy[expr, a] does not modify
expr itself. See page 736. See also: N, Accuracy, SetPrecision. New in Version 2.

SetAttributes
SetAttributes[s, attr] adds attr to the list of attributes of the symbol s.
SetAttributes modifies Attributes[s]. SetAttributes[s, {attr�, attr�, . . . }] sets several attributes at a time.

SetAttributes[{s�, s�, . . . }, attrs] sets attributes of several symbols at a time. SetAttributes has the
attribute HoldFirst. See page 328. See also: ClearAttributes, Protect. New in Version 1.



1278 SetDelayed — SetPrecision Mathematica Reference Guide

SetDelayed
lhs := rhs assigns rhs to be the delayed value of lhs. rhs is maintained in an unevaluated form.
When lhs appears, it is replaced by rhs, evaluated afresh each time.
See notes for Set. SetDelayed has attribute HoldAll, rather than HoldFirst. You can make assignments of the
form lhs := rhs /; test, where test gives conditions for the applicability of each transformation rule. You can make
several assignments with the same lhs but different forms of test. lhs := rhs returns Null if the assignment
specified can be performed, and returns $Failed otherwise. See pages 311 and 1051. See also: TagSetDelayed,
Unset, Clear. New in Version 1.

SetDirectory
SetDirectory["dir"] sets the current working directory.
SetDirectory sets the current working directory, then returns its full name. SetDirectory prepends the current
working directory to the directory stack given by DirectoryStack[ ]. See page 636. See also: ResetDirectory,
Directory, DirectoryName, $Path. New in Version 2.

SetFileDate
SetFileDate["file"] sets the modification date for a file to be the current date.
SetFileDate["file", date] sets the modification date to be the specified date. The date must be given in the
{year, month, day, hour, minute, second} format used by Date. See page 641. See also: FileDate. Related
package: Miscellaneous`Calendar`. New in Version 2.

SetOptions
SetOptions[s, name�->value�, name�->value�, . . . ] sets the specified default options for a
symbol s.
SetOptions[stream, . . . ] or SetOptions["name", . . . ] sets options associated with a
particular stream.
SetOptions[object, . . . ] sets options associated with an external object such as a
NotebookObject.
SetOptions is equivalent to an assignment which redefines certain elements of the list Options[s] of default
options. SetOptions can be used on Protected symbols. SetOptions returns the new form of Options[s].

You can use SetOptions on InputStream and OutputStream objects. If there is only one stream with a particular
name, you can give the name as a string as the argument of Options. SetOptions can be used on a list of
streams, such as the value of $Output. If you use SetOptions[NotebookObject[. . . ], . . . ] the kernel will send a
request to the front end which will immediately make the change specified. See pages 144 and 1040. New in
Version 1; modified in Version 3.

- SetPrecision
SetPrecision[expr, p] yields a version of expr in which all numbers have been set to have
precision p.
When SetPrecision is used to increase the precision of a number, the number is padded with zeros. The zeros are
taken to be in base 2. In base 10, the additional digits are usually not zero. SetPrecision returns an
arbitrary-precision number, even if the precision requested is less than $MachinePrecision.
, SetPrecision[expr, MachinePrecision] converts all numbers in expr to machine precision. If expr contains
machine-precision numbers, SetPrecision[expr, p] can give results which differ from one computer system to
another. SetPrecision will first expose any hidden extra digits in the internal binary representation of a number,
and only after these are exhausted add trailing zeros. 0.004`25 generates a number with all trailing digits zero
and precision 25 on any computer system. SetPrecision[expr, p] does not modify expr itself. See page 736.

See also: N, Precision, Chop, SetAccuracy, $MinPrecision, $NumberMarks. New in Version 2; modified in
Version 5.0.



A.10 Major Built-in Mathematica Objects SetSelectedNotebook — Share 1279

SetSelectedNotebook
SetSelectedNotebook[notebook] makes the specified notebook be the currently selected one in
the front end.
SetSelectedNotebook takes a NotebookObject as its argument. Setting a particular notebook to be the currently
selected one typically makes it the top notebook displayed on the screen. Making a notebook the currently
selected one does not affect the current selection within that notebook, or within other notebooks. See page 591.

See also: SelectedNotebook, Notebooks, WindowClickSelect. New in Version 3.

SetStreamPosition
SetStreamPosition[stream, n] sets the current point in an open stream.
The integer n given to SetStreamPosition should usually be a value obtained from StreamPosition.

SetStreamPosition[stream, 0] sets the current point to the beginning of a stream.
SetStreamPosition[stream, Infinity] sets the current point to the end of a stream. See page 653. New in

Version 2.

Shading
Shading is an option for SurfaceGraphics that specifies whether the surfaces should be
shaded.
With Shading -> False, the surface will be white all over. So long as Mesh -> True, however, mesh lines will still
be drawn. When Shading -> True, the actual shading used can either be determined by the height, or, when
Lighting -> True, from simulated illumination. See page 151. See also: HiddenSurface, ClipFill. New in
Version 1.

Shallow
Shallow[expr] prints as a shallow form of expr.
Shallow[expr, depth] prints with all parts of expr below the specified depth given in skeleton
form.
Shallow[expr, {depth, length}] also gives parts whose lengths are above the specified limit in
skeleton form.
Shallow[expr, {depth, length}, form] uses skeleton form for any parts which match the
pattern form.
Omitted sequences of elements are given as Skeleton objects, which print in the form :k;. In StandardForm,
the characters used for this output are \[LeftSkeleton] and \[RightSkeleton]. Depth and length can be
specified as Infinity. Shallow[expr] is equivalent to Shallow[expr, {4, 10}]. Shallow acts as a “wrapper”,
which affects printing, but not evaluation. Trying to feed :k; as obtained from Shallow back as input to
Mathematica in StandardForm will generate an error. See page 431. See also: Short. New in Version 2; modified
in Version 3.

Share
Share[expr] changes the way expr is stored internally, to try and minimize the amount of
memory used.
Share[ ] tries to minimize the memory used to store all expressions.
Share works by sharing the storage of common subexpressions between different parts of an expression, or
different expressions. Using Share will never affect the results you get from Mathematica. It may, however, reduce
the amount of memory used, and in many cases also the amount of time taken. See page 714. See also:
MemoryInUse, ByteCount. Related package: Utilities`MemoryConserve`. New in Version 1.



1280 Short — ShowCellTags Mathematica Reference Guide

Short
Short[expr] prints as a short form of expr, less than about one line long.
Short[expr, n] prints as a form of expr about n lines long.
Short[expr] gives a “skeleton form” of expr, with omitted sequences of k elements indicated by :k;. In
StandardForm, the characters used for this output are \[LeftSkeleton] and \[RightSkeleton]. Omitted
sequences of elements are printed as Skeleton objects. Short prints long strings in skeleton form. The number
of lines specified need not be an integer. Short can be used with InputForm and other formats as well as
OutputForm. Short acts as a “wrapper”, which affects printing, but not evaluation. Trying to feed :k; as
obtained from Short back as input to Mathematica in StandardForm will generate an error. Short is used to limit
the length of output in standard Mathematica warning and other messages. See page 431. See also: Shallow,
Format. New in Version 1; modified in Version 3.

Show
Show[graphics, options] displays two- and three-dimensional graphics, using the options
specified.
Show[g�, g�, . . . ] shows several plots combined.
Show can be used with Graphics, Graphics3D, SurfaceGraphics, ContourGraphics, DensityGraphics and
GraphicsArray. Options explicitly specified in Show override those included in the graphics expression. When
plots are combined, their lists of non-default options are concatenated. Show is effectively the analog of Print for
graphics. The option DisplayFunction determines the actual output mechanism used. Functions like Plot
automatically apply Show to the graphics expressions they generate. See pages 139 and 487. See also: Plot, etc.,
and Display. New in Version 1.

ShowAutoStyles
ShowAutoStyles is an option for Cell which specifies whether styles that are specified to be
automatically used for various syntactic and other constructs should be shown.
The default setting is ShowAutoStyles -> True. Details of automatic styles can be specified in the setting for
AutoStyleOptions. For example, unmatched delimiters such as brackets are by default shown in purple. See
page 613. See also: StyleBox, DelimiterFlashTime, ShowCursorTracker. New in Version 4.

ShowCellBracket
ShowCellBracket is an option for Cell which specifies whether to display the bracket that
indicates the extent of the cell.
ShowCellBracket is often set for styles of cells or whole notebooks instead of individual cells. See page 604.

See also: CellFrame, ShowSelection. New in Version 3.

ShowCellLabel
ShowCellLabel is an option for Cell which specifies whether to display the label for a cell.
ShowCellLabel is more often set for styles of cells than for individual cells. With the setting
CellLabelAutoDelete->True, the label for a cell is automatically deleted if the cell is modified. See page 607.

See also: CellLabel, ShowCellTags. New in Version 3.

ShowCellTags
ShowCellTags is an option for Cell which specifies whether to display tags for a cell.
ShowCellTags is more often set for styles of cells than for individual cells. See also: CellTags, ShowCellLabel.

New in Version 3.



A.10 Major Built-in Mathematica Objects ShowCursorTracker — Sign 1281

ShowCursorTracker
ShowCursorTracker is an option for Cell which specifies whether an elliptical spot should
appear momentarily to guide the eye if the cursor position jumps.
The default setting is ShowCursorTracker -> True. Line breaking is normally set up so that small changes to
expressions in input cells rarely cause large-scale reformatting; the cursor tracker appears whenever reformatting is
required that makes the cursor position jump. The cursor tracker is intended to be sufficiently eye-catching to
make the low-level human visual system cause an immediate shift in gaze. See page 613. See also:
DelimiterFlashTime, ShowAutoStyles. New in Version 4.

ShowPageBreaks
ShowPageBreaks is an option for Notebook which specifies whether to indicate in the
on-screen display of a notebook where page breaks would occur if the notebook were printed.
ShowPageBreaks is often set using a menu item in the notebook front end. See also: PageBreakWithin,
ScreenStyleEnvironment. New in Version 3.

ShowSelection
ShowSelection is an option for Cell which specifies whether to show the current selection
highlighted.
ShowSelection is often set for styles of cells or whole notebooks instead of individual cells. Settings for
ShowSelection affect only how the selection is displayed, not where it is or how it works. Setting
ShowSelection->False is convenient if you want notebook operations to be performed invisibly. See page 619.

See also: Selectable. New in Version 4.

ShowSpecialCharacters
ShowSpecialCharacters is an option for Cell which specifies whether to replace \[Name],
\:nnnn, etc. by explicit special characters.
With ShowSpecialCharacters->False special characters are always displayed by name when possible.

ShowSpecialCharacters is more often set at the level of styles or notebooks than at the level of individual cells.
See also: ShowStringCharacters, CharacterEncoding. New in Version 3.

ShowStringCharacters
ShowStringCharacters is an option for Cell which specifies whether to display " when a
string is entered.
ShowStringCharacters is typically set to False for output cells and True for input cells. ShowStringCharacters
is usually set at the level of styles or notebooks rather than at the level of individual cells. See also:
ShowSpecialCharacters. New in Version 3.

Sign
Sign[x] gives -1, 0 or 1 depending on whether x is negative, zero, or positive.
For non-zero complex numbers z, Sign[z] is defined as z/Abs[z]. Sign tries simple transformations in trying to
determine the sign of symbolic expressions. For exact numeric quantities, Sign internally uses numerical
approximations to establish its result. This process can be affected by the setting of the global variable
$MaxExtraPrecision. See page 745. See also: Abs, UnitStep, Positive, Negative, NonNegative, Greater,
Simplify, Assumptions. New in Version 1; modified in Version 3.



1282 Signature — Sin Mathematica Reference Guide

Signature
Signature[list] gives the signature of the permutation needed to place the elements of list in
canonical order.
Examples: Signature[{a,b,c}] ��# 1 ; Signature[{a,c,b}] ��# �1 . The signature of the permutation is ����n ,
where n is the number of transpositions of pairs of elements that must be composed to build up the permutation.

If any two elements of list are the same, Signature[list] gives 0. See pages 757 and 920. See also: Order,
Sort, Cross, Minors, Det, KroneckerDelta. Related package: DiscreteMath`Combinatorica`. New in Version 1.

SignPadding
SignPadding is an option for NumberForm and related functions which specifies whether
padding should be inserted after signs.
SignPadding -> True specifies that any padding that is needed should be inserted between the sign and the digits
in a number. SignPadding -> False specifies that the padding should be inserted before the sign. See
page 436. See also: NumberPadding. New in Version 2.

- Simplify
- Simplify[expr] performs a sequence of algebraic and other transformations on expr, and
returns the simplest form it finds.
Simplify[expr, assum] does simplification using assumptions.
Simplify tries expanding, factoring and doing many other transformations on expressions, keeping track of the
simplest form obtained. - The following options can be given:

Assumptions $Assumptions default assumptions to append to assum
ComplexityFunction Automatic how to assess the complexity of each form generated
TimeConstraint 300 for how many seconds to try doing any particular transformation
TransformationFunctions Automatic functions to try in transforming the expression
Trig True whether to do trigonometric as well as algebraic transformations

Assumptions can consist of equations, inequalities, domain specifications such as x � Integers, and logical
combinations of these. Example: Simplify[Sqrt[x^2], x � Reals] ��# Absx� . Simplify can be used on
equations, inequalities and domain specifications. Example: Simplify[x^2 > 3, x > 2] ��# True . - Quantities
that appear algebraically in inequalities are always assumed to be real. Example:
Simplify[x � Reals, x > 0] ��# True . FullSimplify does more extensive simplification than Simplify.
, You can specify default assumptions for Simplify using Assuming. See pages 68, 72 and 813. Implementation
notes: see page 1070. See also: FullSimplify, Refine, Factor, Expand, TrigExpand, PowerExpand,
ComplexExpand, Element, FunctionExpand, Reduce, Assuming. New in Version 1; modified in Version 5.0.

Sin
Sin[z] gives the sine of z.
Mathematical function (see Section A.3.10). The argument of Sin is assumed to be in radians. (Multiply by
Degree to convert from degrees.) Sin is automatically evaluated when its argument is a simple rational multiple
of Π; for more complicated rational multiples, FunctionExpand can sometimes be used. See page 761. See also:
ArcSin, Csc, TrigToExp, TrigExpand. New in Version 1.



A.10 Major Built-in Mathematica Objects SingleLetterItalics — Sinh 1283

SingleLetterItalics
SingleLetterItalics is an option for Cell which specifies whether single-letter names
should be displayed in italics.
SingleLetterItalics->True is typically set for cells that contain TraditionalForm expressions. See page 613.

See also: AutoItalicWords, StyleBox. New in Version 3.

, SingularValueDecomposition
SingularValueDecomposition[m] gives the singular value decomposition for a numerical
matrix m. The result is a list of matrices {u, w, v}, where w is a diagonal matrix, and m can
be written as u . w . Conjugate[Transpose[v]].
SingularValueDecomposition[{m, a}] gives the generalized singular value decomposition of
m with respect to a.
SingularValueDecomposition[m, k] gives the singular value decomposition associated with
the k largest singular values of m.
The matrix m may be rectangular. The diagonal elements of w are the singular values of m.

SingularValueDecomposition sets to zero any singular values that would be dropped by SingularValueList.
The option Tolerance can be used as in SingularValueList to determine which singular values will be

considered to be zero. u and v are column orthonormal matrices, whose transposes can be considered as lists of
orthonormal vectors. SingularValueDecomposition[{m, a}] gives a list of matrices {{u, ua}, {w, wa}, v}
such that m can be written as u . w . Conjugate[Transpose[v]] and a can be written as
ua . wa . Conjugate[Transpose[v]]. See page 914. Implementation notes: see page 1069. See also:
SingularValueList, Norm, PseudoInverse, QRDecomposition. Related packages:
Statistics`LinearRegression`. New in Version 5.0.

, SingularValueList
SingularValueList[m] gives a list of the non-zero singular values of a numerical matrix m.
SingularValueList[{m, a}] gives the generalized singular values of m with respect to a.
SingularValueList[m, k] gives the k largest singular values of m.
Singular values are sorted from largest to smallest. Repeated singular values appear with their appropriate
multiplicity. By default, singular values are kept only when they are larger than 100 times ���p , where p is
Precision[m]. SingularValueList[m, Tolerance->t] keeps only singular values that are at least t times the
largest singular value. SingularValueList[m, Tolerance->0] returns all singular values. The matrix m can be
rectangular; the total number of singular values is always Min[Dimensions[m]]. The singular values can be
obtained from Sqrt[Eigenvalues[Conjugate[Transpose[m]] . m]]. See page 913. See also:
SingularValueDecomposition, Norm, PseudoInverse, Eigenvalues, QRDecomposition, SchurDecomposition.

Related packages: Statistics`LinearRegression`. New in Version 5.0.

Sinh
Sinh[z] gives the hyperbolic sine of z.
Mathematical function (see Section A.3.10). See page 761. See also: ArcSinh, Csch, TrigToExp, TrigExpand.

New in Version 1.



1284 SinhIntegral — Slot Mathematica Reference Guide

SinhIntegral
SinhIntegral[z] gives the hyperbolic sine integral function Shi�z�.

Mathematical function (see Section A.3.10). Shi�z� � � z
�

sinh�t��tdt. SinhIntegral[z] is an entire function of z

with no branch cut discontinuities. See page 774. See also: CoshIntegral. New in Version 3.

SinIntegral
SinIntegral[z] gives the sine integral function Si�z�.

Mathematical function (see Section A.3.10). Si�z� � � z
�

sin�t��t dt. SinIntegral[z] is an entire function of z with
no branch cut discontinuities. See page 774. See also: CosIntegral, ExpIntegralE, ExpIntegralEi, FresnelS.

New in Version 2.

SixJSymbol
SixJSymbol[{j�, j�, j}, {j
, j�, j�}] gives the values of the Racah 6-j symbol.
The 6-j symbols vanish except when certain triples of the ji satisfy triangle inequalities. The parameters of
SixJSymbol can be integers, half-integers or symbolic expressions. See page 760. See also: ThreeJSymbol,
ClebschGordan. New in Version 2.

Skeleton
Skeleton[n] represents a sequence of n omitted elements in an expression printed with Short
or Shallow.
The standard print form for Skeleton is :n;.
In StandardForm, Skeleton is by default printed using \[LeftSkeleton] and \[RightSkeleton] characters. You
can reset the print form of Skeleton. :n; indicates the presence of missing information, and so generates an
error if you try to interpret it as Mathematica kernel input. See also: Short, StringSkeleton, Shallow,
TotalWidth. New in Version 1; modified in Version 3.

Skip
Skip[stream, type] skips one object of the specified type in an input stream.
Skip[stream, type, n] skips n objects of the specified type.
Skip behaves like Read, except that it returns Null when it succeeds in skipping the specified objects, and $Failed
otherwise. See notes for Read. See page 649. See also: SetStreamPosition, Find. New in Version 2.

Slot
# represents the first argument supplied to a pure function.

#n represents the nth argument.
# is used to represent arguments or formal parameters in pure functions of the form body& or Function[body].

# is equivalent to Slot[1]. #n is equivalent to Slot[n]. n must be a non-negative integer. #0 gives the head
of the function, i.e., the pure function itself. See page 249. New in Version 1.



A.10 Major Built-in Mathematica Objects SlotSequence — SolveAlways 1285

SlotSequence
## represents the sequence of arguments supplied to a pure function.

##n represents the sequence of arguments supplied to a pure function, starting with the nth

argument.
## is used to represent sequences of arguments in pure functions of the form body& or Function[body]. ## is
equivalent to SlotSequence[ ] or SlotSequence[1]. ##n is equivalent to SlotSequence[n]. n must be a positive
integer. A sequence of arguments supplied to a pure function is “spliced” into the body of the function wherever
## and so on appear. See page 249. See also: Sequence. New in Version 1.

Solve
Solve[eqns, vars] attempts to solve an equation or set of equations for the variables vars.
Solve[eqns, vars, elims] attempts to solve the equations for vars, eliminating the variables
elims.
Equations are given in the form lhs == rhs. Simultaneous equations can be combined either in a list or with &&.

A single variable or a list of variables can be specified. Solve[eqns] tries to solve for all variables in eqns.
Example: Solve[3 x + 9 == 0, x]. Solve gives solutions in terms of rules of the form x -> sol. When there

are several variables, the solution is given in terms of lists of rules: {x -> sx, y -> sy, . . . }. When there are
several solutions, Solve gives a list of them. When a particular root has multiplicity greater than one, Solve gives
several copies of the corresponding solution. Solve deals primarily with linear and polynomial equations. The
option InverseFunctions specifies whether Solve should use inverse functions to try and find solutions to more
general equations. The default is InverseFunctions->Automatic. In this case, Solve can use inverse functions, but
prints a warning message. See notes on InverseFunctions. Solve gives generic solutions only. It discards
solutions that are valid only when the parameters satisfy special conditions. Reduce gives the complete set of
solutions. Solve will not always be able to get explicit solutions to equations. It will give the explicit solutions it
can, then give a symbolic representation of the remaining solutions in terms of Root objects. If there are sufficiently
few symbolic parameters, you can then use N to get numerical approximations to the solutions. Solve gives {} if
there are no possible solutions to the equations. , Solve gives {{}} if all variables can have all possible values.

Solve[eqns, . . . , Mode->Modular] solves equations with equality required only modulo an integer. You can
specify a particular modulus to use by including the equation Modulus==p. If you do not include such an equation,
Solve will attempt to solve for the possible moduli. Solve uses special efficient techniques for handling sparse
systems of linear equations with approximate numerical coefficients. See page 829. Implementation notes: see
page 1070. See also: Reduce, FindInstance, Eliminate, SolveAlways, Roots, NSolve, FindRoot, LinearSolve,
RowReduce, GroebnerBasis, DSolve, Root, RSolve. Related packages: Algebra`RootIsolation`,
Graphics`ImplicitPlot`, Algebra`AlgebraicInequalities. New in Version 1; modified in Version 3.

SolveAlways
SolveAlways[eqns, vars] gives the values of parameters that make the equations eqns valid for
all values of the variables vars.
Equations are given in the form lhs == rhs. Simultaneous equations can be combined either in a list or with &&.

A single variable or a list of variables can be specified. Example:
SolveAlways[a x + b == 0, x] ��# ��a � 0, b � 0�� . SolveAlways works primarily with linear and
polynomial equations. SolveAlways produces relations between parameters that appear in eqns, but are not in the
list of variables vars. SolveAlways[eqns, vars] is equivalent to Solve[!Eliminate[!eqns, vars]]. See page 833.

See also: Eliminate, Solve, Reduce, PolynomialReduce, ForAll. New in Version 1.



1286 Sort — SparseArray Mathematica Reference Guide

Sort
Sort[list] sorts the elements of list into canonical order.
Sort[list, p] sorts using the ordering function p.
Example: Sort[{b, c, a}] ��# �a, b, c� . The canonical ordering used by Mathematica is described on
page 1043. Sort[list, p] applies the function p to pairs of elements in list to determine whether they are in order.
The default function p is OrderedQ[{#1, #2}]&. Example: Sort[{4, 1, 3}, Greater] ��# �4, 3, 1� . Sort
can be used on expressions with any head, not only List. See pages 127, 129 and 254. See also: Ordering,
Order, OrderedQ, Orderless, Median, Quantile. New in Version 1.

Sound
Sound[primitives] represents a sound.
Any number of sound primitives or lists of sound primitives can be given. They are played in sequence. Sound
can be played using Show. The following primitives can be used:

SampledSoundFunction[f, n, r] amplitude levels generated by a function
SampledSoundList[{a�, a�, . . . }, r] amplitude levels given in a list

The standard print form for Sound[. . . ] is -Sound-. InputForm prints the explicit list of primitives. See
page 565. Related packages: Miscellaneous`Audio`, Miscellaneous`Music`. New in Version 2.

, Sow
Sow[e] specifies that e should be collected by the nearest enclosing Reap.
Sow[e, tag] specifies that e should be collected by the nearest enclosing Reap whose pattern
matches tag.
Sow[e, {tag�, tag�, . . . }] specifies that e should be collected once for each pattern that
matches a tagi.
Sow[e, . . . ] returns e. By having several identical tagi, a single expression can be made to appear multiple times
in a list returned by Reap. Sow[e] is equivalent to Sow[e, None]. Sow[e, {{tag}}] sows an expression with tag
{tag}. See page 355. See also: Reap, Throw, AppendTo, EvaluationMonitor, StepMonitor, Scan. New in
Version 5.0.

, SparseArray
SparseArray[{pos�->val�, pos�->val�, . . . }] yields a sparse array in which values vali appear
at positions posi.
SparseArray[{pos�, pos�, . . . }->{val�, val�, . . . }] yields the same sparse array.
SparseArray[list] yields a sparse array version of list.
SparseArray[data, {d�, d�, . . . }] yields a sparse array representing a d� � d� � 			 array.
SparseArray[data, dims, val] yields a sparse array in which unspecified elements are taken to
have value val.

(continued)



A.10 Major Built-in Mathematica Objects SparseArray (continued) — SphericalRegion 1287

, SparseArray (continued)

By default, SparseArray takes unspecified elements to be 0. SparseArray[data, . . . ] is always converted to an
optimized standard form with structure SparseArray[Automatic, dims, val, . . . ]. Normal[SparseArray[. . . ]]
gives the ordinary array corresponding to a sparse array object. ArrayRules[SparseArray[. . . ]] gives the list of
rules {pos�->val�, pos�->val�, . . . }. The elements in SparseArray need not be numeric. The position
specifications posi can contain patterns. Example: SparseArray[{{i_, i_}->1}, {d, d}] gives a d � d identity
matrix. With rules posi :> vali the vali are evaluated separately for each set of indices that match posi.

SparseArray[list] requires that list be a full array, with all parts at a particular level being lists of the same
length. The individual elements of a sparse array cannot themselves be lists. SparseArray[rules] yields a sparse
array with dimensions exactly large enough to include elements whose positions have been explicitly specified.

SparseArray[rules, Automatic, val] takes unspecified elements to have value val. List and matrix operations
are typically set up to work as they do on Normal[SparseArray[. . . ]]. Functions with attribute Listable are
automatically threaded over the individual elements of the ordinary arrays represented by SparseArray objects.

Part extracts specified parts of the array represented by a SparseArray object, rather than parts of the
SparseArray expression itself. Functions like Map are automatically applied to components in a SparseArray
object. SparseArray is treated as a raw object by functions like AtomQ, and for purposes of pattern matching.

Dimensions gives the dimensions of a sparse array. The standard output format for a sparse array specified by
n rules is SparseArray[<n>, dims]. See page 295. Implementation notes: see page 1069. See also: ArrayRules,
Normal, Replace. New in Version 5.0.

SpellingCorrection
SpellingCorrection is an option for StringMatchQ, Names and related functions which
specifies whether strings should be considered to match even when a small fraction of the
characters in them are different.
The default setting SpellingCorrection -> False requires exact matching. ?name effectively uses
SpellingCorrection -> True when it cannot find an exact match for name. See page 412. See also:
IgnoreCase. New in Version 2.

SphericalHarmonicY
SphericalHarmonicY[l, m, Θ, Φ] gives the spherical harmonic Ym

l �Θ� Φ�.
Mathematical function (see Section A.3.10). The spherical harmonics are orthogonal with respect to integration
over the surface of the unit sphere. For l ! �, Ym

l �Θ� Φ� �
 

��l � ����
Π�
 

�l �m�d��l �m�dPm
l �cos�Θ��eimΦ where Pm

l is
the associated Legendre function. For l * ��, Ym

l �Θ� Φ� � Ym
��l����Θ� Φ�. See page 766. See also: LegendreP,

ClebschGordan. New in Version 1.

SphericalRegion
SphericalRegion is an option for three-dimensional graphics functions which specifies
whether the final image should be scaled so that a sphere drawn around the three-dimensional
bounding box would fit in the display area specified.
SphericalRegion -> False scales three-dimensional images to be as large as possible, given the display area
specified. SphericalRegion -> True scales three-dimensional images so that a sphere drawn around the
three-dimensional bounding box always fits in the display area specified. The center of the sphere is taken to be
at the center of the bounding box. The radius of the sphere is chosen so that the bounding box just fits within the
sphere. With SphericalRegion -> True, the image of a particular object remains consistent in size, regardless of
the orientation of the object. SphericalRegion -> True overrides any setting given for ViewCenter. See
page 536. See also: PlotRegion, ViewPoint. New in Version 2.



1288 Splice — SqrtBox Mathematica Reference Guide

Splice
Splice["file"] splices Mathematica output into an external file. It takes text enclosed between
<* and *> in the file, evaluates the text as Mathematica input, and replaces the text with the
resulting Mathematica output.
Splice["infile", "outfile"] processes text from the file infile, and writes output into outfile. Splice["file"] takes
files with names of the form name.mx and writes output in files with names name.x. Text in the input file not
enclosed between <* and *> is copied without change to the output file. The default format for Mathematica
output is determined by the extension of the input file name:
name.mc CForm

name.mf FortranForm

name.mtex TeXForm

The following options for Splice can be used:

Delimiters {"<*", "*>"} delimiters to search for
FormatType Automatic default format for Mathematica output
PageWidth 78 number of character widths per output line

You can use pipes instead of files for input and output to Splice. See page 214. See also: RunThrough. New
in Version 1.

Split
Split[list] splits list into sublists consisting of runs of identical elements.
Split[list, test] treats pairs of adjacent elements as identical whenever applying the function
test to them yields True.
Example: Split[{a, a, b, b, a, a, b}] ��# ��a, a�, �b, b�, �a, a�, �b�� . The default function used to test
whether elements are identical is SameQ. Split can be used to perform run-length encoding. See page 292.

See also: Partition, Union, Flatten, ReplaceList. New in Version 3.

Sqrt

Sqrt[z] or ����z gives the square root of z.
Mathematical function (see Section A.3.10). ����z can be entered using ��2�z���� or \(\@z\). Sqrt[z] is
converted to z^(1/2). Sqrt[z^2] is not automatically converted to z. Sqrt[a b] is not automatically converted
to Sqrt[a] Sqrt[b]. These conversions can be done using PowerExpand, but will typically be correct only for
positive real arguments. In StandardForm, Sqrt[z] is printed as ����z . 2 z can also be used for input. The 2
character is entered as ,sqrt , or \[Sqrt]. See page 31. See also: Power, PowerExpand, SqrtBox. New in
Version 1; modified in Version 3.

SqrtBox

SqrtBox[x] represents ����x in input and output.
Inside \( . . . \) SqrtBox[x] can be input as \@ x. In a notebook a SqrtBox can be created using ��2� or ��@� .
���� moves out from under the square root sign. In StandardForm and InputForm, SqrtBox[x] is interpreted
on input as Sqrt[x]. The baseline of SqrtBox[x] is taken to be the baseline of x. If SqrtBox[x] does not fit on
a single line, it is output as x^(1/2). In StandardForm, explicit SqrtBox objects are output literally. You can use
DisplayForm to see the display form of such objects. See page 445. See also: RadicalBox, OverscriptBox.

New in Version 3.



A.10 Major Built-in Mathematica Objects Stack — StandardForm 1289

Stack
Stack[ ] shows the current evaluation stack, giving a list of the tags associated with
evaluations that are currently being done.
Stack[pattern] gives a list of expressions currently being evaluated which match the pattern.
Stack[_] shows all expressions currently being evaluated. You can call Stack from inside a dialog to see how
the dialog was reached. In the list returned by Stack[pattern], each expression is wrapped with HoldForm. The
maximum length of Stack[ ] is limited by $RecursionLimit. Stack has attribute HoldFirst. See page 367.

See also: Trace. New in Version 2.

StackBegin
StackBegin[expr] evaluates expr, starting a fresh evaluation stack.
You can use StackBegin to prevent “outer” evaluations from appearing in the evaluation stack when you call
Stack. StackBegin has attribute HoldFirst. A StackBegin is automatically done when the evaluation of each
input line begins in an interactive Mathematica session. See page 368. See also: StackInhibit. New in
Version 2.

StackComplete
StackComplete[expr] evaluates expr with intermediate expressions in evaluation chains
included on the stack.
Mathematica normally includes only the latest expression on each evaluation chain involved in the evaluation of a
particular expression. Inside StackComplete, however, all preceding expressions on the evaluation chains are
included. StackComplete typically increases significantly the number of expressions kept on the evaluation stack.

See page 368. See also: TraceBackward, TraceAbove. New in Version 2.

StackInhibit
StackInhibit[expr] evaluates expr without modifying the evaluation stack.
You can use StackInhibit to prevent “innermost” evaluations from appearing in the evaluation stack when you
look at it with Stack. StackInhibit has attribute HoldFirst. See page 368. See also: StackBegin. New in
Version 2.

, StandardDeviation
StandardDeviation[list] gives the standard deviation of the elements in list.
StandardDeviation[list] is equivalent to Sqrt[Variance[list]]. StandardDeviation handles both numerical and
symbolic data. StandardDeviation[{{x�, y�, . . . }, {x�, y�, . . . }, . . . }] gives
{StandardDeviation[{x�, x�, . . . }], StandardDeviation[{y�, y�, . . . }]}. StandardDeviation works with
SparseArray objects. See pages 794 and 924. See also: Variance, Mean, Quantile. Related packages:
Statistics`DescriptiveStatistics`, Statistics`MultiDescriptiveStatistics` . New in Version 5.0.

StandardForm
StandardForm[expr] prints as the standard Mathematica two-dimensional representation of
expr.
StandardForm generates output that gives a unique and unambiguous representation of Mathematica expressions,
suitable for use as input. StandardForm incorporates many aspects of traditional mathematical notation.

StandardForm is the standard format type used for both input and output of Mathematica expressions in
notebooks. StandardForm can be edited in the notebook front end. StandardForm uses special characters as well
as ordinary keyboard characters. StandardForm is based on boxes. The notebook front end contains menu items
for conversion to and from StandardForm. See page 424. See also: TraditionalForm, OutputForm, InputForm,
MakeExpression, ToBoxes. New in Version 3.



1290 StepMonitor — String Mathematica Reference Guide

, StepMonitor
StepMonitor is an option for iterative numerical computation functions that gives an
expression to evaluate whenever a step is taken by the numerical method used.
The option setting is normally given as StepMonitor :> expr. The :> is used instead of -> to avoid expr being
immediately evaluated. Whenever expr is evaluated, all variables in the numerical computation are assigned their
current values. Block[{var� = val�, . . . }, expr] is effectively used. See page 977. See also:
EvaluationMonitor, Sow, Print. New in Version 5.0.

StieltjesGamma
StieltjesGamma[n] gives the Stieltjes constant Γn.
Mathematical function (see Section A.3.10). Γn�nd is the coefficient of �� � s�n in the Laurent expansion of Ζ�s�
about the point s � �. The Γn are generalizations of Euler’s constant; Γ � Γ�. See page 772. Implementation
notes: see page 1068. See also: Zeta, EulerGamma. New in Version 3.

StirlingS1

StirlingS1[n, m] gives the Stirling number of the first kind S�m�n .

Integer mathematical function (see Section A.3.10). ����n�mS�m�n gives the number of permutations of n elements
which contain exactly m cycles. See page 757. See also: StirlingS2. New in Version 1.

StirlingS2

StirlingS2[n, m] gives the Stirling number of the second kind ��m�n .

Integer mathematical function (see Section A.3.10). �
�m�
n gives the number of ways of partitioning a set of n

elements into m non-empty subsets. See page 757. See also: StirlingS1. New in Version 1.

StreamPosition
StreamPosition[stream] returns an integer which specifies the position of the current point in
an open stream.
On most computer systems, the integer returned by StreamPosition gives the position counting from the
beginning of the file in bytes. See page 653. See also: SetStreamPosition. New in Version 2.

Streams
Streams[ ] gives a list of all streams that are currently open.
Streams["name"] lists only streams with the specified name.
The list returned by Streams can contain InputStream and OutputStream objects. See page 705. See also:
Links, OpenRead, OpenWrite, $Input, Options, SetOptions. New in Version 2.

String
String is the head of a character string "text".
Strings can contain any sequence of ordinary or special characters. x_String can be used as a pattern that
represents a string. String is used as a tag to indicate strings in Read, terminated by RecordSeparators
characters. In InputForm, special characters in strings are given as \[Name] or \:code. Except when they are
enclosed between \< and \>, newlines and any tabs which follow them are ignored when strings are input. See
page 406. See also: ToExpression, ToString, SyntaxQ, Characters. New in Version 1; modified in Version 3.



A.10 Major Built-in Mathematica Objects StringDrop — StringLength 1291

StringDrop
StringDrop["string", n] gives "string" with its first n characters dropped.
StringDrop["string", -n] gives "string" with its last n characters dropped.

StringDrop["string", {n}] gives "string" with its nth character dropped.
StringDrop["string", {m, n}] gives "string" with characters m through n dropped.
StringDrop uses the standard sequence specification (see page 1040). Example:
StringDrop["abcdefgh", 2] ��# cdefgh . StringDrop["string", {m, n, s}] drops characters m through n in
steps of s. See page 407. See also: Drop, StringTake, StringPosition, StringReplacePart. New in Version 2;
modified in Version 4.

- StringForm
StringForm["controlstring", expr�, . . . ] prints as the text of the controlstring, with the printed
forms of the expri embedded.
`i` in the control string indicates a point at which to print expri. `` includes the next expri not yet printed.
, `.` prints a raw ` in the output string. StringForm acts as a “wrapper”, which affects printing, but not
evaluation. You can use StringForm to set up “formatted output”. Messages given as values for objects of the
form s::t are used as control strings for StringForm. See page 433. See also: SequenceForm, ToString,
Message. New in Version 1; modified in Version 5.0.

StringInsert
StringInsert["string", "snew", n] yields a string with "snew" inserted starting at position n
in "string".
StringInsert["string", "snew", -n] inserts at position n from the end of "string".
StringInsert["string", "snew", {n�, n�, . . . }] inserts a copy of "snew" at each of the
positions ni.
Example: StringInsert["abcdefg", "XYZ", 2] ��# aXYZbcdefg . StringInsert["string", "snew", n] makes
the first character of snew the nth character in the new string. StringInsert["string", "snew", -n] makes the
last character of snew the nth character from the end of the new string. In
StringInsert["string", "snew", {n�, n�, . . . }] the ni are taken to refer to positions in "string" before any
insertion is done. See page 408. See also: StringReplacePart, Insert, StringPosition. New in Version 2;
modified in Version 3.

StringJoin
"s�" <> "s�" <> . . . , StringJoin["s�", "s�", . . . ] or StringJoin[{"s�", "s�", . . . }] yields a
string consisting of a concatenation of the si.
Example: "the" <> " " <> "cat" ��# the cat . StringJoin has attribute Flat. When arguments are not
strings, StringJoin is left in symbolic form. See pages 407 and 412. See also: Join, Characters, StringInsert,
StringReplacePart. New in Version 1.

StringLength
StringLength["string"] gives the number of characters in a string.
Example: StringLength["tiger"] ��# 5 . StringLength counts special characters such as Α as single characters,
even if their full names involve many characters. See page 407. See also: Length, Characters. New in
Version 1; modified in Version 3.



1292 StringMatchQ — StringReplacePart Mathematica Reference Guide

StringMatchQ
StringMatchQ["string", "pattern"] yields True if string matches the specified string pattern,
and yields False otherwise.
The pattern string can contain literal characters, together with the metacharacters * and @ specified on page 1044.

Example: StringMatchQ["apppbb", "a*b"] ��# True . Setting the option IgnoreCase -> True makes
StringMatchQ treat lower- and upper-case letters as equivalent. Setting the option SpellingCorrection -> True
makes StringMatchQ allow strings to match even if a small fraction of their characters are different. See
page 411. See also: StringPosition, Equal, Names, MatchQ. New in Version 1.

StringPosition
StringPosition["string", "sub"] gives a list of the starting and ending character positions at
which "sub" appears as a substring of "string".
StringPosition["string", "sub", k] includes only the first k occurrences of "sub".
StringPosition["string", {"sub�", "sub�", . . . }] gives positions of all the "subi".
Example: StringPosition["abbaabbaa", "bb"] ��# ��2, 3�, �6, 7�� . With the default option setting
Overlaps -> True, StringPosition includes substrings that overlap. With the setting Overlaps -> False such
substrings are excluded. Setting the option IgnoreCase -> True makes StringPosition treat lower- and
upper-case letters as equivalent. Example:
StringPosition["abAB", "a", IgnoreCase -> True] ��# ��1, 1�, �3, 3�� . StringPosition returns sequence
specifications in the form used by StringTake, StringDrop and StringReplacePart. See page 409. See also:
Position, Characters, FindList, ReplaceList. New in Version 2.

StringReplace
StringReplace["string", "s�" -> "sp�"] or
StringReplace["string", {"s�" -> "sp�", "s�" -> "sp�", . . . }] replaces the "si" by "spi"
whenever they appear as substrings of "string".
StringReplace goes through a string, testing substrings that start at each successive character position. On each
substring, it tries in turn each of the transformation rules you have specified. If any of the rules apply, it replaces
the substring, then continues to go through the string, starting at the character position after the end of the
substring. Delayed replacements of the form "s" :> expr can be given, so long as expr evaluates to a string every
time the replacement is used. Setting the option IgnoreCase -> True makes StringReplace treat lower- and
upper-case letters as equivalent. See page 410. See also: Replace, StringReplacePart, StringPosition,
ToLowerCase, ToUpperCase. New in Version 2; modified in Version 4.

StringReplacePart
StringReplacePart["string", "snew", {m, n}] replaces the characters at positions m through
n in "string" by "snew".
StringReplacePart["string", "snew", {{m�, n�}, {m�, n�}, . . . }] inserts copies of "snew"
at several positions.
StringReplacePart["string", {"snew�", "snew�", . . . }, {{m�, n�}, {m�, n�}, . . . }]
replaces characters at positions mi through ni in "string" by "snewi".
StringReplacePart uses position specifications in the form returned by StringPosition. When a list of "snewi"
is given, its length must be the same as the length of the list of positions. When multiple positions are given, all
refer to the original "string", before any replacements have been done. StringReplacePart[s, "", . . . ] can be
used to delete substrings. See page 409. See also: StringInsert, StringDrop, StringReplace, StringJoin,
ReplacePart. New in Version 3.



A.10 Major Built-in Mathematica Objects StringReverse — StruveL 1293

StringReverse
StringReverse["string"] reverses the order of the characters in "string".
Example: StringReverse["abcde"] ��# edcba . See page 407. See also: Reverse. New in Version 2.

StringSkeleton
StringSkeleton[n] represents a sequence of n omitted characters in a string printed with
Short.
The standard print form for StringSkeleton is an ellipsis.
You can reset the print form of StringSkeleton. See also: Short, Skeleton, TotalWidth. New in Version 1.

StringTake
StringTake["string", n] gives a string containing the first n characters in "string".
StringTake["string", -n] gives the last n characters in "string".

StringTake["string", {n}] gives the nth character in "string".
StringTake["string", {m, n}] gives characters m through n in "string".
StringTake uses the standard sequence specification (see page 1040). Example:
StringTake["abcdefg", 3] ��# abc . StringTake["string", {m, n, s}] gives characters m through n in steps
of s. See page 407. See also: Take, StringDrop, StringPosition. New in Version 2; modified in Version 4.

StringToStream
StringToStream["string"] opens an input stream for reading from a string.
StringToStream yields a stream of the form InputStream[String, n]. Operations like Read and Find work on
streams returned by StringToStream. You must use Close to close streams created by StringToStream. See
page 654. See also: Characters. New in Version 2.

StructuredSelection
StructuredSelection is an option for Cell which specifies whether to allow only complete
subexpressions in the cell to be selected interactively using the front end.
StructuredSelection is more often set at a global level than at the level of individual cells. See page 615. See
also: Selectable, DragAndDrop. New in Version 3.

StruveH
StruveH[n, z] gives the Struve function Hn�z�.
Mathematical function (see Section A.3.10). Hn�z� for integer n satisfies the differential equation

z�y$$ � zy$ � �z� � n��y � �Π
zn��
��n���dd . StruveH[n, z] has a branch cut discontinuity in the complex z plane running

from �� to �. See page 775. See also: StruveL, BesselJ. New in Version 4.

StruveL
StruveL[n, z] gives the modified Struve function Ln�z�.
Mathematical function (see Section A.3.10). Ln�z� for integer n is related to the ordinary Struve function by
Ln�iz� � �ie�inΠ��Hn�z�. StruveL[n, z] has a branch cut discontinuity in the complex z plane running from �� to
�. See page 775. See also: StruveH, BesselJ. New in Version 4.



1294 Stub — StyleDefinitions Mathematica Reference Guide

Stub
Stub is an attribute which specifies that if a symbol is ever used, Needs should automatically
be called on the context of the symbol.
Symbols with the Stub attribute are created by DeclarePackage. A symbol is considered “used” if its name
appears explicitly, not in the form of a string. Names["nameform"] and Attributes["nameform"] do not constitute
“uses” of a symbol. See pages 329 and 402. New in Version 2.

StyleBox
StyleBox[boxes, options] represents output in which boxes are shown with the specified option
settings.
StyleBox[boxes, "style"] uses the option setting for the specified style in the current
notebook.
You can use font options such as FontSize, FontWeight, FontSlant, FontFamily, FontColor and Background in
StyleBox. The following additional options can be given:

AutoSpacing True whether to adjust character spacings automatically
LineIndent 1.0 distance in ems to indent for each nesting level
LineIndentMaxFraction 0.5 maximum fraction of line width to indent
ScriptMinSize 4.0 the minimum point size to use for subscripts, etc.
ScriptSizeMultipliers 0.71 how much smaller to make each level of subscripts, etc.
ShowContents True whether to make boxes visible or just leave space for them
SpanLineThickness Automatic thickness in printer’s points of fraction lines etc.
SpanMaxSize Automatic maximum size of expandable characters in units of font size
SpanMinSize Automatic minimum size of expandable characters in units of font size
SpanSymmetric True whether vertically expandable characters should be symmetric about the

axis of the box they are in

In StandardForm and InputForm input, StyleBox is by default ignored, so that StyleBox[box, spec] is
interpreted just as box would be. When StyleBox objects are nested, the options of the innermost one control the
display of particular boxes. In StandardForm, explicit StyleBox objects are output literally. You can use
DisplayForm to see the display form of such objects. See page 446. See also: StyleForm, AdjustmentBox,
FrameBox, Cell, ShowAutoStyles. New in Version 3.

StyleDefinitions
StyleDefinitions is an option for notebooks which gives definitions for the styles that can be
used in a notebook.
StyleDefinitions->"name.nb" specifies that style definitions from the notebook name.nb should be used. The
standard notebook front end comes with a selection of style definition notebooks containing styles appropriate for
particular purposes. StyleDefinitions->Notebook[. . . ] allows style definitions to be given explicitly. The
definition for a style named "s" is specified by the options for the first cell whose contents is StyleData["s"].

See page 603. See also: ScreenStyleEnvironment, PrintingStyleEnvironment. New in Version 3.



A.10 Major Built-in Mathematica Objects StyleForm — SubscriptBox 1295

StyleForm
StyleForm[expr, options] prints using the specified style options.
StyleForm[expr, "style"] prints using the specified cell style in the current notebook.
You can use font options such as FontSize, FontWeight, FontSlant, FontFamily, FontColor and Background in
StyleForm. Additional options can be given as in StyleBox. StyleForm acts as a “wrapper”, which affects
printing, but not evaluation. StyleForm can be used to specify the style for text in graphics.

StyleForm[expr, "style"] will work only if the notebook front end is being used; StyleForm[expr, options] for
many options will work in all cases. When StyleForm objects are nested, the options of the innermost one
control the printing of a particular expression. See pages 443 and 558. See also: StylePrint, StyleBox,
TextStyle, $TextStyle, FormatType, Cell. New in Version 3.

StylePrint
StylePrint[expr, "style"] creates a new cell in the current notebook with the specified style,
and prints expr into it.
StylePrint[expr] uses the default style for the current notebook.
- StylePrint creates a new cell immediately after the cell that is currently being evaluated.

StylePrint[expr, "style", opts] can be used to specify options for the cell that is created. StylePrint is a
special case of NotebookWrite. With a text-based front end, StylePrint does the same as Print. Cells
generated by StylePrint by default have GeneratedCell->True and CellAutoOverwrite->True.

StylePrint[expr, "style"] generates a whole cell with the specified style; Print[StyleForm[expr, "style"]]
generates a cell with the default style but containing a StyleBox object. See pages 477 and 575. See also:
CellPrint, Print, NotebookWrite, NotebookPrint, StyleForm. New in Version 3.

Subresultants
Subresultants[poly�, poly�, var] generates a list of the principal subresultant coefficients of
the polynomials poly� and poly� with respect to the variable var.
The first k subresultants of two polynomials a and b, both with leading coefficient one, are zero when a and b have
k common roots. Subresultants returns a list whose length is
Min[Exponent[poly�, var], Exponent[poly�, var]] + 1. See page 803. See also: Resultant, PolynomialGCD,
Eliminate, Minors. New in Version 4.

SubscriptBox
SubscriptBox[x, y] represents xy in input and output.
Inside \( . . . \) SubscriptBox[x, y] can be input as x \_ y. In a notebook a SubscriptBox can be created using
��-� or ��@� . ���� moves out of the subscript. In StandardForm and InputForm, SubscriptBox[x, y] is
interpreted on input as Subscript[x, y]. The baseline of SubscriptBox[x, y] is taken to be the baseline of x.

SubscriptBox[x, y] is usually output with y in a smaller font than x. In StandardForm, explicit SubscriptBox
objects are output literally. You can use DisplayForm to see the display form of such objects. See page 445. See
also: SuperscriptBox, SubsuperscriptBox, UnderscriptBox, ScriptSizeMultipliers. New in Version 3.



1296 SubsuperscriptBox — SuperscriptBox Mathematica Reference Guide

SubsuperscriptBox
SubsuperscriptBox[x, y, z] represents xy

z .
SubsuperscriptBox[x, y, z] can be input as x \_ y \% z when inside \( . . . \). In a notebook a
SubsuperscriptBox can be created by using ��-� or ��@� to move to the subscript, then ��%� to move to the
superscript. ���� moves out of the subscript or superscript position. In StandardForm and InputForm,
SubsuperscriptBox[x, y, z] is interpreted on input as Power[Subscript[x, y], z]. The baseline of
SubsuperscriptBox[x, y, z] is taken to be the baseline of x. SubsuperscriptBox[x, y, z] is usually output
with y and z in a smaller font than x. In StandardForm, explicit SubsuperscriptBox objects are output literally.
You can use DisplayForm to see the display form of such objects. See page 445. See also: SubscriptBox,
SuperscriptBox, UnderoverscriptBox. New in Version 3.

Subtract
x - y is equivalent to x + (-1 * y).
x - y is converted to x + (-1 * y) on input. See page 29. See also: Minus, Decrement. New in Version 1.

SubtractFrom
x -= dx subtracts dx from x and returns the new value of x.
SubtractFrom has the attribute HoldFirst. x -= dx is equivalent to x = x - dx. See page 305. See also:
Decrement, PreDecrement, Set. New in Version 1.

Sum

Sum[f, {i, imax}] evaluates the sum �imax
i�� f .

Sum[f, {i, imin, imax}] starts with i = imin. Sum[f, {i, imin, imax, di}] uses steps di.

Sum[f, {i, imin, imax}, {j, jmin, jmax}, . . . ] evaluates the multiple sum �imax
i�imin �jmax

j�jmin 			 f .

Sum[f, {i, imax}] can be entered as )i
imax f . ) can be entered as ,sum , or \[Sum]. Sum[f, {i, imin, imax}]

can be entered as )i=imin
imax f . The limits should be underscripts and overscripts of ) in normal input, and

subscripts and superscripts when embedded in other text. Sum evaluates its arguments in a non-standard way (see
page 1046). Sum uses the standard Mathematica iteration specification. The iteration variable i is treated as local.

In multiple sums, the range of the outermost variable is given first. The limits of summation need not be
numbers. They can be Infinity or symbolic expressions. If a sum cannot be carried out explicitly by adding up
a finite number of terms, Sum will attempt to find a symbolic result. In this case, f is first evaluated symbolically.

Sum can do essentially all sums that are given in standard books of tables. Sum is output in StandardForm using). See pages 83 and 890. Implementation notes: see page 1071. See also: Do, Product, Table, NSum,
ZTransform, Total, RSolve. New in Version 1; modified in Version 3.

SuperscriptBox
SuperscriptBox[x, y] represents xy in input and output.
Inside \( . . . \) SuperscriptBox[x, y] can be input as x \^ y. In a notebook a SuperscriptBox can be created
using ��6� or ��^� . ���� moves out of the superscript. In StandardForm and InputForm,
SuperscriptBox[x, y] is interpreted on input as Power[x, y]. The baseline of SuperscriptBox[x, y] is taken
to be the baseline of x. SuperscriptBox[x, y] is usually output with y in a smaller font than x. In
StandardForm, explicit SuperscriptBox objects are output literally. You can use DisplayForm to see the display
form of such objects. See page 445. See also: SubscriptBox, SubsuperscriptBox, OverscriptBox,
ScriptSizeMultipliers. New in Version 3.



A.10 Major Built-in Mathematica Objects SurfaceColor — SurfaceGraphics 1297

SurfaceColor
SurfaceColor[dcol] is a three-dimensional graphics directive which specifies that the polygons
which follow should act as diffuse reflectors of light with a color given by dcol.
SurfaceColor[dcol, scol] specifies that a specular reflection component should be included,
with a color given by scol.
SurfaceColor[dcol, scol, n] specifies that the reflection should occur with specular
exponent n.
SurfaceColor directives give surface properties which determine the effect of simulated illumination on polygons.

SurfaceColor directives can appear inside FaceForm directives. If no SurfaceColor directive is given, polygons
are assumed to be white diffuse reflectors of light, obeying Lambert’s law of reflection, so that the intensity of
reflected light is cos�Α� times the intensity of incident light, where Α is the angle between the direction of the
incident light and the polygon normal. When Α c ��� , there is no reflected light. SurfaceColor[GrayLevel[a]]
specifies that polygons should act as diffuse reflectors, but with albedo a. The intensity of reflected light is therefore
a times the intensity of the incident light, multiplied by cos�Α�, and is of the same color.

SurfaceColor[RGBColor[r, g, b]] specifies that the red, green and blue components of the reflected light should
be respectively r, g and b times those of the incident light, multiplied by cos�Α�. The second element in
SurfaceColor[dcol, scol] specifies a specular reflection component. scol must be a GrayLevel, Hue or RGBColor
specification. The color components of scol give the fractions of each color component in the incident intensity
which are reflected in a specular way by the surface. The parameter n gives the specular exponent. The intensity
of specularly reflected light at angle Θ from the mirror-reflection direction falls off like cos�Θ�n as Θ increases. It is
zero when Θ c ��� . For real materials, n is typically between about 1 and a few hundred. With a coarse polygonal
mesh, however, values of n below 10 are usually most appropriate. The default value for n is 1. Mathematica
implements a version of the Phong lighting model, in which the intensity of reflected light is given schematically
by Iin�d cos�Α� � s cos�Θ�n�. The intensity of light from diffuse and specular reflection is added linearly for each
color component. The final color shown for a particular polygon is the sum of contributions from each light source,
and from ambient light. See page 546. See also: Lighting, LightSources, AmbientLight. New in Version 2.

SurfaceGraphics
SurfaceGraphics[array] is a representation of a three-dimensional plot of a surface, with
heights of each point on a grid specified by values in array.
SurfaceGraphics[array, shades] represents a surface, whose parts are shaded according to the
array shades.
SurfaceGraphics can be displayed using Show. SurfaceGraphics has the same options as Graphics3D, with the
following additions:

ClipFill Automatic how to draw clipped parts of the surface
ColorFunction Automatic function to determine color based on z value
ColorFunctionScaling True whether to scale z values before applying a color function
HiddenSurface True whether to eliminate hidden surfaces
Mesh True whether to draw a mesh on the surface
MeshRange Automatic the original range of x, y coordinates for the plot
MeshStyle Automatic graphics directives to specify the style for a mesh

SurfaceGraphics does not support the options PolygonIntersections and RenderAll available for Graphics3D.
For SurfaceGraphics, the default setting for BoxRatios is BoxRatios -> {1, 1, 0.4}. array should be a

rectangular array of real numbers, representing z values. There will be holes in the surface corresponding to any
array elements that are not real numbers. If array has dimensions m � n, then shades must have dimensions
�m � �� � �n � ��. The elements of shades must be GrayLevel, Hue or RGBColor directives, or SurfaceColor objects.

Graphics3D[SurfaceGraphics[ . . . ]] can be used to convert a SurfaceGraphics object into the more general
Graphics3D representation. SurfaceGraphics is generated by Plot3D and ListPlot3D. See page 537. See also:
ListPlot3D, Plot3D, ContourGraphics, DensityGraphics. New in Version 1.



1298 Switch — Table Mathematica Reference Guide

Switch
Switch[expr, form�, value�, form�, value�, . . . ] evaluates expr, then compares it with each of
the formi in turn, evaluating and returning the valuei corresponding to the first match found.
Only the valuei corresponding to the first formi that matches expr is evaluated. Each formi is evaluated only when
the match is tried. If the last formi is the pattern _, then the corresponding valuei is always returned if this case is
reached. If none of the formi match expr, the Switch is returned unevaluated. Switch has attribute HoldRest.

You can use Break, Return and Throw in Switch. See page 345. See also: If, Condition, Which. New in
Version 1.

Symbol
Symbol["name"] refers to a symbol with the specified name.
All symbols, whether explicitly entered using Symbol or not, have head Symbol. x_Symbol can be used as a
pattern to represent any symbol. The string "name" in Symbol["name"] must be an appropriate name for a
symbol. It can contain any letters, letter-like forms, or digits, but cannot start with a digit. Symbol["name"]
creates a new symbol if none exists with the specified name. A symbol such as x has a name "x". If
Symbol["name"] creates a new symbol, it does so in the context specified by $Context. See page 1016. See also:
SymbolName, ToExpression, Unique, Remove. New in Version 1.

SymbolName
SymbolName[symbol] gives the name of the specified symbol.
Example: SymbolName[x] ��# "x" . SymbolName evaluates its input. SymbolName always returns a string. See
page 402. See also: ToString, Symbol. New in Version 3.

SyntaxLength
SyntaxLength["string"] finds the number of characters starting at the beginning of a string
that correspond to syntactically correct input for a single Mathematica expression.
SyntaxLength effectively returns the position of a syntax error, if one exists. If SyntaxLength returns a position
past the end of the string, it indicates that the string is syntactically correct as far as it goes, but needs to be
continued in order to correspond to input for a complete Mathematica expression. See page 466. See also:
SyntaxQ, $SyntaxHandler. New in Version 2.

SyntaxQ
SyntaxQ["string"] returns True if the string corresponds to syntactically correct input for a
single Mathematica expression, and returns False otherwise.
If SyntaxQ returns False, you can find the position of a syntax error using SyntaxLength. See page 466. See
also: ToExpression, SyntaxLength, $SyntaxHandler, DelimiterFlashTime. New in Version 2.

Table
Table[expr, {imax}] generates a list of imax copies of expr.
Table[expr, {i, imax}] generates a list of the values of expr when i runs from 1 to imax.
Table[expr, {i, imin, imax}] starts with i = imin.
Table[expr, {i, imin, imax, di}] uses steps di.
Table[expr, {i, imin, imax}, {j, jmin, jmax}, . . . ] gives a nested list. The list associated
with i is outermost.

(continued)



A.10 Major Built-in Mathematica Objects Table (continued) — TableForm 1299

Table (continued)

Table evaluates its arguments in a non-standard way (see page 1046). Example:
Table[f[i], {i, 4}] ��# �f1�, f2�, f3�, f4�� . Table uses the standard Mathematica iteration
specification. Example: Table[i-j, {i, 2}, {j, 2}] ��# ��0, �1�, �1, 0�� . You can use Table to build up
vectors, matrices and tensors. See page 115. See also: Range, DiagonalMatrix, IdentityMatrix, Array, Do, Sum,
Product, FunctionInterpolation, NestList, NestWhileList, SparseArray. Related package:
LinearAlgebra`MatrixManipulation`. New in Version 1.

TableAlignments
TableAlignments is an option for TableForm and MatrixForm which specifies how entries in
each dimension should be aligned.
TableAlignments -> {a�, a�, . . . } specifies alignments for successive dimensions. For dimensions that are given
as columns, possible alignments are Left, Center and Right. For dimensions that are given as rows, possible
alignments are Bottom, Center and Top. The default setting TableAlignments -> Automatic uses Left for
column alignment, and Bottom for row alignment. See page 442. See also: TableDirections, RowAlignments,
ColumnAlignments. New in Version 2.

TableDepth
TableDepth is an option for TableForm and MatrixForm which specifies the maximum
number of levels to be printed in tabular or matrix format.
TableForm[list, TableDepth -> n] prints elements in list below level n as ordinary lists, rather than arranging
them in tabular form. With the default setting TableDepth -> Infinity, as many levels as possible are printed in
tabular form. In TableForm, the levels printed need not consist of elements with the same list structure. In
MatrixForm, they must. See page 442. See also: ArrayDepth. New in Version 2.

TableDirections
TableDirections is an option for TableForm and MatrixForm which specifies whether
successive dimensions should be arranged as rows or columns.
TableDirections -> Column specifies that successive dimensions should be arranged alternately as columns and
rows, with the first dimension arranged as columns. TableDirections -> Row takes the first dimension to be
arranged as rows. TableDirections -> {dir�, dir�, . . . } specifies explicitly whether each dimension should be
arranged with Column or Row. See page 441. See also: TableSpacing. New in Version 2.

TableForm
TableForm[list] prints with the elements of list arranged in an array of rectangular cells.
The height of each row and the width of each column are determined by the maximum size of an element in the
row or column. TableForm prints a single-level list in a column. It prints a two-level list as a two-dimensional
table. More deeply nested lists are by default printed with successive dimensions alternating between rows and
columns. Arrays in which all sublists at a particular level are not of the same length display as ragged tables.

The following options can be given:

TableAlignments Automatic how to align entries in each dimension
TableDepth Infinity maximum number of levels to include
TableDirections Column whether to arrange dimensions as rows or columns
TableHeadings None how to label table entries
TableSpacing Automatic how many spaces to put between entries in each dimension

TableForm acts as a “wrapper”, which affects printing, but not evaluation. See page 439. See also:
ColumnForm, MatrixForm, GridBox, GraphicsArray. New in Version 1.



1300 TableHeadings — TagSetDelayed Mathematica Reference Guide

TableHeadings
TableHeadings is an option for TableForm and MatrixForm which gives the labels to be
printed for entries in each dimension of a table or matrix.
TableHeadings -> None gives no labels in any dimension. TableHeadings -> Automatic gives successive integer
labels for each entry in each dimension. TableHeadings -> {{lab��, lab��, . . . }, . . . } gives explicit labels for
each entry. The labels can be strings or other Mathematica expressions. The labels are placed as headings for
rows or columns. See page 442. New in Version 2.

TableSpacing
TableSpacing is an option for TableForm and MatrixForm which specifies how many spaces
should be left between each successive row or column.
TableSpacing -> {s�, s�, . . . } specifies that si spaces should be left in dimension i. For columns, the spaces are
rendered as space characters. For rows, the spaces are rendered as blank lines. For TableForm,
TableSpacing -> Automatic yields spacings {1, 3, 0, 1, 0, 1, . . . }. See page 442. See also: RowSpacings,
ColumnSpacings, GraphicsSpacing. New in Version 2.

TagBox
TagBox[boxes, tag] displays as boxes but maintains tag to guide the interpretation of boxes on
input.
TagBox provides a way to store hidden information in Mathematica output. TagBox is generated sometimes in
StandardForm output, and often in TraditionalForm output. By convention, tag is typically a symbol that
corresponds to the head of the interpreted form of boxes. The following options can be given:

AutoDelete False whether to strip the TagBox if boxes are modified
DeletionWarning False whether to issue a warning if boxes are deleted
Editable True whether to allow boxes to be edited
Selectable True whether to allow boxes to be selected
StripWrapperBoxes False whether to remove StyleBox etc. from within boxes

If you modify the displayed form of TagBox[boxes, tag] only boxes will be modified, and there is no guarantee
that correct correspondence with expr will be maintained. See page 447. See also: InterpretationBox, FormBox,
ToExpression. New in Version 3.

TagSet
f/: lhs = rhs assigns rhs to be the value of lhs, and associates the assignment with the symbol f.
TagSet defines upvalues or downvalues as appropriate. The symbol f in f/: lhs = rhs must appear in lhs as the
head of lhs, the head of the head, one of the elements of lhs, or the head of one of the elements. A common case
is f/: h[f[args]] = rhs. You can see all the rules associated with a particular symbol by typing ?symbol. If f
appears several times in lhs, then f/: lhs = rhs associates the assignment with each occurrence. When it appears
in symbolic form, TagSet is treated as a scoping construct (see Section A.3.8). See pages 319 and 1051. See also:
Set, UpSet. New in Version 1.

TagSetDelayed
f/: lhs := rhs assigns rhs to be the delayed value of lhs, and associates the assignment with the
symbol f.
See notes for TagSet and SetDelayed. See page 319. New in Version 1.



A.10 Major Built-in Mathematica Objects TagUnset — Temporary 1301

TagUnset
f/: lhs =. removes any rules defined for lhs, associated with the symbol f.
Rules are removed only when their left-hand side is identical to lhs, and the tests in Condition given on the
right-hand side are also identical. See pages 1029 and 1052. See also: Clear, Unset. New in Version 1.

Take
Take[list, n] gives the first n elements of list.
Take[list, -n] gives the last n elements of list.
Take[list, {m, n}] gives elements m through n of list.
Take[list, {m, n, s}] gives elements m through n in steps of s.
Take[list, seq�, seq�, . . . ] gives a nested list in which elements specified by seqi are taken at
level i in list.
Take uses the standard sequence specification (see page 1040). Examples: Take[{a,b,c,d,e}, 3] ��# �a, b, c� .

Take[{a,b,c,d,e}, -2] ��# �d, e� . Take[Range[15], {3, 12, 4}] ��# �3, 7, 11� . Take can be used on
an object with any head, not necessarily List. Take[list, seq�, seq�] effectively extracts a submatrix from list.

Example: Take[{{a,b,c},{d,e,f}}, -1, 2] ��# ��d, e�� . , Applying Take to a SparseArray object normally
yields another SparseArray object. See pages 123 and 287. See also: Part, Drop, StringTake, Select, Cases,
Partition, PadLeft. Related package: LinearAlgebra`MatrixManipulation` . New in Version 1; modified in
Version 4.

Tan
Tan[z] gives the tangent of z.
Mathematical function (see Section A.3.10). The argument of Tan is assumed to be in radians. (Multiply by
Degree to convert from degrees.) Sin[z]/Cos[z] is automatically converted to Tan[z]. TrigFactorList[expr]
does decomposition. Tan is automatically evaluated when its argument is a simple rational multiple of Π; for
more complicated rational multiples, FunctionExpand can sometimes be used. See page 761. See also: ArcTan,
Cot, TrigToExp, TrigExpand. New in Version 1.

Tanh
Tanh[z] gives the hyperbolic tangent of z.
Mathematical function (see Section A.3.10). Sinh[z]/Cosh[z] is automatically converted to Tanh[z].
TrigFactorList[expr] does decomposition. See page 761. See also: ArcTanh, Coth, TrigToExp, TrigExpand.

New in Version 1.

Temporary
Temporary is an attribute assigned to symbols which are created as local variables by Module.
Symbols with attribute Temporary are automatically removed when they are no longer needed. Symbols with
attribute Temporary conventionally have names of the form aaa$nnn. See pages 329 and 383. See also: Module,
Unique. New in Version 2.



1302 TeXForm — Text Mathematica Reference Guide

TeXForm
TeXForm[expr] prints as a TEX version of expr.
TeXForm produces plain TEX. Its output should be suitable for both LATEX and AMSTEX. TeXForm acts as a
“wrapper”, which affects printing, but not evaluation. TeXForm translates standard mathematical functions and
operations. Symbols with names like alpha and ALPHA that correspond to TEX symbols are translated into their
corresponding TEX symbols. Following standard mathematical conventions, single-character symbol names are
given in italic font, while multiple character names are given in roman font. All standard Mathematica box
structures are translated by TeXForm. Mathematica special characters are translated whenever possible to their TEX
equivalents. See pages 210 and 425. See also: TeXSave, StandardForm, TraditionalForm, MathMLForm. New in
Version 1; modified in Version 3.

TeXSave
TeXSave["file.tex"] saves a TEX version of the currently selected notebook in the front end.
TeXSave["file.tex", "source.nb"] saves a TEX version of the notebook from the file source.nb.
TeXSave["file.tex", notebook] saves a TEX version of the notebook corresponding to the
specified notebook object.
TeXSave has options for specifying such features as how to include graphics, what TEX style to use, and how each
notebook style should be rendered in TEX. TeXSave can often be accessed from an item in the Save As Special
menu in the notebook front end. See notes for TeXForm. See page 210. See also: TeXForm, MathMLForm. New
in Version 3.

Text
Text[expr, coords] is a graphics primitive that represents text corresponding to the printed
form of expr, centered at the point specified by coords.
The text is printed by default in OutputForm. Text can be used in both two- and three-dimensional graphics.

The coordinates can be specified either as {x, y, . . . } or as Scaled[{x, y, . . . }]. In two dimensions,
coordinates can also be specified using Offset. Text[expr, coords, offset] specifies an offset for the block of text
relative to the coordinates given. Giving an offset {sdx, sdy} specifies that the point {x, y} should lie at relative
coordinates {sdx, sdy} within the bounding rectangle that encloses the text. Each relative coordinate runs from -1
to +1 across the bounding rectangle. The offsets specified need not be in the range �� to ��. Here are sample
offsets to use in two-dimensional graphics:

{0, 0} text centered at {x, y}

{-1, 0} left-hand end at {x, y}

{1, 0} right-hand end at {x, y}

{0, -1} centered above {x, y}

{0, 1} centered below {x, y}

Text[expr, coords, offset, dir] specifies the orientation of the text is given by the direction vector dir. Possible
values of dir are:
{1, 0} ordinary horizontal text
{0, 1} vertical text reading from bottom to top
{0, -1} vertical text reading from top to bottom
{-1, 0} horizontal upside-down text

(continued)



A.10 Major Built-in Mathematica Objects Text (continued) — TextStyle 1303

Text (continued)

Text in three-dimensional graphics is placed at a position that corresponds to the projection of the point
{x, y, z} specified. Text is drawn in front of all other objects. The font or style for text can be specified using
StyleForm or using the TextStyle option. If no such specifications are given, the font is determined from the
setting for TextStyle for the whole plot, which is in turn by default given by the global variable $TextStyle.

You can specify the color of text using CMYKColor, GrayLevel, Hue and RGBColor directives. The option
CharacterEncoding for Display can be used to specify what raw character encoding to use for character strings in
Text objects. The following options can be given:

Background None background color
FormatType StandardForm format type
TextStyle Automatic style specification

See pages 492 and 560. See also: PlotLabel, AxesLabel, Cell. New in Version 1; modified in Version 3.

TextAlignment
TextAlignment is an option for Cell which specifies how successive lines of text should be
aligned.
Possible settings are:

Left or -1 aligned on the left
Right or +1 aligned on the right
Center or 0 centered
x lined up at position x across the page

TextAlignment can be used both for ordinary text and for Mathematica expressions. See page 609. See also:
TextJustification, ColumnAlignments, PageWidth. New in Version 3.

TextJustification
TextJustification is an option for Cell which specifies how much lines of text can be
stretched in order to make them be the same length.
TextJustification->0 does no stretching, and leads to ragged text boundaries. TextJustification->1 does full
justification, and forces all complete lines to be the same length. No stretching is done on lines that end with
explicit RETURN characters. With settings for TextJustification between 0 and 1, partial justification is done.

With TextJustification->s, Mathematica will take the amount by which each broken line is shorter than
PageWidth, and then insert within the line a total amount of space equal to s times this. If TextJustification is
not 0, the standard Mathematica front end will dynamically adjust the lengths of lines as you enter text. See
page 609. See also: TextAlignment, Hyphenation, PageWidth, AutoSpacing, ButtonExpandable. New in
Version 3.

TextStyle
TextStyle is an option for graphics functions and for Text which specifies the default style
and font options with which text should be rendered.
The following forms of settings can be used:

"style" a specific cell style
{opt�->val�, . . . } a list of option settings
{"style", opt�->val�, . . . } a style modified by option settings

The options that can be given are as in StyleForm. "style" settings can only be used when a notebook front
end is present. The default setting is TextStyle :> $TextStyle. The style specified by TextStyle in a graphics
object is used by default for all text, including labels and tick marks. See page 556. See also: StyleForm,
$TextStyle, PlotStyle, FormatType. New in Version 3.



1304 Thickness — Throw Mathematica Reference Guide

Thickness
Thickness[r] is a graphics directive which specifies that lines which follow are to be drawn
with a thickness r. The thickness r is given as a fraction of the total width of the graph.
Thickness can be used in both two- and three-dimensional graphics. The initial default is Thickness[0.004] for
two-dimensional graphics, and Thickness[0.001] for three-dimensional graphics See page 501. See also:
AbsoluteThickness, PointSize, Dashing, PlotStyle. New in Version 1.

Thread
Thread[f[args]] “threads” f over any lists that appear in args.
Thread[f[args], h] threads f over any objects with head h that appear in args.
Thread[f[args], h, n] threads f over objects with head h that appear in the first n args.
Thread[f[args], h, -n] threads over the last n args.
Thread[f[args], h, {m, n}] threads over arguments m through n.
Example: Thread[f[{a,b}, c, {d,e}]] ��# �fa, c, d�, fb, c, e�� . Functions with attribute Listable are
automatically threaded over lists. All the elements in the specified args whose heads are h must be of the same
length. Arguments that do not have head h are copied as many times as there are elements in the arguments that
do have head h. Thread uses the standard sequence specification (see page 1040). See page 256. See also:
Distribute, Map, Inner, MapThread. New in Version 1.

ThreeJSymbol
ThreeJSymbol[{j�, m�}, {j�, m�}, {j, m}] gives the values of the Wigner 3-j symbol.
The 3-j symbols vanish except when m� �m� �m � � and the ji satisfy a triangle inequality. The parameters of
ThreeJSymbol can be integers, half-integers or symbolic expressions. The Clebsch-Gordan coefficients and 3-j

symbols in Mathematica satisfy the relation Cj�j� j
m�m�m

� ����m�j��j�
!

�j � �
�����

j� j� j
m� m� �m

�����. See page 760. See

also: ClebschGordan, SixJSymbol, SphericalHarmonicY. New in Version 2.

Through
Through[p[f�, f�][x]] gives p[f�[x], f�[x]].
Through[expr, h] performs the transformation wherever h occurs in the head of expr.
Example: Through[(f + g)[x, y]] ��# fx, y� � gx, y� . Through distributes operators that appear inside the
heads of expressions. See page 254. See also: Operate. New in Version 1.

Throw
Throw[value] stops evaluation and returns value as the value of the nearest enclosing Catch.
Throw[value, tag] is caught only by Catch[expr, form] where form is a pattern that matches
tag.
You can use Throw and Catch to exit functions such as Nest, Fold, FixedPoint and Scan. tag can be any
expression. tag in Throw[value, tag] is re-evaluated every time it is compared to form in Catch[expr, form]. An
error is generated and an unevaluated Throw is returned if there is no appropriate enclosing Catch to catch the
Throw. See page 350. See also: Return, Goto, Interrupt, Abort, Sow. New in Version 1; modified in Version 3.



A.10 Major Built-in Mathematica Objects Ticks — TimeConstraint 1305

Ticks
Ticks is an option for graphics functions that specifies tick marks for axes.
The following settings can be given for Ticks:

None no tick marks drawn
Automatic tick marks placed automatically
{xticks, yticks, . . . } tick mark options specified separately for each axis

With the Automatic setting, tick marks are usually placed at points whose coordinates have the minimum
number of digits in their decimal representation. For each axis, the following tick mark options can be given:

None no tick marks drawn
Automatic tick mark positions and labels chosen automatically
{x�, x�, . . . } tick marks drawn at the specified positions
{{x�, label�}, {x�, label�}, . . . } tick marks drawn with the specified labels
{{x�, label�, len�},. . . } tick marks with specified scaled length
{{x�, label�, {plen�, mlen�}}, . . . } tick marks with specified lengths in the positive and negative directions
{{x�, label�, len�, style�}, . . . } tick marks with specified styles
func a function to be applied to xmin, xmax to get the tick mark option

If no explicit labels are given, the tick mark labels are given as the numerical values of the tick mark positions.
Any expression can be given as a tick mark label. The expressions are formatted in OutputForm. Tick mark

lengths are given as a fraction of the distance across the whole plot. Tick mark styles can involve graphics
directives such as RGBColor and Thickness. The tick mark function func[xmin, xmax] may return any other tick
mark option. Ticks can be used in both two- and three-dimensional graphics. AbsoluteOptions gives the
explicit form of Ticks specifications when Automatic settings are given. See pages 512 and 552. See also: Axes,
AxesLabel, FrameTicks, GridLines, MeshRange. New in Version 1.

TimeConstrained
TimeConstrained[expr, t] evaluates expr, stopping after t seconds.
TimeConstrained[expr, t, failexpr] returns failexpr if the time constraint is not met.
TimeConstrained generates an interrupt to abort the evaluation of expr if the evaluation is not completed within
the specified time. TimeConstrained evaluates failexpr only if the evaluation is aborted. TimeConstrained
returns $Aborted if the evaluation is aborted and no failexpr is specified. TimeConstrained is accurate only down
to a granularity of at least $TimeUnit seconds. Aborts generated by TimeConstrained are treated just like those
generated by Abort, and can thus be overruled by AbortProtect. See page 712. See also: MemoryConstrained,
AbsoluteTiming, Timing, $IterationLimit, $RecursionLimit, Pause, Abort, TimeConstraint. New in Version 1.

TimeConstraint
TimeConstraint is an option for Simplify and FullSimplify which gives the maximum
number of seconds for which to try any particular transformation on any subpart of an
expression.
The default setting for TimeConstraint is 300 (corresponding to 5 minutes) in Simplify and Infinity in
FullSimplify. Settings for TimeConstraint give only the maximum time to be spent in doing a particular
transformation on a particular subpart; the total time spent in processing the whole expression may be considerably
larger. Changing the setting for TimeConstraint will never affect the validity of a result obtained from Simplify
or FullSimplify, but smaller settings may prevent the simplest possible form from being found. Since different
computer systems run at different speeds, the same setting for TimeConstraint can lead to different results on
different systems. See page 814. See also: ExcludedForms, TimeConstrained, AbsoluteTiming. New in
Version 3.



1306 Times — Timing Mathematica Reference Guide

Times
x*y*z, x�y�z or x y z represents a product of terms.
The character � is entered as ,* , or \[Times]. It is not the same as \[Cross]. Times has attributes Flat,
Orderless and OneIdentity. The default value for arguments of Times, as used in x_. patterns, is 1. Times[ ]
is taken to be 1. Times[x] is x. 0 x evaluates to 0, but 0.0 x is left unchanged. Unlike other functions, Times
applies built-in rules before user-defined ones. As a result, it is not possible to make definitions such as 2*2=5.

See page 29. See also: Divide, NonCommutativeMultiply, Dot. New in Version 1; modified in Version 3.

TimesBy
x *= c multiplies x by c and returns the new value of x.
TimesBy has the attribute HoldFirst. x *= c is equivalent to x = x*c. See page 305. See also: DivideBy,
AddTo, Set. New in Version 1.

TimeUsed
TimeUsed[ ] gives the total number of seconds of CPU time used so far in the current
Mathematica session.
TimeUsed records only CPU time actually used by the Mathematica kernel. It does not include time used by external
processes called by the kernel. It also does not include time during pauses produced by Pause. TimeUsed is
accurate only down to a granularity of at least $TimeUnit seconds. See page 710. See also: Timing,
SessionTime. New in Version 2.

TimeZone
TimeZone[ ] gives the time zone set for your computer system.
The time zone gives the number of hours which must be added to Greenwich mean time (GMT) to obtain local
time. U.S. eastern standard time (EST) corresponds to time zone ��. Daylight saving time corrections must be
included in the time zone, so U.S. eastern daylight time (EDT) corresponds to time zone �
. See page 709. See
also: Date, AbsoluteTime. Related package: Miscellaneous`CityData`. New in Version 2.

Timing
Timing[expr] evaluates expr, and returns a list of time used, together with the result obtained.
Timing gives the CPU time in seconds, multiplied by the symbol Second. Timing has attribute HoldAll.

Timing[expr;] will give {timing, Null}. First[Timing[expr;]] /. Second->1 yields just the number of
seconds required for the evaluation of expr. Timing is accurate only down to a granularity of at least $TimeUnit
seconds. Timing includes only CPU time spent in the Mathematica kernel. It does not include time spent in
external processes connected via MathLink or otherwise. Nor does it include time spent in the Mathematica front
end. Timing[expr] includes only time spent in the evaluation of expr, and not, for example, in the formatting or
printing of the result. Timing should give accurate results on all operating systems where the running of
processes is specifically scheduled by the operating system. On early versions of Microsoft Windows and Mac OS
where Mathematica must explicitly yield in order for other processes to run, Timing may substantially overestimate
the time used within Mathematica. See page 711. See also: AbsoluteTiming, TimeUsed, TimeConstrained,
SessionTime, AbsoluteTime. New in Version 1.



A.10 Major Built-in Mathematica Objects ToBoxes — ToExpression 1307

ToBoxes
ToBoxes[expr] generates boxes corresponding to the printed form of expr in StandardForm.
ToBoxes[expr, form] gives the boxes corresponding to output in the specified form.
ToBoxes uses any relevant definitions given for Format and MakeBoxes. You can see how box structures
generated by ToBoxes would be displayed by using DisplayForm. See page 428. See also: ToString,
ToExpression, MakeBoxes, HoldForm, DisplayForm. New in Version 3.

ToCharacterCode
ToCharacterCode["string"] gives a list of the integer codes corresponding to the characters in
a string.
ToCharacterCode["string", "encoding"] gives integer codes according to the specified
encoding.
ToCharacterCode handles both ordinary and special characters. ToCharacterCode["string"] returns standard
internal character codes used by Mathematica, which are the same on all computer systems. For characters on an
ordinary American English keyboard, the character codes follow the ASCII standard. For common European
languages, they follow the ISO Latin-1 standard. For other characters, they follow the Unicode standard.

Mathematica defines various additional characters in private Unicode space, with character codes between 64256
and 64300. Character codes returned by ToCharacterCode["string"] lie between 0 and 65535. Encodings
supported in ToCharacterCode["string", "encoding"] are listed in the notes for $CharacterEncoding. If a
particular character has no character code in a given encoding, ToCharacterCode returns None in place of a
character code. ToCharacterCode[{"s�", "s�", . . . }] gives a list of the lists of integer codes for each of the si.

See page 417. See also: FromCharacterCode, Characters, CharacterRange, $CharacterEncoding, DigitQ,
LetterQ, InputForm. New in Version 2; modified in Version 3.

ToDate
ToDate[time] converts an absolute time in seconds since the beginning of January 1, 1900 to a
date of the form {y, m, d, h, m, s}.
ToDate converts between the forms returned by AbsoluteTime and Date. ToDate assumes that both the absolute
time and the date are to be given in the same time zone. See page 710. See also: FromDate. Related package:
Miscellaneous`Calendar`. New in Version 2.

- ToExpression
ToExpression[input] gives the expression obtained by interpreting strings or boxes as
Mathematica input.
ToExpression[input, form] uses interpretation rules corresponding to the specified form.
ToExpression[input, form, h] wraps the head h around the expression produced before
evaluating it.
Example: ToExpression["1 + 1"] ��# 2 . - form can be InputForm, StandardForm, TraditionalForm or
MathMLForm. ToExpression["string"] uses InputForm interpretation rules. ToExpression[boxes] uses
StandardForm interpretation rules. ToExpression prints a message and returns $Failed if it finds a syntax error.
ToExpression does not call $SyntaxHandler. The input given in ToExpression can correspond to multiple
Mathematica expressions. ToExpression processes each one in turn, just like Get.

ToExpression[input, form, Hold] can be used to convert input to an expression, but with the expression
wrapped in Hold to prevent evaluation. ToExpression uses any relevant definitions given for MakeExpression.

See page 428. See also: Symbol, MakeExpression, ToString, ToBoxes, SyntaxQ, SyntaxLength, Read, Get. New
in Version 1; modified in Version 4.1.



1308 ToFileName — ToRadicals Mathematica Reference Guide

ToFileName
ToFileName["directory", "name"] assembles a full file name from a directory name and a file
name.
ToFileName[{dir�, dir�, . . . }, name] assembles a full file name from a hierarchy of directory
names.
ToFileName[{dir�, dir�, . . . }] assembles a single directory name from a hierarchy of directory
names.
ToFileName works differently on different computer systems. ToFileName just creates a file name; it does not
actually search for the file specified. ToFileName["", "name"] gives "name". See page 639. See also:
DirectoryName, Get, $Input. New in Version 3.

Together
Together[expr] puts terms in a sum over a common denominator, and cancels factors in the
result.

Example: Together[1/x + 1/(1-x)] ��# �
1

��������������������������������������������1 � x� x
. Together makes a sum of terms into a single rational

function. The denominator of the result of Together is typically the lowest common multiple of the denominators
of each of the terms in the sum. Together avoids expanding out denominators unless it is necessary. Together
is effectively the inverse of Apart. Together[expr, Modulus->p] generates a result modulo p.

Together[expr, Extension->Automatic] allows operations to be performed on algebraic numbers in expr.
Together[expr, Trig -> True] treats trigonometric functions as rational functions of exponentials, and

manipulates them accordingly. See page 802. See also: Cancel, Collect, Factor, PolynomialGCD. New in
Version 1; modified in Version 3.

TokenWords
TokenWords is an option for Read and related functions which gives a list of token words to be
used to delimit words.
The setting for TokenWords is a list of strings which are used as delimiters for words to be read. The delimiters
specified by TokenWords are themselves returned as words. See page 646. See also: WordSeparators. New in
Version 2.

ToLowerCase
ToLowerCase[string] yields a string in which all letters have been converted to lower case.
ToLowerCase handles both ordinary and special characters. Variant upper-case characters such as
\[CurlyCapitalUpsilon] are converted to their non-variant lower-case forms. See page 413. See also:
LowerCaseQ, ToUpperCase, StringReplace, IgnoreCase. New in Version 2; modified in Version 3.

ToRadicals
ToRadicals[expr] attempts to express all Root objects in expr in terms of radicals.
ToRadicals can always give expressions in terms of radicals when the highest degree of the polynomial that
appears in any Root object is four. There are some cases in which expressions involving radicals can in principle
be given, but ToRadicals cannot find them. , If Root objects in expr contain parameters, ToRadicals[expr] may
yield a result that is not equal to expr for all values of the parameters. See page 826. See also: Solve, NSolve,
RootReduce, Roots. New in Version 3.



A.10 Major Built-in Mathematica Objects ToRules — ToUpperCase 1309

ToRules
ToRules[eqns] takes logical combinations of equations, in the form generated by Roots and
Reduce, and converts them to lists of rules, of the form produced by Solve.
Example: {ToRules[x==1 || x==2]} ��# ��x � 1�, �x � 2�� . ToRules discards nonequalities (!=), and thus
gives only “generic” solutions. See page 820. New in Version 1.

ToString
ToString[expr] gives a string corresponding to the printed form of expr in OutputForm.
ToString[expr, form] gives the string corresponding to output in the specified form.
ToString supports the same set of options as OpenAppend, with default settings FormatType -> OutputForm,
PageWidth -> Infinity, TotalWidth -> Infinity. ToString uses any relevant definitions given for Format and
MakeBoxes. See page 428. See also: ToBoxes, ToExpression, HoldForm, WriteString, SymbolName. New in
Version 1; modified in Version 3.

, Total
Total[list] gives the total of the elements in list.
Total[list, n] totals all elements down to level n.
Total[list] is equivalent to Apply[Plus, list]. Total[f[e�, e�, . . . ], 1] gives the sum of the ei for any head f.

Total is defined so that Total[{{x�, y�, . . . }, {x�, y�, . . . }, . . . }] gives
{Total[{x�, x�, . . . }], Total[{y�, y�, . . . }]}. Total[list, Method->"CompensatedSummation"] uses
compensated summation to reduce numerical error in the result. Total works with SparseArray objects. See
pages 109 and 924. See also: Plus, Tr, Mean, Count, Norm, Sum, Max. New in Version 5.0.

TotalWidth
TotalWidth is an option which can be set for output streams to specify the maximum total
number of characters of text that should be printed for each output expression. Short forms of
expressions are given if the number of characters needed to print the whole expression is too
large.
TotalWidth bounds the actual numbers of characters generated. Line breaks are not counted.

TotalWidth -> Infinity allows expressions of any length to be printed.
SetOptions[stream, TotalWidth -> n] resets the total width allowed for an open stream. See also: Short,

Skeleton, PageWidth. New in Version 1.

ToUpperCase
ToUpperCase[string] yields a string in which all letters have been converted to upper case.
ToUpperCase handles both ordinary and special characters. Variant lower-case characters such as \[CurlyPhi] are
converted to their non-variant upper-case forms. See page 413. See also: UpperCaseQ, ToLowerCase,
StringReplace, IgnoreCase. New in Version 2; modified in Version 3.



1310 Tr — TraceAbove Mathematica Reference Guide

Tr
Tr[list] finds the trace of the matrix or tensor list.
Tr[list, f] finds a generalized trace, combining terms with f instead of Plus.
Tr[list, f, n] goes down to level n in list.
Tr[list] sums the diagonal elements list[[i, i, . . . ]]. Tr works for rectangular as well as square matrices and
tensors. , Tr can be used on SparseArray objects. See page 905. See also: Total, Transpose, Det,
DiagonalMatrix, Eigenvalues. New in Version 4.

Trace
Trace[expr] generates a list of all expressions used in the evaluation of expr.
Trace[expr, form] includes only those expressions which match form.
Trace[expr, s] includes all evaluations which use transformation rules associated with the
symbol s.
In general, form in Trace[expr, form] is compared both with each complete expression that is evaluated, and with
the tag associated with any transformation rule used in the evaluation. Trace[expr, lhs -> rhs] picks out
expressions which match lhs, then replaces them with rhs in the list returned. All expressions in the list returned
by Trace are wrapped in HoldForm. Trace returns a set of nested lists. Each individual list corresponds to a
single evaluation chain, which contains the sequence of forms found for a particular expression. The list has sublists
which give the histories of subsidiary evaluations. Example: Trace[2 3 + 4] ��# ��2 3, 6�, 6 � 4, 10� . The
following options can be given:

MatchLocalNames True whether to allow x to stand for x$nnn
TraceAbove False whether to show evaluation chains which contain the chain containing form
TraceBackward False whether to show expressions preceding form in the evaluation chain
TraceDepth Infinity how many levels of nested evaluations to include
TraceForward False whether to show expressions following form in the evaluation chain
TraceOff None forms within which to switch off tracing
TraceOn _ forms within which to switch on tracing
TraceOriginal False whether to look at expressions before their heads and arguments are evaluated

During the execution of Trace, the settings for the form argument, and for the options TraceOn and TraceOff, can
be modified by resetting the values of the global variables $TracePattern, $TraceOn and $TraceOff, respectively.

See page 356. See also: TraceDialog, TracePrint, TraceScan, EvaluationMonitor. New in Version 2.

TraceAbove
TraceAbove is an option for Trace and related functions which specifies whether to include
evaluation chains which contain the evaluation chain containing the pattern form sought.
TraceAbove -> True includes the first and last expressions in all evaluation chains within which the evaluation
chain containing form occurs. TraceAbove -> All includes all expressions in these evaluation chains.

TraceAbove -> {backward, forward} allows you to specify separately which expressions to include in the
backward and forward directions. Using TraceAbove, you can see the complete paths by which expressions
matching form arose during an evaluation. See page 363. See also: StackComplete. New in Version 2.



A.10 Major Built-in Mathematica Objects TraceBackward — TraceOff 1311

TraceBackward
TraceBackward is an option for Trace and related functions which specifies whether to
include preceding expressions on the evaluation chain that contains the pattern form sought.
TraceBackward -> True includes the first expression on the evaluation chain that contains form.

TraceBackward -> All includes all expressions before form on the evaluation chain that contains form.
TraceBackward allows you to see the previous forms that an expression had during an evaluation. See

page 363. See also: StackComplete. New in Version 2.

TraceDepth
TraceDepth is an option for Trace and related functions which specifies the maximum nesting
of evaluation chains that are to be included.
Setting TraceDepth -> n keeps only parts down to level n in nested lists generated by Trace. By setting
TraceDepth, you can make Trace and related functions skip over “inner” parts of a computation, making their
operation more efficient. See page 362. See also: TraceOff. New in Version 2.

TraceDialog
TraceDialog[expr] initiates a dialog for every expression used in the evaluation of expr.
TraceDialog[expr, form] initiates a dialog only for expressions which match form.
TraceDialog[expr, s] initiates dialogs only for expressions whose evaluations use
transformation rules associated with the symbol s.
See notes for Trace. The expression to be evaluated when a dialog is called is given as Out[$Line] of the dialog,
wrapped in HoldForm. The expression can be seen by asking for % when the dialog is first started. Any value
returned from the dialog is discarded. TraceDialog[expr] returns the result of evaluating expr. See page 366.

New in Version 2.

TraceForward
TraceForward is an option for Trace and related functions which specifies whether to include
later expressions on the evaluation chain that contains the pattern form sought.
TraceForward -> True includes the final expression on the evaluation chain that contains form.

TraceForward -> All includes all expressions after form on the evaluation chain that contains form.
TraceForward allows you to see the transformations performed on an expression generated during an evaluation.
See page 362. New in Version 2.

TraceOff
TraceOff is an option for Trace and related functions which specifies forms inside which
tracing should be switched off.
The setting for TraceOff gives a pattern which is compared with expressions to be evaluated. If the pattern
matches the expression, then tracing will be switched off while that expression is being evaluated. The pattern is
also tested against tags associated with the evaluation. You can use TraceOff to avoid tracing inner parts of a
computation. The default setting TraceOff -> None never switches off tracing. TraceOn will not work inside
TraceOff. During the execution of Trace, the settings for TraceOn and TraceOff can be modified by resetting
the values of the global variables $TraceOn and $TraceOff. See page 360. See also: TraceDepth, TraceOn.

New in Version 2.



1312 TraceOn — TraceScan Mathematica Reference Guide

TraceOn
TraceOn is an option for Trace and related functions which specifies when tracing should be
switched on.
With the setting TraceOn -> patt, Trace and related functions do not start tracing until they encounter expressions
to evaluate which match the pattern patt. This pattern is also tested against tags associated with the evaluation.

TraceOff can be used within tracing switched on by TraceOn. Once tracing has been switched off by
TraceOff, however, TraceOn will not switch it on again. During the execution of Trace, the settings for TraceOn
and TraceOff can be modified by resetting the values of the global variables $TraceOn and $TraceOff. See
page 360. See also: TraceOff. New in Version 2.

TraceOriginal
TraceOriginal is an option for Trace and related functions which specifies whether to test
the form of each expression before its head and arguments are evaluated.
With the default TraceOriginal -> False, the forms of expressions generated during an evaluation are tested only
after their head and arguments have been evaluated. In addition, evaluation chains for expressions which do not
change under evaluation are not included. With TraceOriginal -> True, the forms before evaluation of the head
and arguments are also tested, and evaluation chains for expressions which do not change under evaluation are
included. See page 364. New in Version 2.

TracePrint
TracePrint[expr] prints all expressions used in the evaluation of expr.
TracePrint[expr, form] includes only those expressions which match form.
TracePrint[expr, s] includes all evaluations which use transformation rules associated with
the symbol s.
See notes for Trace. TracePrint indents its output in correspondence with the nesting levels for lists generated
by Trace. The indentation is done using the print form defined for the object Indent[d]. TracePrint prints the
forms of expressions before any of their elements are evaluated. TracePrint does not support the TraceBackward
option of Trace. TracePrint yields only the forward part of the output specified by the option setting
TraceAbove -> All. TracePrint[expr] returns the result of evaluating expr. See page 365. New in Version 2.

TraceScan
TraceScan[f, expr] applies f to all expressions used in the evaluation of expr.
TraceScan[f, expr, form] includes only those expressions which match form.
TraceScan[f, expr, s] includes all evaluations which use transformation rules associated with
the symbol s.
TraceScan[f, expr, form, fp] applies f before evaluation and fp after evaluation to expressions
used in the evaluation of expr.
See notes for Trace. All expressions are wrapped in HoldForm to prevent evaluation before f or fp are applied to
them. The function fp is given as arguments both the form before evaluation and the form after evaluation.

TraceScan[f, expr] returns the result of evaluating expr. See page 366. New in Version 2.



A.10 Major Built-in Mathematica Objects TraditionalForm — TrigExpand 1313

TraditionalForm
TraditionalForm[expr] prints as an approximation to the traditional mathematical notation
for expr.
Output from TraditionalForm cannot necessarily be given as unique and unambiguous input to Mathematica.

TraditionalForm inserts invisible TagBox and InterpretationBox constructs into the box form of output it
generates, to allow unique interpretation. TraditionalForm can be edited in the notebook front end.

TraditionalForm uses special characters as well as ordinary keyboard characters. TraditionalForm incorporates
a large collection of rules for approximating traditional mathematical notation. TraditionalForm prints functions
in Global` context in the form f(x). ToExpression[boxes, TraditionalForm] will attempt to convert from
TraditionalForm. The notebook front end contains menu items for conversion to and from TraditionalForm.

See page 425. See also: StandardForm, TeXForm, MakeExpression, ToBoxes, MathMLForm. New in Version 3.

TransformationFunctions
TransformationFunctions is an option for Simplify and FullSimplify which gives the list
of functions to apply to try to transform parts of an expression.
The default setting TransformationFunctions->Automatic uses a built-in collection of transformation functions.

TransformationFunctions->{f�, f�, . . . } uses only the functions fi.
TransformationFunctions->{Automatic, f�, f�, . . . } uses built-in transformation functions together with the

functions fi. See page 815. See also: Simplify, FullSimplify, ReplaceAll, ExcludedForms, FunctionExpand.
New in Version 4.

Transpose
Transpose[list] transposes the first two levels in list.

Transpose[list, {n�, n�, . . . }] transposes list so that the kth level in list is the nk
th level in the

result.
Example: Transpose[{{a,b},{c,d}}] ��# ��a, c�, �b, d�� . Transpose gives the usual transpose of a matrix.

Acting on a tensor Ti� i�i			 Transpose gives the tensor Ti� i�i			. Transpose[list, {n�, n�, . . . }] gives the tensor
Tin� in� 			

. So long as the lengths of the lists at particular levels are the same, the specifications nk do not
necessarily have to be distinct. Example:
Transpose[Array[a, {3, 3}], {1, 1}] ��# �a1, 1�, a2, 2�, a3, 3�� . , Transpose works on SparseArray
objects. See page 905. See also: Flatten, Thread, Tr. Related package: LinearAlgebra`MatrixManipulation` .

New in Version 1.

TreeForm
TreeForm[expr] prints with different levels in expr shown at different depths.
See pages 236 and 237. See also: FullForm, MatrixForm. Related package: DiscreteMath`Tree`. New in
Version 1.

TrigExpand
TrigExpand[expr] expands out trigonometric functions in expr.
TrigExpand operates on both circular and hyperbolic functions. TrigExpand splits up sums and integer multiples
that appear in arguments of trigonometric functions, and then expands out products of trigonometric functions into
sums of powers, using trigonometric identities when possible. See page 811. See also: TrigFactor, TrigReduce,
TrigToExp, Expand, FunctionExpand, Simplify, FullSimplify. New in Version 3.



1314 TrigFactor — UnderoverscriptBox Mathematica Reference Guide

TrigFactor
TrigFactor[expr] factors trigonometric functions in expr.
TrigFactor operates on both circular and hyperbolic functions. TrigFactor splits up sums and integer multiples
that appear in arguments of trigonometric functions, and then factors resulting polynomials in trigonometric
functions, using trigonometric identities when possible. See page 811. See also: TrigExpand, TrigReduce,
TrigToExp, Factor, Simplify, FullSimplify. New in Version 3.

TrigFactorList
TrigFactorList[expr] factors trigonometric functions in expr, yielding a list of lists containing
trigonometric monomials and exponents.
See notes for TrigFactor. TrigFactorList tries to give results in terms of powers of Sin, Cos, Sinh and Cosh,
explicitly decomposing functions like Tan. See page 811. See also: FactorList, TrigToExp. New in Version 3.

TrigReduce
TrigReduce[expr] rewrites products and powers of trigonometric functions in expr in terms of
trigonometric functions with combined arguments.
TrigReduce operates on both circular and hyperbolic functions. Given a trigonometric polynomial, TrigReduce
typically yields a linear expression involving trigonometric functions with more complicated arguments. See
page 811. See also: TrigExpand, TrigFactor, TrigToExp, Simplify, FullSimplify. New in Version 3.

TrigToExp
TrigToExp[expr] converts trigonometric functions in expr to exponentials.
TrigToExp operates on both circular and hyperbolic functions, and their inverses. See page 812. See also:
ExpToTrig, TrigReduce, ComplexExpand. New in Version 3.

True
True is the symbol for the Boolean value true.
See page 85. See also: False, TrueQ, If, Booleans, ForAll. New in Version 1.

TrueQ
TrueQ[expr] yields True if expr is True, and yields False otherwise.
Example: TrueQ[x==y] ��# False . You can use TrueQ to “assume” that a test fails when its outcome is not clear.

TrueQ[expr] is equivalent to If[expr, True, False, False]. See page 346. See also: If, Condition, SameQ.
New in Version 1.

UnderoverscriptBox

UnderoverscriptBox[x, y, z] represents x
y

z
in input and output.

Inside \( . . . \) UnderoverscriptBox[x, y, z] can be input as x \+ y \% z. In a notebook an
UnderoverscriptBox can be created by using ��+� to move to the underscript, then ��%� to move to the
overscript. ���� moves out of the underscript or overscript position. In StandardForm and InputForm,
UnderoverscriptBox[x, y, z] is interpreted on input as Underoverscript[x, y, z]. See notes for
UnderscriptBox and OverscriptBox. See page 445. See also: SubsuperscriptBox, GridBox, ColumnForm. New
in Version 3.



A.10 Major Built-in Mathematica Objects UnderscriptBox — Union 1315

UnderscriptBox
UnderscriptBox[x, y] represents x

y
in input and output.

Inside \( . . . \) UnderscriptBox[x, y] can be input as x \+ y. In a notebook a UnderscriptBox can be created
using ��+� . ���� moves out of the underscript position. In StandardForm and InputForm,
UnderscriptBox[x, y] is interpreted on input as Underscript[x, y]. UnderscriptBox[x, "_"] is interpreted as
UnderBar[x] or

¯
x. The input form x\&\%- can be used. The baseline of UnderscriptBox[x, y] is taken to be the

baseline of x. UnderscriptBox[x, y] is usually output with y in a smaller font than x. With the option setting
LimitsPositioning->True y is placed in an underscript position when the whole UnderscriptBox is displayed
large, and in a subscript position when it is displayed smaller. In StandardForm, explicit UnderscriptBox objects
are output literally. You can use DisplayForm to see the display form of such objects. See page 445. See also:
OverscriptBox, UnderoverscriptBox, SubscriptBox, GridBox, ScriptSizeMultipliers. New in Version 3.

Unequal
lhs != rhs or lhs � rhs returns False if lhs and rhs are identical.
x � y can be entered as x \[NotEqual] y or x H!= H y. lhs � rhs returns True if lhs and rhs are determined to be
unequal by comparisons between numbers or other raw data, such as strings. Approximate numbers are
considered unequal if they differ beyond their last two decimal digits. e� � e� � e � . . . gives True only if none
of the ei are equal. 2 � 3 � 2 ��# False . lhs � rhs represents a symbolic condition that can be generated and
manipulated by functions like Reduce and LogicalExpand. Unequal[e] gives True. For exact numeric
quantities, Unequal internally uses numerical approximations to establish inequality. This process can be affected by
the setting of the global variable $MaxExtraPrecision. In StandardForm, Unequal is printed using �. See
page 86. See also: Equal, UnsameQ, Order. New in Version 1; modified in Version 3.

Unevaluated
Unevaluated[expr] represents the unevaluated form of expr when it appears as the argument
to a function.
f[Unevaluated[expr]] effectively works by temporarily setting attributes so that f holds its argument unevaluated,
then evaluating f[expr]. Example: Length[Unevaluated[5+6]] ��# 2 . See page 339. See also: Hold,
HoldFirst, ReplacePart. New in Version 2.

Uninstall
Uninstall[link] terminates an external program started by Install, and removes Mathematica
definitions set up by it.
The argument of Uninstall is a LinkObject representing a MathLink link as returned by Install. Uninstall
calls Unset to remove definitions set up by Install. See page 659. See also: Install, LinkClose, Close. New
in Version 2; modified in Version 3.

Union
Union[list�, list�, . . . ] gives a sorted list of all the distinct elements that appear in any of the
listi.
Union[list] gives a sorted version of a list, in which all duplicated elements have been
dropped.
If the listi are considered as sets, Union gives their union. Union[list�, list�, . . . ] can be input in StandardForm
and InputForm as list� � list� � . . . . The character � can be entered as ,un , or \[Union]. The listi must have the
same head, but it need not be List. Union[list�, . . . , SameTest->test] applies test to each pair of elements in the
listi to determine whether they should be considered the same. See page 127. See also: Join, Intersection,
Complement, Split. New in Version 1; modified in Version 3.



1316 Unique — Unset Mathematica Reference Guide

Unique
Unique[ ] generates a new symbol, whose name is of the form $nnn.
Unique[x] generates a new symbol, with a name of the form x$nnn.
Unique[{x, y, . . . }] generates a list of new symbols.
Unique["xxx"] generates a new symbol, with a name of the form xxxnnn.
Unique[x] numbers the symbols it creates using $ModuleNumber, and increments $ModuleNumber every time it is
called. Unique["xxx"] numbers the symbols it creates sequentially, starting at 1 for each string xxx.

Unique[name, {attr�, attr�, . . . }] generates a symbol which has the attributes attri. See page 382. See also:
Symbol, ToExpression, Names, GeneratedParameters, Module, CharacterRange. New in Version 1.

UnitStep
UnitStep[x] represents the unit step function, equal to 0 for x ) � and 1 for x ! �.
UnitStep[x�, x�, . . . ] represents the multidimensional unit step function which is 1 only if
none of the xi are negative.
Some transformations are done automatically when UnitStep appears in a product of terms. UnitStep provides a
convenient way to represent piecewise continuous functions. UnitStep has attribute Orderless. For exact
numeric quantities, UnitStep internally uses numerical approximations to establish its result. This process can be
affected by the setting of the global variable $MaxExtraPrecision. See page 879. See also: Sign, Positive,
DiracDelta, DiscreteDelta, KroneckerDelta. New in Version 4.

Unprotect
Unprotect[s�, s�, . . . ] removes the attribute Protected for the symbols si.
Unprotect["form�", "form�", . . . ] unprotects all symbols whose names textually match any
of the formi.
A typical sequence in adding your own rules for built-in functions is Unprotect[f]; definition; Protect[f]. See
notes for Protect. See pages 321 and 1044. See also: Protect, Locked, SetOptions. New in Version 1.

UnsameQ
lhs =!= rhs yields True if the expression lhs is not identical to rhs, and yields False otherwise.
See notes for SameQ. e� =!= e� =!= e gives True if no two of the ei are identical. See page 268. See also:
Equal, Order. New in Version 2.

Unset
lhs =. removes any rules defined for lhs.
Rules are removed only when their left-hand sides are identical to lhs, and the tests in Condition given on the
right-hand side are also identical. See pages 304 and 1052. See also: Clear, TagUnset. New in Version 1.



A.10 Major Built-in Mathematica Objects Update — ValueQ 1317

Update
Update[symbol] tells Mathematica that hidden changes have been made which could affect
values associated with a symbol.
Update[ ] specifies that the value of any symbol could be affected.
Update manipulates internal optimization features of Mathematica. It should not need to be called except under
special circumstances that rarely occur in practice. One special circumstance is that changes in the value of one
symbol can affect the value of another symbol by changing the outcome of Condition tests. In such cases, you
may need to use Update on the symbol you think may be affected. Using Update will never give you incorrect
results, although it will slow down the operation of the system. See page 370. New in Version 1.

UpperCaseQ
UpperCaseQ[string] yields True if all the characters in the string are upper-case letters, and
yields False otherwise.
UpperCaseQ treats both ordinary and special characters. See page 413. See also: LowerCaseQ, LetterQ,
ToUpperCase, ToCharacterCode. New in Version 2; modified in Version 3.

UpSet
lhs^=rhs assigns rhs to be the value of lhs, and associates the assignment with symbols that
occur at level one in lhs.
f[g[x]]=value makes an assignment associated with f. f[g[x]]^=value makes an assignment associated instead with
g. UpSet associates an assignment with all the distinct symbols that occur either directly as arguments of lhs, or
as the heads of arguments of lhs. See pages 318 and 1051. See also: TagSet, UpValues. New in Version 1.

UpSetDelayed
lhs^:=rhs assigns rhs to be the delayed value of lhs, and associates the assignment with
symbols that occur at level one in lhs.
See notes for UpSet and SetDelayed. See pages 316 and 318. New in Version 1.

UpValues
UpValues[f] gives a list of transformation rules corresponding to all upvalues defined for the
symbol f.
You can specify the upvalues for f by making an assignment of the form UpValues[f] = list. The list returned by
UpValues has elements of the form HoldPattern[lhs] :> rhs. See page 322. See also: Set, DownValues,
HoldAllComplete. New in Version 2; modified in Version 3.

ValueQ
ValueQ[expr] gives True if a value has been defined for expr, and gives False otherwise.
ValueQ has attribute HoldFirst. ValueQ gives False only if expr would not change if it were to be entered as
Mathematica input. See page 268. See also: Information. New in Version 1.



1318 Variables — ViewPoint Mathematica Reference Guide

Variables
Variables[poly] gives a list of all independent variables in a polynomial.
See page 799. See also: Coefficient. New in Version 1.

, Variance
Variance[list] gives the statistical variance of the elements in list.
Variance[list] gives the unbiased estimate of variance. Variance[list] is equivalent to
Total[(list-Mean[list])^2]/(Length[list]-1) . Variance handles both numerical and symbolic data.

Variance[{{x�, y�, . . . }, {x�, y�, . . . }, . . . }] gives {Variance[{x�, x�, . . . }], Variance[{y�, y�, . . . }]}.
Variance works with SparseArray objects. See pages 794 and 924. See also: StandardDeviation, Mean,

Quantile. Related packages: Statistics`DescriptiveStatistics` , Statistics`MultiDescriptiveStatistics` .
New in Version 5.0.

VectorQ
- VectorQ[expr] gives True if expr is a list or a one-dimensional SparseArray object, none of
whose elements are themselves lists, and gives False otherwise.
VectorQ[expr, test] gives True only if test yields True when applied to each of the elements
in expr.
VectorQ[expr, NumberQ] tests whether expr is a vector of numbers. See pages 267 and 900. See also: MatrixQ,
ArrayDepth. New in Version 1; modified in Version 2.

Verbatim
Verbatim[expr] represents expr in pattern matching, requiring that expr be matched exactly as
it appears, with no substitutions for blanks or other transformations.
Verbatim[x_] will match only the actual expression x_. Verbatim is useful in setting up rules for transforming
other transformation rules. Verbatim[expr] does not maintain expr in an unevaluated form. See page 278. See
also: HoldPattern. New in Version 3.

ViewCenter
ViewCenter is an option for Graphics3D and SurfaceGraphics which gives the scaled
coordinates of the point which appears at the center of the display area in the final plot.
With the default setting ViewCenter -> Automatic, the whole bounding box is centered in the final image area.

With the setting ViewCenter -> {1/2, 1/2, 1/2}, the center of the three-dimensional bounding box will be
placed at the center of the final display area. The setting for ViewCenter is given in scaled coordinates, which
run from 0 to 1 across each dimension of the bounding box. With SphericalRegion -> True, the circumscribing
sphere is always centered, regardless of the setting for ViewCenter. See page 533. New in Version 2.

ViewPoint
ViewPoint is an option for Graphics3D and SurfaceGraphics which gives the point in space
from which the objects plotted are to be viewed.
ViewPoint -> {x, y, z} gives the position of the view point relative to the center of the three-dimensional box
that contains the object being plotted. The view point is given in a special scaled coordinate system in which the
longest side of the bounding box has length 1. The center of the bounding box is taken to have coordinates
{0, 0, 0}.

(continued)



A.10 Major Built-in Mathematica Objects ViewPoint (continued) — WeierstrassInvariants 1319

ViewPoint (continued)

Common settings for ViewPoint are:

{1.3, -2.4, 2} default setting
{0, -2, 0} directly in front
{0, -2, 2} in front and up
{0, -2, -2} in front and down
{-2, -2, 0} left-hand corner
{2, -2, 0} right-hand corner
{0, 0, 2} directly above

Choosing ViewPoint further away from the object reduces the distortion associated with perspective. The view
point must lie outside the bounding box. The coordinates of the corners of the bounding box in the special
coordinate system used for ViewPoint are determined by the setting for the BoxRatios option. See page 532.

See also: ViewCenter, ViewVertical, SphericalRegion. Related package: Geometry`Rotations`. New in
Version 1.

ViewVertical
ViewVertical is an option for Graphics3D and SurfaceGraphics which specifies what
direction in scaled coordinates should be vertical in the final image.
The default setting is ViewVertical -> {0, 0, 1}, which specifies that the z axis in your original coordinate
system should end up vertical in the final image. The setting for ViewVertical is given in scaled coordinates,
which run from 0 to 1 across each dimension of the bounding box. Only the direction of the vector specified by
ViewVertical is important; its magnitude is irrelevant. See page 533. New in Version 2.

Visible
Visible is an option for Notebook which specifies whether the notebook should be explicitly
displayed on the screen.
With Visible->False a notebook can still be manipulated from the kernel, but will not explicitly be displayed on
the screen. NotebookCreate[Visible->False] creates a new invisible window. See page 620. See also:
Selectable, WindowFloating, CellOpen. New in Version 3.

WeierstrassHalfPeriods
WeierstrassHalfPeriods[{g�, g}] gives the half-periods �Ω�Ω$� for Weierstrass elliptic
functions corresponding to the invariants {g�, g}.
Mathematical function (see Section A.3.10). The half-periods �Ω�Ω$� define the fundamental period parallelogram
for the Weierstrass elliptic functions. WeierstrassHalfPeriods is the inverse of WeierstrassInvariants. See
page 782. See also: WeierstrassP, InverseWeierstrassP, ModularLambda. New in Version 3.

WeierstrassInvariants
WeierstrassInvariants[{Ω, Ω$}] gives the invariants {g�, g} for Weierstrass elliptic
functions corresponding to the half-periods {Ω, Ω$}.
Mathematical function (see Section A.3.10). WeierstrassInvariants is the inverse of WeierstrassHalfPeriods.

See page 782. See also: WeierstrassP, InverseWeierstrassP, KleinInvariantJ. New in Version 3.



1320 WeierstrassP — While Mathematica Reference Guide

WeierstrassP
WeierstrassP[u, {g�, g}] gives the Weierstrass elliptic function j�ug g�� g�.

Mathematical function (see Section A.3.10). j�ug g�� g� gives the value of x for which u � � x
�
�
t � g�t � g����� dt.

See page 782 for a discussion of argument conventions for elliptic functions. See pages 785 and 787. See also:
InverseWeierstrassP. New in Version 1; modified in Version 3.

WeierstrassPPrime
WeierstrassPPrime[u, {g�, g}] gives the derivative of the Weierstrass elliptic function
j�ug g�� g�.
Mathematical function (see Section A.3.10). j$�ug g�� g� � �"�"u�j�ug g� � g�. See page 782 for a discussion of
argument conventions for elliptic functions. See pages 785 and 787. New in Version 1; modified in Version 3.

WeierstrassSigma
WeierstrassSigma[u, {g�, g}] gives the Weierstrass sigma function Σ�ug g�� g�.
Mathematical function (see Section A.3.10). Related to WeierstrassZeta by the differential equation
Σ$�zg g�� g��Σ�zg g�� g� � Ζ�zg g�� g�. WeierstrassSigma is not periodic and is therefore not strictly an elliptic
function. See page 782 for a discussion of argument conventions for elliptic and related functions. See page 785.

See also: WeierstrassZeta. New in Version 3.

WeierstrassZeta
WeierstrassZeta[u, {g�, g}] gives the Weierstrass zeta function Ζ�ug g�� g�.
Mathematical function (see Section A.3.10). Related to WeierstrassP by the differential equation
Ζ$�zg g�� g� � �j�zg g�� g�. WeierstrassZeta is not periodic and is therefore not strictly an elliptic function. See
page 782 for a discussion of argument conventions for elliptic and related functions. See page 785. See also:
WeierstrassSigma. New in Version 3.

Which
Which[test�, value�, test�, value�, . . . ] evaluates each of the testi in turn, returning the value
of the valuei corresponding to the first one that yields True.
Example: Which[1==2, x, 1==1, y] ��# y . Which has attribute HoldAll. If any of the testi evaluated by Which
give neither True nor False, then a Which object containing these remaining elements is returned unevaluated.

You can make Which return a “default value” by taking the last testi to be True. If all the testi evaluate to
False, Which returns Null. See page 345. See also: Switch, If. New in Version 1.

While
While[test, body] evaluates test, then body, repetitively, until test first fails to give True.
While[test] does the loop with a null body. If Break[ ] is generated in the evaluation of body, the While loop
exits. Continue[ ] exits the evaluation of body, and continues the loop. Unless Return[ ] or Throw[ ] are
generated, the final value returned by While is Null. Example: i=0; While[i < 0, tot += f[i]; i++]. Note that
the roles of ; and , are reversed relative to the C programming language. See page 352. See also: Do, For,
NestWhile, Nest, Fold, Select, Throw. New in Version 1.



A.10 Major Built-in Mathematica Objects WindowClickSelect — WindowFrame 1321

WindowClickSelect
WindowClickSelect is an option for Notebook which specifies whether the window for the
notebook should become selected if you click on it.
With WindowClickSelect->True, clicking on the window corresponding to a notebook makes that notebook the
currently selected one. WindowClickSelect affects selection of a window as a whole; Selectable affects only
selection of the contents of a window. See page 620. See also: WindowFloating, SetSelectedNotebook. New in
Version 3.

WindowElements
WindowElements is an option for Notebook which specifies the elements to include in the
window used to display the notebook on the screen.
WindowElements is typically set to a list containing elements such as "HorizontalScrollBar",
"MagnificationPopUp", "StatusArea" and "VerticalScrollBar". The details of particular elements may differ
from one computer system to another. See page 620. See also: WindowToolbars, WindowTitle, WindowFrame.

New in Version 3.

WindowFloating
WindowFloating is an option for Notebook which specifies whether the window for the
notebook should float on top of other windows when it is displayed on the screen.
WindowFloating->True is often used for palettes. If there are several floating windows the most recently selected
one goes on top. See page 620. See also: WindowClickSelect, Visible. New in Version 3.

WindowFrame
WindowFrame is an option for Notebook which specifies the type of frame to draw around the
window in which the notebook is displayed on the screen.
Typical possible settings are:

"Frameless" an ordinary window with no frame
"Generic" a window with a generic border
"ModalDialog" a modal dialog box window
"ModelessDialog" a modeless dialog box window
"MovableModalDialog" a movable modal dialog box window
"Normal" an ordinary window
"Palette" a palette window
"ThinFrame" an ordinary window with a thin frame

The details of how particular types of frames are rendered may differ from one computer system to another.
Settings for WindowFrame affect only the appearance of a window, and not any of its other characteristics. See

page 620. See also: WindowTitle, WindowElements, WindowToolbars. New in Version 3.



1322 WindowMargins — WindowTitle Mathematica Reference Guide

WindowMargins
WindowMargins is an option for Notebook which specifies what margins to leave around the
window that is used to display the notebook on the screen.
WindowMargins->{{left, right}, {bottom, top}} specifies the distances from each edge of your screen to each edge
of the window. Typically only two distances are given explicitly; the others are Automatic, indicating that they
should be determined from the size of the window. Explicit distances are given in printer’s points. Negative
values represent edges that are off the screen. The settings for WindowMargins change whenever you move a
window around interactively using the front end. Window edges closer to the edges of the screen are typically
assigned explicit margin distances; the others are set to Automatic. This allows the same setting for WindowMargins
to work on screens of different sizes. With WindowSize->{Automatic, Automatic} all four margin distances must
be given explicitly. With the default setting WindowMargins->Automatic, new windows are placed on your screen
in such a way as to make as many window title bars as possible visible. See page 620. See also: WindowSize,
WindowMovable. New in Version 3.

WindowMovable
WindowMovable is an option for Notebook which specifies whether to allow the window for
the notebook to be moved around interactively on the screen.
WindowMovable affects only interactive operations in the front end. Even with WindowMovable->False, the
WindowMargins option can still be reset from the kernel or option inspector menu. See page 620. See also:
WindowMargins, Selectable. New in Version 3.

WindowSize
WindowSize is an option for Notebook which specifies the size of window that should be used
to display a notebook on the screen.
WindowSize->{w, h} gives the width and height of the window in printer’s points. Setting either width or height
to Automatic causes the size of the window to be determined from the setting for WindowMargins and the size of
your screen. The setting for WindowSize changes whenever you resize a window interactively in the front end.

On most computer systems, the front end does not allow window sizes below a certain minimum value. See
page 620. See also: WindowMargins. New in Version 3.

WindowTitle
WindowTitle is an option for Notebook which specifies the title to give for the window used
to display the notebook.
WindowTitle->Automatic makes the title be the name of the file in which the notebook is stored.

WindowTitle->None displays no title. The title given for the window need have no connection with the name
of the file in which the window is stored. Not all settings for WindowFrame leave room for a title to be displayed.

See page 620. See also: WindowElements. New in Version 3.



A.10 Major Built-in Mathematica Objects WindowToolbars — WordSeparators 1323

WindowToolbars
WindowToolbars is an option for Notebook which specifies the toolbars to include at the top of
the window used to display the notebook on the screen.
WindowToolbars gives a list of toolbars to include. Typical possible elements are:

"RulerBar" a ruler showing margin settings
"EditBar" buttons for common editing operations
"LinksBar" buttons for hyperlink operations

The detailed appearance and operation of toolbars differ from one computer system to another. Toolbars are
always shown inside the main frame of the window. See page 620. See also: WindowElements, WindowFrame.

New in Version 3.

With
With[{x = x�, y = y�, . . . }, expr] specifies that in expr occurrences of the symbols x, y, . . .
should be replaced by x�, y�, . . . .
With allows you to define local constants. With replaces symbols in expr only when they do not occur as local
variables inside scoping constructs. You can use With[{vars}, body /; cond] as the right-hand side of a
transformation rule with a condition attached. With has attribute HoldAll. With is a scoping construct (see
Section A.3.8). With constructs can be nested in any way. With implements read-only lexical variables. See
page 380. See also: Module, Block, ReplaceAll. New in Version 2.

Word
Word represents a word in Read, Find and related functions.
Words are defined to be sequences of characters that lie between separators. The separators are strings given as the
settings for WordSeparators and RecordSeparators. The default is for words to be delimited by “white space”
consisting of spaces, tabs and newlines. See page 646. See also: Record. New in Version 2.

WordSearch
WordSearch is an option for Find and FindList which specifies whether the text searched for
must appear as a word.
With the setting WordSearch -> True, the text must appear as a word, delimited by word or record separators, as
specified by WordSeparators or RecordSeparators. See page 651. See also: AnchoredSearch. New in
Version 2.

WordSeparators
WordSeparators is an option for Read, Find and related functions which specifies the list of
strings to be taken as delimiters for words.
The default setting is WordSeparators -> {" ", "\t"}. Strings used as word separators may contain several
characters. With the option setting NullWords -> False, any number of word separators may appear between
any two successive words. WordSeparators -> {{lsep�, . . . }, {rsep�, . . . }} specifies different left and right
separators for words. Words must have a left separator at the beginning, and a right separator at the end, and
cannot contain any separators. Strings given as record separators are automatically taken as word separators.

See page 646. See also: RecordSeparators, TokenWords. New in Version 2.



1324 WorkingPrecision — Zeta Mathematica Reference Guide

- WorkingPrecision
WorkingPrecision is an option for various numerical operations which specifies how many
digits of precision should be maintained in internal computations.
WorkingPrecision is an option for such functions as NIntegrate and FindRoot. Setting WorkingPrecision->n
causes all internal computations to be done to at most n-digit precision. , Setting
WorkingPrecision->MachinePrecision causes all internal computations to be done with machine numbers. Even
if internal computations are done to n-digit precision, the final results you get may have much lower precision.

See page 956. See also: AccuracyGoal, Precision, Accuracy, N. New in Version 1; modified in Version 5.0.

Write
Write[channel, expr�, expr�, . . . ] writes the expressions expri in sequence, followed by a
newline, to the specified output channel.
The output channel can be a single file or pipe, or list of them, each specified by a string giving their name, or by
an OutputStream object. Write is the basic Mathematica output function. Print and Message are defined in terms
of it. If any of the specified files or pipes are not already open, Write calls OpenWrite to open them. Write
does not close files and pipes after it finishes writing to them. By default, Write generates output in the form
specified by the setting of the FormatType option for the output stream used. See page 632. See also: Print,
Export, Display, Message, Read, LinkWrite. New in Version 1.

- WriteString
WriteString[channel, expr�, expr�, . . . ] converts the expri to strings, and then writes them in
sequence to the specified output channel.
WriteString uses the OutputForm of the expri. - WriteString allows you to create files which are effectively just
streams of bytes. The files need to be opened with the options CharacterEncoding -> {} and
DOSTextFormat -> False. WriteString does not put a newline at the end of the output it generates. See notes
for Write. See page 632. New in Version 1; modified in Version 5.0.

- Xor
Xor[e�, e�, . . . ] is the logical XOR (exclusive OR) function.
It gives True if an odd number of the ei are True, and the rest are False. It gives False if an
even number of the ei are True, and the rest are False.
, Xor[e�, e�, . . . ] can be input in StandardForm and InputForm as e� � e� � . . . . The character � can be entered
as ,xor , or \[Xor]. Xor gives symbolic results when necessary, applying various simplification rules to them.

Unlike And and Nand, Or and Nor, Xor must always test all its arguments, and so is not a control structure, and
does not have attribute HoldAll. See page 87. See also: LogicalExpand, Mod. New in Version 1; modified in
Version 4.1.

Zeta
Zeta[s] gives the Riemann zeta function Ζ�s�.
Zeta[s, a] gives the generalized Riemann zeta function Ζ�s� a�.
Mathematical function (see Section A.3.10). Ζ�s� � ��k�� k�s. Ζ�s� a� � ��k���k � a��s, where any term with k � a � �
is excluded. Zeta[s] has no branch cut discontinuities. FullSimplify and FunctionExpand include
transformation rules for Zeta. See page 772. Implementation notes: see page 1068. See also: PolyLog,
HarmonicNumber, LerchPhi, RiemannSiegelZ, StieltjesGamma, Glaisher, PrimePi. Related package:
NumberTheory`Ramanujan`. New in Version 1.



A.10 Major Built-in Mathematica Objects ZTransform — $BaseDirectory 1325

ZTransform
ZTransform[expr, n, z] gives the Z transform of expr.
The Z transform of a function f�n� is defined to be ��n�� f�n�z�n. See page 879. See also: InverseZTransform,
LaplaceTransform, Sum, Series, RSolve. New in Version 4.

$Aborted
$Aborted is a special symbol that is returned as the result from a calculation that has been
aborted.
See page 371. See also: Abort, Interrupt. New in Version 2.

, $Assumptions
$Assumptions is the default setting for the Assumptions option used in such functions as
Simplify, Refine and Integrate.
The value of $Assumptions can be modified using Assuming. The initial setting for $Assumptions is True. See
page 818. See also: Assuming, Block. New in Version 5.0.

, $BaseDirectory
$BaseDirectory gives the base directory in which system-wide files to be loaded by
Mathematica are conventionally placed.
$BaseDirectory returns the full name of the directory as a string. Typical values are:

C:\Documents�and�Settings\All�Users\Application�Data\Mathematica Windows
/Library/Mathematica Macintosh
/usr/share/Mathematica Unix

The value of $UserBaseDirectory can be specified by setting the MATHEMATICA_USERBASE operating system
environment variable when the Mathematica kernel is launched. It cannot be reset from inside the kernel. Typical
subdirectories of $BaseDirectory are:

Applications Mathematica application packages
Autoload packages to be autoloaded on startup
FrontEnd front end initialization files
Kernel kernel initialization files
Licensing license management files
SystemFiles general system files

These subdirectories are, if possible, created automatically the first time Mathematica is run. Appropriate
subdirectories are automatically included on $Path. The subdirectories of $BaseDirectory are given in $Path
after the corresponding ones of $UserBaseDirectory. See pages 637 and 1064. See also: $UserBaseDirectory,
$InstallationDirectory, $InitialDirectory, $HomeDirectory. New in Version 5.0.



1326 $BatchInput — $CharacterEncoding Mathematica Reference Guide

$BatchInput
$BatchInput is True if input in the current session is being fed directly to the Mathematica
kernel in batch mode.
$BatchInput is True if input is being taken from a file. $BatchInput can be reset during a Mathematica session.

When $BatchInput is True, Mathematica terminates if it ever receives an interrupt, does not discard input when
blank lines are given, and terminates when it receives end-of-file. See page 715. See also: $IgnoreEOF,
$BatchOutput, $Linked, $Notebooks. New in Version 2.

$BatchOutput
$BatchOutput is True if output in the current session is being sent in batch mode, suitable for
reading by other programs.
The initial value of $BatchOutput is typically determined by a command-line option when the Mathematica session
is started. $BatchOutput cannot be reset during a Mathematica session. When $BatchOutput is set to True,
Mathematica generates all output in InputForm, with the PageWidth option effectively set to Infinity, does not
give In and Out labels, and does not give any banner when it starts up. See page 715. See also: $BatchInput,
$Linked, $CommandLine. New in Version 2.

$ByteOrdering
$ByteOrdering gives the native ordering of bytes in binary data on your computer system.
Possible values of $ByteOrdering are +1 and -1. +1 corresponds to big endian (appropriate for 680x0 and many
other processors); -1 corresponds to little endian (appropriate for x86 processors). +1 corresponds to having the
most significant byte first; -1 to having the least significant byte first. +1 is the order obtained from
IntegerDigits[n, 256]. $ByteOrdering gives the default setting for the ByteOrdering option in Import and
Export. See page 717. See also: $ProcessorType. New in Version 4.

$CharacterEncoding
$CharacterEncoding specifies the default raw character encoding to use for input and output
functions.
The default setting for $CharacterEncoding is $SystemCharacterEncoding. The setting
$CharacterEncoding = None takes all special characters to be represented externally by printable ASCII sequences
such as \[Name] and \:xxxx. - Examples of other possible settings include:

"AdobeStandard" Adobe standard PostScript font encoding
"ASCII" full ASCII, with control characters
"EUC" extended Unix code for Japanese
"ISOLatin1" ISO 8859-1 standard
"ISOLatin2" ISO 8859-2 standard
"ISOLatin3" ISO 8859-3 standard
"ISOLatin4" ISO 8859-4 standard
"ISOLatinCyrillic" ISO 8859-5 standard
"MacintoshRoman" Macintosh roman font encoding
"PrintableASCII" printable ASCII
"ShiftJIS" shift-JIS encoding of JIS X 0208-1990 and extensions

(continued)



A.10 Major Built-in Mathematica Objects $CharacterEncoding (continued) — $ContextPath 1327

$CharacterEncoding (continued)

"Symbol" symbol font encoding
"Unicode" raw 16-bit Unicode
"UTF8" Unicode transformation format
"WindowsANSI" Windows standard font encoding
"ZapfDingbats" Zapf dingbats font encoding

With $CharacterEncoding = "encoding" characters that are included in the encoding can be input in their raw 8-
or 16-bit form, and will be output in this form. Unencoded characters can be input and will be output in
standard \[Name] or \:xxxx form. When using a text-based interface, resetting the value of $CharacterEncoding
has an immediate effect on standard input and output in a Mathematica session. When using the notebook front
end, raw character encodings are normally handled automatically based on the fonts you use. Only raw 16-bit
Unicode is ever sent through the MathLink connection to the kernel. $CharacterEncoding can be set to a list of
the form {class, {{n�, "c�"}, {n�, "c�"}, . . . }}. The class defines the general form of encoding; the ni give
character codes for specific characters ci. Possible settings for class include:

"7Bit" characters 0–127 given as raw bytes; other characters unencoded
"8Bit" characters 0–255 given as raw bytes; other characters unencoded
"16Bit" full two-byte Unicode encoding
"ShiftJIS" shift-JIS encoding

$CharacterEncoding affects the input and output of all characters, including those in symbol names and
comments. $CharacterEncoding also affects characters that appear in Text graphics primitives. See page 420.

See also: CharacterEncoding, FromCharacterCode, ToCharacterCode, $SystemCharacterEncoding,
$ByteOrdering. New in Version 3.

$CommandLine
$CommandLine is a list of strings giving the elements of the original operating system
command line with which Mathematica was invoked.
See page 716. See also: Environment, $InstallationDirectory, $BatchInput, $BatchOutput, $Linked, In. New
in Version 1.

$Context
$Context is a global variable that gives the current context.
Contexts are specified by strings of the form "name`". $Context is modified by Begin, BeginPackage, End and
EndPackage. $Context is a rough analog for Mathematica symbols of the current working directory for files in
many operating systems. See page 393. See also: Context, $ContextPath. New in Version 1.

$ContextPath
$ContextPath is a global variable that gives a list of contexts, after $Context, to search in
trying to find a symbol that has been entered.
Each context is specified by a string of the form "name`". The elements of $ContextPath are tested in order to
try and find a context containing a particular symbol. $ContextPath is modified by Begin, BeginPackage, End
and EndPackage. $ContextPath is a rough analog for Mathematica symbols of the “search path” for files in many
operating systems. See page 394. New in Version 1.



1328 $CreationDate — $ExportFormats Mathematica Reference Guide

$CreationDate
$CreationDate gives the date and time at which the particular release of the Mathematica
kernel you are running was created.
$CreationDate is in the form {year, month, day, hour, minute, second} returned by Date. See page 717. See
also: $VersionNumber, $ReleaseNumber, FileDate, $InstallationDate. New in Version 2.

$CurrentLink
$CurrentLink is the LinkObject representing the MathLink connection for an external
program currently being installed or being called.
$CurrentLink is temporarily set by Install and by ExternalCall. You can use $CurrentLink to distinguish
between several instances of an external program running at the same time. $CurrentLink can be included in
:Pattern: and :Arguments: MathLink template specifications, and will be evaluated at the time when Install is
called. See page 688. See also: $ParentLink, Links, $Input. New in Version 3.

$Display
$Display gives a list of files and pipes to be used with the default $DisplayFunction.
The initial setting of $Display is {}. See page 705. New in Version 1.

$DisplayFunction
$DisplayFunction gives the default setting for the option DisplayFunction in graphics
functions.
The initial setting of $DisplayFunction is Display[$Display, #]&. $DisplayFunction is typically set to a
procedure which performs the following: (1) open an output channel; (2) send a PostScript prolog to the output
channel; (3) use Display to send PostScript graphics; (4) send PostScript epilog; (5) close the output channel and
execute the external commands needed to produce actual display. See page 491. See also: Display, Put, Run,
$SoundDisplayFunction. New in Version 1.

$Echo
$Echo gives a list of files and pipes to which all input is echoed.
You can use $Echo to keep a file of all your input commands. See page 705. New in Version 1.

$Epilog
$Epilog is a symbol whose value, if any, is evaluated when a dialog or a Mathematica session
is terminated.
For Mathematica sessions, $Epilog is conventionally defined to read in a file named end.m. See page 706. See
also: Exit, Quit, Dialog. New in Version 1.

$ExportFormats
$ExportFormats gives a list of export formats currently supported in your Mathematica
system.
The strings that appear in $ExportFormats are the possible third arguments to Export. See page 208. See also:
$ImportFormats, Export, $Packages. New in Version 4.



A.10 Major Built-in Mathematica Objects $Failed — $ImportFormats 1329

$Failed
$Failed is a special symbol returned by certain functions when they cannot do what they
were asked to do.
Get returns $Failed when it cannot find the file or other object that was specified. See page 623. New in
Version 2.

$FormatType
$FormatType gives the default format type to use for text that appears in graphics.
The default setting for the standard notebook front end is $FormatType = StandardForm. The default setting for
the text-based front end is $FormatType = OutputForm. A common alternative setting is TraditionalForm.

Box-based format types such as StandardForm and TraditionalForm can be used only when a notebook front
end is present. $FormatType gives the default value for the FormatType option in graphics. See page 556. See
also: $TextStyle, FormatType. New in Version 3.

$FrontEnd
$FrontEnd is a global variable that specifies to what front end object, if any, the kernel is
currently connected.
$FrontEnd is either a FrontEndObject, or Null. You can use Options and SetOptions on $FrontEnd to read
and set global options for the front end. See page 592. See also: $Notebooks. New in Version 3.

$HistoryLength
$HistoryLength specifies the number of previous lines of input and output to keep in a
Mathematica session.
The default setting for $HistoryLength is Infinity. Values of In[n] and Out[n] corresponding to lines before
those kept are explicitly cleared. Using smaller values of $HistoryLength can save substantial amounts of
memory in a Mathematica session. See page 703. See also: $Line. New in Version 3.

$HomeDirectory
$HomeDirectory gives your “home” directory.
$HomeDirectory returns the full name of the directory as a string. On multi-user operating systems,
$HomeDirectory gives the main directory for the current user. See page 637. See also: Directory,
ParentDirectory, $UserName, $UserBaseDirectory, $InstallationDirectory. New in Version 3.

$IgnoreEOF
$IgnoreEOF specifies whether Mathematica should terminate when it receives an end-of-file
character as input.
$IgnoreEOF defaults to False. $IgnoreEOF is assumed to be False if the input to Mathematica comes from a file,
rather than an interactive device. See pages 706 and 1057. See also: Exit, Quit, $BatchInput. New in
Version 1.

$ImportFormats
$ImportFormats gives a list of import formats currently supported in your Mathematica
system.
The strings that appear in $ImportFormats are the possible second arguments to Import. See page 208. See
also: $ExportFormats, Import, $Packages. New in Version 4.



1330 $InitialDirectory — $IterationLimit Mathematica Reference Guide

- $InitialDirectory
$InitialDirectory gives the initial directory when the current Mathematica session was
started.
$InitialDirectory returns the full name of the directory as a string. , If Mathematica is started from a shell or
command line, $InitialDirectory gives the current operating system directory. , If Mathematica is started from a
menu or icon, $InitialDirectory typically gives the user’s home directory $HomeDirectory. See page 637. See
also: Directory, $CommandLine, $HomeDirectory, $BaseDirectory, $InstallationDirectory. New in Version 3;
modified in Version 5.0.

$Input
$Input is a global variable whose value is the name of the stream from which input to
Mathematica is currently being sought.
During the execution of <<file, $Input is set to "file". During interactive input, $Input is "". See pages 639
and 705. See also: Get, Streams, DirectoryName, ToFileName, $BatchInput, $ParentLink. New in Version 2.

$Inspector
$Inspector is a global variable which gives a function to apply when the inspector is invoked
from an interrupt menu.
The argument supplied is the number of nested invocations of the inspector that are in use. The default value of
$Inspector is Dialog[ ]&. See also: Interrupt. New in Version 2.

$InstallationDate
$InstallationDate gives the date and time at which the copy of the Mathematica kernel you
are running was installed.
$InstallationDate is in the form {year, month, day, hour, minute, second} returned by Date. See page 717.

See also: $CreationDate, $InstallationDirectory. New in Version 3.

, $InstallationDirectory
$InstallationDirectory gives the top-level directory in which your Mathematica installation
resides.
$InstallationDirectory returns the full name of the directory as a string. Typical values are:

C:\Program�Files\Wolfram�Research\Mathematica\5.0 Windows
/Applications/Mathematica�5.0.app Macintosh
/usr/local/mathematica Unix

See page 637. See also: $BaseDirectory, $HomeDirectory, $InitialDirectory, $InstallationDate. New in
Version 5.0.

$IterationLimit
$IterationLimit gives the maximum length of evaluation chain used in trying to evaluate
any expression.
$IterationLimit limits the number of times Mathematica tries to re-evaluate a particular expression.

$IterationLimit gives an upper limit on the length of any list that can be generated by Trace. See page 369.
See also: $RecursionLimit. New in Version 2.



A.10 Major Built-in Mathematica Objects $Language — $MachineName 1331

$Language
$Language is a list of strings which give the names of languages to use for messages.
All language names are conventionally given in English, and are capitalized, as in "French". When a message
with a name s::tag is requested either internally or through the Message function, Mathematica searches for
messages with names s::tag::langi corresponding to the entries "langi" in the list $Language. Only if it fails to
find any of these messages will it use the message with the actual name s::tag. See pages 483 and 706. See
also: MessageName, LanguageCategory. New in Version 2.

$Line
$Line is a global variable that specifies the number of the current input line.
You can reset $Line. See page 702. See also: In, Out, $HistoryLength. New in Version 1.

$Linked
$Linked is True if the Mathematica kernel is being run through MathLink.
$Linked is True when Mathematica is being run with a front end. $Linked is typically False when Mathematica is
being run with a text-based interface. See also: $CommandLine, $BatchInput, $BatchOutput, $Notebooks. New
in Version 2.

$MachineDomain
$MachineDomain is a string which gives the name of the network domain for the computer on
which Mathematica is being run, if such a name is defined.
$MachineDomain is "" if no name is defined. See page 718. See also: $MachineName, $MachineID. New in
Version 3.

$MachineEpsilon
$MachineEpsilon gives the smallest machine-precision number which can be added to 1.0 to
give a result that is distinguishable from 1.0.

$MachineEpsilon is typically ��n�� , where n is the number of binary bits used in the internal representation of
machine-precision floating-point numbers. $MachineEpsilon measures the granularity of machine-precision
numbers. See page 739. See also: $MachinePrecision, $MinMachineNumber, $MaxMachineNumber. Related
package: NumericalMath`ComputerArithmetic`. New in Version 2.

$MachineID
$MachineID is a string which gives, if possible, a unique identification code for the computer
on which Mathematica is being run.
On many computers, $MachineID is the MathID string printed by the external program mathinfo. See page 718.

See also: $SystemID, $MachineName. New in Version 2.

$MachineName
$MachineName is a string which gives the assigned name of the computer on which
Mathematica is being run, if such a name is defined.
For many classes of computers, $MachineName is the network host name. $MachineName is "" if no name is
defined. See page 718. See also: $MachineDomain, $System, $MachineID. New in Version 2.



1332 $MachinePrecision — $MaxPrecision Mathematica Reference Guide

- $MachinePrecision
$MachinePrecision gives the number of decimal digits of precision used for
machine-precision numbers.
- A typical value of $MachinePrecision is � log�� � or approximately 16. , $MachinePrecision is the
numerical value of MachinePrecision. See pages 728 and 739. See also: MachinePrecision, $MachineEpsilon,
$MinMachineNumber, $MaxMachineNumber. Related package: NumericalMath`ComputerArithmetic` . New in
Version 2; modified in Version 5.0.

$MachineType
$MachineType is a string giving the general type of computer on which Mathematica is being
run.
$MachineType is intended to reflect general families of hardware rather than specific models. Typical values are
"PC", "Macintosh", "Sun", "DEC" and "SGI". Computers with the same $MachineType may not be binary
compatible. See page 717. See also: $ProcessorType, $OperatingSystem, $System. New in Version 2.

$MaxExtraPrecision
$MaxExtraPrecision gives the maximum number of extra digits of precision to be used in
functions such as N.
The default value of $MaxExtraPrecision is 50. You can use Block[{$MaxExtraPrecision = n}, expr] to reset
the value of $MaxExtraPrecision temporarily during the evaluation of expr. $MaxExtraPrecision is used
implicitly in various exact numerical computations, including equality tests, comparisons and functions such as
Round and Sign. See page 733. See also: $MaxPrecision. New in Version 3.

$MaxMachineNumber
$MaxMachineNumber is the largest machine-precision number that can be used on a particular
computer system.
Numbers larger than $MaxMachineNumber are always represented in arbitrary-precision form. $MaxMachineNumber
is typically �n , where n is the maximum exponent that can be used in the internal representation of
machine-precision numbers. See page 739. See also: $MinMachineNumber, $MachineEpsilon,
$MachinePrecision. Related package: NumericalMath`ComputerArithmetic` . New in Version 2.

$MaxNumber
$MaxNumber gives the magnitude of the maximum arbitrary-precision number that can be
represented on a particular computer system.

A typical value for $MaxNumber is around ���������. See page 739. See also: $MaxPrecision,
$MaxMachineNumber. New in Version 3.

- $MaxPrecision
$MaxPrecision gives the maximum number of digits of precision to be allowed in
arbitrary-precision numbers.
- The default value of $MaxPrecision is Infinity. $MaxPrecision = Infinity uses the maximum value
possible on a particular computer system, given roughly by Log[10, $MaxNumber]. $MaxPrecision is measured
in decimal digits, and need not be an integer. See page 736. See also: $MinPrecision, $MaxExtraPrecision.

New in Version 3; modified in Version 5.0.



A.10 Major Built-in Mathematica Objects $MessageList — $ModuleNumber 1333

$MessageList
$MessageList is a global variable that gives a list of the names of messages generated during
the evaluation of the current input line.
Whenever a message is output, its name, wrapped with HoldForm is appended to $MessageList. With the
standard Mathematica main loop, $MessageList is reset to {} when the processing of a particular input line is
complete. You can reset $MessageList during a computation. See page 481. See also: MessageList, Check.

New in Version 2.

$MessagePrePrint
$MessagePrePrint is a global variable whose value, if set, is applied to expressions before
they are included in the text of messages.
The default value of $MessagePrePrint is Short. $MessagePrePrint is applied after each expression is wrapped
with HoldForm. See pages 480 and 706. See also: $PrePrint. New in Version 2.

$Messages
$Messages gives the list of files and pipes to which message output is sent.
Output from Message is always given on the $Messages channel. See page 705. New in Version 1.

$MinMachineNumber
$MinMachineNumber is the smallest positive machine-precision number that can be used on a
particular computer system.
, Accuracy[0.] yields Log[10, $MinMachineNumber]. See notes for $MaxMachineNumber. See page 739. See
also: $MinNumber. Related package: NumericalMath`ComputerArithmetic` . New in Version 2.

$MinNumber
$MinNumber gives the magnitude of the minimum positive arbitrary-precision number that can
be represented on a particular computer system.

A typical value for $MinNumber is around ����������. See page 739. See also: $MinPrecision,
$MinMachineNumber. New in Version 3.

- $MinPrecision
$MinPrecision gives the minimum number of digits of precision to be allowed in
arbitrary-precision numbers.
, The default value of $MinPrecision is -Infinity. Positive values of $MinPrecision make Mathematica pad
arbitrary-precision numbers with zero digits to achieve the specified nominal precision. The zero digits are taken to
be in base 2, and may not correspond to zeros in base 10. $MaxPrecision = $MinPrecision = n makes
Mathematica do fixed-precision arithmetic. $MinPrecision is measured in decimal digits, and need not be an
integer. See page 736. See also: SetPrecision, $MinNumber. New in Version 3; modified in Version 5.0.

$ModuleNumber
$ModuleNumber gives the current serial number to be used for local variables that are created.
$ModuleNumber is incremented every time Module or Unique is called. Every Mathematica session starts with
$ModuleNumber set to 1. You can reset $ModuleNumber to any positive integer, but if you do so, you run the risk
of creating naming conflicts. See page 381. See also: $SessionID, Temporary. New in Version 2.



1334 $NewMessage — $Output Mathematica Reference Guide

$NewMessage
$NewMessage is a global variable which, if set, is applied to the symbol name and tag of
messages that are requested but have not yet been defined.
$NewMessage is applied to the symbol name, tag and language of a message if an explicit language is specified.

Mathematica looks for the value of name::tag or name::tag::lang after $NewMessage has been applied. You can
set up $NewMessage to read the text of messages from files when they are first needed. A typical value for
$NewMessage might be Function[ToExpression[FindList[files, ToString[MessageName[#1, #2]]]]]. See
page 482. See also: $NewSymbol. New in Version 2.

$NewSymbol
$NewSymbol is a global variable which, if set, is applied to the name and context of each new
symbol that Mathematica creates.
The name and context of the symbol are given as strings. $NewSymbol is applied before the symbol is actually
created. If the action of $NewSymbol causes the symbol to be created, perhaps in a different context, then the
symbol as created will be the one used. $NewSymbol is applied even if a symbol has already been created with a
Stub attribute by DeclarePackage. $NewSymbol is not applied to symbols automatically created by scoping
constructs such as Module. See page 405. See also: DeclarePackage, $NewMessage. New in Version 2.

$Notebooks
$Notebooks is True if Mathematica is being used with a notebook-based front end.
$Notebooks is automatically set by the front end when it starts the Mathematica kernel. See page 715. See also:
$FrontEnd, $Linked, $BatchInput. New in Version 2.

$NumberMarks
$NumberMarks gives the default value for the option NumberMarks, which specifies whether `
marks should be included in the input form representations of approximate numbers.
The default setting for $NumberMarks is Automatic. $NumberMarks = True indicates that ` should by default be
used in all approximate numbers, both machine-precision and arbitrary-precision ones.

$NumberMarks = Automatic indicates that ` should by default be used in arbitrary-precision but not
machine-precision numbers. $NumberMarks = False indicates that ` should by default never be used in
outputting numbers. See page 730. See also: NumberForm, SetPrecision. New in Version 3.

$OperatingSystem
$OperatingSystem is a string giving the type of operating system under which Mathematica is
being run.
Typical values for $OperatingSystem are "Windows98", "MacOS" and "Unix". You can use $OperatingSystem to
get an idea of what external commands will be available from within Mathematica. $OperatingSystem typically
has the same value for different versions or variants of a particular operating system. See page 717. See also:
$MachineType, $System, $ProcessorType. New in Version 2.

$Output
$Output gives the list of files and pipes to which standard output from Mathematica is sent.
Output from Print is always given on the $Output channel. See page 705. See also: Streams. New in
Version 1.



A.10 Major Built-in Mathematica Objects $Packages — $Pre 1335

$Packages
$Packages gives a list of the contexts corresponding to all packages which have been loaded
in your current Mathematica session.
$Packages is updated when BeginPackage is executed. $Packages is used by Needs to determine whether a
particular package needs to be loaded explicitly. See page 397. See also: Contexts, $ContextPath,
DeclarePackage, $ExportFormats. New in Version 2.

$ParentLink
$ParentLink is the MathLink LinkObject currently used for input and output by the
Mathematica kernel in a particular session.
When the Mathematica kernel is started by a Mathematica front end, $ParentLink gives the MathLink connection
between the front end and the kernel. You can reset $ParentLink in the middle of a Mathematica session to
connect the kernel to a different front end. See page 686. See also: $CurrentLink, Links, $Input. New in
Version 3.

$ParentProcessID
$ParentProcessID gives the ID assigned to the process which invokes the Mathematica kernel
by the operating system under which it is run.
On operating systems where no process ID is assigned, $ParentProcessID is None. See page 716. See also:
$ParentLink, $ProcessID, $CommandLine, $UserName, Environment. New in Version 3.

$Path
$Path gives the default list of directories to search in attempting to find an external file.
The structure of directory and file names may differ from one computer system to another. $Path is used both
for files in Get and for external programs in Install. The setting for $Path can be overridden in specific
functions using the Path option. The directory names are specified by strings. The full file names tested are of
the form ToFileName[directory,name]. On most computer systems, the following special characters can be used in
directory names:

. the current directory

.. the directory one level up in the hierarchy
M the user’s home directory

$Path can contain nested sublists. See page 637. See also: Path, Directory, SetDirectory, Get,
DirectoryName, $Input. New in Version 1.

$Post
$Post is a global variable whose value, if set, is applied to every output expression.
See page 703. See also: $Pre, $PrePrint. New in Version 1.

$Pre
$Pre is a global variable whose value, if set, is applied to every input expression.
Unless $Pre is assigned to be a function which holds its arguments unevaluated, input expressions will be
evaluated before $Pre is applied, so the effect of $Pre will be the same as $Post. $Pre is applied to expressions,
while $PreRead is applied to strings which have not yet been parsed into expressions. See page 703. See also:
$Post. New in Version 1.



1336 $PrePrint — $RandomState Mathematica Reference Guide

$PrePrint
$PrePrint is a global variable whose value, if set, is applied to every expression before it is
printed.
$PrePrint is applied after Out[n] is assigned, but before the output result is printed. See page 703. See also:
$Post, $MessagePrePrint. New in Version 1.

$PreRead
$PreRead is a global variable whose value, if set, is applied to the text or box form of every
input expression before it is fed to Mathematica.
$PreRead is always applied to each complete input string that will be fed to Mathematica. In multiline input with
a text-based interface, $PreRead is typically applied to the input so far whenever each line is terminated.

$PreRead is applied to all strings returned by a $SyntaxHandler function. $PreRead is applied before
InString[n] is assigned. See page 703. See also: $Pre, StringReplace, ToExpression. New in Version 2.

$ProcessID
$ProcessID gives the ID assigned to the Mathematica kernel process by the operating system
under which it is run.
On operating systems where no process ID is assigned, $ProcessID is None. See page 716. See also:
$ParentProcessID, $UserName, Environment, $SessionID. New in Version 3.

$ProcessorType
$ProcessorType is a string giving the architecture of processor on which Mathematica is being
run.
Typical values are "x86", "PowerPC", "SPARC", "MIPS", "PA-RISC" and "AXP". $ProcessorType specifies the basic
instruction set used by the CPU of your computer. Computers with the same $ProcessorType may not be binary
compatible. See page 717. See also: $MachineType, $OperatingSystem, $System. New in Version 3.

, $ProductInformation
$ProductInformation is a list of rules giving detailed information about the software product
to which the current kernel belongs.
Typical elements of $ProductInformation are "ProductIDName" -> "Mathematica" and
"ProductVersion" -> version. See page 717. See also: $Version, $VersionNumber, $OperatingSystem, $System.

New in Version 4.2.

$RandomState
$RandomState gives a representation of the internal state of the pseudorandom generator used
by Random.
The value of $RandomState changes every time Random is called. You can use s = $RandomState to explicitly save
the value of $RandomState, and $RandomState = s to restore. The value of $RandomState is always a long
integer chosen from a certain large set of possibilities. You can assign $RandomState only to values in this set.

You can use Block[{$RandomState}, expr] to localize the value of $RandomState during the evaluation of expr.
See page 747. See also: SeedRandom. New in Version 3.



A.10 Major Built-in Mathematica Objects $RecursionLimit — $SyntaxHandler 1337

$RecursionLimit
$RecursionLimit gives the current limit on the number of levels of recursion that Mathematica
can use.
$RecursionLimit=n sets the limit on the number of recursion levels that Mathematica can use to be n.

$RecursionLimit=Infinity removes any limit on the number of recursion levels. $RecursionLimit gives the
maximum length of the stack returned by Stack[ ]. Each time the evaluation of a function requires the nested
evaluation of the same or another function, one recursion level is used up. On most computers, each level of
recursion uses a certain amount of stack space. $RecursionLimit allows you to control the amount of stack space
that Mathematica can use from within Mathematica. On some computer systems, your whole Mathematica session may
crash if you allow it to use more stack space than the computer system allows. MemoryInUse and related functions
do not count stack space. See page 369. See also: $IterationLimit, MemoryConstrained. New in Version 1.

$ReleaseNumber
$ReleaseNumber is an integer which gives the current Mathematica kernel release number, and
increases in successive releases.
Each released revision of the Mathematica kernel for any particular computer system is assigned a new release
number. The same source code may yield releases with different numbers on different computer systems. See
page 717. See also: $VersionNumber. New in Version 2.

$SessionID
$SessionID is a number set up to be unique to a particular Mathematica session.
$SessionID should be different for different Mathematica sessions run either on the same computer or on different
computers. The value of $SessionID is based on $MachineID, as well as AbsoluteTime[ ] and operating system
parameters such as the Mathematica process ID. See pages 384 and 716. See also: $ModuleNumber, $ProcessID.

New in Version 2.

$SoundDisplayFunction
$SoundDisplayFunction gives the default setting for the option DisplayFunction in sound
functions.
The initial setting of $SoundDisplayFunction is Display[$SoundDisplay, #]&. See page 567. See also: Play,
ListPlay, Show, $DisplayFunction. New in Version 2.

$SyntaxHandler
$SyntaxHandler is a global variable which, if set, is applied to any input string that is found
to contain a syntax error.
The arguments given to $SyntaxHandler are the complete input string and an integer specifying the character
position at which the syntax error was detected. The first character in the string is taken to have position 1.

Any string returned by $SyntaxHandler is used as a new version of the input string, and is fed to Mathematica.
If the string does not end with a newline, Mathematica waits for input to complete the line. If $SyntaxHandler
returns $Failed, input to Mathematica is abandoned if possible. Input is not assigned to InString[n] until after
$SyntaxHandler is applied. $SyntaxHandler is not called for input from files obtained using Get. See
page 703. See also: SyntaxLength, SyntaxQ. New in Version 2.



1338 $System — $Urgent Mathematica Reference Guide

$System
$System is a string describing the type of computer system on which Mathematica is being run.
$System typically consists of words separated by spaces. Typical values are "Microsoft Windows",
"Power Macintosh", "Linux" and "Solaris". $SystemID provides a more succinct version of the same
information. See page 717. See also: $SystemID, $Version, $MachineType, $ProcessorType, $OperatingSystem.

New in Version 1.

$SystemCharacterEncoding
$SystemCharacterEncoding gives the default raw character encoding for the computer system
on which Mathematica is being run.
$SystemCharacterEncoding is used to determine the default value of $CharacterEncoding. The notebook front
end handles raw character encodings independent of the kernel. The possible settings for
$SystemCharacterEncoding are the same as for $CharacterEncoding. See page 420. See also:
CharacterEncoding. New in Version 3.

$SystemID
$SystemID is a short string that identifies the type of computer system on which Mathematica
is being run.
Computer systems with the same $SystemID should be binary compatible, so that the same external programs and
.mx files can be used. Sometimes binary compatibility may only be complete when the same version of the
operating system is used. $SystemID is used in naming directories generated by DumpSave and mcc. Values for
$SystemID contain only alphanumeric characters and dashes. Typical values are "Windows", "PowerMac", "Linux"
and "Solaris". See page 717. See also: $System, $Version, $MachineType, $OperatingSystem. New in
Version 3.

$TextStyle
$TextStyle gives the default style to use for text in graphics.
The following forms of settings can be used:

"style" a specific cell style
{opt�->val�, . . . } a list of option settings
{"style", opt�->val�, . . . } a style modified by option settings

The options that can be given are as in StyleForm. "style" settings can only be used when a notebook front
end is present. $TextStyle gives the default value for the TextStyle option in graphics. See page 556. See
also: $FormatType, TextStyle. New in Version 3.

$TimeUnit
$TimeUnit gives the minimum time interval in seconds recorded on your computer system.
- Typical values for $TimeUnit are 1/100 and 1/1000. $TimeUnit determines the minimum granularity of
measurement in functions like Timing and Date. - In some functions the actual time granularity may be much
smaller than $TimeUnit. See page 710. New in Version 2.

$Urgent
$Urgent gives the list of files and pipes to which urgent output from Mathematica is sent.
Urgent output includes input prompts, and results from ?name information requests. See page 705. New in
Version 1.



A.10 Major Built-in Mathematica Objects $UserBaseDirectory — $VersionNumber 1339

, $UserBaseDirectory
$UserBaseDirectory gives the base directory in which user-specific files to be loaded by
Mathematica are conventionally placed.
$UserBaseDirectory returns the full name of the directory as a string. Typical values are:

C:\Documents� and� Settings\username \Application� Data\Mathematica Windows
M/Library/Mathematica Macintosh
M/.Mathematica Unix

The value of $UserBaseDirectory can be specified by setting the MATHEMATICA_USERBASE operating system
environment variable when the Mathematica kernel is launched. It cannot be reset from inside the kernel. Typical
subdirectories of $UserBaseDirectory are:

Applications Mathematica application packages
Autoload packages to be autoloaded on startup
FrontEnd front end initialization files
Kernel kernel initialization files
Licensing license management files
SystemFiles general system files

These subdirectories are, if possible, created automatically the first time Mathematica is run by a given user.
Appropriate subdirectories are automatically included on $Path. The subdirectories of $UserBaseDirectory are

given in $Path before the corresponding ones of $BaseDirectory. See pages 637 and 1064. See also:
$BaseDirectory, $InitialDirectory, $HomeDirectory, $InstallationDirectory. New in Version 5.0.

$UserName
$UserName gives the login name of the user who invoked the Mathematica kernel, as recorded
by the operating system.
On Unix and similar operating systems, $UserName is derived from the UID associated with the Mathematica kernel
process. On operating systems where no login name can be found, $UserName is None. See page 716. See also:
$HomeDirectory, Environment, $UserBaseDirectory. New in Version 3.

$Version
$Version is a string that represents the version of Mathematica you are running.
See page 717. See also: $System. New in Version 1.

$VersionNumber
$VersionNumber is a real number which gives the current Mathematica kernel version number,
and increases in successive versions.
To find out if you are running under Version 5 or above, you can use the test TrueQ[$VersionNumber >= 5.0].

A version with a particular number is typically derived from the same source code on all computer systems.
See page 717. See also: $ReleaseNumber. New in Version 2.



1340 Mathematica Reference Guide

A.11 Listing of C Functions in the MathLink Library

Introduction

Listed here are functions provided in the MathLink Developer Kit.

These functions are declared in the file mathlink.h , which should be included in the source code
for any MathLink-compatible program.

Unless you specify #define MLPROTOTYPES 0 before #include "mathlink.h" the functions will be
included with standard C prototypes.

The following special types are defined in mathlink.h :

MLINK: a MathLink link object (analogous to LinkObject in Mathematica)

MLMARK: a mark in a MathLink stream

MLENV: MathLink library environment

The following constants are set up when a MathLink template file is processed:

MLINK stdlink : the standard link that connects a program built from MathLink templates to
Mathematica

MLENV stdenv : the standard MathLink environment in a program built from MathLink templates

All functions described here are C language functions. They can be called from other languages
with appropriate wrappers.

The functions have the following general features:

Those which return int yield a non-zero value if they succeed; otherwise they return 0 and have
no effect.

In a program set up using MathLink templates, the link to Mathematica is called stdlink.

Functions which put data to a link do not deallocate memory used to store the data.

Functions which get data from a link may allocate memory to store the data.

Functions which get data from a link will not return until the necessary data becomes available. A
yield function can be registered to be called during the wait.



A.11 C Functions in the MathLink Library MLAbort — MLDeinitialize() 1341

� MLAbort
int MLAbort is a global variable set when a program created using mcc or mprep has been sent
an abort interrupt.
LinkInterrupt[link] can be used to send an abort interrupt from Mathematica to a program connected to a
particular link. See page 697.

� MLActivate()
int MLActivate(MLINK link) activates a MathLink connection, waiting for the program at the
other end to respond.
MLActivate() can be called only after MLOpenArgv() or MLOpenString(). See page 698.

� MLCheckFunction()
int MLCheckFunction(MLINK link, char *name, long *n) checks that a function whose head
is a symbol with the specified name is on link, and stores the number of the arguments of the
function in n.
MLCheckFunction() returns 0 if the current object on the link is not a function with a symbol as a head, or if the
name of the symbol does not match name. See page 672. See also: MLGetFunction.

� MLClearError()
int MLClearError(MLINK link) if possible clears any error on link and reactivates the link.
MLClearError() returns 0 if it was unable to clear the error. This can happen if the error was for example the
result of a link no longer being open. See page 696.

� MLClose()
void MLClose(MLINK link) closes a MathLink connection.
Calling MLClose() does not necessarily terminate a program at the other end of the link. Any data buffered in
the link is sent when MLClose() is called. Programs should close all links they have opened before terminating.

See pages 692 and 698. See also: MLDeinitialize.

� MLCreateMark()
MLMARK MLCreateMark(MLINK link) creates a mark at the current position in a sequence of
expressions on a link.
Calling MLCreateMark() effectively starts recording all expressions received on the link. See page 693. See also:
MLLoopbackOpen.

� MLDeinitialize()
void MLDeinitialize(MLENV env) deinitializes functions in the MathLink library.
An appropriate call to MLDeinitialize() is generated automatically when an external program is created from
MathLink templates. Any external program that uses the MathLink library must call MLDeinitialize() before
exiting. MLClose() must be called for all open links before calling MLDeinitialize(). See page 698.



1342 MLDestroyMark() — MLDisownSymbol() Mathematica Reference Guide

� MLDestroyMark()
int MLDestroyMark(MLINK link, MLMARK mark) destroys the specified mark on a link.
Calling MLDestroyMark() disowns memory associated with the storage of expressions recorded after the mark.

See page 693.

� MLDisownByteString()
void MLDisownByteString(MLINK link, unsigned char *s, long n) disowns memory
allocated by MLGetByteString() to store the array of character codes s.
See page 679. See also: MLDisownString.

� MLDisownIntegerArray()
void MLDisownIntegerArray(MLINK link, int *a, long *dims, char **heads, long d)
disowns memory allocated by MLGetIntegerArray() to store the array a, its dimensions dims
and the heads heads.
See page 675.

� MLDisownIntegerList()
void MLDisownIntegerList(MLINK link, int *a, long n) disowns memory allocated by
MLGetIntegerList() to store the array a of length n.
See page 674.

� MLDisownRealArray()
void MLDisownRealArray(MLINK link, double *a, long *dims, char **heads, long d)
disowns memory allocated by MLGetRealArray() to store the array a, its dimensions dims and
the heads heads.
See page 675.

� MLDisownRealList()
void MLDisownRealList(MLINK link, double *a, long n) disowns memory allocated by
MLGetRealList() to store the array a of length n.
See page 674.

� MLDisownString()
void MLDisownString(MLINK link, char *s) disowns memory allocated by MLGetString() to
store the character string s.
See page 675. See also: MLDisownUnicodeString.

� MLDisownSymbol()
void MLDisownSymbol(MLINK link, char *s) disowns memory allocated by MLGetSymbol() or
MLGetFunction() to store the character string s corresponding to the name of a symbol.
See pages 675 and 676.



A.11 C Functions in the MathLink Library MLDisownUnicodeString() — MLGetArgCount() 1343

� MLDisownUnicodeString()
void MLDisownUnicodeString(MLINK link, unsigned short *s, long n) disowns memory
allocated by MLGetUnicodeString() to store the string s.
See page 679. See also: MLDisownString.

� MLEndPacket()
int MLEndPacket(MLINK link) specifies that a packet expression is complete and is ready to be
sent on the specified link.
MLEndPacket() should be called to indicate the end of any top-level expression, regardless of whether its head is a
standard packet. See pages 689 and 699.

� MLError()
long MLError(MLINK link) returns a constant identifying the last error to occur on link, or 0 if
none has occurred since the previous call to MLClearError().
You can get a textual description of errors by calling MLErrorMessage(). Constants corresponding to standard
MathLink errors are defined in mathlink.h. See page 696.

� MLErrorMessage()
char *MLErrorMessage(MLINK link) returns a character string describing the last error to occur
on link.
See page 696.

� MLEvaluateString()
int MLEvaluateString(MLINK link, char *string) sends a string to Mathematica for evaluation,
and discards any packets sent in response.
The code for MLEvaluateString() is not included in the MathLink library, but is generated automatically by mcc or
mprep in processing MathLink template files. MLEvaluateString("Print[\"string\"]") will cause string to be
printed in a Mathematica session at the other end of the link. See pages 664 and 689.

� MLFlush()
int MLFlush(MLINK link) flushes out any buffers containing data waiting to be sent on link.
If you call MLNextPacket() or any of the MLGet*() functions, then MLFlush() will be called automatically. If you
call MLReady(), then you need to call MLFlush() first in order to ensure that any necessary outgoing data has been
sent. See page 700. See also: MLReady.

� MLGetArgCount()
int MLGetArgCount(MLINK link, long *n) finds the number of arguments to a function on link
and stores the result in n.
See page 694.



1344 MLGetByteString() — MLGetInteger() Mathematica Reference Guide

� MLGetByteString()
int MLGetByteString(MLINK link, unsigned char **s, long *n, long spec) gets a string of
characters from the MathLink connection specified by link, storing the codes for the characters
in s and the number of characters in n. The code spec is used for any character whose
Mathematica character code is larger than 255.
MLGetByteString() allocates memory for the array of character codes. You must call MLDisownByteString() to
disown this memory. MLGetByteString() is convenient in situations where no special characters occur. The
character codes used by MLGetByteString() are exactly the ones returned by ToCharacterCode in Mathematica.

The array of character codes in MLGetByteString() is not terminated by a null character. Characters such as
newlines are specified by their raw character codes, not by ASCII forms such as \n. See page 679. See also:
MLGetString, MLGetUnicodeString.

� MLGetDouble()
int MLGetDouble(MLINK link, double *x) gets a floating-point number from the MathLink
connection specified by link and stores it as C type double in x.
MLGetDouble() is normally equivalent to MLGetReal(). See notes for MLGetReal(). See page 678. See also:
MLGetFloat.

� MLGetFloat()
int MLGetFloat(MLINK link, float *x) gets a floating-point number from the MathLink
connection specified by link and stores it as C type float in x.
See notes for MLGetReal(). See page 678.

� MLGetFunction()
int MLGetFunction(MLINK link, char **s, long *n) gets a function with a symbol as a head
from the MathLink connection specified by link, storing the name of the symbol in s and the
number of arguments of the function in n.
MLGetFunction() allocates memory for the character string corresponding to the name of the head of the function.
You must call MLDisownSymbol() to disown this memory. External programs should not modify the character
string s. MLGetFunction(link, &s, &n) has the same effect as MLGetNext(link); MLGetArgCount(link, &n);
MLGetSymbol(link, &s). See page 676. See also: MLGetNext.

� MLGetInteger()
int MLGetInteger(MLINK link, int *i) gets an integer from the MathLink connection specified
by link and stores it in i.
If the data on the link corresponds to a real number, MLGetInteger() will round it to an integer. If the data on
the link corresponds to an integer too large to store in a C int on your computer system, then MLGetInteger()
will fail, and return 0. You can get arbitrary-precision integers by first using IntegerDigits to generate lists of
digits, then calling MLGetIntegerList(). See page 694. See also: MLGetShortInteger, MLGetLongInteger.



A.11 C Functions in the MathLink Library MLGetIntegerArray() — MLGetReal() 1345

� MLGetIntegerArray()
int MLGetIntegerArray(MLINK link, int **a, long **dims, char ***heads, long *d) gets an
array of integers from the MathLink connection specified by link, storing the array in a, its
dimensions in dims and its depth in d.
The array a is laid out in memory like a C array declared as int a[m][n]. . . . heads gives a list of character strings
corresponding to the names of symbols that appear as heads at each level in the array. MLGetIntegerArray()
allocates memory which must be disowned by calling MLDisownIntegerArray(). External programs should not
modify the arrays generated by MLGetIntegerArray(). See page 675. See also: MLGetIntegerList.

� MLGetIntegerList()
int MLGetIntegerList(MLINK link, int **a, long *n) gets a list of integers from the
MathLink connection specified by link, storing the integers in the array a and the length of the
list in n.
MLGetIntegerList() allocates memory for the array of integers. You must call MLDisownIntegerList() to disown
this memory. External programs should not modify the array generated by MLGetIntegerList(). See notes for
MLGetInteger(). See page 674. See also: MLGetIntegerArray, MLGetByteString.

� MLGetLongInteger()
int MLGetLongInteger(MLINK link, long *i) gets an integer from the MathLink connection
specified by link and stores it as a C long in i.
See notes for MLGetInteger(). See page 678.

� MLGetNext()
int MLGetNext(MLINK link) goes to the next object on link and returns its type.
The following values can be returned:
MLTKERR error
MLTKINT integer
MLTKFUNC composite function
MLTKREAL approximate real number
MLTKSTR character string
MLTKSYM symbol

MLTKINT and MLTKREAL do not necessarily signify numbers that can be stored in C int and double variables.
See page 694. See also: MLGetArgCount.

� MLGetReal()
int MLGetReal(MLINK link, double *x) gets a floating-point number from the MathLink
connection specified by link and stores it in x.
If the data on the link corresponds to an integer, MLGetReal() will coerce it to a double before storing it in x. If
the data on the link corresponds to a number outside the range that can be stored in a C double on your
computer system, then MLGetReal() will fail, and return 0. You can get arbitrary-precision real numbers by first
using RealDigits to generate lists of digits, then calling MLGetIntegerList(). MLGetReal() is normally
equivalent to MLGetDouble(). See page 694. See also: MLGetFloat, MLGetDouble, MLGetRealList.



1346 MLGetRealArray() — MLGetUnicodeString() Mathematica Reference Guide

� MLGetRealArray()
int MLGetRealArray(MLINK link, double **a, long **dims, char ***heads, long *d) gets an
array of floating-point numbers from the MathLink connection specified by link, storing the
array in a, its dimensions in dims and its depth in d.
The array a is laid out in memory like a C array declared as double a[m][n]. . . . heads gives a list of character
strings corresponding to the names of symbols that appear as heads at each level in the array. MLGetRealArray()
allocates memory which must be disowned by calling MLDisownRealArray(). External programs should not
modify the arrays generated by MLGetRealArray(). See page 675.

� MLGetRealList()
int MLGetRealList(MLINK link, double **a, long *n) gets a list of floating-point numbers
from the MathLink connection specified by link, storing the numbers in the array a and the
length of the list in n.
MLGetRealList() allocates memory for the array of numbers. You must call MLDisownRealList() to disown this
memory. External programs should not modify the array generated by MLGetRealList(). See notes for
MLGetReal(). See page 674.

� MLGetShortInteger()
int MLGetShortInteger(MLINK link, short *i) gets an integer from the MathLink connection
specified by link and stores it as a C short in i.
See notes for MLGetInteger(). See page 678.

� MLGetString()
int MLGetString(MLINK link, char **s) gets a character string from the MathLink connection
specified by link, storing the string in s.
MLGetString() allocates memory for the character string. You must call MLDisownString() to disown this memory.

External programs should not modify strings generated by MLGetString(). MLGetString() creates a string that
is terminated by \0. MLGetString() stores single \ characters from Mathematica as pairs of characters \\.

MLGetString() stores special characters from Mathematica in a private format. See pages 675 and 694. See
also: MLGetByteString, MLGetUnicodeString.

� MLGetSymbol()
int MLGetSymbol(MLINK link, char **s) gets a character string corresponding to the name of
a symbol from the MathLink connection specified by link, storing the resulting string in s.
MLGetSymbol() allocates memory for the character string. You must call MLDisownSymbol() to disown this memory.

MLGetSymbol() creates a string that is terminated by \0. See pages 675 and 694.

� MLGetUnicodeString()
int MLGetUnicodeString(MLINK link, unsigned short **s, long *n) gets a character string
from the MathLink connection specified by link, storing the string in s as a sequence of 16-bit
Unicode characters.
MLGetUnicodeString() allocates memory for the character string. You must call MLDisownUnicodeString() to
disown this memory. External programs should not modify strings generated by MLGetUnicodeString().

MLGetUnicodeString() stores all characters directly in 16-bit Unicode form. 8-bit ASCII characters are stored
with a null high-order byte. See page 679. See also: MLGetString, MLGetByteString.



A.11 C Functions in the MathLink Library MLInitialize() — MLOpenArgv() 1347

� MLInitialize()
MLENV MLInitialize(0) initializes functions in the MathLink library.
An appropriate call to MLInitialize() is generated automatically when an external program is created from
MathLink templates. Any external program that uses the MathLink library must call MLInitialize() before calling
any other MathLink library functions. See page 698.

� MLLoopbackOpen()
MLINK MLLoopbackOpen(MLENV env, long *errno) opens a loopback MathLink connection.
In an external program set up with MathLink templates, the environment stdenv should be used. You can use
loopback links to effectively store Mathematica expressions in external programs. See page 692. See also:
MLCreateMark.

� MLMain()
int MLMain(int argc, char **argv) sets up communication between an external program
started using Install and Mathematica.
The code for MLMain() is generated automatically by mprep or mcc. MLMain() opens a MathLink connection using
the parameters specified in argv, then goes into a loop waiting for CallPacket objects to arrive from Mathematica.

MLMain() internally calls MLOpenArgv(). See page 664.

� MLNewPacket()
int MLNewPacket(MLINK link) skips to the end of the current packet on link.
MLNewPacket() works even if the head of the current top-level expression is not a standard packet type.

MLNewPacket() does nothing if you are already at the end of a packet. See pages 697 and 699. See also:
MLNextPacket.

� MLNextPacket()
int MLNextPacket(MLINK link) goes to the next packet on link and returns a constant to
indicate its head.
See page 699. See also: MLNewPacket.

� MLOpenArgv()
MLINK MLOpenArgv(MLENV env, char **argv0, char **argv1, long *errno) opens a MathLink
connection taking parameters from an argv array.
MLInitialize() must be called before MLOpenArgv(). MLOpenArgv() scans for the following at successive
locations starting at argv0 and going up to just before argv1:

"-linkconnect" connect to an existing link (LinkConnect)
"-linkcreate" create a link (LinkCreate)
"-linklaunch" launch a child process (LinkLaunch)
"-linkname", "name" the name to use in opening the link
"-linkprotocol", "protocol" the link protocol to use (tcp, pipes, etc.)

MLOpenArgv() is not sensitive to the case of argument names. MLOpenArgv() ignores argument names that it
does not recognize. MLOpenArgv() is called automatically by the MLMain() function created by mprep and mcc.

With a main program main(int argc, char *argv[]) typical usage is
MLOpenArgv(env, argv, argv+argc, errno). Avoiding an explicit argc argument allows MLOpenArgv() to work
independent of the size of an int. On some computer systems, giving 0 for argv0 and argv1 will cause arguments
to be requested interactively, typically through a dialog box. See page 698. See also: MLActivate, MLOpenString.



1348 MLOpenString() — MLPutInteger() Mathematica Reference Guide

� MLOpenString()
MLINK MLOpenString(MLENV env, char *string, long *errno) opens a MathLink connection
taking parameters from a character string.
MLInitialize() must be called before MLOpenString(). MLOpenString() takes a single string instead of the argv
array used by MLOpenArgv(). Arguments in the string are separated by spaces. On some computer systems,
giving NULL in place of the string pointer will cause arguments to be requested interactively, typically through a
dialog box. See page 698. See also: MLActivate, MLOpenArgv.

� MLPutArgCount()
int MLPutArgCount(MLINK link, long n) specifies the number of arguments of a composite
function to be put on link.

� MLPutByteString()
int MLPutByteString(MLINK link, unsigned char *s, long n) puts a string of n characters
starting from location s to the MathLink connection specified by link.
All characters in the string must be specified using character codes as obtained from ToCharacterCode in
Mathematica. Newlines must thus be specified in terms of their raw character codes, rather than using \n.

MLPutByteString() handles only characters with codes less than 256. It can handle both ordinary ASCII as
well as ISO Latin-1 characters. See page 679. See also: MLPutString, MLPutIntegerList.

� MLPutDouble()
int MLPutDouble(MLINK link, double x) puts the floating-point number x of C type double to
the MathLink connection specified by link.
See notes for MLPutReal(). See page 678.

� MLPutFloat()
int MLPutFloat(MLINK link, double x) puts the floating-point number x to the MathLink
connection specified by link with a precision corresponding to the C type float.
The argument x is typically declared as float in external programs, but must be declared as double in
MLPutFloat() itself in order to work even in the absence of C prototypes. See notes for MLPutReal(). See
page 678.

� MLPutFunction()
int MLPutFunction(MLINK link, char *s, long n) puts a function with head given by a
symbol with name s and with n arguments to the MathLink connection specified by link.
After the call to MLPutFunction() other MathLink functions must be called to send the arguments of the function.

See page 667. See also: MLPutString.

� MLPutInteger()
int MLPutInteger(MLINK link, int i) puts the integer i to the MathLink connection specified
by link.
You can send arbitrary-precision integers to Mathematica by giving lists of digits, then converting them to numbers
using FromDigits. See pages 667 and 696. See also: MLGetInteger, MLPutShortInteger, MLPutLongInteger,
MLPutIntegerList.



A.11 C Functions in the MathLink Library MLPutIntegerArray() — MLPutRealList() 1349

� MLPutIntegerArray()
int MLPutIntegerArray(MLINK link, int *a, long *dims, char **heads, long d) puts an
array of integers to the MathLink connection specified by link to form a depth d array with
dimensions dims.
The array a must be laid out in memory like a C array declared explicitly as int a[m][n]. . . . If heads is given as
NULL, the array will be assumed to have head List at every level. The length of the array at level i is taken to
be dims[i]. See page 667. See also: MLPutIntegerList.

� MLPutIntegerList()
int MLPutIntegerList(MLINK link, int *a, long n) puts a list of n integers starting from
location a to the MathLink connection specified by link.
See page 667. See also: MLPutIntegerArray, MLPutByteString.

� MLPutLongInteger()
int MLPutLongInteger(MLINK link, long i) puts the long integer i to the MathLink connection
specified by link.
See notes for MLPutInteger(). See page 678.

� MLPutNext()
int MLPutNext(MLINK link, int type) prepares to put an object of the specified type on link.
The type specifications are as given in the notes for MLGetNext(). See page 696. See also: MLPutArgCount.

� MLPutReal()
int MLPutReal(MLINK link, double x) puts the floating-point number x to the MathLink
connection specified by link.
You can send arbitrary-precision real numbers to Mathematica by giving lists of digits, then converting them to
numbers using FromDigits. MLPutReal() is normally equivalent to MLPutDouble(). See pages 667 and 696.

See also: MLPutRealList, MLPutFloat, MLPutDouble.

� MLPutRealArray()
int MLPutRealArray(MLINK link, double *a, long *dims, char **heads, long d) puts an
array of floating-point numbers to the MathLink connection specified by link to form a depth d
array with dimensions dims.
The array a must be laid out in memory like a C array declared explicitly as double a[m][n]. . . . If heads is given
as NULL, the array will be assumed to have head List at every level. The length of the array at level i is taken
to be dims[i]. See page 667. See also: MLPutRealList.

� MLPutRealList()
int MLPutRealList(MLINK link, double *a, long n) puts a list of n floating-point numbers
starting from location a to the MathLink connection specified by link.
See page 667. See also: MLPutRealArray.



1350 MLPutShortInteger() — MLTransferExpression() Mathematica Reference Guide

� MLPutShortInteger()
int MLPutShortInteger(MLINK link, int i) puts the integer i to the MathLink connection
specified by link, assuming that i contains only the number of digits in the C type short.
The argument i is typically declared as short in external programs, but must be declared as int in
MLPutShortInteger() itself in order to work even in the absence of C prototypes. See notes for MLPutInteger().

See page 678.

� MLPutString()
int MLPutString(MLINK link, char *s) puts a character string to the MathLink connection
specified by link.
The character string must be terminated with a null byte, corresponding to \0 in C. A raw backslash in the
string must be sent as two characters \\. Special characters can be sent only using the private format returned by
MLGetString(). See pages 667 and 696. See also: MLPutByteString, MLPutUnicodeString, MLPutSymbol.

� MLPutSymbol()
int MLPutSymbol(MLINK link, char *s) puts a symbol whose name is given by the character
string s to the MathLink connection specified by link.
The character string must be terminated with \0. See pages 667 and 696. See also: MLPutString.

� MLPutUnicodeString()
int MLPutUnicodeString(MLINK link, unsigned short *s, long n) puts a string of n 16-bit
Unicode characters to the MathLink connection specified by link.
All characters are assumed to be 16 bit. 8-bit characters can be sent by having the higher-order byte be null.

See page 679. See also: MLPutString, MLPutByteString.

� MLReady()
int MLReady(MLINK link) tests whether there is data ready to be read from link.
Analogous to the Mathematica function LinkReadyQ. MLReady() is often called in a loop as a way of polling a
MathLink connection. MLReady() will always return immediately, and will not block. You need to call MLFlush()
before starting to call MLReady(). See page 700.

� MLSeekMark()
MLMARK MLSeekMark(MLINK link, MLMARK mark, long n) goes back to a position n expressions
after the specified mark on a link.
See page 693.

� MLTransferExpression()
int MLTransferExpression(MLINK dest, MLINK src) transfers an expression from one
MathLink connection to another.
src and dest need not be distinct. src and dest can be either loopback or ordinary links. See page 692.



A.12 Listing of Named Characters 1351

A.12 Listing of Named Characters

Introduction

This section gives a list of all characters that are assigned full names in Mathematica Version 5. The
list is ordered alphabetically by full name.

The standard Mathematica fonts support all of the characters in the list.

There are a total of 727 characters in the list.

, aaa , stands for �aaa�.

Interpretation of Characters

The interpretations given here are those used in StandardForm and InputForm . Most of the interpre-
tations also work in TraditionalForm .

You can override the interpretations by giving your own rules for MakeExpression .

Letters and letter-like forms used in symbol names

Infix operators e.g. x O y

Prefix operators e.g. � x

Postfix operators e.g. x!

Matchfix operators e.g. /x0
Compound operators e.g. � f 7 x

Raw operators operator characters that can be typed on an ordinary
keyboard

Spacing characters interpreted in the same way as an ordinary space

Structural elements characters used to specify structure; usually ignored in
interpretation

Uninterpretable elements characters indicating missing information

Types of characters.

The precedences of operators are given on pages 1024–1029.



1352 Mathematica Reference Guide

Infix operators for which no grouping is specified in the listing are interpreted so that for example
x O y O z becomes CirclePlus[x, y, z].

Naming Conventions

Characters that correspond to built-in Mathematica functions typically have names corresponding to
those functions. Other characters typically have names that are as generic as possible.

Characters with different names almost always look at least slightly different.

\[Capital. . .] upper-case form of a letter

\[Left. . .] and \[Right. . .] pieces of a matchfix operator (also arrows)

\[Raw. . .] a printable ASCII character

\[. . .Indicator] a visual representation of a keyboard character

Some special classes of characters.

style Script, Gothic, etc.

variation Curly, Gray, etc.

case Capital, etc.

modifiers Not, Double, Nested, etc.

direction Left, Up, UpperRight, etc.

base A, Epsilon, Plus, etc.

diacritical mark Acute, Ring, etc.

Typical ordering of elements in character names.

Aliases

Mathematica supports both its own system of aliases, as well as aliases based on character names in TEX
and SGML or HTML. Except where they conflict, character names corresponding to plain TEX, LATEX
and AMSTEX are all supported. Note that TEX and SGML or HTML aliases are not given explicitly in
the list of characters below.



A.12 Listing of Named Characters 1353

HxxxH ordinary Mathematica alias

H\xxxH TEX alias

H&xxxH SGML or HTML alias

Types of aliases.

The following general conventions are used for all aliases:

Characters that are alternatives to standard keyboard operators use these operators as their aliases
(e.g. , -> , for �, , && , for �).

Most single-letter aliases stand for Greek letters.

Capital-letter characters have aliases beginning with capital letters.

When there is ambiguity in the assignment of aliases, a space is inserted at the beginning of the
alias for the less common character (e.g. , -> , for \[Rule] and , �-> , for \[RightArrow]).

! is inserted at the beginning of the alias for a Not character.

TEX aliases begin with a backslash \.

SGML aliases begin with an ampersand &.

User-defined aliases conventionally begin with a dot or comma.

Font Matching

The special fonts provided with Mathematica include all the characters given in this listing. Some of
these characters also appear in certain ordinary text fonts.

When rendering text in a particular font, the Mathematica notebook front end will use all the
characters available in that font. It will use the special Mathematica fonts only for other characters.

A choice is made between Times-like, Helvetica-like (sans serif) and Courier-like (monospaced)
variants to achieve the best matching with the ordinary text font in use.



1354 AAcute — Angle Mathematica Reference Guide

á \[AAcute]
Alias: ,a' ,. Letter. Included in ISO Latin-1. See page 998. See also: \[CapitalAAcute].

ā \[ABar]
Alias: ,a- ,. Letter. Included in ISO Latin-4. Used in transliterations of various non-Latin alphabets. See
page 998. See also: \[CapitalABar].

ă \[ACup]
Alias: ,au ,. Letter. Included in ISO Latin-2. Used in transliterations of Cyrillic characters. See page 998.

See also: \[CapitalACup].

ä \[ADoubleDot]
Alias: ,a" ,. Letter. Included in ISO Latin-1. See pages 190 and 998. See also: \[CapitalADoubleDot],
\[EDoubleDot].

æ \[AE]
Alias: ,ae ,. Letter. Included in ISO Latin-1. See page 998. See also: \[CapitalAE].

à \[AGrave]
Alias: ,a` ,. Letter. Included in ISO Latin-1. See pages 190 and 998. See also: \[CapitalAGrave].

â \[AHat]
Alias: ,a^ ,. Letter. Included in ISO Latin-1. See page 998. See also: \[CapitalAHat].

Y \[Aleph]
Alias: ,al ,. Hebrew letter. Sometimes called alef. Used in pure mathematics to denote transfinite cardinals.

See pages 192 and 993. See also: \[Bet], \[Gimel], \[Dalet].

, \[AliasIndicator]
Alias: ,esc ,. Letter-like form. Representation of the indicator for special character aliases in Mathematica.

\[AliasIndicator] is an inactive letter-like form, used in describing how to type aliases. An active character
of the same appearance is typically obtained by typing ESCAPE. See page 1009. See also: \[EscapeKey],
\[SpaceIndicator], \[ReturnIndicator].

\[AlignmentMarker]
Alias: ,am ,. Letter-like form. Invisible by default on display. Used as a marker to indicate for example how
entries in a GridBox column should be lined up. See pages 451 and 1008. See also: \[InvisibleComma],
\[InvisibleSpace], \[Null], \[NoBreak].

Α \[Alpha]
Aliases: ,a ,, ,alpha ,. Greek letter. Not the same as \[Proportional]. See pages 175 and 990. See also:
\[CapitalAlpha].

+ \[And]
Aliases: ,&& ,, ,and ,. Infix operator with built-in evaluation rules. x � y is by default interpreted as And[x, y],
equivalent to x && y. Not the same as \[Wedge]. Drawn slightly larger than \[Wedge]. See page 1001. See
also: \[Or], \[Nand], \[Not].

[ \[Angle]
Letter-like form. Used in geometry to indicate an angle, as in the symbol R ABC. See pages 192 and 996. See
also: \[MeasuredAngle], \[SphericalAngle], \[RightAngle].



A.12 Listing of Named Characters Angstrom — CapitalAAcute 1355

� \[Angstrom]

Alias: ,Ang ,. Letter-like form. Unit corresponding to ����� meters. Not the same as the letter
\[CapitalARing]. See pages 192 and 994. See also: \[ARing], \[Micro], \[EmptySmallCircle], \[HBar].

å \[ARing]
Alias: ,ao ,. Letter. Included in ISO Latin-1. See pages 190 and 998. See also: \[CapitalARing],
\[EmptySmallCircle].

� \[AscendingEllipsis]
Letter-like form. Used to indicate omitted elements in a matrix. See page 997. See also:
\[DescendingEllipsis], \[VerticalEllipsis], \[Ellipsis].

ã \[ATilde]
Alias: ,a~ ,. Letter. Included in ISO Latin-1. See page 998. See also: \[CapitalATilde].

� \[Backslash]
Alias: ,\ ,. Infix operator. x - y is by default interpreted as Backslash[x, y]. Used in mathematics for set
difference. Also used to separate arguments of elliptic functions. Sometimes used to indicate x divides y. See
pages 191 and 1002. See also: \[RawBackslash], \[Colon], \[VerticalBar], \[Continuation].

O \[Because]
Infix operator. x , y is by default interpreted as Because[x, y]. x , y , z groups as (x , y) , z. See
page 1001. See also: \[Therefore], \[LeftTee], \[FilledRectangle], \[Proportion].

" \[Bet]
Alias: ,be ,. Hebrew letter. Sometimes called beth. Used in pure mathematics in the theory of transfinite
cardinals. See page 993. See also: \[Aleph].

Β \[Beta]
Aliases: ,b ,, ,beta ,. Greek letter. See pages 175 and 990. See also: \[CapitalBeta], \[SZ].

˘ \[Breve]
Alias: ,bv ,. Letter-like form. Used in an overscript position as a diacritical mark. See page 999. See also:
\[DownBreve], \[Cup], \[RoundSpaceIndicator], \[Hacek].

� \[Bullet]
Alias: ,bu ,. Letter-like form. See pages 192 and 996. See also: \[FilledSmallCircle], \[FilledCircle].

ć \[CAcute]
Alias: ,c' ,. Letter. Included in ISO Latin-2. See page 998. See also: \[CapitalCAcute].

W \[Cap]
Infix operator. x % y is by default interpreted as Cap[x, y]. Used in pure mathematics to mean cap product.

Sometimes used as an overscript to indicate arc between. See page 1002. See also: \[Cup], \[Intersection],
\[CupCap], \[DownBreve].

Á \[CapitalAAcute]
Alias: ,A' ,. Letter. Included in ISO Latin-1. See page 998. See also: \[AAcute].



1356 CapitalABar — CapitalDelta Mathematica Reference Guide

Ā \[CapitalABar]
Alias: ,A- ,. Letter. Included in ISO Latin-4. See page 998. See also: \[ABar].

Ă \[CapitalACup]
Alias: ,Au ,. Letter. Included in ISO Latin-2. Used in transliterations of Cyrillic characters. See page 998.

See also: \[ACup].

Ä \[CapitalADoubleDot]
Alias: ,A" ,. Letter. Included in ISO Latin-1. See pages 190 and 998. See also: \[ADoubleDot].

Æ \[CapitalAE]
Alias: ,AE ,. Letter. Included in ISO Latin-1. See page 998. See also: \[AE].

À \[CapitalAGrave]
Alias: ,A` ,. Letter. Included in ISO Latin-1. See page 998. See also: \[AGrave].

Â \[CapitalAHat]
Alias: ,A^ ,. Letter. Included in ISO Latin-1. See page 998. See also: \[AHat].

m \[CapitalAlpha]
Aliases: ,A ,, ,Alpha ,. Greek letter. Not the same as English A. See page 990. See also: \[Alpha].

Å \[CapitalARing]
Alias: ,Ao ,. Letter. Included in ISO Latin-1. Not the same as \[Angstrom]. See pages 190 and 998. See
also: \[ARing].

Ã \[CapitalATilde]
Alias: ,A~ ,. Letter. Included in ISO Latin-1. See page 998. See also: \[ATilde].

h \[CapitalBeta]
Aliases: ,B ,, ,Beta ,. Greek letter. Used in TraditionalForm for Beta. Not the same as English B. See
page 990. See also: \[Beta].

Ć \[CapitalCAcute]
Alias: ,C' ,. Letter. Included in ISO Latin-2. See page 998. See also: \[CAcute].

Ç \[CapitalCCedilla]
Alias: ,C, ,. Letter. Included in ISO Latin-1. See page 998. See also: \[CCedilla].

Č \[CapitalCHacek]
Alias: ,Cv ,. Letter. Included in ISO Latin-2. See page 998. See also: \[CHacek].

F \[CapitalChi]
Aliases: ,Ch ,, ,Chi ,, ,C ,. Greek letter. Not the same as English X. See pages 175 and 990. See also: \[Chi],
\[CapitalXi].

? \[CapitalDelta]
Aliases: ,D ,, ,Delta ,. Greek letter. Not the same as \[EmptyUpTriangle]. Sometimes used in mathematics to
denote Laplacian. See pages 175 and 990. See also: \[Delta], \[Del].



A.12 Listing of Named Characters CapitalDifferentialD — CapitalIGrave 1357

) \[CapitalDifferentialD]

Alias: ,DD ,. Compound operator. ) can only be interpreted by default when it appears with � or other integral
operators. Used in mathematics to indicate a functional differential. See page 994. See also:
\[DifferentialD], \[DoubleStruckD].

� \[CapitalDigamma]
Aliases: ,Di ,, ,Digamma ,. Special Greek letter. Analogous to English W. See page 990. See also: \[Digamma].

É \[CapitalEAcute]
Alias: ,E' ,. Letter. Included in ISO Latin-1. See page 998. See also: \[EAcute].

Ē \[CapitalEBar]
Alias: ,E- ,. Letter. Included in ISO Latin-4. See page 998. See also: \[EBar].

Ĕ \[CapitalECup]
Alias: ,Eu ,. Letter. Not included in ISO Latin. See page 998. See also: \[ECup].

Ë \[CapitalEDoubleDot]
Alias: ,E" ,. Letter. Included in ISO Latin-1. See page 998. See also: \[EDoubleDot].

È \[CapitalEGrave]
Alias: ,E` ,. Letter. Included in ISO Latin-1. See page 998. See also: \[EGrave].

Ê \[CapitalEHat]
Alias: ,E^ ,. Letter. Included in ISO Latin-1. See page 998. See also: \[EHat].

t \[CapitalEpsilon]
Aliases: ,E ,, ,Epsilon ,. Greek letter. Not the same as English E. See page 990. See also: \[Epsilon].

v \[CapitalEta]
Aliases: ,Et ,, ,Eta ,, ,H ,. Greek letter. Not the same as English H. See page 990. See also: \[Eta].

H \[CapitalEth]
Alias: ,D- ,. Letter. Included in ISO Latin-1. See page 998. See also: \[Eth].

� \[CapitalGamma]
Aliases: ,G ,, ,Gamma ,. Greek letter. Used in TraditionalForm for Gamma. See pages 175 and 990. See also:
\[Gamma], \[CapitalDigamma].

Í \[CapitalIAcute]
Alias: ,I' ,. Letter. Included in ISO Latin-1. See page 998. See also: \[IAcute].

Ĭ \[CapitalICup]
Alias: ,Iu ,. Letter. Included in ISO Latin-2. See page 998. See also: \[ICup].

Ï \[CapitalIDoubleDot]
Alias: ,I" ,. Letter. Included in ISO Latin-1. See page 998. See also: \[IDoubleDot].

Ì \[CapitalIGrave]
Alias: ,I` ,. Letter. Included in ISO Latin-1. See page 998. See also: \[IGrave].



1358 CapitalIHat — CapitalOSlash Mathematica Reference Guide

Î \[CapitalIHat]
Alias: ,I^ ,. Letter. Included in ISO Latin-1. See page 998. See also: \[IHat].

w \[CapitalIota]
Aliases: ,I ,, ,Iota ,. Greek letter. Not the same as English I. See page 990. See also: \[Iota].

x \[CapitalKappa]
Aliases: ,K ,, ,Kappa ,. Greek letter. Not the same as English K. See page 990. See also: \[Kappa].

� \[CapitalKoppa]
Aliases: ,Ko ,, ,Koppa ,. Special Greek letter. Analogous to English Q. See page 990. See also: \[Koppa].

A \[CapitalLambda]
Aliases: ,L ,, ,Lambda ,. Greek letter. Not the same as \[Wedge]. See pages 175 and 990. See also: \[Lambda].

I \[CapitalLSlash]
Alias: ,L/ ,. Letter. Included in ISO Latin-2. See page 998. See also: \[LSlash].

y \[CapitalMu]
Aliases: ,M ,, ,Mu ,. Greek letter. Not the same as English M. See page 990. See also: \[Mu].

Ñ \[CapitalNTilde]
Alias: ,N~ ,. Letter. Included in ISO Latin-1. See page 998. See also: \[NTilde].

z \[CapitalNu]
Aliases: ,N ,, ,Nu ,. Greek letter. Not the same as English N. See page 990. See also: \[Nu].

Ó \[CapitalOAcute]
Alias: ,O' ,. Letter. Included in ISO Latin-1. See page 998. See also: \[OAcute].

Ő \[CapitalODoubleAcute]
Alias: ,O'' ,. Letter. Included in ISO Latin-2. See page 998. See also: \[ODoubleAcute].

Ö \[CapitalODoubleDot]
Alias: ,O" ,. Letter. Included in ISO Latin-1. See pages 190 and 998. See also: \[ODoubleDot].

Ò \[CapitalOGrave]
Alias: ,O` ,. Letter. Included in ISO Latin-1. See page 998. See also: \[OGrave].

Ô \[CapitalOHat]
Alias: ,O^ ,. Letter. Included in ISO Latin-1. See page 998. See also: \[OHat].

H \[CapitalOmega]
Aliases: ,O ,, ,Omega ,, ,W ,. Greek letter. Used as the symbol for ohms. See pages 175 and 990. See also:
\[Omega], \[Mho].

{ \[CapitalOmicron]
Aliases: ,Om ,, ,Omicron ,. Greek letter. Not the same as English O. See page 990. See also: \[Omicron].

Ø \[CapitalOSlash]
Alias: ,O/ ,. Letter. Included in ISO Latin-1. Not the same as \[EmptySet] or \[Diameter]. See page 998.

See also: \[OSlash].



A.12 Listing of Named Characters CapitalOTilde — CapitalUHat 1359

Õ \[CapitalOTilde]
Alias: ,O~ ,. Letter. Included in ISO Latin-1. See page 998. See also: \[OTilde].

E \[CapitalPhi]
Aliases: ,Ph ,, ,Phi ,, ,F ,. Greek letter. Used in TraditionalForm for LerchPhi. See pages 175 and 990. See
also: \[Phi].

B \[CapitalPi]
Aliases: ,P ,, ,Pi ,. Greek letter. Used in TraditionalForm for EllipticPi. Not the same as \[Product].

See pages 175 and 990. See also: \[Pi].

G \[CapitalPsi]
Aliases: ,Ps ,, ,Psi ,, ,Y ,. Greek letter. See pages 175 and 990. See also: \[Psi].

| \[CapitalRho]
Aliases: ,R ,, ,Rho ,. Greek letter. Not the same as English P. See page 990. See also: \[Rho].

� \[CapitalSampi]
Aliases: ,Sa ,, ,Sampi ,. Special Greek letter. See page 990. See also: \[Sampi].

Š \[CapitalSHacek]
Alias: ,Sv ,. Letter. Included in ISO Latin-2. See page 998. See also: \[SHacek].

C \[CapitalSigma]
Aliases: ,S ,, ,Sigma ,. Greek letter. Not the same as \[Sum]. See pages 175 and 990. See also: \[Sigma].

� \[CapitalStigma]
Aliases: ,Sti ,, ,Stigma ,. Special Greek letter. See page 990. See also: \[Stigma].

} \[CapitalTau]
Aliases: ,T ,, ,Tau ,. Greek letter. Not the same as English T. See page 990. See also: \[Tau].

@ \[CapitalTheta]
Aliases: ,Th ,, ,Theta ,, ,Q ,. Greek letter. See pages 175 and 990. See also: \[Theta].

K \[CapitalThorn]
Alias: ,Thn ,. Letter. Included in ISO Latin-1. See page 998. See also: \[Thorn].

Ú \[CapitalUAcute]
Alias: ,U' ,. Letter. Included in ISO Latin-1. See page 998. See also: \[UAcute].

Ű \[CapitalUDoubleAcute]
Alias: ,U'' ,. Letter. Included in ISO Latin-2. See page 998. See also: \[UDoubleAcute].

Ü \[CapitalUDoubleDot]
Alias: ,U" ,. Letter. Included in ISO Latin-1. See pages 190 and 998. See also: \[UDoubleDot].

Ù \[CapitalUGrave]
Alias: ,U` ,. Letter. Included in ISO Latin-1. See page 998. See also: \[UGrave].

Û \[CapitalUHat]
Alias: ,U^ ,. Letter. Included in ISO Latin-1. See page 998. See also: \[UHat].



1360 CapitalUpsilon — CircleMinus Mathematica Reference Guide

D \[CapitalUpsilon]

Aliases: ,U ,, ,Upsilon ,. Greek letter. Not commonly used. Used in physics for bb̄ particles, and in the
quantum theory of measurement. See pages 175 and 990. See also: \[CurlyCapitalUpsilon], \[Upsilon].

l \[CapitalXi]
Aliases: ,X ,, ,Xi ,. Greek letter. Not commonly used. Used for grand canonical partition function, cascade
hyperon and regular language complexity. See page 990. See also: \[Xi].

J \[CapitalYAcute]
Alias: ,Y' ,. Letter. Included in ISO Latin-1. See page 998. See also: \[YAcute].

u \[CapitalZeta]
Aliases: ,Z ,, ,Zeta ,. Greek letter. Used in TraditionalForm for JacobiZeta. Not the same as English Z.

See page 990. See also: \[Zeta].

ç \[CCedilla]
Alias: ,c, ,. Letter. Included in ISO Latin-1. See pages 190 and 998. See also: \[CapitalCCedilla].

� \[Cedilla]
Alias: ,cd ,. Letter-like form. Used in an underscript position as a diacritical mark. See page 999. See also:
\[Hacek], \[Breve].

% \[Cent]
Alias: ,cent ,. Letter-like form. Currency symbol, used as in 5-. See page 994.

& \[CenterDot]
Alias: ,. ,. Infix operator. x o y is by default interpreted as CenterDot[x, y]. Used to indicate various forms
of multiplication, particularly dot products of vectors. Sometimes used to indicate concatenation or composition.

Used in the British mathematical tradition as a decimal point. See page 1002. See also: \[CenterEllipsis],
\[RawDot], \[CircleDot].

� \[CenterEllipsis]
Letter-like form. Used to indicate omitted elements in a row of a matrix. See page 997. See also: \[Ellipsis],
\[VerticalEllipsis], \[CenterDot].

č \[CHacek]
Alias: ,cv ,. Letter. Included in ISO Latin-2. See pages 190 and 998. See also: \[CapitalCHacek], \[SHacek].

Χ \[Chi]
Aliases: ,ch ,, ,chi ,, ,c ,. Greek letter. See pages 175 and 990. See also: \[CapitalChi], \[Xi].

T \[CircleDot]
Alias: ,c. ,. Infix operator. x � y is by default interpreted as CircleDot[x, y]. Used in mathematics for
various operations related to multiplication, such as direct or tensor products. Also sometimes used to indicate a
vector pointing out of the page. See page 1002. See also: \[CircleTimes], \[CenterDot].

S \[CircleMinus]
Alias: ,c- ,. Infix operator. x ' y is by default interpreted as CircleMinus[x, y]. See page 1002. See also:
\[CirclePlus].



A.12 Listing of Named Characters CirclePlus — ControlKey 1361

K \[CirclePlus]
Alias: ,c+ ,. Infix operator. x O y is by default interpreted as CirclePlus[x, y]. Used in mathematics for
various operations related to addition, such as direct sum and addition modulo two. Also sometimes used to
indicate a vector pointing into the page. See pages 191 and 1002. See also: \[CircleTimes], \[CircleMinus],
\[Xor].

L \[CircleTimes]
Alias: ,c* ,. Infix and prefix operator. x g y is by default interpreted as CircleTimes[x, y]. Used in
mathematics for various operations related to multiplication, such as direct or tensor products. Also sometimes
used to indicate a vector pointing into the page. See pages 191 and 1002. See also: \[CircleDot], \[Times],
\[Cross], \[Wedge], \[CirclePlus].

1 \[ClockwiseContourIntegral]

Alias: ,ccint ,. Compound operator (see page 1031). J f 7x is by default interpreted as
ClockwiseContourIntegral[f, x]. See page 1000. See also: \[CounterClockwiseContourIntegral] ,
\[ContourIntegral].

U \[CloverLeaf]
Alias: ,cl ,. Letter-like form. Used on Macintosh and other computers to indicate command keys. See
page 1009. See also: \[CommandKey].

� \[ClubSuit]
Letter-like form. See page 996. See also: \[DiamondSuit], \[HeartSuit], \[SpadeSuit].

: \[Colon]
Alias: ,: ,. Infix operator. x : y is by default interpreted as Colon[x, y]. Used in mathematics to mean “such
that”. Occasionally used to indicate proportion. Used to separate hours and minutes in times. See page 1001.

See also: \[SuchThat], \[VerticalSeparator], \[Exists], \[ForAll], \[RawColon], \[Proportion],
\[Therefore].

R \[CommandKey]
Alias: ,cmd ,. Letter-like form. Representation of the COMMAND or ALT key on a keyboard. See page 1009. See
also: \[CloverLeaf], \[LeftModified], \[ControlKey], \[EscapeKey].

Q \[Congruent]
Alias: ,=== ,. Infix similarity operator. x k y is by default interpreted as Congruent[x, y]. Used in
mathematics for many notions of equivalence and equality. See pages 191 and 1003. See also: \[NotCongruent],
\[Equal], \[TildeFullEqual], \[CupCap], \[LeftRightArrow].

¢ \[Continuation]
Alias: ,cont ,. Structural element. Used at the end of a line of input to indicate that the expression on that line
continues onto the next line. Equivalent in meaning to \ at the end of a line. Not the same as
\[DescendingEllipsis]. See page 1009. See also: \[RawBackslash], \[Backslash], \[ReturnIndicator].

) \[ContourIntegral]

Alias: ,cint ,. Compound operator (see page 1031). 5 f 7x is by default interpreted as ContourIntegral[f, x].
See page 1000. See also: \[ClockwiseContourIntegral], \[DoubleContourIntegral].

Q \[ControlKey]
Alias: ,ctrl ,. Letter-like form. Representation of the CONTROL key on a keyboard. See page 1009. See also:
\[LeftModified], \[CommandKey], \[EscapeKey], \[ReturnKey].



1362 Coproduct — CurlyTheta Mathematica Reference Guide

2 \[Coproduct]
Alias: ,coprod ,. Infix operator. x 1 y is by default interpreted as Coproduct[x, y]. 1 x is by default
interpreted as Coproduct[x]. Coproduct is used as an abstract dual to the operation of multiplication, most often
in infix form. See page 1002. See also: \[Product], \[Wedge], \[Vee], \[CircleTimes], \[SquareUnion].

 \[Copyright]
Letter-like form. See page 996. See also: \[RegisteredTrademark].

0 \[CounterClockwiseContourIntegral]

Alias: ,cccint ,. Compound operator (see page 1031). K f 7x is by default interpreted as
CounterClockwiseContourIntegral[f, x]. See page 1000. See also: \[ClockwiseContourIntegral],
\[ContourIntegral].

� \[Cross]
Alias: ,cross ,. Infix operator with built-in evaluation rules. x � y is by default interpreted as Cross[x, y].

Not the same as \[Times]. \[Cross] represents vector cross product, while \[Times] represents ordinary
multiplication. \[Cross] is drawn smaller than \[Times]. See page 1000. See also: \[CircleTimes].

X \[Cup]
Infix operator. x & y is by default interpreted as Cup[x, y]. Used in pure mathematics to mean cup product.

See page 1002. See also: \[Cap], \[Union], \[CupCap], \[RoundSpaceIndicator], \[Breve].

\ \[CupCap]
Infix similarity operator. x . y is by default interpreted as CupCap[x, y]. Used in mathematics for various
notions of equivalence, usually fairly weak. f . g is often specifically used to indicate that f/g has bounded
variation. See page 1003. See also: \[NotCupCap], \[Cap], \[Cup].

~ \[CurlyCapitalUpsilon]
Aliases: ,cU ,, ,cUpsilon ,. Greek letter. Not commonly used. Used in astronomy for mass to light ratio. See
page 990. See also: \[CapitalUpsilon].

� \[CurlyEpsilon]
Aliases: ,ce ,, ,cepsilon ,. Greek letter. Not the same as \[Element]. Used in physics for Fermi energy and
dielectric constant. See page 990. See also: \[Epsilon], \[ScriptCapitalE].

� \[CurlyKappa]
Aliases: ,ck ,, ,ckappa ,. Greek letter. See page 990. See also: \[Kappa].

� \[CurlyPhi]
Aliases: ,j ,, ,cph ,, ,cphi ,. Greek letter. Commonly used as a variant of Φ. See pages 175 and 990. See also:
\[Phi].

q \[CurlyPi]
Aliases: ,cp ,, ,cpi ,. Greek letter. Not commonly used, except in astronomy. See page 990. See also: \[Pi],
\[Omega].

� \[CurlyRho]
Aliases: ,cr ,, ,crho ,. Greek letter. See page 990. See also: \[Rho].

i \[CurlyTheta]
Aliases: ,cq ,, ,cth ,, ,ctheta ,. Greek letter. Used in TraditionalForm for EllipticTheta and
RiemannSiegelTheta. See page 990. See also: \[CapitalTheta], \[Theta].



A.12 Listing of Named Characters Dagger — Divide 1363

� \[Dagger]
Alias: ,dg ,. Letter-like form and overfix operator. x† is by default interpreted as SuperDagger[x]. See
pages 192 and 996. See also: \[DoubleDagger].

$ \[Dalet]
Alias: ,da ,. Hebrew letter. Sometimes called daleth. Used occasionally in pure mathematics in the theory of
transfinite cardinals. See page 993. See also: \[Aleph].

 \[Dash]
Alias: ,- ,. Letter-like form. See page 996. See also: \[LongDash], \[HorizontalLine].

� \[Degree]
Alias: ,deg ,. Letter-like form with built-in value. Interpreted by default as the symbol Degree. 30� is
interpreted as 30 Degree. The symbol � is sometimes used in mathematics to indicate the interior of a set. Not
the same as \[SmallCircle] or \[EmptySmallCircle]. See page 994. See also: \[Prime], \[DoublePrime].

% \[Del]
Alias: ,del ,. Prefix operator. Yf is by default interpreted as Del[f]. Used in vector analysis to denote gradient
operator and its generalizations. Used in numerical analysis to denote backward difference operator. Also called
nabla. Not the same as \[EmptyDownTriangle]. See pages 994 and 1000. See also: \[CapitalDelta],
\[PartialD], \[Square].

∆ \[Delta]
Aliases: ,d ,, ,delta ,. Greek letter. See pages 175 and 990. See also: \[PartialD], \[Del], \[CapitalDelta].

� \[DescendingEllipsis]
Letter-like form. Used to indicate omitted elements in a matrix. Not the same as \[Continuation]. See
page 997. See also: \[AscendingEllipsis], \[VerticalEllipsis], \[Ellipsis].

> \[Diameter]
Letter-like form. Used in geometry. Not the same as \[CapitalOSlash] or \[EmptySet]. See page 996.

� \[Diamond]
Alias: ,dia ,. Infix operator. x n y is by default interpreted as Diamond[x, y]. See page 1002. See also:
\[EmptyDiamond], \[FilledDiamond], \[DiamondSuit].

� \[DiamondSuit]
Letter-like form. Sometimes used to indicate the end of a proof. Not the same as \[Diamond] or
\[EmptyDiamond]. See page 996. See also: \[ClubSuit].

( \[DifferentialD]
Alias: ,dd ,. Compound operator with built-in evaluation rules. ( can only be interpreted by default when it
appears with � or other integral operators. � f 7x is by default interpreted as Integrate[f, x].

\[DifferentialD] is also used in TraditionalForm to indicate total derivatives. See pages 185, 994 and 1000.
See also: \[PartialD], \[CapitalDifferentialD], \[Delta].

� \[Digamma]
Aliases: ,di ,, ,digamma ,. Special Greek letter. Analogous to English w. Sometimes used to denote
PolyGamma[x]. See page 990. See also: \[CapitalDigamma], \[Koppa], \[Stigma], \[Sampi].

J \[Divide]
Alias: ,div ,. Infix operator with built-in evaluation rules. x 
 y is by default interpreted as Divide[x, y] or
x / y. x 
 y 
 z groups as (x 
 y) 
 z. See page 1000. See also: \[Times], \[Proportion], \[Backslash].



1364 DotEqual — DoubleLeftTee Mathematica Reference Guide

] \[DotEqual]
Alias: ,.= ,. Infix similarity operator. x / y is by default interpreted as DotEqual[x, y]. Used to mean
approximately equal, or in some cases, “image of”, or “equal by definition”. See page 1003. See also:
\[TildeEqual], \[RightArrow].

 \[DotlessI]
Letter. Used when an i will have an overscript on top. May or may not match the ordinary i from the text
font. See page 992. See also: \[DotlessJ], \[Iota].

! \[DotlessJ]
Letter. Used when a j will have an overscript on top. May or may not match the ordinary j from the text font.

See page 992. See also: \[DotlessI].

� \[DottedSquare]
Letter-like form. See page 995. See also: \[EmptySquare], \[Placeholder].

/ \[DoubleContourIntegral]

Compound operator (see page 1031). L f 7s is by default interpreted as ContourIntegral[f, s]. Used to
indicate integrals over closed surfaces. See page 1000. See also: \[ContourIntegral], \[Integral].

E \[DoubleDagger]
Alias: ,ddg ,. Letter-like form. See page 996. See also: \[Dagger].

( \[DoubledGamma]
Alias: ,gg ,. Letter-like form. Not by default assigned any interpretation in StandardForm. Interpreted as
EulerGamma in TraditionalForm. Not the same as \[Gamma]. See page 994. See also: \[DoubledPi],
\[ExponentialE], \[DoubleStruckA].

  \[DoubleDownArrow]
Infix arrow operator. x s y is by default interpreted as DoubleDownArrow[x, y]. Extensible character. See
page 1006. See also: \[DownArrow], \[DoubleUpArrow].

' \[DoubledPi]
Alias: ,pp ,. Letter-like form. Not by default assigned any interpretation. Not the same as \[Pi]. See
page 994. See also: \[DoubledGamma], \[ExponentialE], \[DoubleStruckA].

� \[DoubleLeftArrow]
Alias: ,�<= ,. Infix arrow operator. x t y is by default interpreted as DoubleLeftArrow[x, y]. Extensible
character. ,<= , is the alias for \[LessEqual]. The alias for \[DoubleLeftArrow] has a space at the beginning.

See page 1006. See also: \[DoubleLongLeftArrow], \[LeftArrow], \[DoubleRightArrow].

� \[DoubleLeftRightArrow]
Alias: ,<=> ,. Infix arrow operator. x u y is by default interpreted as DoubleLeftRightArrow[x, y]. Used in
mathematics to indicate logical equivalence. Extensible character. See page 1006. See also:
\[DoubleLongLeftRightArrow], \[LeftRightArrow], \[RightArrowLeftArrow], \[LeftArrowRightArrow],
\[Congruent], \[Implies].

R \[DoubleLeftTee]
Infix operator. x + y is by default interpreted as DoubleLeftTee[x, y]. x + y + z groups as (x + y) + z.

Used in mathematics to indicate various strong forms of logical implication of x from y—often tautological
implication. See pages 1001 and 1007. See also: \[LeftTee], \[DoubleRightTee].



A.12 Listing of Named Characters DoubleLongLeftArrow — DoubleUpDownArrow 1365

� \[DoubleLongLeftArrow]
Alias: ,<== ,. Infix arrow operator. x vy is by default interpreted as DoubleLongLeftArrow[x, y]. See
page 1006. See also: \[DoubleLeftArrow], \[LongLeftArrow], \[DoubleLongRightArrow].

� \[DoubleLongLeftRightArrow]
Alias: ,<==> ,. Infix arrow operator. x wy is by default interpreted as DoubleLongLeftRightArrow[x, y]. See
page 1006. See also: \[DoubleLeftRightArrow], \[LongLeftRightArrow], \[RightArrowLeftArrow],
\[LeftArrowRightArrow].

� \[DoubleLongRightArrow]
Alias: ,==> ,. Infix arrow operator. x xy is by default interpreted as DoubleLongRightArrow[x, y]. See
page 1006. See also: \[DoubleRightArrow], \[LongRightArrow], \[DoubleLongLeftArrow].

� \[DoublePrime]
Alias: ,'' ,. Letter-like form. Used to indicate angles in seconds or distances in inches. See pages 996 and 999.

See also: \[Prime], \[ReverseDoublePrime].

n \[DoubleRightArrow]
Alias: ,�=> ,. Infix arrow operator. x � y is by default interpreted as DoubleRightArrow[x, y]. Used in
mathematics to indicate various strong forms of convergence. Also used to indicate algebraic field extensions.

Not the same as \[Implies]. Extensible character. See page 1006. See also: \[DoubleLongRightArrow],
\[RightArrow], \[DoubleLeftArrow].

Q \[DoubleRightTee]
Infix operator. x ) y is by default interpreted as DoubleRightTee[x, y]. x ) y ) z groups as x ) (y ) z).

Used in mathematics to indicate various strong forms of logical implication—often tautological implication. In
prefix form, used to indicate a tautology. See pages 1001 and 1007. See also: \[RightTee], \[DoubleLeftTee].

	 � � �
 \[DoubleStruckA] � � � \[DoubleStruckZ]
Aliases: ,dsa , through ,dsz ,. Letters. Treated as distinct characters rather than style modifications of ordinary
letters. Contiguous character codes from the private Unicode character range are used, even though a few
double-struck characters are included in ordinary Unicode. See page 993. See also: \[DoubleStruckCapitalA],
\[GothicA], \[ScriptA], etc.

� � � �� \[DoubleStruckCapitalA] � � � \[DoubleStruckCapitalZ]
Aliases: ,dsA , through ,dsZ ,. Letters. Treated as distinct characters rather than style modifications of ordinary
letters. �, �, �, �, �, � are used respectively to denote the sets of natural numbers, integers, rationals, reals,
complex numbers and quaternions. Contiguous character codes from the private Unicode character range are
used, even though a few capital double-struck characters are included in ordinary Unicode. See page 993. See
also: \[GothicCapitalA], \[ScriptCapitalA], etc.

� \[DoubleUpArrow]
Infix arrow operator. x y y is by default interpreted as DoubleUpArrow[x, y]. Extensible character. See
page 1006. See also: \[UpArrow], \[DoubleDownArrow].

¡ \[DoubleUpDownArrow]
Infix arrow operator. x z y is by default interpreted as DoubleUpDownArrow[x, y]. Extensible character. See
page 1006. See also: \[UpDownArrow], \[UpArrowDownArrow], \[DownArrowUpArrow].



1366 DoubleVerticalBar — DownRightTeeVector Mathematica Reference Guide

5 \[DoubleVerticalBar]
Alias: ,�|| ,. Infix operator. x 4 y is by default interpreted as DoubleVerticalBar[x, y]. Used in
mathematics to indicate that x exactly divides y. Used in geometry to mean “parallel to”. Not the same as
\[LeftDoubleBracketingBar], \[RightDoubleBracketingBar]. ,|| , is the alias for \[Or]. The alias for
\[DoubleVerticalBar] has a space at the beginning. See page 1005. See also: \[VerticalBar],
\[VerticalSeparator], \[NotDoubleVerticalBar].

� \[DownArrow]
Infix arrow operator. x c y is by default interpreted as DownArrow[x, y]. Used to indicate monotonic decrease
to a limit. Sometimes used for logical nor. Sometimes used in prefix form to indicate the closure of a set.

Extensible character. See page 1006. See also: \[DownTeeArrow], \[DownArrowBar], \[DoubleDownArrow],
\[LeftDownVector], \[UpArrow].

' \[DownArrowBar]
Infix arrow operator. x � y is by default interpreted as DownArrowBar[x, y]. Sometimes used as an indicator of
depth. Extensible character. See page 1006. See also: \[DownTeeArrow], \[DownArrow],
\[LeftDownVectorBar], \[UpArrowBar].

+ \[DownArrowUpArrow]
Infix arrow operator. x � y is by default interpreted as DownArrowUpArrow[x, y]. Extensible character. See
page 1006. See also: \[UpDownArrow], \[DoubleUpDownArrow], \[UpArrowDownArrow], \[UpEquilibrium].

- \[DownBreve]
Alias: ,dbv ,. Letter-like form. Used in an overscript position as a diacritical mark. See page 999. See also:
\[Breve], \[Cap].

B \[DownExclamation]
Alias: ,d! ,. Letter-like form. Used in Spanish. See page 996. See also: \[RawExclamation],
\[DownQuestion].

5 \[DownLeftRightVector]
Infix arrow-like operator. x � y is by default interpreted as DownLeftRightVector[x, y]. Extensible character.

See page 1007. See also: \[LeftRightVector], \[Equilibrium], \[RightUpDownVector].

9 \[DownLeftTeeVector]
Infix arrow-like operator. x � y is by default interpreted as DownLeftTeeVector[x, y]. Extensible character.

See page 1007. See also: \[LeftTeeVector], \[LeftVectorBar].

4 \[DownLeftVector]
Infix arrow-like operator. x � y is by default interpreted as DownLeftVector[x, y]. Extensible character. See
page 1007. See also: \[LeftVector], \[LeftTeeVector], \[LeftArrow], \[LeftUpVector].

= \[DownLeftVectorBar]
Infix arrow-like operator. x  y is by default interpreted as DownLeftVectorBar[x, y]. Extensible character.

See page 1007. See also: \[LeftVectorBar], \[LeftTeeVector].

A \[DownQuestion]
Alias: ,d? ,. Letter-like form. Used in Spanish. See page 996. See also: \[RawQuestion],
\[DownExclamation].

8 \[DownRightTeeVector]
Infix arrow-like operator. x ! y is by default interpreted as DownRightTeeVector[x, y]. Extensible character.

See page 1007. See also: \[RightTeeVector], \[RightVectorBar].



A.12 Listing of Named Characters DownRightVector — EmptyCircle 1367

3 \[DownRightVector]
Infix arrow-like operator. x " y is by default interpreted as DownRightVector[x, y]. Extensible character. See
page 1007. See also: \[RightVector], \[RightTeeVector], \[RightArrow], \[RightUpVector].

< \[DownRightVectorBar]
Infix arrow-like operator. x # y is by default interpreted as DownRightVectorBar[x, y]. Extensible character.

See page 1007. See also: \[RightVectorBar], \[RightTeeVector].

® \[DownTee]
Alias: ,dT ,. Infix operator. x 0 y is by default interpreted as DownTee[x, y]. See page 1007. See also:
\[UpTee], \[RightTee], \[DownTeeArrow].

% \[DownTeeArrow]
Infix arrow operator. x $ y is by default interpreted as DownTeeArrow[x, y]. Extensible character. See
page 1006. See also: \[DownArrowBar], \[RightDownTeeVector], \[DownTee], \[UpTeeArrow].

é \[EAcute]
Alias: ,e' ,. Letter. Included in ISO Latin-1. See pages 190 and 998. See also: \[CapitalEAcute].

ē \[EBar]
Alias: ,e- ,. Letter. Included in ISO Latin-4. Used in transliterations of various non-Latin alphabets. See
page 998. See also: \[CapitalEBar].

ĕ \[ECup]
Alias: ,eu ,. Letter. Not included in ISO Latin. Used in transliterations of Cyrillic characters. See page 998.

See also: \[CapitalECup].

ë \[EDoubleDot]
Alias: ,e" ,. Letter. Included in ISO Latin-1. See page 998. See also: \[CapitalEDoubleDot], \[IDoubleDot],
\[ADoubleDot].

è \[EGrave]
Alias: ,e` ,. Letter. Included in ISO Latin-1. See pages 190 and 998. See also: \[CapitalEGrave].

ê \[EHat]
Alias: ,e^ ,. Letter. Included in ISO Latin-1. See page 998. See also: \[CapitalEHat].

U \[Element]
Alias: ,el ,. Infix operator with built-in evaluation rules. x � y is by default interpreted as Element[x, y].

Not the same as \[Epsilon]. See pages 191, 1001 and 1004. See also: \[NotElement], \[ReverseElement],
\[Euro].

� \[Ellipsis]
Alias: ,... ,. Letter-like form. Used to indicate omitted elements in a row of a matrix. \[Ellipsis] on its
own will act as a symbol. See pages 996 and 997. See also: \[CenterEllipsis], \[VerticalEllipsis],
\[AscendingEllipsis], \[HorizontalLine], \[LeftSkeleton], \[RawDot].

3 \[EmptyCircle]
Alias: ,eci ,. Letter-like form. Not the same as the infix operator \[SmallCircle]. See page 995. See also:
\[EmptySmallCircle], \[FilledCircle], \[Degree].



1368 EmptyDiamond — Equilibrium Mathematica Reference Guide

0 \[EmptyDiamond]
Letter-like form. See page 995. See also: \[Diamond], \[FilledDiamond].

7 \[EmptyDownTriangle]
Letter-like form. Not the same as \[Del]. See page 995. See also: \[EmptyUpTriangle],
\[FilledDownTriangle], \[FilledUpTriangle], \[LeftTriangle], \[NotLeftTriangle], \[NotRightTriangle],
\[RightTriangle].

. \[EmptyRectangle]
Letter-like form. See page 995. See also: \[FilledRectangle].

Z \[EmptySet]
Alias: ,es ,. Letter-like form. Not the same as \[CapitalOSlash] or \[Diameter]. See pages 192 and 994.

� \[EmptySmallCircle]
Alias: ,esci ,. Letter-like form. Not the same as the infix operator \[SmallCircle]. Used as an overscript to
add ring diacritical marks. See page 995. See also: \[FilledSmallCircle], \[Degree], \[ARing], \[Angstrom].

+ \[EmptySmallSquare]
Alias: ,essq ,. Letter-like form. Not the same as the operator \[Square]. Not the same as \[Placeholder].

See page 995. See also: \[EmptySquare], \[FilledSmallSquare].

, \[EmptySquare]
Alias: ,esq ,. Letter-like form. Not the same as the operator \[Square]. Not the same as \[Placeholder].

See page 995. See also: \[FilledSquare], \[GraySquare], \[DottedSquare], \[EmptyRectangle].

5 \[EmptyUpTriangle]
Letter-like form. Used in geometry to indicate a triangle, as in the symbol 1ABC. Not the same as
\[CapitalDelta]. See pages 995 and 996. See also: \[FilledUpTriangle], \[EmptyDownTriangle],
\[RightTriangle], \[Angle].

P \[EnterKey]
Alias: ,ent ,. Letter-like form. Representation of the ENTER key on a keyboard. Used in describing how to type
textual input. See page 1009. See also: \[ReturnKey], \[ReturnIndicator], \[ControlKey], \[CommandKey].

Ε \[Epsilon]
Aliases: ,e ,, ,epsilon ,. Greek letter. Not the same as \[Element]. See pages 175 and 990. See also:
\[CurlyEpsilon], \[CapitalEpsilon], \[Eta], \[Euro].

� \[Equal]
Alias: ,== ,. Infix operator with built-in evaluation rules. x � y is by default interpreted as Equal[x, y] or
x == y. \[Equal] is drawn longer than \[RawEqual]. See page 1003. See also: \[LongEqual], \[NotEqual],
\[Congruent], \[Rule].

Y \[EqualTilde]
Alias: ,=~ ,. Infix similarity operator. x 2 y is by default interpreted as EqualTilde[x, y]. See page 1003.

See also: \[NotEqualTilde].

� \[Equilibrium]
Alias: ,equi ,. Infix arrow-like operator. x 
 y is by default interpreted as Equilibrium[x, y]. Used in
chemistry to represent a reversible reaction. Extensible character. See pages 191 and 1007. See also:
\[ReverseEquilibrium], \[RightArrowLeftArrow], \[LeftRightArrow], \[LeftRightVector], \[UpEquilibrium].



A.12 Listing of Named Characters ErrorIndicator — FilledSmallCircle 1369

¯ \[ErrorIndicator]
Uninterpretable element. Generated to indicate the position of a syntax error in messages produced by functions
like Get and ToExpression. Shown as ^^^ in OutputForm. \[ErrorIndicator] indicates the presence of a
syntax error, and so by default generates an error if you try to interpret it. See also: \[LeftSkeleton].

� \[EscapeKey]
Alias: ,�esc ,. Letter-like form. Representation of the escape key on a keyboard. Used in describing how to
type aliases for special characters in Mathematica. ,esc , is the alias for \[AliasIndicator]. The alias for
\[EscapeKey] has a space at the beginning. See page 1009. See also: \[AliasIndicator], \[RawEscape],
\[ReturnKey], \[ControlKey], \[CommandKey].

Η \[Eta]
Aliases: ,et ,, ,eta ,, ,h ,. Greek letter. Used in TraditionalForm for DedekindEta. See pages 175 and 990.

See also: \[CapitalEta], \[Epsilon].

Ð \[Eth]
Alias: ,d- ,. Letter. Included in ISO Latin-1. Used in Icelandic and Old English. See page 998. See also:
\[CapitalEth], \[Thorn], \[PartialD].

€ \[Euro]
Letter-like form. Sign for euro European currency, as in € 5. See page 994. See also: \[Epsilon], \[Element],
\[Sterling].

� \[Exists]
Alias: ,ex ,. Compound operator. ]x y is by default interpreted as Exists[x, y]. See page 1001. See also:
\[NotExists].

� \[ExponentialE]
Alias: ,ee ,. Letter-like form with built-in value. � is interpreted by default as the symbol E, representing the
exponential constant. See pages 988 and 994. See also: \[DifferentialD], \[ImaginaryI].

4 \[FilledCircle]
Alias: ,fci ,. Letter-like form. Used as a dingbat. See page 995. See also: \[Bullet],
\[FilledSmallCircle], \[SmallCircle], \[EmptyCircle].

1 \[FilledDiamond]
Letter-like form. See page 995. See also: \[Diamond], \[EmptyDiamond].

8 \[FilledDownTriangle]
Letter-like form. See page 995. See also: \[EmptyDownTriangle], \[EmptyUpTriangle], \[FilledUpTriangle],
\[LeftTriangle], \[NotLeftTriangle], \[NotRightTriangle], \[RightTriangle].

/ \[FilledRectangle]
Letter-like form. Used in mathematics to indicate the end of a proof. See page 995. See also:
\[EmptyRectangle].

2 \[FilledSmallCircle]
Alias: ,fsci ,. Letter-like form. Used as a dingbat. See page 995. See also: \[Bullet], \[FilledCircle],
\[EmptySmallCircle].



1370 FilledSmallSquare — GothicA � � � GothicZ Mathematica Reference Guide

� \[FilledSmallSquare]
Alias: ,fssq ,. Letter-like form. Used as a dingbat. Not the same as \[SelectionPlaceholder]. See
page 995. See also: \[FilledSquare], \[EmptySmallSquare], \[Square].

- \[FilledSquare]
Alias: ,fsq ,. Letter-like form. Used as a dingbat. Not the same as \[SelectionPlaceholder]. See page 995.

See also: \[FilledSmallSquare], \[EmptySquare], \[Square], \[GraySquare], \[FilledRectangle].

6 \[FilledUpTriangle]
Letter-like form. See page 995. See also: \[EmptyDownTriangle], \[EmptyUpTriangle],
\[FilledDownTriangle], \[LeftTriangle], \[NotLeftTriangle], \[NotRightTriangle], \[RightTriangle].

* \[FilledVerySmallSquare]
Alias: ,fvssq ,. Letter-like form. Used as a dingbat. See page 995. See also: \[FilledSmallSquare],
\[Square].

r \[FinalSigma]
Alias: ,fs ,. Greek letter. Used in written Greek when Σ occurs at the end of a word. Not commonly used in
technical notation. Not the same as \[Stigma]. See page 990. See also: \[Sigma].

9 \[FivePointedStar]
Alias: ,*5 ,. Letter-like form. Not the same as the operator \[Star]. See page 995. See also:
\[SixPointedStar], \[Star], \[RawStar].

C \[Flat]
Letter-like form. Used to denote musical notes. Sometimes used in mathematical notation. See page 996. See
also: \[Sharp], \[Natural].

� \[ForAll]
Alias: ,fa ,. Compound operator. \x y is by default interpreted as ForAll[x, y]. See page 1001. See also:
\[Exists], \[Not].

� \[FreakedSmiley]
Alias: ,:-@ ,. Letter-like form. See page 995. See also: \[HappySmiley], \[NeutralSmiley], \[SadSmiley],
\[WarningSign].

Γ \[Gamma]
Aliases: ,g ,, ,gamma ,. Greek letter. Used in TraditionalForm for EulerGamma and StieltjesGamma. See
pages 175 and 990. See also: \[DoubledGamma], \[CapitalGamma], \[Digamma].

# \[Gimel]
Alias: ,gi ,. Hebrew letter. Used occasionally in pure mathematics in the theory of transfinite cardinals. See
page 993. See also: \[Aleph].

� � � �� \[GothicA] � � � \[GothicZ]
Aliases: ,goa , through ,goz ,. Letters. Treated as distinct characters rather than style modifications of ordinary
letters. Used in pure mathematics. Contiguous character codes from the private Unicode character range are
used, even though a few gothic characters are included in ordinary Unicode. See page 993. See also:
\[GothicCapitalA], \[ScriptA], \[DoubleStruckA], etc.



A.12 Listing of Named Characters GothicCapitalA � � � GothicCapitalZ — Hacek 1371

� � � �� \[GothicCapitalA] � � � \[GothicCapitalZ]
Aliases: ,goA , through ,goZ ,. Letters. Treated as distinct characters rather than style modifications of ordinary
letters. � is used to denote imaginary part; X is used to denote real part. Used in pure mathematics and theory
of computation. Contiguous character codes from the private Unicode character range are used, even though a
few capital gothic characters are included in ordinary Unicode. See page 993. See also: \[GothicA],
\[ScriptCapitalA], \[DoubleStruckCapitalA], etc.

\[GrayCircle]
Alias: ,gci ,. Letter-like form. Used as a dingbat. Generated internally by Mathematica, rather than being an
explicit font character. See page 995. See also: \[FilledCircle], \[GraySquare].

\[GraySquare]
Alias: ,gsq ,. Letter-like form. Used as a dingbat. Generated internally by Mathematica, rather than being an
explicit font character. See page 995. See also: \[FilledSquare], \[EmptySquare].

! \[GreaterEqual]
Alias: ,>= ,. Infix operator with built-in evaluation rules. x � y is by default interpreted as GreaterEqual[x, y].

See page 1004. See also: \[GreaterSlantEqual], \[GreaterFullEqual], \[NotGreaterEqual].

r \[GreaterEqualLess]

Infix ordering operator. x 3 y is by default interpreted as GreaterEqualLess[x, y]. See page 1004. See also:
\[LessEqualGreater].

j \[GreaterFullEqual]
Infix ordering operator. x 4 y is by default interpreted as GreaterFullEqual[x, y]. See page 1004. See also:
\[GreaterEqual], \[GreaterSlantEqual], \[NotGreaterFullEqual].

� \[GreaterGreater]
Infix ordering operator. x � y is by default interpreted as GreaterGreater[x, y]. Not the same as
\[RightGuillemet]. See pages 191 and 1004. See also: \[NestedGreaterGreater], \[NotGreaterGreater],
\[NotNestedGreaterGreater].

p \[GreaterLess]
Infix ordering operator. x 5 y is by default interpreted as GreaterLess[x, y]. See page 1004. See also:
\[GreaterEqualLess], \[NotGreaterLess].

h \[GreaterSlantEqual]
Alias: ,>/ ,. Infix operator with built-in evaluation rules. x � y is by default interpreted as GreaterEqual[x, y].

See page 1004. See also: \[GreaterEqual], \[GreaterFullEqual], \[NotGreaterSlantEqual].

� \[GreaterTilde]
Alias: ,>~ ,. Infix ordering operator. x � y is by default interpreted as GreaterTilde[x, y]. See pages 191
and 1004. See also: \[NotGreaterTilde].

ˇ \[Hacek]
Alias: ,hc ,. Letter-like form. Used primarily in an overscript position. Used as a diacritical mark in Eastern
European languages. Sometimes used in mathematical notation, for example in Čech cohomology. See page 999.

See also: \[Vee], \[Breve].



1372 HappySmiley — ImaginaryJ Mathematica Reference Guide

	 \[HappySmiley]
Aliases: ,:) ,, ,:-) ,. Letter-like form. See page 995. See also: \[NeutralSmiley], \[SadSmiley],
\[FreakedSmiley], \[Wolf].

 \[HBar]
Alias: ,hb ,. Letter-like form. Used in physics to denote Planck’s constant divided by �Π; sometimes called
Dirac’s constant. See pages 192 and 994. See also: \[Angstrom].

� \[HeartSuit]
Letter-like form. See page 996. See also: \[ClubSuit].

� \[HorizontalLine]
Alias: ,hline ,. Letter-like form. Extensible character. Thickness can be adjusted using the SpanThickness
option in StyleBox. See page 997. See also: \[Dash], \[LongDash], \[VerticalSeparator].

[ \[HumpDownHump]
Infix similarity operator. x 6 y is by default interpreted as HumpDownHump[x, y]. Used to indicate geometrical
equivalence. See page 1003. See also: \[HumpEqual], \[NotHumpDownHump].

Z \[HumpEqual]
Alias: ,h= ,. Infix similarity operator. x 7 y is by default interpreted as HumpEqual[x, y]. Sometimes used to
mean “approximately equal” and sometimes “difference between”. See page 1003. See also: \[HumpDownHump],
\[TildeEqual], \[NotHumpEqual].

ı́ \[IAcute]
Alias: ,i' ,. Letter. Included in ISO Latin-1. See pages 190 and 998. See also: \[CapitalIAcute].

ı̆ \[ICup]
Alias: ,iu ,. Letter. Included in ISO Latin-2. Used in transliterations of Cyrillic characters. See page 998.

See also: \[CapitalICup].

ı̈ \[IDoubleDot]
Alias: ,i" ,. Letter. Included in ISO Latin-1. See page 998. See also: \[CapitalIDoubleDot], \[EDoubleDot],
\[ADoubleDot].

ı̀ \[IGrave]
Alias: ,i` ,. Letter. Included in ISO Latin-1. See page 998. See also: \[CapitalIGrave].

ı̂ \[IHat]
Alias: ,i^ ,. Letter. Included in ISO Latin-1. See page 998. See also: \[CapitalIHat].

� \[ImaginaryI]

Alias: ,ii ,. Letter-like form with built-in value. � is interpreted by default as the symbol I, representing
 

��.
See pages 988 and 994. See also: \[ImaginaryJ], \[ExponentialE].

� \[ImaginaryJ]

Alias: ,jj ,. Letter-like form with built-in value. " is interpreted by default as the symbol I, representing
 

��.
Used in electrical engineering. See pages 988 and 994. See also: \[ImaginaryI], \[ExponentialE].



A.12 Listing of Named Characters Implies — Kappa 1373

n \[Implies]
Alias: ,=> ,. Infix operator with built-in evaluation rules. x � y is by default interpreted as Implies[x, y].

x � y � z groups as x � (y � z). Not the same as \[DoubleRightArrow]. \[DoubleRightArrow] is
extensible; \[Implies] is not. See pages 1001 and 1006. See also: \[RoundImplies], \[SuchThat],
\[RightArrow], \[Rule].

\[IndentingNewLine]
Alias: ,nl ,. Raw operator. Forces a line break in an expression, maintaining the correct indenting level based on
the environment of the line break. See pages 460 and 1008. See also: \[NewLine], \[NoBreak].

� \[Infinity]
Alias: ,inf ,. Letter-like form with built-in value. 	 is interpreted by default as the symbol Infinity. See
page 994.

� \[Integral]

Alias: ,int ,. Compound operator with built-in evaluation rules. � f 7 x is by default interpreted as

Integrate[f, x]. � b
a

f 7 x is by default interpreted as Integral[f, {x, a, b}]. a and b must appear as a
subscript and superscript, respectively. � a � b 7 x is by default output as � (a � b) 7 x whenever � is an
operator with a precedence lower than [. Note the use of 7, entered as ,dd , or \[DifferentialD], rather than
ordinary d. See page 1000. See also: \[ContourIntegral].

V \[Intersection]
Alias: ,inter ,. Infix operator with built-in evaluation rules. x � y is by default interpreted as
Intersection[x, y]. The character V is sometimes called “cap”; but see also \[Cap]. ,int , gives \[Integral]
not \[Intersection]. See page 1002. See also: \[Union], \[SquareIntersection], \[Cap], \[Wedge].

\[InvisibleApplication]
Alias: ,@ ,. Structural element with built-in meaning. \[InvisibleApplication] is by default not visible on
display, but is interpreted as function application. f H@ H x is interpreted as f @ x or f[x].

\[InvisibleApplication] can be used as an invisible separator between functions or between functions and
their arguments. See page 1008. See also: \[InvisibleSpace], \[InvisibleComma], \[RawAt].

\[InvisibleComma]
Alias: ,, ,. Structural element with built-in meaning. \[InvisibleComma] is by default not visible on display, but
is interpreted on input as an ordinary comma. \[InvisibleComma] can be used as an invisible separator between
indices, as in Mij. See page 1008. See also: \[AlignmentMarker], \[Null], \[InvisibleSpace], \[RawComma].

\[InvisibleSpace]
Alias: ,is ,. Spacing character. \[InvisibleSpace] is by default not visible on display, but is interpreted on
input as an ordinary space. \[InvisibleSpace] can be used as an invisible separator between variables that are
being multiplied together, as in xy. See pages 454 and 1008. See also: \[AlignmentMarker], \[Null],
\[VeryThinSpace], \[RawSpace].

Ι \[Iota]
Aliases: ,i ,, ,iota ,. Greek letter. Not commonly used. Used in set theory to indicate an explicitly
constructible set. See page 990. See also: \[CapitalIota], \[DotlessI].

Κ \[Kappa]
Aliases: ,k ,, ,kappa ,. Greek letter. See pages 175 and 990. See also: \[CurlyKappa], \[CapitalKappa].



1374 KernelIcon — LeftDoubleBracket Mathematica Reference Guide

� \[KernelIcon]
Letter-like form. Icon typically used for the Mathematica kernel. This icon is a trademark of Wolfram Research.

See page 995. See also: \[MathematicaIcon].

� \[Koppa]
Aliases: ,ko ,, ,koppa ,. Special Greek letter. Analogous to English q. Appeared between Π and Ρ in early
Greek alphabet; used for Greek numeral 90. See page 990. See also: \[CapitalKoppa], \[Digamma], \[Stigma],
\[Sampi].

Λ \[Lambda]
Aliases: ,l ,, ,lambda ,. Greek letter. Used in TraditionalForm for ModularLambda. See pages 175 and 990.

See also: \[CapitalLambda].

� \[LeftAngleBracket]
Alias: ,< ,. Matchfix operator. / x 0 is by default interpreted as AngleBracket[x]. Used in the form /x0 to
indicate expected or average value. Called bra in quantum mechanics. Used in the form /x, y0 to indicate
various forms of inner product. Used in the form /x, y, . . . 0 to denote an ordered set of objects. Not the same
as \[RawLess]. Extensible character; grows by default to limited size. See pages 191 and 1002. See also:
\[RightAngleBracket], \[LeftFloor], \[LeftCeiling].

I \[LeftArrow]
Alias: ,<- ,. Infix arrow operator. x a y is by default interpreted as LeftArrow[x, y]. Sometimes used in
computer science to indicate assignment: x gets value y. Extensible character. See page 1006. See also:
\[LongLeftArrow], \[ShortLeftArrow], \[DoubleLeftArrow], \[LeftTeeArrow], \[LeftArrowBar],
\[LowerLeftArrow], \[LeftVector], \[LeftTriangle], \[RightArrow].

# \[LeftArrowBar]
Infix arrow operator. x % y is by default interpreted as LeftArrowBar[x, y]. Sometimes used to indicate a
backtab. Extensible character. See page 1006. See also: \[LeftTeeArrow], \[LeftVectorBar],
\[DownArrowBar], \[RightArrowBar].

) \[LeftArrowRightArrow]
Infix arrow operator. x & y is by default interpreted as LeftArrowRightArrow[x, y]. Used in mathematics to
indicate logical equivalence. Sometimes used to indicate chemical equilibrium. Extensible character. See
page 1006. See also: \[RightArrowLeftArrow], \[LeftRightArrow], \[DoubleLeftRightArrow], \[Equilibrium],
\[UpArrowDownArrow].

� \[LeftBracketingBar]
Alias: ,l| ,. Matchfix operator. @ x A is by default interpreted as BracketingBar[x]. Used in mathematics to
indicate absolute value (Abs), determinant (Det), and other notions of evaluating size or magnitude. Not the same
as \[VerticalBar]. Drawn in monospaced fonts with a small left-pointing tee to indicate direction. Extensible
character. See page 1002. See also: \[LeftDoubleBracketingBar], \[LeftTee].

& \[LeftCeiling]
Alias: ,lc ,. Matchfix operator with built-in evaluation rules. F x G is by default interpreted as Ceiling[x].

Extensible character. See page 1002. See also: \[RightCeiling], \[LeftFloor], \[LeftAngleBracket].

3 \[LeftDoubleBracket]
Alias: ,[[ ,. Compound operator with built-in evaluation rules. m+i,j, . . . , is by default interpreted as
Part[m, i, j, . . . ]. Sometimes used in mathematics to indicate a class of algebraic objects with certain variables
or extensions. Extensible character; grows by default to limited size. See page 1002. See also:
\[RawLeftBracket], \[LeftDoubleBracketingBar].



A.12 Listing of Named Characters LeftDoubleBracketingBar — LeftSkeleton 1375

6 \[LeftDoubleBracketingBar]
Alias: ,l|| ,. Matchfix operator. B x C is by default interpreted as DoubleBracketingBar[x]. Used in
mathematics to indicate taking a norm. Sometimes used for determinant. Sometimes used to indicate a matrix.

Not the same as \[DoubleVerticalBar]. Drawn in monospaced fonts with a small left-pointing tee to indicate
direction. Extensible character. See page 1002. See also: \[LeftBracketingBar].

F \[LeftDownTeeVector]
Infix arrow-like operator. x ' y is by default interpreted as LeftDownTeeVector[x, y]. Extensible character.

See page 1007. See also: \[RightDownTeeVector], \[LeftDownVectorBar], \[DownTeeArrow],
\[LeftUpTeeVector].

@ \[LeftDownVector]
Infix arrow-like operator. x ( y is by default interpreted as LeftDownVector[x, y]. Extensible character. See
page 1007. See also: \[RightDownVector], \[LeftDownTeeVector], \[DownArrow], \[UpEquilibrium],
\[LeftUpVector].

J \[LeftDownVectorBar]
Infix arrow-like operator. x ) y is by default interpreted as LeftDownVectorBar[x, y]. Extensible character.

See page 1007. See also: \[RightDownVectorBar], \[LeftDownTeeVector], \[DownArrowBar],
\[LeftUpVectorBar].

$ \[LeftFloor]
Alias: ,lf ,. Matchfix operator with built-in evaluation rules. D x E is by default interpreted as Floor[x].

Extensible character. See page 1002. See also: \[RightFloor], \[LeftCeiling], \[LeftAngleBracket].

« \[LeftGuillemet]
Alias: ,g<< ,. Letter-like form. Used as opening quotation marks in languages such as Spanish. Not the same
as \[LessLess]. Not the same as \[LeftSkeleton]. Guillemet is sometimes misspelled as guillemot. See
page 996. See also: \[RightGuillemet].

S \[LeftModified]
Alias: ,[ ,. Letter-like form. Used in documenting control and command characters.

key\[LeftModified]char\[RightModified] is used to indicate that char should be typed while key is being
pressed. Not the same as \[RawLeftBracket]. See page 1009. See also: \[ControlKey], \[CommandKey],
\[RightModified].

R \[LeftRightArrow]
Alias: ,<-> ,. Infix arrow operator. x j y is by default interpreted as LeftRightArrow[x, y]. Used in
mathematics for various notions of equivalence and equality. Extensible character. See pages 191 and 1006. See
also: \[LongLeftRightArrow], \[DoubleLeftRightArrow], \[LeftArrowRightArrow], \[LeftRightVector],
\[Equilibrium], \[UpDownArrow].

2 \[LeftRightVector]
Infix arrow-like operator. x * y is by default interpreted as LeftRightVector[x, y]. Extensible character. See
page 1007. See also: \[DownLeftRightVector], \[Equilibrium], \[ReverseEquilibrium], \[LeftRightArrow],
\[RightArrowLeftArrow], \[RightUpDownVector].

£ \[LeftSkeleton]
Uninterpretable element. : n ; is used on output to indicate n omitted pieces in an expression obtained from
Short or Shallow. \[LeftSkeleton] indicates the presence of missing information, and so by default generates
an error if you try to interpret it. Not the same as \[LeftGuillemet]. See page 1009. See also:
\[RightSkeleton], \[SkeletonIndicator], \[Ellipsis], \[ErrorIndicator].



1376 LeftTee — LeftVectorBar Mathematica Reference Guide

P \[LeftTee]
Alias: ,lT ,. Infix operator. x * y is by default interpreted as LeftTee[x, y]. x * y * z groups as (x * y) * z.

Used in mathematics to indicate the lack of logical implication or proof. See pages 1001 and 1007. See also:
\[DoubleLeftTee], \[LeftTeeArrow], \[LeftTeeVector], \[RightTee], \[DownTee], \[LeftBracketingBar].

! \[LeftTeeArrow]
Infix arrow operator. x + y is by default interpreted as LeftTeeArrow[x, y]. Extensible character. See
page 1006. See also: \[LeftTeeVector], \[LeftTee], \[RightTeeArrow], \[DownTeeArrow].

7 \[LeftTeeVector]
Infix arrow-like operator. x , y is by default interpreted as LeftTeeVector[x, y]. Extensible character. See
page 1007. See also: \[DownLeftTeeVector], \[LeftVectorBar], \[LeftVector], \[LeftTeeArrow].

� \[LeftTriangle]
Infix ordering operator. x 8 y is by default interpreted as LeftTriangle[x, y]. Used in pure mathematics to
mean “normal subgroup of”. See page 1005. See also: \[LeftTriangleEqual], \[LeftTriangleBar],
\[LeftArrow], \[NotLeftTriangle], \[RightTriangle], \[EmptyUpTriangle], \[FilledUpTriangle].

� \[LeftTriangleBar]
Infix ordering operator. x � y is by default interpreted as LeftTriangleBar[x, y]. See page 1005. See also:
\[LeftTriangle], \[LeftTriangleEqual], \[LeftArrowBar], \[NotLeftTriangleBar].

� \[LeftTriangleEqual]
Infix ordering operator. x 9 y is by default interpreted as LeftTriangleEqual[x, y]. See page 1005. See also:
\[LeftTriangle], \[LeftTriangleBar], \[PrecedesEqual], \[NotLeftTriangleEqual], \[RightTriangleEqual].

A \[LeftUpDownVector]
Infix arrow-like operator. x - y is by default interpreted as LeftUpDownVector[x, y]. Extensible character. See
page 1007. See also: \[RightUpDownVector], \[UpEquilibrium], \[UpArrowDownArrow], \[LeftRightVector].

E \[LeftUpTeeVector]
Infix arrow-like operator. x . y is by default interpreted as LeftUpTeeVector[x, y]. Extensible character. See
page 1007. See also: \[RightUpTeeVector], \[LeftUpVectorBar], \[UpTeeArrow], \[LeftDownTeeVector].

? \[LeftUpVector]
Infix arrow-like operator. x / y is by default interpreted as LeftUpVector[x, y]. Extensible character. See
page 1007. See also: \[RightUpVector], \[LeftUpTeeVector], \[UpArrow], \[UpEquilibrium],
\[LeftDownVector].

I \[LeftUpVectorBar]
Infix arrow-like operator. x 0 y is by default interpreted as LeftUpVectorBar[x, y]. Extensible character. See
page 1007. See also: \[RightUpVectorBar], \[LeftUpTeeVector], \[UpArrowBar], \[LeftDownVectorBar].

1 \[LeftVector]
Infix arrow-like operator. x 1 y is by default interpreted as LeftVector[x, y]. Extensible character. See
page 1007. See also: \[DownLeftVector], \[LeftTeeVector], \[LeftVectorBar], \[LeftArrow],
\[RightVector], \[LeftUpVector].

; \[LeftVectorBar]
Infix arrow-like operator. x 2 y is by default interpreted as LeftVectorBar[x, y]. Extensible character. See
page 1007. See also: \[DownLeftVectorBar], \[LeftTeeVector], \[LeftArrowBar].



A.12 Listing of Named Characters LessEqual — LongRightArrow 1377

* \[LessEqual]
Alias: ,<= ,. Infix operator with built-in evaluation rules. x � y is by default interpreted as LessEqual[x, y].

See page 1004. See also: \[LessSlantEqual], \[LessFullEqual], \[NotLessEqual].

s \[LessEqualGreater]

Infix ordering operator. x : y is by default interpreted as LessEqualGreater[x, y]. See page 1004. See also:
\[GreaterEqualLess].

k \[LessFullEqual]
Infix ordering operator. x ; y is by default interpreted as LessFullEqual[x, y]. See page 1004. See also:
\[LessEqual], \[LessSlantEqual], \[NotLessFullEqual].

q \[LessGreater]
Infix ordering operator. x < y is by default interpreted as LessGreater[x, y]. See page 1004. See also:
\[LessEqualGreater], \[NotLessGreater].

m \[LessLess]
Infix ordering operator. x = y is by default interpreted as LessLess[x, y]. Not the same as \[LeftGuillemet].

See page 1004. See also: \[NestedLessLess], \[NotLessLess], \[NotNestedLessLess].

i \[LessSlantEqual]
Alias: ,</ ,. Infix operator with built-in evaluation rules. x ( y is by default interpreted as LessEqual[x, y].

See page 1004. See also: \[LessEqual], \[LessFullEqual], \[NotLessSlantEqual].

l \[LessTilde]
Alias: ,<~ ,. Infix ordering operator. x > y is by default interpreted as LessTilde[x, y]. See page 1004. See
also: \[NotLessTilde].

� \[LightBulb]
Letter-like form. See page 995.

� \[LongDash]
Alias: ,-- ,. Letter-like form. See page 996. See also: \[Dash], \[HorizontalLine].

� \[LongEqual]
Infix operator with built-in evaluation rules. x � y is by default interpreted as Equal[x, y] or x == y.

\[LongEqual] is drawn longer than \[RawEqual]. Used as an alternative to \[Equal]. See page 1003. See
also: \[Equal], \[NotEqual], \[Congruent].

� \[LongLeftArrow]
Alias: ,<-- ,. Infix arrow operator. x { y is by default interpreted as LongLeftArrow[x, y]. See page 1006.

See also: \[LeftArrow], \[DoubleLongLeftArrow], \[LongRightArrow], \[LongLeftRightArrow].

� \[LongLeftRightArrow]
Alias: ,<--> ,. Infix arrow operator. x | y is by default interpreted as LongLeftRightArrow[x, y]. See
page 1006. See also: \[LeftRightArrow], \[DoubleLongLeftRightArrow], \[LeftArrowRightArrow],
\[Equilibrium].

 \[LongRightArrow]
Alias: ,--> ,. Infix arrow operator. x T y is by default interpreted as LongRightArrow[x, y]. Not the same as
\[Rule]. See pages 191 and 1006. See also: \[RightArrow], \[DoubleLongRightArrow], \[LongLeftArrow],
\[LongLeftRightArrow].



1378 LowerLeftArrow — Natural Mathematica Reference Guide

- \[LowerLeftArrow]
Infix arrow operator. x 3 y is by default interpreted as LowerLeftArrow[x, y]. Extensible character; grows by
default to limited size. See page 1006. See also: \[LeftArrow], \[UpperRightArrow].

, \[LowerRightArrow]
Infix arrow operator. x 4 y is by default interpreted as LowerRightArrow[x, y]. Extensible character; grows by
default to limited size. See page 1006. See also: \[RightArrow], \[UpperLeftArrow].

F \[LSlash]
Alias: ,l/ ,. Letter. Included in ISO Latin-2. See page 998. See also: \[CapitalLSlash].

� \[MathematicaIcon]
Alias: ,math ,. Letter-like form. Icon typically used for Mathematica. Based on a stellated icosahedron. This
icon is a trademark of Wolfram Research. See page 995. See also: \[KernelIcon].

< \[MeasuredAngle]
Letter-like form. Used in geometry to indicate an angle, as in the symbol � ABC. See page 996. See also:
\[Angle], \[SphericalAngle], \[RightAngle].

\[MediumSpace]
Alias: ,��� ,. Spacing character. Width: 4/18 em. Interpreted by default just like an ordinary \[RawSpace].

Sometimes used in output as a separator between digits in numbers. See page 1008. See also: \[ThinSpace],
\[ThickSpace], \[NegativeMediumSpace], \[NonBreakingSpace], \[SpaceIndicator].

� \[Mho]
Alias: ,mho ,. Letter-like form. Used to denote the inverse ohm unit of conductance. "Mho" is "ohm" spelled
backwards. Occasionally called “agemo” in pure mathematics. Used to denote characteristic subgroups, and in
set theory to denote functions of sets with special properties. See page 994. See also: \[CapitalOmega].

� \[Micro]

Alias: ,mi ,. Letter-like form. Used as a prefix in units to denote ���� . Not the same as \[Mu]. See
pages 192 and 994. See also: \[Angstrom].

L \[MinusPlus]
Alias: ,-+ ,. Prefix or infix operator. � x is by default interpreted as MinusPlus[x]. x � y is by default
interpreted as MinusPlus[x, y]. See page 1000. See also: \[PlusMinus].

Μ \[Mu]
Aliases: ,m ,, ,mu ,. Greek letter. Used in TraditionalForm for MoebiusMu. Not the same as \[Micro]. See
pages 175 and 990. See also: \[CapitalMu].


 \[Nand]
Alias: ,nand ,. Infix operator with built-in evaluation rules. x � y is by default interpreted as Nand[x, y]. See
page 1001. See also: \[And], \[Not], \[Nor], \[VerticalBar].

� \[Natural]
Letter-like form. Used to denote musical notes. Sometimes used in mathematical notation, often as an inverse of
numbering operations represented by \[Sharp]. See pages 192 and 996. See also: \[Flat], \[Sharp].



A.12 Listing of Named Characters NegativeMediumSpace — Nor 1379

\[NegativeMediumSpace]
Alias: ,-��� ,. Negative spacing character. Used to bring characters on either side closer together. Width: �
���
em. Interpreted by default just like an ordinary \[RawSpace]. See page 1008. See also:
\[NegativeThinSpace], \[NegativeThickSpace], \[MediumSpace].

\[NegativeThickSpace]
Alias: ,-���� ,. Negative spacing character. Used to bring characters on either side closer together. Width:
����� em. Interpreted by default just like an ordinary \[RawSpace]. See page 1008. See also:
\[NegativeMediumSpace], \[ThickSpace].

\[NegativeThinSpace]
Alias: ,-�� ,. Negative spacing character. Used to bring characters on either side closer together. Width: ����
em. Interpreted by default just like an ordinary \[RawSpace]. See page 1008. See also:
\[NegativeVeryThinSpace], \[NegativeMediumSpace], \[ThinSpace].

\[NegativeVeryThinSpace]
Alias: ,-� ,. Negative spacing character. Used to bring characters on either side closer together. Width: �����
em. Interpreted by default just like an ordinary \[RawSpace]. See page 1008. See also:
\[NegativeThinSpace], \[VeryThinSpace].

n \[NestedGreaterGreater]
Infix ordering operator. x ? y is by default interpreted as NestedGreaterGreater[x, y]. See page 1004. See
also: \[GreaterGreater], \[NotGreaterGreater], \[NotNestedGreaterGreater].

o \[NestedLessLess]
Infix ordering operator. x � y is by default interpreted as NestedLessLess[x, y]. Used to denote “much less
than”. Occasionally used in measure theory to denote “absolutely continuous with respect to”. See page 1004.

See also: \[LessLess], \[NotLessLess], \[NotNestedLessLess].


 \[NeutralSmiley]
Alias: ,:-| ,. Letter-like form. See page 995. See also: \[HappySmiley], \[SadSmiley], \[FreakedSmiley].

\[NewLine]
Raw operator. Inserted whenever a raw newline is entered on the keyboard. Forces a line break in an
expression, fixing the indenting level at the time when the line break is inserted. \[NewLine] represents a
newline on any computer system, independent of the underlying character code used on that computer system.

See pages 460, 1008 and 1010. See also: \[IndentingNewLine], \[RawReturn].

\[NoBreak]
Alias: ,nb ,. Letter-like form. Used to indicate that no line break can occur at this position in an expression.

See pages 459, 460 and 1008. See also: \[NonBreakingSpace], \[NewLine], \[Continuation],
\[AlignmentMarker], \[Null], \[InvisibleSpace].

\[NonBreakingSpace]
Alias: ,nbs ,. Spacing character. Generates a space with the same width as \[RawSpace], but with no line break
allowed to occur on either side of it. See pages 459 and 1008. See also: \[NoBreak], \[InvisibleSpace],
\[NewLine].

� \[Nor]
Alias: ,nor ,. Infix operator with built-in evaluation rules. x � y is by default interpreted as Nor[x, y]. See
page 1001. See also: \[Xor], \[Or], \[Not].



1380 Not — NotGreaterLess Mathematica Reference Guide

a \[Not]
Aliases: ,! ,, ,not ,. Prefix operator with built-in evaluation rules. � x is by default interpreted as Not[x],
equivalent to !x. See page 1001. See also: \[RightTee], \[And], \[Or].

^ \[NotCongruent]
Alias: ,!=== ,. Infix similarity operator. x @ y is by default interpreted as NotCongruent[x, y]. See page 1003.

See also: \[NotEqual], \[Congruent].

f \[NotCupCap]
Infix similarity operator. x A y is by default interpreted as NotCupCap[x, y]. See page 1003. See also:
\[CupCap].

¬ \[NotDoubleVerticalBar]
Alias: ,!|| ,. Infix operator. x � y is by default interpreted as NotDoubleVerticalBar[x, y]. Used in geometry
to mean “not parallel to”. See page 1005. See also: \[DoubleVerticalBar], \[NotVerticalBar], \[UpTee].

V \[NotElement]
Alias: ,!el ,. Infix set relation operator with built-in evaluation rules. x ^ y is by default interpreted as
NotElement[x, y]. See pages 191 and 1004. See also: \[Element], \[NotReverseElement].

^ \[NotEqual]
Alias: ,!= ,. Infix operator with built-in evaluation rules. x � y is by default interpreted as Unequal[x, y]. See
page 1003. See also: \[Equal], \[NotCongruent], \[GreaterLess].

c \[NotEqualTilde]
Alias: ,!=~ ,. Infix similarity operator. x B y is by default interpreted as NotEqualTilde[x, y]. See page 1003.

See also: \[EqualTilde].

M \[NotExists]
Alias: ,!ex ,. Compound operator. x y is by default interpreted as NotExists[x, y]. See page 1001. See
also: \[Exists], \[ForAll].

� \[NotGreater]
Alias: ,!> ,. Infix ordering operator. x C y is by default interpreted as NotGreater[x, y]. � is equivalent to *
only for a totally ordered set. See page 1004. See also: \[RawGreater].

t \[NotGreaterEqual]
Alias: ,!>= ,. Infix ordering operator. x D y is by default interpreted as NotGreaterEqual[x, y]. See
page 1004. See also: \[GreaterEqual], \[GreaterFullEqual], \[GreaterSlantEqual], \[NotGreaterFullEqual],
\[NotGreaterSlantEqual].

x \[NotGreaterFullEqual]
Infix ordering operator. x E y is by default interpreted as NotGreaterFullEqual[x, y]. See page 1004. See
also: \[GreaterEqual], \[GreaterFullEqual], \[GreaterSlantEqual], \[NotGreaterEqual],
\[NotGreaterSlantEqual].

| \[NotGreaterGreater]
Infix ordering operator. x F y is by default interpreted as NotGreaterGreater[x, y]. See page 1004. See also:
\[GreaterGreater], \[NestedGreaterGreater], \[NotNestedGreaterGreater].

� \[NotGreaterLess]
Infix ordering operator. x G y is by default interpreted as NotGreaterLess[x, y]. See page 1004. See also:
\[GreaterLess].



A.12 Listing of Named Characters NotGreaterSlantEqual — NotLessSlantEqual 1381

v \[NotGreaterSlantEqual]
Alias: ,!>/ ,. Infix ordering operator. x H y is by default interpreted as NotGreaterSlantEqual[x, y]. See
page 1004. See also: \[GreaterEqual], \[GreaterFullEqual], \[GreaterSlantEqual], \[NotGreaterEqual],
\[NotGreaterFullEqual].

z \[NotGreaterTilde]
Alias: ,!>~ ,. Infix ordering operator. x I y is by default interpreted as NotGreaterTilde[x, y]. See
page 1004. See also: \[GreaterTilde].

e \[NotHumpDownHump]
Infix similarity operator. x J y is by default interpreted as NotHumpDownHump[x, y]. See page 1003. See also:
\[HumpDownHump].

d \[NotHumpEqual]
Alias: ,!h= ,. Infix similarity operator. x K y is by default interpreted as NotHumpEqual[x, y]. See page 1003.

See also: \[HumpEqual].

¢ \[NotLeftTriangle]
Infix ordering operator. x L y is by default interpreted as NotLeftTriangle[x, y]. See page 1005. See also:
\[NotLeftTriangleBar], \[NotLeftTriangleEqual], \[NotRightTriangle], \[LeftTriangle].

¦ \[NotLeftTriangleBar]
Infix ordering operator. x M y is by default interpreted as NotLeftTriangleBar[x, y]. See page 1005. See
also: \[NotLeftTriangle], \[NotLeftTriangleEqual], \[NotRightTriangleBar], \[LeftTriangleBar].

¤ \[NotLeftTriangleEqual]
Infix ordering operator. x N y is by default interpreted as NotLeftTriangleEqual[x, y]. See page 1005. See
also: \[NotLeftTriangle], \[NotLeftTriangleBar], \[NotRightTriangleEqual], \[LeftTriangleEqual].

� \[NotLess]
Alias: ,!< ,. Infix ordering operator. x O y is by default interpreted as NotLess[x, y]. � is equivalent to !
only for a totally ordered set. See page 1004. See also: \[RawLess].

u \[NotLessEqual]
Alias: ,!<= ,. Infix ordering operator. x P y is by default interpreted as NotLessEqual[x, y]. See page 1004.

See also: \[LessEqual], \[LessFullEqual], \[LessSlantEqual], \[NotLessFullEqual], \[NotLessSlantEqual].

y \[NotLessFullEqual]
Infix ordering operator. x Q y is by default interpreted as NotLessFullEqual[x, y]. See page 1004. See also:
\[LessEqual], \[LessFullEqual], \[LessSlantEqual], \[NotLessEqual], \[NotLessSlantEqual].

� \[NotLessGreater]
Infix ordering operator. x R y is by default interpreted as NotLessGreater[x, y]. See page 1004. See also:
\[LessGreater].

} \[NotLessLess]
Infix ordering operator. x S y is by default interpreted as NotLessLess[x, y]. See page 1004. See also:
\[LessLess], \[NestedLessLess], \[NotNestedLessLess].

w \[NotLessSlantEqual]
Alias: ,!</ ,. Infix ordering operator. x T y is by default interpreted as NotLessSlantEqual[x, y]. See
page 1004. See also: \[LessEqual], \[LessFullEqual], \[LessSlantEqual], \[NotLessEqual],
\[NotLessFullEqual].



1382 NotLessTilde — NotSquareSubsetEqual Mathematica Reference Guide

{ \[NotLessTilde]
Alias: ,!<~ ,. Infix ordering operator. x U y is by default interpreted as NotLessTilde[x, y]. See page 1004.

See also: \[LessTilde].

~ \[NotNestedGreaterGreater]
Infix ordering operator. x V y is by default interpreted as NotNestedGreaterGreater[x, y]. See page 1004.

See also: \[GreaterGreater], \[NestedGreaterGreater], \[NotGreaterGreater].

� \[NotNestedLessLess]
Infix ordering operator. x W y is by default interpreted as NotNestedLessLess[x, y]. See page 1004. See also:
\[LessLess], \[NestedLessLess], \[NotLessLess].

� \[NotPrecedes]
Infix ordering operator. x X y is by default interpreted as NotPrecedes[x, y]. See page 1005. See also:
\[Precedes].

  \[NotPrecedesEqual]
Infix ordering operator. x Y y is by default interpreted as NotPrecedesEqual[x, y]. See page 1005. See also:
\[NotPrecedesSlantEqual], \[NotPrecedesTilde], \[PrecedesEqual].

� \[NotPrecedesSlantEqual]
Infix ordering operator. x Z y is by default interpreted as NotPrecedesSlantEqual[x, y]. See page 1005. See
also: \[NotPrecedesEqual], \[PrecedesSlantEqual].

� \[NotPrecedesTilde]
Infix ordering operator. x [ y is by default interpreted as NotPrecedesTilde[x, y]. See page 1005. See also:
\[NotPrecedesEqual], \[PrecedesTilde].

� \[NotReverseElement]
Alias: ,!mem ,. Infix set relation operator. x � y is by default interpreted as NotReverseElement[x, y]. See
page 1004. See also: \[ReverseElement], \[NotElement].

¡ \[NotRightTriangle]
Infix ordering operator. x \ y is by default interpreted as NotRightTriangle[x, y]. See page 1005. See also:
\[NotRightTriangleBar], \[NotRightTriangleEqual], \[NotLeftTriangle], \[RightTriangle].

¥ \[NotRightTriangleBar]
Infix ordering operator. x � y is by default interpreted as NotRightTriangleBar[x, y]. See page 1005. See
also: \[NotRightTriangle], \[NotRightTriangleEqual], \[NotLeftTriangleBar], \[RightTriangleBar].

£ \[NotRightTriangleEqual]
Infix ordering operator. x ] y is by default interpreted as NotRightTriangleEqual[x, y]. See page 1005. See
also: \[NotRightTriangle], \[NotRightTriangleBar], \[NotLeftTriangleEqual], \[RightTriangleEqual].

¨ \[NotSquareSubset]
Infix set relation operator. x ^ y is by default interpreted as NotSquareSubset[x, y]. See page 1005. See also:
\[NotSquareSubsetEqual], \[SquareSubset].

ª \[NotSquareSubsetEqual]
Infix set relation operator. x _ y is by default interpreted as NotSquareSubsetEqual[x, y]. See page 1005. See
also: \[NotSquareSubset], \[SquareSubsetEqual].



A.12 Listing of Named Characters NotSquareSuperset — NotTildeFullEqual 1383

§ \[NotSquareSuperset]
Infix set relation operator. x ` y is by default interpreted as NotSquareSuperset[x, y]. See page 1005. See
also: \[NotSquareSupersetEqual], \[SquareSuperset].

© \[NotSquareSupersetEqual]
Infix set relation operator. x a y is by default interpreted as NotSquareSupersetEqual[x, y]. See page 1005.

See also: \[NotSquareSuperset], \[SquareSupersetEqual].

� \[NotSubset]
Alias: ,!sub ,. Infix set relation operator. x } y is by default interpreted as NotSubset[x, y]. See page 1004.

See also: \[NotSubsetEqual], \[Subset].

� \[NotSubsetEqual]
Alias: ,!sub= ,. Infix set relation operator. x b y is by default interpreted as NotSubsetEqual[x, y]. See
page 1004. See also: \[NotSubset], \[SubsetEqual].

� \[NotSucceeds]
Infix ordering operator. x c y is by default interpreted as NotSucceeds[x, y]. See page 1005. See also:
\[NotSucceedsEqual], \[Succeeds].

� \[NotSucceedsEqual]
Infix ordering operator. x d y is by default interpreted as NotSucceedsEqual[x, y]. See page 1005. See also:
\[NotSucceedsSlantEqual], \[NotSucceedsTilde], \[SucceedsSlantEqual].

� \[NotSucceedsSlantEqual]
Infix ordering operator. x e y is by default interpreted as NotSucceedsSlantEqual[x, y]. See page 1005. See
also: \[NotSucceedsEqual], \[SucceedsSlantEqual].

� \[NotSucceedsTilde]
Infix ordering operator. x f y is by default interpreted as NotSucceedsTilde[x, y]. See page 1005. See also:
\[NotSucceedsEqual], \[SucceedsTilde].

� \[NotSuperset]
Alias: ,!sup ,. Infix set relation operator. x g y is by default interpreted as NotSuperset[x, y]. See page 1004.

See also: \[NotSupersetEqual], \[Superset].

� \[NotSupersetEqual]
Alias: ,!sup= ,. Infix set relation operator. x h y is by default interpreted as NotSupersetEqual[x, y]. See
page 1004. See also: \[NotSuperset], \[SupersetEqual].

_ \[NotTilde]
Alias: ,!~ ,. Infix similarity operator. x i y is by default interpreted as NotTilde[x, y]. See page 1003. See
also: \[Tilde].

a \[NotTildeEqual]
Alias: ,!~= ,. Infix similarity operator. x j y is by default interpreted as NotTildeEqual[x, y]. See page 1003.

See also: \[NotTildeFullEqual], \[TildeEqual], \[TildeFullEqual].

b \[NotTildeFullEqual]
Alias: ,!~== ,. Infix similarity operator. x k y is by default interpreted as NotTildeFullEqual[x, y]. See
page 1003. See also: \[NotTildeEqual], \[NotCongruent], \[TildeFullEqual].



1384 NotTildeTilde — OSlash Mathematica Reference Guide

` \[NotTildeTilde]
Alias: ,!~~ ,. Infix similarity operator. x l y is by default interpreted as NotTildeTilde[x, y]. See
page 1003. See also: \[TildeTilde].

« \[NotVerticalBar]
Alias: ,!| ,. Infix operator. x � y is by default interpreted as NotVerticalBar[x, y]. Used in mathematics to
mean x does not divide y. See page 1005. See also: \[VerticalBar], \[NotDoubleVerticalBar].

ñ \[NTilde]
Alias: ,n~ ,. Letter. Included in ISO Latin-1. See pages 190 and 998. See also: \[CapitalNTilde].

Ν \[Nu]
Aliases: ,n ,, ,nu ,. Greek letter. See pages 175 and 990. See also: \[CapitalNu], \[Vee].

\[Null]
Alias: ,null ,. Letter-like form. Can be used to place subscripts and superscripts without having a visible base.

See page 1008. See also: \[InvisibleComma], \[InvisibleSpace], \[AlignmentMarker].

ó \[OAcute]
Alias: ,o' ,. Letter. Included in ISO Latin-1. See page 998. See also: \[CapitalOAcute].

ő \[ODoubleAcute]
Alias: ,o'' ,. Letter. Included in ISO Latin-2. Used in Hungarian, for example in the name Erdős. See
page 998. See also: \[CapitalODoubleAcute], \[UDoubleAcute].

ö \[ODoubleDot]
Alias: ,o" ,. Letter. Included in ISO Latin-1. See pages 190 and 998. See also: \[ODoubleAcute],
\[CapitalODoubleDot].

ò \[OGrave]
Alias: ,o` ,. Letter. Included in ISO Latin-1. See pages 190 and 998. See also: \[CapitalOGrave].

ô \[OHat]
Alias: ,o^ ,. Letter. Included in ISO Latin-1. See page 998. See also: \[CapitalOHat].

Ω \[Omega]
Aliases: ,o ,, ,omega ,, ,w ,. Greek letter. See pages 175 and 990. See also: \[CapitalOmega], \[CurlyPi],
\[Omicron].

Ο \[Omicron]
Aliases: ,om ,, ,omicron ,. Greek letter. Not the same as English o. See page 990. See also:
\[CapitalOmicron], \[Omega].

, \[Or]
Aliases: ,|| ,, ,or ,. Infix operator with built-in evaluation rules. x � y is by default interpreted as Or[x, y],
equivalent to x || y. Not the same as \[Vee]. Drawn slightly larger than \[Vee]. See page 1001. See also:
\[And], \[Xor], \[Nor], \[Not].

ø \[OSlash]
Alias: ,o/ ,. Letter. Included in ISO Latin-1. Not the same as \[EmptySet]. See pages 190 and 998. See
also: \[CapitalOSlash].



A.12 Listing of Named Characters OTilde — PrecedesEqual 1385

õ \[OTilde]
Alias: ,o~ ,. Letter. Included in ISO Latin-1. See page 998. See also: \[CapitalOTilde].

� \[OverBrace]
Alias: ,o{ ,. Letter-like form. Extensible character. See page 997. See also: \[OverBracket],
\[OverParenthesis], \[UnderBrace].

� \[OverBracket]
Alias: ,o[ ,. Letter-like form. Extensible character. See page 997. See also: \[OverParenthesis],
\[OverBrace], \[UnderBracket], \[HorizontalLine].

� \[OverParenthesis]
Alias: ,o( ,. Letter-like form. Extensible character. See page 997. See also: \[OverBracket], \[OverBrace],
\[UnderParenthesis].

? \[Paragraph]
Letter-like form. See page 996. See also: \[Section].

" \[PartialD]
Alias: ,pd ,. Prefix operator with built-in evaluation rules. 8x y is by default interpreted as D[y, x]. " is used
in mathematics to indicate boundary. ,d , gives \[Delta], not \[PartialD]. You can use \[InvisibleComma] in
the subscript to 8 to give several variables without having them separated by visible commas. See pages 185, 994
and 1000. See also: \[Delta], \[Del], \[DifferentialD], \[Eth].

Φ \[Phi]
Aliases: ,ph ,, ,phi ,, ,f ,. Greek letter. Used in TraditionalForm for EulerPhi and GoldenRatio. See
pages 175 and 990. See also: \[CurlyPhi], \[CapitalPhi].

Π \[Pi]
Aliases: ,p ,, ,pi ,. Greek letter with built-in value. Interpreted by default as the symbol Pi. See pages 175
and 990. See also: \[DoubledPi], \[CapitalPi], \[CurlyPi].

� \[Placeholder]
Alias: ,pl ,. Letter-like form. Used to indicate where expressions can be inserted in a form obtained by pasting
the contents of a button. Not the same as \[EmptySquare]. See pages 199, 587 and 1008. See also:
\[SelectionPlaceholder], \[RawNumberSign].

M \[PlusMinus]
Alias: ,+- ,. Prefix or infix operator. m x is by default interpreted as PlusMinus[x]. x m y is by default
interpreted as PlusMinus[x, y]. See pages 191 and 1000. See also: \[MinusPlus].

� \[Precedes]
Infix ordering operator. x � y is by default interpreted as Precedes[x, y]. Used in mathematics to indicate
various notions of partial ordering. Often applied to functions and read “x is dominated by y”. See page 1005.

See also: \[PrecedesEqual], \[Succeeds], \[NotPrecedes].

� \[PrecedesEqual]
Infix ordering operator. x m y is by default interpreted as PrecedesEqual[x, y]. See page 1005. See also:
\[PrecedesSlantEqual], \[PrecedesTilde], \[SucceedsEqual], \[NotPrecedesEqual].



1386 PrecedesSlantEqual — RawColon Mathematica Reference Guide

� \[PrecedesSlantEqual]
Infix ordering operator. x n y is by default interpreted as PrecedesSlantEqual[x, y]. See page 1005. See
also: \[PrecedesEqual], \[SucceedsSlantEqual], \[NotPrecedesSlantEqual].

� \[PrecedesTilde]
Infix ordering operator. x o y is by default interpreted as PrecedesTilde[x, y]. See page 1005. See also:
\[PrecedesEqual], \[SucceedsTilde], \[NotPrecedesTilde].

$ \[Prime]
Alias: ,' ,. Letter-like form. Used to indicate angles in minutes or distances in feet. Used in an overscript
position as an acute accent. See page 996. See also: \[DoublePrime], \[ReversePrime], \[RawQuote].

� \[Product]

Alias: ,prod ,. Compound operator with built-in evaluation rules.
imax�

i
f is by default interpreted as

Product[f, {i, imax}].
imax�

i=imin
f is by default interpreted as Product[f, {i, imin, imax}]. Not the same as the

Greek letter \[CapitalPi]. See pages 994 and 1000. See also: \[Coproduct], \[Sum], \[Times].

g \[Proportion]
Infix relational operator. x p y is by default interpreted as Proportion[x, y]. Used historically to indicate
equality; now used to indicate proportion. See page 1003. See also: \[Divide], \[Proportional], \[Colon],
\[Therefore].

P \[Proportional]
Alias: ,prop ,. Infix relational operator. x ` y is by default interpreted as Proportional[x, y]. Not the same
as \[Alpha]. See pages 191 and 1003. See also: \[Proportion].

Ψ \[Psi]
Aliases: ,ps ,, ,psi ,, ,y ,. Greek letter. Used in TraditionalForm for PolyGamma. See pages 175 and 990. See
also: \[CapitalPsi].

& \[RawAmpersand]
Raw operator. Equivalent to the ordinary ASCII character with code 38. See page 1010. See also: \[And].

@ \[RawAt]
Raw operator. Equivalent to the ordinary ASCII character with code 64. See page 1010. See also:
\[RawAmpersand], \[SmallCircle].

‘ \[RawBackquote]
Raw operator. Equivalent to the ordinary ASCII character with code 96. See page 1010. See also: \[RawQuote],
\[Prime].

\ \[RawBackslash]
Raw operator. Equivalent to the ordinary ASCII character with code 92. Equivalent in strings to \\. See
page 1010. See also: \[Backslash].

: \[RawColon]
Raw operator. Equivalent to the ordinary ASCII character with code 58. See page 1010. See also: \[Colon].



A.12 Listing of Named Characters RawComma — RawLess 1387

, \[RawComma]
Raw operator. Equivalent to the ordinary ASCII character with code 44. See page 1010. See also:
\[InvisibleComma].

− \[RawDash]
Raw operator. Equivalent to the ordinary ASCII character with code 45. As an overscript, used to indicate
conjugation or negation. Also used to indicate an average value or an upper value. In geometry, used to denote
a line segment. As an underscript, used to indicate a lower value. x� is interpreted as SuperMinus[x]. x� is
interpreted as SubMinus[x]. Not the same as the letter-like form \[Dash]. See page 1010. See also:
\[RawPlus], \[HorizontalLine].

$ \[RawDollar]
Letter-like form. Equivalent to the ordinary ASCII character with code 36. See page 1010.

. \[RawDot]
Raw operator. Equivalent to the ordinary ASCII character with code 46. As an overscript, used to indicate time
derivative. xL is interpreted as OverDot[x]. See page 1010. See also: \[CenterDot], \[Ellipsis].

" \[RawDoubleQuote]
Raw operator. Equivalent to the ordinary ASCII character with code 34. Equivalent to \" in strings. See
page 1010. See also: \[RawQuote], \[Prime].

= \[RawEqual]
Raw operator. Equivalent to the ordinary ASCII character with code 61. See page 1010. See also: \[Equal],
\[NotEqual].

\[RawEscape]
Raw element. Equivalent to the non-printable ASCII character with code 27. Used in entering aliases for special
characters in Mathematica. See also: \[AliasIndicator], \[EscapeKey].

d \[RawExclamation]
Raw operator. Equivalent to the ordinary ASCII character with code 33. See page 1010. See also:
\[DownExclamation].

> \[RawGreater]
Raw operator. Equivalent to the ordinary ASCII character with code 62. Not the same as
\[RightAngleBracket]. See page 1010. See also: \[NotGreater].

{ \[RawLeftBrace]
Raw operator. Equivalent to the ordinary ASCII character with code 123. Extensible character. See page 1010.

See also: \[RawRightBrace].

[ \[RawLeftBracket]
Raw operator. Equivalent to the ordinary ASCII character with code 91. Extensible character. See page 1010.

See also: \[LeftDoubleBracket], \[RawRightBracket], \[RightDoubleBracket].

( \[RawLeftParenthesis]
Raw operator. Equivalent to the ordinary ASCII character with code 40. Extensible character. See page 1010.

See also: \[RawRightParenthesis].

< \[RawLess]
Raw operator. Equivalent to the ordinary ASCII character with code 60. Not the same as
\[RightAngleBracket]. See page 1010. See also: \[NotLess].



1388 RawNumberSign — RawStar Mathematica Reference Guide

# \[RawNumberSign]
Raw operator. Equivalent to the ordinary ASCII character with code 35. Not the same as \[Sharp]. See
page 1010. See also: \[Placeholder].

% \[RawPercent]
Raw operator. Equivalent to the ordinary ASCII character with code 37. See page 1010.

+ \[RawPlus]
Raw operator. Equivalent to the ordinary ASCII character with code 43. See page 1010. See also: \[RawDash].

? \[RawQuestion]
Raw operator. Equivalent to the ordinary ASCII character with code 63. See page 1010. See also:
\[DownQuestion].

’ \[RawQuote]
Raw operator. Equivalent to the ordinary ASCII character with code 39. See page 1010. See also: \[Prime],
\[RawDoubleQuote].

\[RawReturn]
Spacing character. Equivalent to the ordinary ASCII character with code 13. Can be entered as \r. Not always
the same as \[NewLine]. See page 1010. See also: \[ReturnIndicator].

} \[RawRightBrace]
Raw operator. Equivalent to the ordinary ASCII character with code 125. Extensible character. See page 1010.

See also: \[RawLeftBrace].

] \[RawRightBracket]
Raw operator. Equivalent to the ordinary ASCII character with code 93. Extensible character. Not the same as
\[RightModified]. See page 1010. See also: \[LeftDoubleBracket], \[RawLeftBracket],
\[RightDoubleBracket].

) \[RawRightParenthesis]
Raw operator. Equivalent to the ordinary ASCII character with code 41. Extensible character. See page 1010.

See also: \[RawLeftParenthesis].

; \[RawSemicolon]
Raw operator. Equivalent to the ordinary ASCII character with code 59. See page 1010.

/ \[RawSlash]
Raw operator. Equivalent to the ordinary ASCII character with code 47. Extensible character; grows by default
to limited size. See page 1010. See also: \[Divide].

\[RawSpace]
Spacing character. Equivalent to the ordinary ASCII character with code 32. See page 1010. See also:
\[NonBreakingSpace], \[MediumSpace], \[SpaceIndicator], \[InvisibleSpace].

* \[RawStar]
Raw operator. Equivalent to the ordinary ASCII character with code 42. In addition to one-dimensional uses,
x[ is by default interpreted as SuperStar[x]. x[ is often used in mathematics to indicate a conjugate, dual, or

completion of x. See page 1010. See also: \[Star], \[Times], \[SixPointedStar].



A.12 Listing of Named Characters RawTab — ReversePrime 1389

\[RawTab]
Spacing character. Equivalent to the ordinary ASCII character with code 9. Can be entered in strings as \t.

See page 1010. See also: \[RightArrowBar].

~ \[RawTilde]
Raw operator. Equivalent to the ordinary ASCII character with code 126. In addition to one-dimensional uses,
xK is by default interpreted as OverTilde[x]. See page 1010. See also: \[Tilde], \[NotTilde].

_ \[RawUnderscore]
Raw operator. Equivalent to the ordinary ASCII character with code 95. xN is interpreted as OverBar[x]. xN is
interpreted as UnderBar[x]. See page 1010. See also: \[Dash].

| \[RawVerticalBar]
Raw operator. Equivalent to the ordinary ASCII character with code 124. Extensible character. See page 1010.

See also: \[VerticalBar], \[LeftBracketingBar].

^ \[RawWedge]
Raw operator. Equivalent to the ordinary ASCII character with code 94. In addition to one-dimensional uses, xf

is by default interpreted as OverHat[x]. xf is used for many purposes in mathematics, from indicating an
operator form of x to indicating that x is an angle. See page 1010. See also: \[Wedge].

 \[RegisteredTrademark]
Letter-like form. Used as a superscript to indicate a registered trademark such as Mathematica. Typically used
only on the first occurrence of a trademark in a document. See page 996. See also: \[Trademark],
\[Copyright].

` \[ReturnIndicator]
Alias: ,ret ,. Letter-like form. Representation of the return or newline character on a keyboard. Used in
showing how textual input is typed. See page 1009. See also: \[ReturnKey], \[EnterKey], \[Continuation],
\[ControlKey], \[CommandKey], \[SpaceIndicator], \[NonBreakingSpace].

O \[ReturnKey]
Alias: ,�ret ,. Letter-like form. Representation of the RETURN key on a keyboard. Used in describing how to
type textual input. ,ret , is the alias for \[ReturnIndicator]. The alias for \[ReturnKey] has a space at the
beginning. See page 1009. See also: \[EnterKey], \[ReturnIndicator], \[ControlKey], \[CommandKey].

� \[ReverseDoublePrime]
Alias: ,`` ,. Letter-like form. See page 996. See also: \[DoublePrime], \[Prime], \[ReversePrime].

� \[ReverseElement]
Alias: ,mem ,. Infix set relation operator. x � y is by default interpreted as ReverseElement[x, y]. Not the
same as \[SuchThat]. See page 1004. See also: \[Element], \[NotReverseElement].

> \[ReverseEquilibrium]
Infix arrow-like operator. x 5 y is by default interpreted as ReverseEquilibrium[x, y]. Extensible character.

See page 1007. See also: \[Equilibrium], \[ReverseUpEquilibrium], \[LeftArrowRightArrow],
\[LeftRightArrow].

� \[ReversePrime]
Alias: ,` ,. Letter-like form. Used in an overscript position as a grave accent. See page 996. See also:
\[DoublePrime], \[Prime], \[ReverseDoublePrime], \[RawBackquote].



1390 ReverseUpEquilibrium — RightDoubleBracket Mathematica Reference Guide

N \[ReverseUpEquilibrium]
Infix arrow-like operator. x 6 y is by default interpreted as ReverseUpEquilibrium[x, y]. Extensible character.

See page 1007. See also: \[UpEquilibrium], \[DownArrowUpArrow], \[RightUpDownVector], \[Equilibrium].

Ρ \[Rho]
Aliases: ,r ,, ,rho ,. Greek letter. See pages 175 and 990. See also: \[CurlyRho], \[CapitalRho].

; \[RightAngle]
Letter-like form. Used in geometry to indicate a right angle, as in the symbol � ABC. See page 996. See also:
\[Angle], \[MeasuredAngle], \[UpTee].

� \[RightAngleBracket]
Alias: ,> ,. Matchfix operator. / x 0 is by default interpreted as AngleBracket[x]. Used in the form /x0 to
indicate expected or average value. Called ket in quantum mechanics. Used in the form /x, y0 to indicate
various forms of inner product. Used in the form /x, y, . . . 0 to denote an ordered set of objects. Not the same
as \[RawGreater]. Extensible character; grows by default to limited size. See page 1002. See also:
\[LeftAngleBracket].

# \[RightArrow]
Alias: ,�-> ,. Infix arrow operator. Used for many purposes in mathematics to indicate transformation, tending
to a limit or implication. Used as an overscript to indicate a directed object. Not the same as \[Rule]. ,-> , is
the alias for \[Rule]. The alias for \[RightArrow] has a space at the beginning. Extensible character. See
page 1006. See also: \[LongRightArrow], \[ShortRightArrow], \[DoubleRightArrow], \[RightTeeArrow],
\[RightArrowBar], \[UpperRightArrow], \[RightVector], \[RightTriangle], \[LeftArrow],
\[HorizontalLine], \[Implies].

" \[RightArrowBar]
Infix arrow operator. x 7 y is by default interpreted as RightArrowBar[x, y]. Used in mathematics to indicate
an epimorphism. Sometimes used to indicate a tab. Extensible character. See page 1006. See also:
\[RightTeeArrow], \[RightVectorBar], \[UpArrowBar], \[LeftArrowBar], \[RawTab].

( \[RightArrowLeftArrow]
Infix arrow operator. x 8 y is by default interpreted as RightArrowLeftArrow[x, y]. Extensible character. See
page 1006. See also: \[LeftArrowRightArrow], \[LeftRightArrow], \[DoubleLeftRightArrow], \[Equilibrium],
\[UpArrowDownArrow].

� \[RightBracketingBar]
Alias: ,r| ,. Matchfix operator. @ x A is by default interpreted as BracketingBar[x]. Used in mathematics to
indicate absolute value (Abs), determinant (Det), and other notions of evaluating size or magnitude. Not the same
as \[VerticalBar]. Drawn in monospaced fonts with a small right-pointing tee to indicate direction. Extensible
character. See page 1002. See also: \[RightDoubleBracketingBar], \[RightTee].

' \[RightCeiling]
Alias: ,rc ,. Matchfix operator with built-in evaluation rules. F x G is by default interpreted as Ceiling[x].

Extensible character. See page 1002. See also: \[LeftCeiling], \[RightFloor].

4 \[RightDoubleBracket]
Alias: ,]] ,. m+i,j, . . . , is by default interpreted as Part[m, i, j, . . . ]. Extensible character; grows by default
to limited size. See page 1002. See also: \[RawRightBracket], \[RightDoubleBracketingBar].



A.12 Listing of Named Characters RightDoubleBracketingBar — RightTeeArrow 1391

7 \[RightDoubleBracketingBar]
Alias: ,r|| ,. Matchfix operator. B x C is by default interpreted as DoubleBracketingBar[x]. Used in
mathematics to indicate taking a norm. Sometimes used for determinant. Sometimes used to indicate a matrix.

Not the same as \[DoubleVerticalBar]. Drawn in monospaced fonts with a small right-pointing tee to
indicate direction. Extensible character. See page 1002. See also: \[RightBracketingBar].

H \[RightDownTeeVector]
Infix arrow-like operator. x 9 y is by default interpreted as RightDownTeeVector[x, y]. Extensible character.

See page 1007. See also: \[LeftDownTeeVector], \[RightDownVectorBar], \[DownTeeArrow],
\[RightUpTeeVector].

C \[RightDownVector]
Infix arrow-like operator. x : y is by default interpreted as RightDownVector[x, y]. Extensible character. See
page 1007. See also: \[LeftDownVector], \[RightDownTeeVector], \[DownArrow], \[UpEquilibrium],
\[RightUpVector].

L \[RightDownVectorBar]
Infix arrow-like operator. x ; y is by default interpreted as RightDownVectorBar[x, y]. Extensible character.

See page 1007. See also: \[LeftDownVectorBar], \[RightDownTeeVector], \[DownArrowBar],
\[RightUpVectorBar].

% \[RightFloor]
Alias: ,rf ,. Matchfix operator with built-in evaluation rules. D x E is by default interpreted as Floor[x].

Extensible character. See page 1002. See also: \[LeftFloor], \[RightCeiling].

» \[RightGuillemet]
Alias: ,g>> ,. Letter-like form. Used as closing quotation marks in languages such as Spanish. Not the same as
\[GreaterGreater]. Not the same as RightSkeleton. Guillemet is sometimes misspelled as guillemot. See
page 996. See also: \[LeftGuillemet].

T \[RightModified]
Alias: ,] ,. Letter-like form. Used in documenting control and command characters.

key\[LeftModified]char\[RightModified] is used to indicate that char should be typed while key is being
pressed. Not the same as \[RawRightBracket]. See page 1009. See also: \[ControlKey], \[CommandKey],
\[LeftModified].

¤ \[RightSkeleton]
Uninterpretable element. : n ; is used on output to indicate n omitted pieces in an expression obtained from
Short or Shallow. \[RightSkeleton] indicates the presence of missing information, and so by default generates
an error if you try to interpret it. Not the same as \[RightGuillemet]. See page 1009. See also:
\[LeftSkeleton], \[SkeletonIndicator], \[Ellipsis].

	 \[RightTee]
Alias: ,rT ,. Infix operator. x � y is by default interpreted as RightTee[x, y]. x � y � z groups as x � (y � z).

Used in mathematics to indicate logical implication or proof. See pages 191, 1001 and 1007. See also:
\[DoubleRightTee], \[RightTeeArrow], \[RightTeeVector], \[LeftTee], \[DownTee], \[RightBracketingBar].

 \[RightTeeArrow]
Infix arrow operator. x < y is by default interpreted as RightTeeArrow[x, y]. Used in mathematics to indicate
a transformation, often the action of a mapping on a specific element in a space. Also used in logic to indicate
deducibility. Extensible character. See page 1006. See also: \[RightTeeVector], \[RightTee],
\[LeftTeeArrow], \[UpTeeArrow].



1392 RightTeeVector — RoundImplies Mathematica Reference Guide

6 \[RightTeeVector]
Infix arrow-like operator. x = y is by default interpreted as RightTeeVector[x, y]. Extensible character. See
page 1007. See also: \[DownRightTeeVector], \[RightVectorBar], \[RightVector], \[RightTeeArrow].

� \[RightTriangle]
Infix ordering operator. x q y is by default interpreted as RightTriangle[x, y]. Used in pure mathematics to
mean “contains as a normal subgroup”. See pages 191 and 1005. See also: \[RightTriangleEqual],
\[RightTriangleBar], \[RightArrow], \[NotRightTriangle], \[LeftTriangle], \[EmptyUpTriangle],
\[FilledUpTriangle], \[RightAngle].

� \[RightTriangleBar]
Infix ordering operator. x r y is by default interpreted as RightTriangleBar[x, y]. See page 1005. See also:
\[RightTriangle], \[RightTriangleEqual], \[RightArrowBar], \[NotRightTriangleBar].

� \[RightTriangleEqual]
Infix ordering operator. x s y is by default interpreted as RightTriangleEqual[x, y]. See page 1005. See
also: \[RightTriangle], \[RightTriangleBar], \[SucceedsEqual], \[NotRightTriangleEqual],
\[LeftTriangleEqual].

D \[RightUpDownVector]
Infix arrow-like operator. x > y is by default interpreted as RightUpDownVector[x, y]. Extensible character.

See page 1007. See also: \[LeftUpDownVector], \[UpEquilibrium], \[UpArrowDownArrow],
\[LeftRightVector].

G \[RightUpTeeVector]
Infix arrow-like operator. x ? y is by default interpreted as RightUpTeeVector[x, y]. Extensible character. See
page 1007. See also: \[LeftUpTeeVector], \[RightUpVectorBar], \[UpTeeArrow], \[RightDownTeeVector].

B \[RightUpVector]
Infix arrow-like operator. x @ y is by default interpreted as RightUpVector[x, y]. Used in pure mathematics to
indicate the restriction of x to y. Extensible character. See page 1007. See also: \[LeftUpVector],
\[RightUpTeeVector], \[UpArrow], \[UpEquilibrium], \[RightDownVector].

K \[RightUpVectorBar]
Infix arrow-like operator. x A y is by default interpreted as RightUpVectorBar[x, y]. Extensible character. See
page 1007. See also: \[LeftUpVectorBar], \[RightUpTeeVector], \[UpArrowBar], \[RightDownVectorBar].

0 \[RightVector]
Alias: ,vec ,. Infix and overfix arrow-like operator. x � y is by default interpreted as RightVector[x, y].

Used in mathematics to indicate weak convergence. x= is by default interpreted as OverVector[x]. Used in
mathematics to indicate a vector quantity. Sometimes used in prefix form as a typographical symbol to stand for
“see also”. Extensible character. See page 1007. See also: \[DownRightVector], \[RightTeeVector],
\[RightVectorBar], \[RightArrow], \[LeftVector], \[RightUpVector].

: \[RightVectorBar]
Infix arrow-like operator. x � y is by default interpreted as RightVectorBar[x, y]. Extensible character. See
page 1007. See also: \[DownRightVectorBar], \[RightTeeVector], \[RightArrowBar].

N \[RoundImplies]
Infix operator with built-in evaluation rules. x ! y is by default interpreted as Implies[x, y]. x ! y ! z groups
as x ! (y ! z). Not the same as \[Superset]. See pages 1001 and 1006. See also: \[Implies], \[SuchThat],
\[RightArrow], \[Rule].



A.12 Listing of Named Characters RoundSpaceIndicator — Sharp 1393

V \[RoundSpaceIndicator]
Spacing character. Interpreted by default as equivalent to \[RawSpace]. See page 1009. See also:
\[SpaceIndicator], \[Cup], \[Breve].

# \[Rule]
Alias: ,-> ,. Infix operator with built-in evaluation rules. x � y is by default interpreted as x -> y or
Rule[x, y]. x � y � z groups as x � (y � z). \[Rule] is not the same as \[RightArrow]. See page 1006.

See also: \[RuleDelayed].

� \[RuleDelayed]
Alias: ,:> ,. Infix operator with built-in evaluation rules. x  y is by default interpreted as x :> y or
RuleDelayed[x, y]. x  y  z groups as x  (y  z). See page 1006. See also: \[Rule], \[Colon],
\[RightArrow].

� \[SadSmiley]
Alias: ,:-( ,. Letter-like form. See page 995. See also: \[HappySmiley], \[NeutralSmiley],
\[FreakedSmiley].

� \[Sampi]
Aliases: ,sa ,, ,sampi ,. Special Greek letter. Appeared after Ω in early Greek alphabet; used for Greek numeral
900. See page 990. See also: \[CapitalSampi], \[Digamma], \[Stigma], \[Koppa].

 � � �� \[ScriptA] � � � \[ScriptZ]
Aliases: ,sca , through ,scz ,. Letters. Treated as distinct characters rather than style modifications of ordinary
letters. \[ScriptL] � is a commonly used form. Contiguous character codes from the private Unicode character
range are used, even though a few script characters are included in ordinary Unicode. See page 993. See also:
\[ScriptCapitalA], \[GothicA], \[DoubleStruckA], etc.

� � � �� \[ScriptCapitalA] � � � \[ScriptCapitalZ]
Aliases: ,scA , through ,scZ ,. Letters. Treated as distinct characters rather than style modifications of ordinary
letters. � is sometimes called Euler’s E. \[ScriptCapitalE] is not the same as \[CurlyEpsilon]. � is
sometimes used to denote Fourier transform. � is sometimes used to denote Laplace transform. � and � are
used in physics to denote Hamiltonian and Lagrangian density. \[ScriptCapitalP] is not the same as
\[WeierstrassP]. Contiguous character codes from the private Unicode character range are used, even though a
few capital script characters are included in ordinary Unicode. See page 993. See also: \[GothicCapitalA],
\[DoubleStruckCapitalA], etc.

@ \[Section]
Letter-like form. See page 996. See also: \[Paragraph].

� \[SelectionPlaceholder]
Alias: ,spl ,. Letter-like form. Used to indicate where the current selection should be inserted when the contents
of a button are pasted by NotebookApply. Not the same as \[FilledSquare]. See pages 199, 587 and 1008.

See also: \[Placeholder].

š \[SHacek]
Alias: ,sv ,. Letter. Included in ISO Latin-2. See page 998. See also: \[CapitalSHacek], \[CHacek].

D \[Sharp]
Letter-like form. Used to denote musical notes. Sometimes used in mathematical notation, typically to indicate
some form of numbering or indexing. Not the same as \[RawNumberSign]. See page 996. See also: \[Flat],
\[Natural].



1394 ShortLeftArrow — SquareIntersection Mathematica Reference Guide

� \[ShortLeftArrow]
Infix arrow operator. Extensible character. See page 1006. See also: \[LeftArrow], \[LongLeftArrow].

� \[ShortRightArrow]
Infix arrow operator. Not the same as \[Rule]. Extensible character. See page 1006. See also:
\[RightArrow], \[LongRightArrow].

Σ \[Sigma]
Aliases: ,s ,, ,sigma ,. Greek letter. Used in TraditionalForm for DivisorSigma and WeierstrassSigma. See
pages 175 and 990. See also: \[CapitalSigma], \[FinalSigma].

: \[SixPointedStar]
Alias: ,*6 ,. Letter-like form. Not the same as the operator \[Star]. See page 995. See also:
\[FivePointedStar], \[Star], \[RawStar].

¥ \[SkeletonIndicator]
Uninterpretable element. A name A is used on output to indicate an expression that has head name, but whose
arguments will not explicitly be given. \[SkeletonIndicator] indicates the presence of missing information, and
so by default generates an error if you try to interpret it. See page 1009. See also: \[LeftSkeleton],
\[Ellipsis].


 \[SmallCircle]
Alias: ,sc ,. Infix operator. x � y is by default interpreted as SmallCircle[x, y]. Used to indicate function
composition. Not the same as the letter-like form \[EmptyCircle]. Not the same as \[Degree]. See pages 191
and 1002. See also: \[FilledCircle], \[CircleDot], \[CircleTimes].

_ \[SpaceIndicator]
Alias: ,space ,. Spacing character. Interpreted by default as equivalent to \[RawSpace]. See page 1009. See
also: \[RoundSpaceIndicator], \[ThinSpace], \[ReturnIndicator].

� \[SpadeSuit]
Letter-like form. See page 996. See also: \[ClubSuit].

= \[SphericalAngle]
Letter-like form. Used in geometry to indicate a spherical angle, as in the symbol � ABC. See page 996. See
also: \[Angle], \[MeasuredAngle].

. \[Sqrt]

Alias: ,sqrt ,. Prefix operator with built-in evaluation rules. 2 x is by default interpreted as Sqrt[x]. ��@� ,
��2� or \@ yields a complete SqrtBox object. \[Sqrt] is equivalent when evaluated, but will not draw a line
on top of the quantity whose square root is being taken. See page 1000.

� \[Square]
Alias: ,sq ,. Prefix operator. � x is by default interpreted as Square[x]. Used in mathematical physics to
denote the d’Alembertian operator. Sometimes used in number theory to indicate a quadratic residue. Not the
same as \[EmptySquare]. See page 1002. See also: \[Del].

� \[SquareIntersection]
Infix operator. x M y is by default interpreted as SquareIntersection[x, y]. See pages 191 and 1002. See
also: \[SquareUnion], \[Intersection], \[Wedge].



A.12 Listing of Named Characters SquareSubset — Succeeds 1395

� \[SquareSubset]
Infix set relation operator. x t y is by default interpreted as SquareSubset[x, y]. Used in computer science to
indicate that x is a substring occurring at the beginning of y. See page 1005. See also: \[NotSquareSubset],
\[SquareSuperset].

� \[SquareSubsetEqual]
Infix set relation operator. x u y is by default interpreted as SquareSubsetEqual[x, y]. See page 1005. See
also: \[NotSquareSubsetEqual].

� \[SquareSuperset]
Infix set relation operator. x v y is by default interpreted as SquareSuperset[x, y]. Used in computer science
to indicate that x is a substring occurring at the end of y. See page 1005. See also: \[NotSquareSuperset],
\[SquareSubset].

� \[SquareSupersetEqual]
Infix set relation operator. x w y is by default interpreted as SquareSupersetEqual[x, y]. See page 1005. See
also: \[NotSquareSupersetEqual].

* \[SquareUnion]
Infix operator. x ? y is by default interpreted as SquareUnion[x, y]. Used in mathematics to denote various
forms of generalized union, typically of disjoint subspaces. See page 1002. See also: \[SquareIntersection],
\[Union], \[UnionPlus], \[Vee], \[Coproduct].

� \[Star]
Alias: ,star ,. Infix operator. x [ y is by default interpreted as Star[x, y]. Used to denote convolution and
generalized forms of multiplication. Sometimes used in prefix form to indicate dual. Not the same as
\[SixPointedStar] or \[RawStar]. \[RawStar] is the character entered for superscripts. See page 1002. See
also: \[Times], \[Cross].

� \[Sterling]
Letter-like form. Currency symbol for British pound sterling, as in x 5. Used in mathematics to denote Lie
derivative. See pages 192 and 994. See also: \[RawNumberSign], \[Euro].

� \[Stigma]
Aliases: ,sti ,, ,stigma ,. Special Greek letter. Appeared between Ε and Ζ in early Greek alphabet; used for
Greek numeral 6. Not the same as \[FinalSigma]. See page 990. See also: \[CapitalStigma], \[Digamma],
\[Koppa], \[Sampi].

� \[Subset]
Alias: ,sub ,. Infix set relation operator. x p y is by default interpreted as Subset[x, y]. Usually used in
mathematics to indicate subset; sometimes proper subset. See page 1004. See also: \[SubsetEqual],
\[SquareSubset], \[Element], \[Precedes], \[LeftTriangle], \[NotSubset].

� \[SubsetEqual]
Alias: ,sub= ,. Infix set relation operator. x ~ y is by default interpreted as SubsetEqual[x, y]. See page 1004.

See also: \[NotSubsetEqual].

� \[Succeeds]
Infix ordering operator. x � y is by default interpreted as Succeeds[x, y]. Used in mathematics to indicate
various notions of partial ordering. Often applied to functions and read “x dominates y”. See pages 191
and 1005. See also: \[SucceedsEqual], \[Precedes], \[NotSucceeds].



1396 SucceedsEqual — Theta Mathematica Reference Guide

� \[SucceedsEqual]
Infix ordering operator. x y y is by default interpreted as SucceedsEqual[x, y]. See page 1005. See also:
\[SucceedsSlantEqual], \[SucceedsTilde], \[PrecedesEqual], \[NotSucceedsEqual].

� \[SucceedsSlantEqual]
Infix ordering operator. x z y is by default interpreted as SucceedsSlantEqual[x, y]. See page 1005. See
also: \[SucceedsEqual], \[PrecedesSlantEqual], \[NotSucceedsSlantEqual].

� \[SucceedsTilde]
Infix ordering operator. x { y is by default interpreted as SucceedsTilde[x, y]. See page 1005. See also:
\[SucceedsEqual], \[PrecedesTilde], \[NotSucceedsTilde].

� \[SuchThat]
Alias: ,st ,. Infix operator. x _ y is by default interpreted as SuchThat[x, y]. x _ y _ z groups as
x _ (y _ z). Not the same as \[ReverseElement]. See page 1001. See also: \[Exists], \[ForAll], \[Colon],
\[VerticalBar].

� \[Sum]

Alias: ,sum ,. Compound operator with built-in evaluation rules.
imax�

i
f is by default interpreted as

Sum[f, {i, imax}].
imax�

i=imin
f is by default interpreted as Sum[f, {i, imin, imax}]. Not the same as the Greek letter

\[CapitalSigma]. See pages 994 and 1000. See also: \[Product], \[Integral].

T \[Superset]
Alias: ,sup ,. Infix set relation operator. x q y is by default interpreted as Superset[x, y]. Usually used in
mathematics to indicate superset; sometimes proper superset. Not the same as \[RoundImplies]. See pages 191
and 1004. See also: \[SupersetEqual], \[SquareSuperset], \[ReverseElement], \[Succeeds],
\[RightTriangle], \[NotSuperset].

� \[SupersetEqual]
Alias: ,sup= ,. Infix set relation operator. x � y is by default interpreted as SupersetEqual[x, y]. See
page 1004. See also: \[NotSupersetEqual].

ß \[SZ]
Aliases: ,sz ,, ,ss ,. Letter. Used in German. Sometimes called s sharp, ess-zed or ess-zet. Usually
transliterated in English as ss. Upper-case form is SS. Included in ISO Latin-1. See pages 190 and 998. See
also: \[Beta].

Τ \[Tau]
Aliases: ,t ,, ,tau ,. Greek letter. See pages 175 and 990. See also: \[CapitalTau], \[Theta].

W \[Therefore]
Alias: ,tf ,. Infix operator. x i y is by default interpreted as Therefore[x, y]. x i y i z groups as
x i (y i z). See pages 191 and 1001. See also: \[Because], \[Implies], \[RightTee], \[FilledRectangle],
\[Proportion].

Θ \[Theta]
Aliases: ,th ,, ,theta ,, ,q ,. Greek letter. See pages 175 and 990. See also: \[CurlyTheta], \[CapitalTheta],
\[Tau].



A.12 Listing of Named Characters ThickSpace — UDoubleAcute 1397

\[ThickSpace]
Alias: ,���� ,. Spacing character. Width: 5/18 em. Interpreted by default just like an ordinary \[RawSpace].

See page 1008. See also: \[MediumSpace], \[NegativeThickSpace], SpaceIndicator.

\[ThinSpace]
Alias: ,�� ,. Spacing character. Width: 3/18 em. Interpreted by default just like an ordinary \[RawSpace].

See page 1008. See also: \[VeryThinSpace], \[MediumSpace], \[NegativeThinSpace], \[SpaceIndicator].

Þ \[Thorn]
Alias: ,thn ,. Letter. Included in ISO Latin-1. Used in Icelandic and Old English. See page 998. See also:
\[CapitalThorn], \[Eth].

O \[Tilde]
Alias: ,M ,. Infix similarity operator. x M y is by default interpreted as Tilde[x, y]. Used in mathematics for
many notions of similarity or equivalence. Used in physical science to indicate approximate equality.

Occasionally used in mathematics for notions of difference. Occasionally used in prefix form to indicate
complement or negation. Not the same as \[RawTilde]. See pages 191 and 1003. See also: \[NotTilde],
\[VerticalTilde], \[Not].

� \[TildeEqual]
Alias: ,~= ,. Infix similarity operator. x | y is by default interpreted as TildeEqual[x, y]. Used to mean
approximately or asymptotically equal. Also used in mathematics to indicate homotopy. See pages 191 and 1003.

See also: \[TildeTilde], \[TildeFullEqual], \[NotTildeEqual].

� \[TildeFullEqual]
Alias: ,~== ,. Infix similarity operator. x � y is by default interpreted as TildeFullEqual[x, y]. Used in
mathematics to indicate isomorphism, congruence and homotopic equivalence. See page 1003. See also:
\[TildeEqual], \[Congruent], \[NotTildeFullEqual].

N \[TildeTilde]
Alias: ,~~ ,. Infix similarity operator. x h y is by default interpreted as TildeTilde[x, y]. Used for various
notions of approximate or asymptotic equality. Used in pure mathematics to indicate homeomorphism. See
pages 191 and 1003. See also: \[TildeEqual], \[NotTildeTilde].

b \[Times]
Alias: ,* ,. Infix operator with built-in evaluation rules. x � y is by default interpreted as Times[x, y], which is
equivalent to x y or x * y. Not the same as \[Cross]. \[Times] represents ordinary multiplication, while
\[Cross] represents vector cross product. \[Times] is drawn larger than \[Cross]. See page 1000. See also:
\[Star], \[CircleTimes], \[Divide], \[Wedge].

� \[Trademark]
Letter-like form. Used to indicate a trademark that may not be registered. Typically used only on the first
occurrence of a trademark in a document. See page 996. See also: \[RegisteredTrademark], \[Copyright].

ú \[UAcute]
Alias: ,u' ,. Letter. Included in ISO Latin-1. See page 998. See also: \[CapitalUAcute].

ű \[UDoubleAcute]
Alias: ,u'' ,. Letter. Included in ISO Latin-2. Used in Hungarian. See page 998. See also:
\[CapitalUDoubleAcute].



1398 UDoubleDot — UpEquilibrium Mathematica Reference Guide

ü \[UDoubleDot]
Alias: ,u" ,. Letter. Included in ISO Latin-1. See pages 190 and 998. See also: \[UDoubleAcute],
\[CapitalUDoubleDot].

ù \[UGrave]
Alias: ,u` ,. Letter. Included in ISO Latin-1. See pages 190 and 998. See also: \[CapitalUGrave].

û \[UHat]
Alias: ,u^ ,. Letter. Included in ISO Latin-1. See page 998. See also: \[CapitalUHat].

� \[UnderBrace]
Alias: ,u{ ,. Letter-like form. Extensible character. See page 997. See also: \[UnderBracket],
\[UnderParenthesis], \[OverBrace].

� \[UnderBracket]
Alias: ,u[ ,. Letter-like form. Extensible character. See page 997. See also: \[UnderParenthesis],
\[UnderBrace], \[OverBracket], \[HorizontalLine].

� \[UnderParenthesis]
Alias: ,u( ,. Letter-like form. Extensible character. See page 997. See also: \[UnderBracket], \[UnderBrace],
\[OverParenthesis].

� \[Union]
Alias: ,un ,. Infix operator with built-in evaluation rules. x � y is by default interpreted as Union[x, y]. The
character � is sometimes called “cup”; but see also \[Cup]. See page 1002. See also: \[Intersection],
\[SquareUnion], \[UnionPlus], \[Cup], \[Vee].

� \[UnionPlus]
Infix operator. x } y is by default interpreted as UnionPlus[x, y]. Used to denote union of multisets, in which
multiplicities of elements are added. See page 1002. See also: \[Union], \[CirclePlus].

S \[UpArrow]
Infix arrow operator. x b y is by default interpreted as UpArrow[x, y]. Sometimes used in mathematics to
denote generalization of powers. Used to indicate monotonic increase to a limit. Sometimes used in prefix form
to indicate the closure of a set. Extensible character. See pages 191 and 1006. See also: \[UpTeeArrow],
\[UpArrowBar], \[DoubleUpArrow], \[LeftUpVector], \[DownArrow], \[Wedge], \[RawWedge].

& \[UpArrowBar]
Infix arrow operator. x B y is by default interpreted as UpArrowBar[x, y]. Extensible character. See page 1006.

See also: \[UpTeeArrow], \[LeftUpVectorBar].

* \[UpArrowDownArrow]
Infix arrow operator. x C y is by default interpreted as UpArrowDownArrow[x, y]. Extensible character. See
page 1006. See also: \[DownArrowUpArrow], \[UpDownArrow], \[DoubleUpDownArrow], \[UpEquilibrium].

� \[UpDownArrow]
Infix arrow operator. x � y is by default interpreted as UpDownArrow[x, y]. Extensible character. See
page 1006. See also: \[UpArrowDownArrow], \[DoubleUpDownArrow], \[LeftUpDownVector], \[UpEquilibrium].

M \[UpEquilibrium]
Infix arrow-like operator. x D y is by default interpreted as UpEquilibrium[x, y]. Extensible character. See
page 1007. See also: \[ReverseUpEquilibrium], \[UpArrowDownArrow], \[LeftUpDownVector], \[Equilibrium].



A.12 Listing of Named Characters UpperLeftArrow — VerticalLine 1399

. \[UpperLeftArrow]
Infix arrow operator. x E y is by default interpreted as UpperLeftArrow[x, y]. Extensible character; grows by
default to limited size. See page 1006. See also: \[UpperRightArrow], \[LeftArrow].

/ \[UpperRightArrow]
Infix arrow operator. x 	 y is by default interpreted as UpperRightArrow[x, y]. Extensible character; grows by
default to limited size. See page 1006. See also: \[UpperLeftArrow], \[RightArrow].

Υ \[Upsilon]
Aliases: ,u ,, ,upsilon ,. Greek letter. See page 990. See also: \[CapitalUpsilon].

 \[UpTee]
Alias: ,uT ,. Infix relational operator. x ~ y is by default interpreted as UpTee[x, y]. Used in geometry to
indicate perpendicular. Used in number theory to indicate relative primality. See page 1007. See also:
\[RightAngle], \[NotDoubleVerticalBar], \[DownTee].

$ \[UpTeeArrow]
Infix arrow operator. x F y is by default interpreted as UpTeeArrow[x, y]. Extensible character. See page 1006.

See also: \[UpArrowBar], \[LeftUpTeeVector], \[UpTee], \[DownTeeArrow].

� \[Vee]
Alias: ,v ,. Infix operator. x # y is by default interpreted as Vee[x, y]. Used to indicate various notions of
joining, and as a dual of \[Wedge]. Not the same as \[Or]. Drawn slightly smaller than \[Or]. Sometimes
used in prefix form to indicate the total variation of a function. See pages 191 and 1002. See also: \[Wedge],
\[Union], \[SquareUnion], \[Nu], \[Hacek].


 \[VerticalBar]
Alias: ,�| ,. Infix operator. x 3 y is by default interpreted as VerticalBar[x, y]. Used in mathematics to
indicate that x divides y. Also sometimes called Sheffer stroke, and used to indicate logical NAND. Not the
same as \[VerticalSeparator], which is drawn longer. Not the same as \[LeftBracketingBar] and
\[RightBracketingBar], which are drawn with a small tee to indicate their direction. ,| , is the alias for
\[VerticalSeparator]. The alias for \[VerticalBar] has a space at the beginning. See pages 191 and 1005.

See also: \[RawVerticalBar], \[Nand], \[NotVerticalBar], \[DoubleVerticalBar], \[Backslash],
\[HorizontalLine].

� \[VerticalEllipsis]
Letter-like form. Used to indicate omitted elements in columns of a matrix. See page 997. See also:
\[Ellipsis], \[AscendingEllipsis], \[VerticalBar].

� \[VerticalLine]
Alias: ,vline ,. Letter-like form. Extensible character. Not the same as \[VerticalSeparator] or
\[VerticalBar], which are infix operators. Not the same as \[LeftBracketingBar] and
\[RightBracketingBar], which are matchfix operators, drawn with a small tee to indicate their direction. See
page 997. See also: \[RawVerticalBar], \[HorizontalLine], \[VerticalEllipsis], \[UpArrow].



1400 VerticalSeparator — Xor Mathematica Reference Guide

	 \[VerticalSeparator]
Alias: ,| ,. Infix operator. x � y is by default interpreted as VerticalSeparator[x, y]. Used in mathematics
for many purposes, including indicating restriction and standing for “such that”. Also used to separate arguments
of various mathematical functions. Extensible character; grows by default to limited size. Not the same as
\[VerticalBar], which is drawn shorter. Not the same as \[LeftBracketingBar] and \[RightBracketingBar],
which are drawn with a small tee to indicate their direction. Not the same as \[VerticalLine], which is a
letter-like form, and is indefinitely extensible. See pages 191 and 1001. See also: \[RawVerticalBar],
\[NotVerticalBar], \[DoubleVerticalBar], \[Colon], \[SuchThat], \[HorizontalLine].

U \[VerticalTilde]
Infix operator. x $ y is by default interpreted as VerticalTilde[x, y]. Used in mathematics to mean wreath
product. See page 1002. See also: \[Tilde].

\[VeryThinSpace]
Alias: ,� ,. Spacing character. Width: 1/18 em. Interpreted by default just like an ordinary \[RawSpace]. See
page 1008. See also: \[ThinSpace], \[NegativeVeryThinSpace], \[AlignmentMarker], \[Null],
\[InvisibleComma].

� \[WarningSign]
Letter-like form. Based on an international standard road sign. See page 995. See also: \[WatchIcon].

� \[WatchIcon]
Letter-like form. Used to indicate a calculation that may take a long time. See page 995. See also:
\[WarningSign].

� \[Wedge]
Alias: ,^ ,. Infix operator. x � y is by default interpreted as Wedge[x, y]. Used to mean wedge or exterior
product and other generalized antisymmetric products. Occasionally used for generalized notions of intersection.

Not the same as \[And], \[CapitalLambda] or \[RawWedge]. See pages 191 and 1002. See also: \[Vee],
\[UpArrow], \[Intersection], \[SquareIntersection], \[CircleTimes].

j \[WeierstrassP]
Alias: ,wp ,. Letter. Used to denote the function WeierstrassP. Not the same as \[ScriptCapitalP]. See
page 992.

� \[Wolf]
Aliases: ,wf ,, ,wolf ,. Letter-like form. Iconic representation of a wolf. See page 995.

Ξ \[Xi]
Aliases: ,x ,, ,xi ,. Greek letter. See pages 175 and 990. See also: \[CapitalXi], \[Chi], \[Zeta].

	 \[Xor]
Alias: ,xor ,. Infix operator with built-in evaluation rules. x � y is by default interpreted as Xor[x, y]. See
page 1001. See also: \[Nor], \[Or], \[CirclePlus].



A.12 Listing of Named Characters YAcute — Zeta 1401

G \[YAcute]
Alias: ,y' ,. Letter. Included in ISO Latin-1. See page 998. See also: \[CapitalYAcute].

& \[Yen]
Letter-like form. Currency symbol for Japanese yen, as in  5000. See page 994.

Ζ \[Zeta]
Aliases: ,z ,, ,zeta ,. Greek letter. Used in TraditionalForm for Zeta and WeierstrassZeta. See pages 175
and 990. See also: \[CapitalZeta], \[Xi].



1402 Mathematica Reference Guide

A.13 Incompatible Changes since Mathematica
Version 1

Every new version of Mathematica contains many new features. But careful design from the outset has allowed nearly total
compatibility to be maintained between all versions. As a result, almost any program written, say, for Mathematica Version
1 in 1988 should be able to run without change in Mathematica Version 5—though it will often run considerably faster.

One inevitable problem, however, is that if a program uses names that begin with upper-case letters, then it is possible that
since the version when the program was first written, built-in functions may have been added to Mathematica whose names
conflict with those used in the program.

In addition, to maintain the overall coherence of Mathematica a few functions that existed in earlier versions have gradually
been dropped—first becoming undocumented, and later generating warning messages if used. Furthermore, it has in a few
rare cases been necessary to makes changes to particular functions that are not compatible with their earlier operation.

This section lists all major incompatible changes from Mathematica Version 1 onward.

A.13.1 Incompatible Changes between Version 1 and Version 2
260 new built-in objects have been added, some of whose names may conflict with names already being used.

Accumulate has been superseded by FoldList; Fold has been added.

Condition (/;) can now be used in individual patterns as well as in complete rules, and does not evaluate by default.

The functionality of Release has been split between Evaluate and ReleaseHold.

Compose has been superseded by Composition.

Debug has been superseded by Trace and related functions.

Power no longer automatically makes transformations such as Sqrt[x^2]#x.

Limit now by default remains unevaluated if it encounters an unknown function.

Mod now handles only numbers; PolynomialMod handles polynomials.

CellArray has been superseded by Raster and RasterArray.

FontForm takes a slightly different form of font specification.

Framed has been superseded by Frame and related options.

ContourLevels and ContourSpacing have been superseded by Contours.

Plot3Matrix has been superseded by ViewCenter and ViewVertical.

FromASCII and ToASCII have been superseded by FromCharacterCode and ToCharacterCode respectively.

Alias has been superseded by $PreRead.

ResetMedium has been subsumed in SetOptions, and $$Media has been superseded by Streams.

StartProcess has been superseded by Install and by MathLink.

Additional parts devoted to Mathematica as a programming language, and to examples of Mathematica packages, have
been dropped from The Mathematica Book.

A.13.2 Incompatible Changes between Version 2 and Version 3
259 new built-in objects have been added, some of whose names may conflict with names already being used.

N[expr, n] now always tries to give n digits of precision if possible, rather than simply starting with n digits of precision.



A.13 Incompatible Changes since Mathematica Version 1 1403

All expressions containing only numeric functions and numerical constants are now converted to approximate numerical
form whenever they contain any approximate numbers.

Many expressions involving exact numbers that used to remain unevaluated are now evaluated. Example:
Floor[(7/3)^20].

Plus and Times now apply built-in rules before user-defined ones, so it is no longer possible to make definitions such as
2+2=5.

The operator precedence for . and ** has been changed so as to be below ^. This has the consequence that expressions
previously written in InputForm as a . b ^ n must now be written as (a . b)^n. V2Get[file] will read a file using old
operator precedences.

\^ is now an operator used to generate a superscript. Raw octal codes must be used instead of \^A for inputting
control characters.

In Mathematica notebooks, several built-in Mathematica functions are now output by default using special characters.
Example: x->y is output as x�y in StandardForm.

More sophisticated definite integrals now yield explicit If constructs unless the option setting
GenerateConditions->False is used.

HeldPart[expr, i, j, . . . ] has been superseded by Extract[expr, {i, j, . . . }, Hold].

Literal[pattern] has been replaced by HoldPattern[pattern]. Verbatim[pattern] has been introduced. Functions like
DownValues return their results wrapped in HoldPattern rather than Literal.

ReplaceHeldPart[expr, new, pos] has been superseded by ReplacePart[expr, Hold[new], pos, 1].

ToHeldExpression[expr] has been superseded by ToExpression[expr, form, Hold].

Trig as an option to algebraic manipulation functions has been superseded by the explicit functions TrigExpand,
TrigFactor and TrigReduce.

AlgebraicRules has been superseded by PolynomialReduce.

The option LegendreType has been superseded by an additional optional argument to LegendreP and LegendreQ.

WeierstrassP[u, {g�, g}] now takes g� and g in a list.

$Letters and $StringOrder now have built-in values only, but these handle all possible Mathematica characters.

StringByteCount is no longer supported.

Arbitrary-precision approximate real numbers are now given by default as digits`prec in InputForm. This behavior is
controlled by $NumberMarks.

Large approximate real numbers are now given by default as digits*^exponent in InputForm.

HomeDirectory[ ] has been replaced by $HomeDirectory.

Dump has been superseded by DumpSave.

$PipeSupported and $LinkSupported are now obsolete, since all computer systems support pipes and links.

LinkOpen has been superseded by LinkCreate, LinkConnect and LinkLaunch.

Subscripted has been superseded by RowBox, SubscriptBox, etc.

Subscript and Superscript now represent complete subscripted and superscripted quantities, not just subscripts and
superscripts.

FontForm and DefaultFont have been superseded by StyleForm and TextStyle.

In the notebook front end, changes that were made include:

The file format for notebooks has been completely changed in order to support new notebook capabilities.

Notebook files are now by default given .nb rather than .ma extensions; .mb files are now superfluous.

The front end will automatically ask to convert any old notebook that you tell it to open.

The kernel command NotebookConvert can be used to convert notebook files from Version 2 to Version 3 format.

The default format type for input cells is now StandardForm rather than InputForm.

The organization of style sheets, as well as the settings for some default styles, have been changed.

Some command key equivalents for menu items have been rearranged.



1404 Mathematica Reference Guide

A.13.3 Incompatible Changes between Version 3 and Version 4
61 new built-in objects have been added, some of whose names may conflict with names already being used.

N[0] now yields a machine-precision zero rather than an exact zero.

FullOptions has been superseded by AbsoluteOptions, which yields results in the same form as Options.

Element[x, y] or x � y now has built-in evaluation rules.

The symbols I and E are now output in StandardForm as � (\[ImaginaryI]) and � (\[ExponentialE]) respectively.

A new second argument has been added to CompiledFunction to allow easier manipulation and composition of
compiled functions.

A.13.4 Incompatible Changes between Version 4 and Version 5
44 completely new built-in objects have been added, some of whose names may conflict with names already being used.

Precision and Accuracy now return exact measures of uncertainty in numbers, not just estimates of integer numbers of
digits.

Precision now returns the symbol MachinePrecision for machine numbers, rather than the numerical value
$MachinePrecision.

N[expr, MachinePrecision] is now used for numerical evaluation with machine numbers; N[expr, $MachinePrecision]
generates arbitrary-precision numbers.

ConstrainedMin and ConstrainedMax have been superseded by Minimize, Maximize, NMinimize and NMaximize.

SingularValues has been superseded by SingularValueList and SingularValueDecomposition.
SingularValueDecomposition uses a different and more complete definition.

FindRoot[f, {x, {x�, x�}}] is now used to specify a starting vector value for x, rather than a pair of values. The same
is true for FindMinimum.

DSolveConstants has been superseded by the more general option GeneratedParameters.

TensorRank has been replaced by ArrayDepth.

$TopDirectory has been superseded by $InstallationDirectory and $BaseDirectory.

The default setting for the MathLink LinkProtocol option when connecting different computer systems is now "TCPIP"
rather than "TCP".



Index

This index includes not only specific words and phrases from the

text but also concepts and topics related to them. This means that 

a particular term in the index may not appear in its literal form on

any of the pages specified. Note that the terms are sorted in stan-

dard dictionary order, with most non-alphabetic characters ignored.

See the Standard Add-on Packages book for information on capa-

bilities included in additional packages bundled with most versions

of Mathematica.

You can also use the online Help Browser in the Mathematica 

notebook front end to search for topics that appear anywhere in 

documentation for Mathematica and for packages that you have

installed.



IndexIndex



Index ! — Activating textual input 1407

!, Factorial, 31, 757, 1025, 1143
Not, 87, 1028, 1221

! (pipe prefix), 628
! (shell escape), 629, 1038
!!, Factorial2, 757, 1025, 1143
!! (show file), 204, 623, 1038
!=, Unequal, 86, 1027, 1315
@ (function application), 233, 1025
@ (string metacharacter), 412
@@, Apply, 1025, 1081
@@@, Apply (@@), 1025, 1081
#, Slot, 249, 1024, 1030, 1284
##, SlotSequence, 249, 1030, 1285
%, Out, 38, 702, 1024, 1030, 1234
%%, Out (%), 1030, 1234
^, Power, 29, 1025, 1248
^^ (number base), 725, 1021
^=, UpSet, 318, 1029, 1317
^:=, UpSetDelayed, 316, 1029, 1317
&, Function, 248, 1029, 1159
&&, And, 87, 347, 1028, 1079
*, Times, 29, 1026, 1306
* (string metacharacter), 58, 411
*^ (scientific notation), 1021
**, NonCommutativeMultiply, 1026, 1220
*=, TimesBy, 305, 1029, 1306
(* . . . *) (comment), 484
_, Blank, 110, 113, 259, 1024, 1030, 1090
__, BlankSequence, 273, 1030, 1091
___, BlankNullSequence, 273, 1030, 1090
_., Optional, 274, 1030, 1232
_:, Optional (_.), 274, 1232
-, Minus, 29, 1027, 1212

Subtract, 29, 1027, 1296
--, Decrement, 305, 1025, 1118

PreDecrement, 305, 1025, 1249
-=, SubtractFrom, 305, 1029, 1296
->, Rule, 64, 299, 314, 1029, 1269
+, Plus, 29, 1027, 1244
++, Increment, 305, 1025, 1177

PreIncrement, 305, 1025, 1249
+=, AddTo, 305, 1029, 1077
=, Set, 303, 311, 1029, 1277
=!=, UnsameQ, 346, 1028, 1316
==, Equal, 84, 819, 1027, 1135
===, SameQ, 346, 1028, 1270
=., Unset, 66, 304, 1029, 1316
� (home directory), 636
� . . . � (function application), 233, 1025
`, (precision mark), 729
` (context mark), 392, 1020
` (format string character), 433
` (number mark), 729, 1021
``, (accuracy mark), 729
{ . . . }, List, 40, 42, 1199
[ . . . ] (function application), 34, 42, 1024
[[ . . . ]], Part, 41, 42, 117, 122, 1024,

1238
|, Alternatives, 269, 1028, 1079
||, Or, 87, 347, 1028, 1233
\ (line continuation), 1038
\\ (raw backslash), 415

\!\( . . . \), (two-dimensional string), 429,
461, 1020, 1036

\( . . . \), (input raw boxes), 461, 1036
\[ . . . ], (named characters), 415, 1018,

1038
\< . . . \>, (string input), 416, 1020
\.nn, (special characters), 418, 1019, 1038
\:nnnn, (special characters), 419, 1019,

1038
\nnn, (special characters), 418, 1019, 1038
\" (quote in a string), 415
\n (raw newline), 415
\t, (raw tab), 415
<, Less, 86, 1027, 1193
<=, LessEqual, 86, 1027, 1193
<<, Get, 59, 204, 400, 623, 1024, 1162
<< . . . >>, Skeleton, 75, 1284
<>, StringJoin, 407, 1025, 1291
>, Greater, 86, 1027, 1166
>=, GreaterEqual, 86, 1027, 1166
>>, Put, 204, 624, 1029, 1253
>>>, PutAppend, 204, 624, 1029, 1253
., Dot, 119, 1127
.., Repeated, 277, 1028, 1262
.. (parent directory), 636
..., RepeatedNull, 277, 1028, 1262
.exe files, 659
.m files, 205, 1053
.ma files, 1053
.ml files, 1053
.mx files, 205, 627, 640, 1053
.nb files, 205, 1053
.tm files, 661
.tm.c files, 667
;, CompoundExpression, 1029, 1111
" (string delimiters), 433, 1020
?, PatternTest, 269, 1024, 1241
? (information escape), 484, 1038
??, 58, 1038
', Derivative, 855, 1025, 1122
/, Divide, 29, 1026, 1127
/@, Map, 1025, 1205
/=, DivideBy, 305, 1029, 1127
/., ReplaceAll, 65, 299, 1029, 1263
/;, Condition, 265, 345, 1028, 1111
// (function application), 30, 233, 1029
//@, MapAll, 1025, 1205
//., ReplaceRepeated, 300, 1029, 1263
/: . . . :=, TagSetDelayed, 319, 1029, 1300
/: . . . =, TagSet, 319, 1029, 1300
/: . . . =., TagUnset, 1029, 1301
/etc/rc.local file, 1058
:, Pattern, 263, 1028, 1240
:=, SetDelayed, 110, 311, 1029, 1278
:>, RuleDelayed, 314, 341, 1029, 1269
::, MessageName, 479, 1024, 1211

16-bit characters, 422
3-j symbols, ThreeJSymbol, 760, 1304
5, new features in, x
6-j symbols, SixJSymbol, 760, 1284
8-bit characters, 422

\[AAcute] ( á ), 998, 1354
\[ABar] ( ā ), 998, 1354
Abel equations, DSolve, 873, 1129
Abel’s Theorem, 820
Abends, 61, 479
Abort, Throw, 350, 1304
Abort, 371, 1048, 1075
$Aborted, 371, 1048, 1325
Aborting calculations, 62
AbortProtect, 371, 1075
Aborts, 370
Above, overscript, 180

OverscriptBox, 445, 1235
\above (TEX), FractionBox, 445, 1155
Above parenthesis, \[OverParenthesis]

(� ), 997
Abramov algorithm, DSolve, 1071, 1129

RSolve, 1071, 1269
Abs, 31, 34, 745, 746, 813, 1075
Abscissa, Axes, 134, 512, 1086
Absent from expression, FreeQ, 268, 1156
Absent from list, Complement, 127, 1109

FreeQ, 124, 1156
Absolute coordinates, 505, 531
Absolute error, Accuracy, 727, 1077
Absolute invariant, KleinInvariantJ, 787,

1190
Absolute size, for points,

AbsolutePointSize, 500, 1076
Absolute value, Abs, 31, 34, 745, 746, 1075

notation for, \[LeftBracketingBar] ( � ),
1002

AbsoluteDashing, 501, 1075
in three dimensions, 525

AbsoluteOptions, 145, 490, 581, 1075
AbsolutePointSize, 500, 1076

in three dimensions, 525
AbsoluteThickness, 501, 1076

in three dimensions, 525
AbsoluteTime, 710, 1076
AbsoluteTiming, 711, 1076
Abut boxes, RowBox, 445, 1267
\accent (TEX), OverscriptBox, 445, 1235
Accent grave (`), as context mark, 392, 1015

in package names, 640
Accented characters, 190, 998
Accents, 998
Account, of user, $UserName, 716, 1339
AccountingForm, 435, 1076
Accumulate, FoldList, 243, 1151
Accumulate (Version 1 function), see

FoldList, 1402
Accumulating expressions, Reap, 355, 1259
Accuracy, in examples, xv

in timings, $TimeUnit, 711, 1338
increasing, SetAccuracy, 736, 1277
numerical, 33, 727, 952

Accuracy, 727, 1077
AccuracyGoal, 958, 976, 1077
Action, in notebooks, 49
Activating 2D forms, 430
Activating textual input, 177



1408 Active — Appell hypergeometric function Index

Active, 448, 595, 607, 1077
Active cells, 54
Active element, ButtonBox, 448, 595, 1092
Active elements in notebooks, 54
Active links, Links, 662, 1198
Active text, in notebooks, 56
\[ACup] ( ă ), 998, 1354
Adamchik techniques, Sum, 1071, 1296
Adams methods, NDSolve, 979, 1068, 1216
Adaptive integration procedure, 953
Adaptive procedure, in NDSolve, 966, 1216
Adaptive sampling, in plots, 137
Add, without carry, BitXor, 756, 1090
Add-in programs, 657
Add-ons, location of files for, 1063
Addition, of elements to lists, Append, 125,

288, 1080
patterns involving, 270
Plus (+), 29, 1244

Additive cellular automata,
CellularAutomaton, 946, 1101

AddTo (+=), 305, 1029, 1077
Adjoint, Conjugate, 746, 1111
AdjustmentBox, 455, 1078
Adjustments, to formatting, 449
Adobe character encoding, 421
\[ADoubleDot] ( ä ), 190, 998, 1354
Advanced topic sections, xv
\[AE] ( æ ), 998, 1354
\ae (TEX), \[AE] ( æ ), 998
\AE (TEX), \[CapitalAE] ( Æ ), 998
Agemo, \[Mho] (� ), 994
Aggregating brace, \[OverBrace] (� ), 997
\[AGrave] ( à ), 190, 998, 1354
\[AHat] ( â ), 998, 1354
AIFF format, exporting, Export, 569, 1141

importing, Import, 570, 1176
Airy functions, AiryAi, 776, 1078

derivatives of, AiryAiPrime, 776, 1078
Airy’s differential equation, DSolve, 872,

1129
AiryAi, 775, 776, 1078
AiryAiPrime, 775, 776, 1078
AiryBi, 775, 776, 1078
AiryBiPrime, 775, 1078
Alarm, Pause, 710, 1241
Albedo, 547
\[Aleph] (� ), 192, 993, 1354
Algebraic algorithms, GroebnerBasis, 805,

1168
Algebraic computation, 63
Algebraic curves, 822
Algebraic equations, 88

Solve, 820, 1285
Algebraic expressions, internal

representation of, 234, 279
parts in, 234
patterns for, 261, 279
pieces of, 73

Algebraic extensions, 751
Algebraic geometry, 845
Algebraic numbers, 809, 826

Algebraic operations on polynomials, 803
Algebraic simplification, 63

Simplify, 68, 813, 1282
Algebraic transformations, 67
Algebraic variables, 66
Algebraic varieties, GroebnerBasis, 805,

1168
Algebraics, 817, 1079
Algorithms, algebraic, 223

algebraic, GroebnerBasis, 805, 1168
complexity of, 76
in Mathematica, 219, 1066
monitoring, 977
precision in numerical, 733
time complexity of, 76

Alias (Version 1 function), see $PreRead,
1402

Aliases, conventions for, 1353
HTML, 1353
SGML, 1353
TEX, 1353
user defined, 987
user defined, InputAliases, 613, 1178

\[AliasIndicator] ( � ), 1009, 1354
Aliasing, of sound, SampleRate, 172, 1270
Alignment, in numerical output, 437

in tables, TableAlignments, 442, 1299
of buttons, 452
of columns, ColumnAlignments, 449,

1107
of expressions, ShowContents, 455
of GridBox, GridBaseline, 449, 1166
of inline cells, CellBaseline, 605, 1097
of numbers in tables, PaddedForm, 440,

1235
of rows, RowAlignments, 449, 1267
of subscripts, ScriptBaselineShifts,

457, 1272
\[AlignmentMarker], 451, 1008, 1354
Aliquant, Mod, 749, 1213
All, ForAll, 847, 1152
All, 125, 136, 1040, 1079
All expressions, pattern for, Blank (_), 259,

1090
All parts of expressions, 238, 1041

applying functions to, MapAll (//@), 245,
1205

Allocating memory, in MathLink, 667
\[Alpha] (Α ), 175, 990, 1354
Alphabet, generating, CharacterRange,

413, 417, 1102
Alphabetic characters, test for, LetterQ,

413, 1193
Alphabetizing, of strings, Sort, 411, 1286
Alternation, Or (||), 87, 1233

patterns involving, 269
Alternatives, patterns involving, 269
Alternatives (|), 269, 1028, 1079
Always, ForAll, 847, 1152
AmbientLight, 545, 1079
Ambiguities, in special characters, 985, 1031

in TraditionalForm, 194

Ampersand, double (&&), And, 87, 1079
Ampersand (&), Function, 249, 1159
Amplitude, in elliptic functions,

JacobiAmplitude, 782, 1189
of sound, 172, 566

Analog input, 51
Analysis of variance, 794
Analytic continuation, 769
AnchoredSearch, 651, 1079
And, bitwise, BitAnd, 756, 1089
And (&&), 87, 347, 1028, 1079

argument evaluation in, 1046
evaluation in, 347

\[And] (� ), 183, 985, 1001, 1354
And bar, \[Nand] (� ), 1001, 1215
\[Angle] ( � ), 192, 996, 1354
Angle bracket, \[LeftAngleBracket] ( � ),

191, 1002
Angle of view, ViewPoint, 152, 153, 532,

1319
Angles, 32
\[Angstrom] (� ), 192, 984, 994, 1355
Angular momentum, in quantum

mechanics, 760
Animate, 170
Animate Selected Graphics menu item, 617
Animate selection, SelectionAnimate, 588,

1274
Animation, 51, 170, 617

of three-dimensional rotation, 170, 536
AnimationDirection, 617, 1080
AnimationDisplayTime, 617, 1080
Animations, exporting, Export, 567, 1141
Annotated names, 989
Annotated operator, 476
Annotation, of input, ShowAutoStyles,

613, 1280
Annotations, in graphics, 560
Anonymous functions, Function (&), 248,

1159
ANOVA (analysis of variance), 794
ANSI prototypes, 677
Anti-derivative, Integrate, 859, 1182
Antilogarithm, Exp, 31, 1137
Antique fonts, 992
Antisymmetry, Signature, 760, 1282
Any expression, pattern for, Blank (_), 259,

1090
Apart, spacing characters, 1008
Apart, 69, 70, 802, 1069, 1080
API, for Mathematica, 657
APL, catenate in, Join, 126, 1190

compress in, Select, 251, 1273
grade in, Ordering, 129, 255, 1233
grade in, Sort, 127, 1286
iota operator in, Range, 119, 1255
ravel in, Flatten, 130, 1150
reduce in, Apply (@@), 243, 1081
reshape in, Partition, 128, 292, 1240
shape in, Dimensions, 120, 916, 1124

Appell hypergeometric function, AppellF1,
781, 1080



Index AppellF1 — Assignments 1409

AppellF1, 780, 781, 1080
Append, 125, 236, 288, 1080
Appending, to files, PutAppend (>>>), 624,

1253
to lists, Append, 125, 288, 1080
to lists, Sow, 355, 1286
to notebooks, CellPrint, 575, 1100
to strings, StringInsert, 408, 1291

AppendTo, 306, 1081
Apple events, 658
Apple key, \[CloverLeaf] (� ), 1009
AppleTalk, 658
Applicability, regions of, Assumptions, 867,

1084
Applicability of transformation rules,

Condition (/;), 265, 1111
Application, precedence of function, 1023
Application directory,

$InstallationDirectory, 637, 1330
Application packages, 59, 97, 109
Apply (@@), 243, 1025, 1081

levels in, 1041
Applying functions, by name, Apply (@@),

243, 1081
to all parts of expressions, Map (/@), 244,

1205
to lists, Apply (@@), 243, 1081
to specific parts of expressions, MapAt,

246, 1205
with side effects, Scan, 247, 1271

\approx (TEX), \[TildeTilde] (� ), 1003
Approximate differentiation, 791
Approximate formulas, derivation of from

data, Fit, 926, 1149
Series, 94, 884, 1276

Approximate functions,
InterpolatingFunction, 930, 1182

Approximate numbers, Real, 722, 1258
Approximately equal, \[TildeEqual] (� ),

1003
Approximation, rational,

ContinuedFraction, 754, 1112
Approximation of functions, FindFit, 108,

1146
Fit, 926, 1149
Interpolation, 930, 1183
on grids, ListInterpolation, 934, 1201
Series, 94, 883, 1276

Approximations, algebraic, Series, 94, 883,
1276

numerical, N, 30, 728, 1214
Arbitrary length, lists in MathLink, 670
Arbitrary-precision functions, 731
Arbitrary-precision numbers, 33, 731

in MathLink, 675
in plots, 138
input of, 729

Arc trigonometric functions, 31, 761
ArcCos, 31, 761, 1081
ArcCosh, 761, 1081
ArcCot, 761, 1081
ArcCoth, 761, 1081

ArcCsc, 761, 1081
ArcCsch, 761, 1082
Architecture, of Mathematica system, 44

processor, $ProcessorType, 717, 1336
Arcs, of circles, Circle, 496, 1103
ArcSec, 761, 1082
ArcSech, 761, 1082
ArcSin, 31, 761, 1082
ArcSinh, 761, 1082
ArcTan, 31, 761, 1082
ArcTanh, 761, 1082
Area, Integrate, 81, 1182
Arg, 34, 746, 813, 1083
Argand diagrams, ParametricPlot, 161,

1237
argc, argv, $CommandLine, 716, 1327
argc, in MathLink, 679
Argument of complex number, Arg, 34,

746, 1083
Arguments, 230

constraining types of, 264
conventions for, 1039
default values for, 274, 1050
dropping for printing, Shallow, 432, 1279
evaluation of, 332, 1045
evaluation of in assignments, 342
function names as, 240
functions with variable numbers of, 273
in pure functions, 249
named, 276
non-standard evaluation of, 1045
on Mathematica command line,

$CommandLine, 716, 1327
optional, 1050
options as, 133, 1039
overriding non-standard evaluation of,

Evaluate, 1047, 1136
positional, 276
preventing evaluation of, 336
preventing evaluation of, Unevaluated,

339, 1315
scoping of names for, 387
sequences of, 273
to external functions, 662
transformation rules as, 276
unevaluated, 336
warning about number of, 61

argv array, 698
argx message, 480
\[ARing] ( å ), 190, 998, 1355
Arithmetic, 29

in finite fields, 31, 749
interval, Interval, 740, 1184
machine, 728, 737
speed of, 77

Arithmetic difference equations, RSolve, 96,
891, 1269

Arithmetical functions, higher, 749
ArithmeticGeometricMean, 788, 1083
Arity, of functions, 273
Arnoldi methods, Eigenvalues, 1069, 1131
ARPACK, Eigenvalues, 1069, 1131

Arrange, Sort, 127, 1286
Arrangement, of output, 444
Array, 119, 250, 283, 289, 896, 916, 1083
Array automata, CellularAutomaton, 942,

1101
Array origins, 666
\arraycolsep (TEX), ColumnSpacings, 449,

1108
ArrayDepth, 290, 916, 1083
ArrayQ, 267, 290, 916, 1083
ArrayRules, 898, 922, 1084
Arrays, 42

as lists, 307
as matrices, 899
as tensors, 915
color, RasterArray, 498, 1255
creation of, 283
creation of, Table, 115, 1299
exporting, Export, 643, 1141
extensible, 307
extracting elements from, 117
formatting of, 439, 443
formatting of, GridBox, 445, 1167
importing, Import, 643, 1176
in C, 668
in MathLink, 665
input of, 186
interpolation of, ListInterpolation,

934, 1201
List, 40, 1199
multidimensional, 116
origin of, Mod, 749, 1213
plotting, 159, 517
reading from data files, ReadList, 644,

1257
sparse, 307
sparse, SparseArray, 295, 1287
testing for, ArrayQ, 267, 1083
with continuous indices as functions, 309

Arrow (->), Rule, 64, 299, 1269
Arrow characters, 1006
Arrow keys, 180
Arrows, control, 455
Art, computer, 11
Artificial intelligence, in simplification,

Simplify, 69, 1282
\[AscendingEllipsis] (� ), 997, 1355
ASCII, xv, 419, 421

in MathLink, 679
Aspect ratios, of geometrical figures, 495

of parametric plots, 163
AspectRatio, 134, 151, 163, 495, 509, 1084

for three-dimensional plots, 535
AspectRatioFixed, 616, 1084
Assertions, 268

simplification with, Simplify, 72, 815,
1282

Assignments, 303, 1051
associated with particular objects, 316,

1051
chains of, 313
compared with equality tests, 84



1410 Assignments — Basis vectors Index

compared with replacements, 65
delayed, SetDelayed (:=), 311, 1278
evaluation in, 311, 336, 340, 1047
immediate, Set (=), 311, 1277
local, 378
local variables in, 379
of downvalues directly, DownValues, 322,

1128
of upvalues directly, UpValues, 322, 1317
of values for symbols, Set (=), 39, 1277
ordering of, 310
preventing evaluation in, 343
testing for, ValueQ, 268, 1317
tracing, Trace, 357, 1310

Assistance, 58
in notebook front end, 57

Associated packages, 205
Associative functions, 326

in patterns, 271
Associativities, of operators, 1031

table of, 1024
Associativity, 255

in pattern matching, 261
of operators, 470

Assume real variables, 813
Assuming, 818, 1084
Assumptions, about complex variables,

ComplexExpand, 812, 1110
in simplification, Simplify, 72, 815, 1282

Assumptions, 867, 1084
$Assumptions, 818, 1325
Asterisk, Times (*), 29, 1306
Asterisk (*), as string metacharacter, 58, 411
Astronomical data, importing, Import, 208,

1176
Astronomy, example from, 11
\asymp (TEX), \[CupCap] (� ), 1003
Asymptotes, limits near, 895
Asymptotic, \[TildeTilde] (� ), 1003
Asymptotic expansions, Series, 884, 1276
Asymptotically equal, \[TildeEqual] (� ),

1003
Asynchronous interrupts, 62
At sign (@), 233

as string metacharacter, 412
\[ATilde] ( ã ), 998, 1355
Atomic subexpressions, in simplification,

ExcludedForms, 814, 1137
AtomQ, 268, 1085
Atoms, 1016

as leaves in trees, 239
lexical, 467
number in expression, LeafCount, 714,

1192
Atop, overscript, 180

OverscriptBox, 445, 1235
\atop (TEX), GridBox, 445, 1167
Attractors, strange, 981
Attributes, 327

for pure functions, 332
functions for testing, 267
in pattern matching, 271

of built-in functions, 329
of cells, CellTags, 607, 1100
used in matching patterns, 1050

Attributes, 271, 328, 1052, 1085
AU format, exporting, Export, 569, 1141

importing, Import, 570, 1176
Audio, exporting, Export, 569, 1141

importing, Import, 570, 1176
Audio output, 171

representation of, 565
Auditory system, human, 172
Aut, Xor, 87, 1324
Author’s address, iv
Authorization, of network licenses, 1058
AutoCAD format, exporting, Export, 569,

1141
importing, Import, 570, 1176

AutoIndent, 613, 1086
AutoItalicWords, 613, 1086
Autoload directory, 1065
Autoloading, of packages, 60, 401
Automata, cellular, CellularAutomaton,

942, 1101
Automatic, 136, 1086
Automatic evaluation, of cells,

InitializationCell, 608, 1178
Automatic grouping, CellGrouping, 618,

1099
Automatic numbering, 202
Automatic options, finding values of,

AbsoluteOptions, 145, 490, 1075
Automatic styles, ShowAutoStyles, 613,

1280
Automatic variables, 378
Autoplectic sequences, 980
Autoscaling, in plots, PlotRange, 508, 1243
AutoSpacing, 454, 1086
Average, Mean, 109, 924, 1209
Avoiding evaluation, 336
Axes, in contour plots, 520

in density plots, 520
in three-dimensional graphics, 549
in two-dimensional graphics, 512
labeling of three-dimensional, AxesLabel,

552, 1087
options for, 512
positions of three-dimensional, AxesEdge,

551, 1087
tick marks on, Ticks, 134, 512, 1305

Axes, 134, 151, 511, 512, 549, 1086
AxesEdge, 551, 1087
AxesLabel, 134, 151, 512, 552, 1087
AxesOrigin, 134, 512, 1087
AxesStyle, 512, 550, 1087
Axis, 451
Azimuth, Arg, 746, 1083

Back quote (`), as context mark, 392
in package names, 207, 640

Back solving, 832
Back substitution, in systems of equations,

846

Back-tracking, 48
Background, 444, 452, 504, 574, 604, 612,

619, 1087
Background color, for text, Background,

444, 612, 1087
Background lighting, AmbientLight, 545,

1079
\backprime (TEX), \[RawBackquote] ( ‘ ),

1010
Backquote, 1015
Backs of polygons, 529
Backslash, at end of line, 1038

different forms of, 191
inside strings, 415

\[Backslash] ( � ), 191, 985, 1002, 1355
\backslash (TEX), \[Backslash] ( � ), 1002
Backslash notations, 462
Backslash sequences, activating, 177
Backtab indicator, \[LeftArrowBar] (� ),

1006
Bags, saving expressions in, Sow, 355, 1286
Band structure calculations, MathieuS, 789,

1207
Band-diagonal matrices, SparseArray, 297,

1287
Banded matrices, ListConvolve, 937, 1200
Bang, Factorial (!), 31, 757, 1143

Not (!), 87, 1221
Bar, as diacritical mark, 998

input of, 188
vertical, \[VerticalBar] ( � ), 1005
vertical (|), Alternatives, 269, 1079
vertical (||), Or, 87, 1233

\bar (TEX), OverBar, 472, 989
Barbed arrow, \[RightVector] (� ), 1007
BarChart, 168
Barnes extended hypergeometric function,

HypergeometricPFQ, 781, 1172
Barred characters, AdjustmentBox, 455,

1078
Base directories, 1063

setting, 1055
BASE environment variables, 1055
$BaseDirectory, 637, 1064, 1325
BaseForm, 438, 725, 1088
Baseline, of expressions, 451

of GridBox, GridBaseline, 449, 1166
of inline cells, CellBaseline, 605, 1097

Baseline, 451
\baselineskip (TEX), LineSpacing, 611,

1196
Bases, for numbers, 725

for printing of numbers, 438
numbers in various, 1021
numbers in various, IntegerDigits, 725,

1181
numbers in various, RealDigits, 725,

1258
Basic Input palette, 14
Basis, Gröbner, GroebnerBasis, 805, 1168
Basis vectors, reduced, LatticeReduce,

754, 1191



Index Batch files — Boxel 1411

Batch files, 59, 623
test for, $BatchInput, 715, 1326

Batch mode, 1057
constraining resources in, 712
executing Mathematica in, 707

$BatchInput, 715, 1326
$BatchOutput, 715, 1326
Bateman functions, Hypergeometric1F1,

779, 1171
BDF methods, NDSolve, 979, 1216
\[Because] (� ), 1001, 1355
Beck parameters, Partition, 293, 1240
Beep, 51
Begin, 398, 400, 1088
Beginning of list, First, 122, 1149
BeginPackage, 398, 1088
Bell curve, NormalDistribution, 794
Below, underscript, 180

UnderscriptBox, 445, 1315
Below parenthesis, \[UnderParenthesis]

(� ), 997
Bent brackets, \[LeftAngleBracket] ( � ),

1002
Bernoulli equations, DSolve, 873, 1129
Bernoulli numbers, BernoulliB, 758, 1088
Bernoulli polynomials, BernoulliB, 758,

1088
BernoulliB, 757, 758, 1088
BernoulliDistribution, 796
Bessel equation, inhomogeneous, StruveH,

776, 1293
Bessel function simplification,

FullSimplify, 813, 1159
Bessel functions, BesselJ, 776, 1088

hyperbolic, BesselI, 776, 1088
modified, BesselI, 776, 1088
spherical, 776

BesselI, 775, 776, 890, 1088
BesselJ, 775, 776, 1088
BesselK, 775, 776, 1089
BesselY, 775, 776, 1089
\[Bet] (� ), 993, 1355
Beta, 770, 771, 1089
\[Beta] ( Β ), 175, 990, 1355
Beta function, Beta, 770, 1089

incomplete, Beta, 771, 1089
regularized, BetaRegularized, 771, 1089

BetaRegularized, 770, 771, 1089
\beth (TEX), \[Bet] (� ), 993
Bézier curves, 555
\bf (TEX), FontWeight, 444, 612, 1152
Bibliography, 1066
Biconditional, Equal (==), 84, 1135
Big numbers, 33, 731
\bigcap (TEX), \[Intersection] (� ),

1002, 1184
\bigcirc (TEX), \[EmptyCircle] (� ), 995
\bigcup (TEX), \[Union] (	 ), 1002, 1315
Bigfloats, 731
Bignums, in MathLink, 675
\biguplus (TEX), \[UnionPlus] (
 ), 1002

bin directory, $BaseDirectory, 637, 1325
Binaries, naming of, 676
Binary compatibility, for .mx files, 627
Binary digits, IntegerDigits, 725, 1181
Binary files, in MS-DOS, DOSTextFormat,

1054
Binary numbers, 438, 725, 1021
Binary operators, iteration of, FoldList,

243, 1151
Binary save, DumpSave, 627, 1129
Bind name, LinkCreate, 680, 1197
Binding of operators, 29, 233, 468, 1031

in output, 474
Binding power, table of for operators, 1024
Binomial, 757, 1089

implementation of, 1067
BinomialDistribution, 796
Biomedical image format, exporting,

Export, 568, 1141
importing, Import, 570, 1176

Biquadratic (quartic) equations, 820
Bird tracks, \[AliasIndicator] ( � ), 1009
Bit count, DigitCount, 755, 1123
Bit operations, 756
BitAnd, 756, 1089
Bitfields, 756
Bitmap, Raster, 492, 497, 1255
Bitmap graphics formats, exporting,

Export, 568, 1141
importing, Import, 570, 1176

BitNot, 756, 1090
BitOr, 756, 1090
Bitwise operations, 756
BitXor, 756, 1090
Black, 499
Black blobs, \[SelectionPlaceholder]

(� ), 1008
Black letter characters, 992
Black square, \[SelectionPlaceholder]

(� ), 199, 587
Black-and-white display, ColorOutput, 564,

1106
Blackboard characters, 992
\blacklozenge (TEX), \[FilledDiamond]

(� ), 995
Blanch’s Newton method, MathieuS, 1068,

1207
Blank (_), 110, 113, 259, 1024, 1030, 1090
Blank lines, discarding input with,

$BatchInput, 715, 1326
Blank notebook, NotebookCreate, 592,

1222
BlankNullSequence (___), 273, 1030, 1090
Blanks, 110, 259

double, 273
in palettes, \[Placeholder] (	 ), 199,

587
scope of, 386
triple, 273
types of, 1049

BlankSequence (__), 273, 1030, 1091

BLAS, 1069
Blob, Disk, 496, 1125

during input, ShowCursorTracker, 613,
1072, 1281

Blobs, in buttons, 55
Bloch’s Theorem, 789
Block, 389, 391, 1091
Block matrices, Take, 898, 1301
Blocking, in MathLink, 701
Blocking lists, Partition, 128, 292, 1240
Blocks, compared with modules, 391

in arrays, Partition, 130, 1240
Blocks (procedures), 111

Module, 378, 1213
Blue, 500
BMP, exporting, Export, 568, 1141

importing, Import, 570, 1176
Bocharov techniques, DSolve, 1071, 1129
Boilerplate, for MathLink programs, 659
Bold fonts, 444, 558, 612
Boldface, FontWeight, 444, 612, 1152
\boldmath (TEX), FontWeight, 444, 612,

1152
Book style definitions, 602
Books, of integrals, 864
Boolean expressions, 86, 87

evaluation in, 347, 1046
expansion of, LogicalExpand, 87, 1203
input of, 1033

Boolean satisfiability, FindInstance, 845,
1147

Boolean tests, Equal (==), 84, 1135
Booleans, 817, 1091
Boot time, network licenses and, 1058
Borders of polygons in three dimensions,

EdgeForm, 528, 1130
\bot (TEX), \[UpTee] (� ), 1007
Bottom, 451
Bottom of an expression, 451
Bottom of fraction, Denominator, 74, 1120
Bottom parenthesis, \[UnderParenthesis]

(� ), 997
Bound variables, in pure functions, 249

scoping of, 385
Boundary conditions, for NDSolve, 962

in differential equations, 871
in rules, 310

Bounding box, in three-dimensional
graphics, 530, 531

in two-dimensional graphics, 507
Bounding sphere, 536
Box, around expression, FrameBox, 446,

1156
\[Square] (	 ), 1002

Box coordinate system, 535
Box options, setting globally, 615
BoxAutoDelete, 448
BoxBaselineShift, 455
BoxData, 600
Boxed, 151, 549, 1091
Boxel, Cuboid, 524, 1116



1412 Boxes — Cap symbol Index

Boxes, 444
around cells, CellFrame, 604, 1098
around two-dimensional plots, Frame,

134, 511, 514, 1155
converting to, ToBoxes, 428, 464, 1307
displaying, DisplayForm, 445, 1126
entering raw, 463
for representing textual forms, 427
in book style, 602
in strings, 461, 1020
input forms for, 462
pasting of, 461
raw, 461
representation by strings, 460
sequence of, RowBox, 445, 1267

BoxMargins, 455
BoxRatios, 531, 1091

for SurfaceGraphics, 531
BoxStyle, 503, 550, 1091
Bra, \[LeftAngleBracket] ( � ), 1002
Brace, horizontal, \[UnderBrace] (� ), 997
\brace (TEX), GridBox, 445, 1167
Braces, 42, 1022

colored, ShowAutoStyles, 613, 1280
\brack (TEX), GridBox, 445, 1167
Bracket, horizontal, \[UnderBracket] (	 ),

997
Bracketed objects, 1021
Brackets, 42, 1021

advantages of square, 35
cell, 49
cell, ShowCellBracket, 604, 1280
colored, ShowAutoStyles, 613, 1280
double, 42, 1023
flashing of, DelimiterFlashTime, 613,

1120
reading data containing,

RecordSeparators, 648, 1259
square, 31, 1023
types of, 42, 1021

Branch, If, 345, 1173
in programs, 1046

Branch cuts, 762
Branches, in expression trees, 237
Break, 353, 1092
\break (TEX), \[NewLine], 460
Break (interrupt), 62
Break loops, dialogs, 707
Breaking, of output lines, PageWidth, 635,

1237
of pages in output, 609

Breaking of words, Hyphenation, 609, 1173
Breakpoints, in MathLink programs, 691
Breaks, in strings, 415

inhibiting line, \[NoBreak], 459
Brent-McMillan algorithm, EulerGamma,

1067, 1136
Brent’s method, FindRoot, 1068, 1149
\[Breve] ( ˘ ), 999, 1355
Breve mark, 998
Brightness, GrayLevel, 499, 1165

Bromwich integral,
InverseLaplaceTransform, 875, 1188

Bronstein algorithm, DSolve, 1071, 1129
RSolve, 1071, 1269

Browser, help, 57
BrowserCategories files, 1063
BrowserIndex files, 1063
Buchberger algorithm, GroebnerBasis,

1070, 1168
Buffering, double, 1071
Bugs, in Mathematica, 226
\buildrel (TEX), OverscriptBox, 445,

1235
Built-in functions, alphabetical listing of all,

1073
attributes of, 329
context of, 393
modifying, 321
naming conventions for, 40, 1039
overriding, 321
tracing of, Trace, 357, 1310

Built-in rules, application of, 335
Built-up fractions, 178

entering, 36
formatting of, FractionBox, 445, 1155

Bulb, \[LightBulb] (
 ), 995
Bullet, \[FilledSmallCircle] (  ), 995
\[Bullet] ( 
 ), 192, 996, 1355
Bullseye, \[CircleDot] (� ), 1002
\bumpeq (TEX), \[HumpEqual] (� ), 1003
Business graphics, 168
Business Week, ix
ButtonBox, 448, 595, 1092
ButtonCell, 582
ButtonContents, 598
ButtonData, 597, 1092
ButtonEvaluator, 597, 1093
ButtonExpandable, 452, 1093
ButtonFrame, 452, 1093
ButtonFunction, 597, 1093
ButtonMargins, 452, 1094
ButtonMinHeight, 452, 1094
ButtonNote, 597, 1094
ButtonNotebook, 579, 1094
Buttons, editing, 595

for special characters, 174, 982
formatting of, 452
functions used in, 585
in notebooks, 54
in palettes, 35, 199

ButtonSource, 597, 1094
ButtonStyle, 452, 595, 1095
BVPs, NDSolve, 962, 1216
Byte, 646, 1095
Byte array, 1016
Byte swap, 678
ByteCount, 714, 1095
$ByteOrdering, 717, 1326
Bytes, characters as, ToCharacterCode,

423, 1307
in files, FileByteCount, 641, 1145

C, 93, 871, 1095
C code, 46
C language, 84, 87, 213, 224

efficiency of, Compile, 213, 1109
formatting in, 433
generating output for, CForm, 213, 1101
iteration in, 112
logical expressions in, 347
loops in, 352
number format in, 644
variables in, 392

C output, defining, 474
C program interface, 657
C programs, splicing Mathematica output

into, Splice, 214, 1288
C prototypes, 677
C source code, 667

portability of, 677
Caches, in notebook files, 578
Caching, by Mathematica, 711

of function values, 314
\[CAcute] ( ć ), 998, 1355
CAD, CylindricalDecomposition, 847,

1117
exporting for, Export, 569, 1141
importing from, Import, 570, 1176

Cages, in three-dimensional graphics,
FaceGrids, 553, 1142

\cal (TEX), ScriptA, 992
Calculations, input of, 26

limits on size of, 75
messages produced during each,

MessageList, 481, 1211
re-running, 48

Calculator, Mathematica as, 4
Calculator mode, 29
Calculus, differential, D, 80, 853, 1117

Fundamental Theorem of, 866
integral, Integrate, 81, 859, 1182

Calligraphic characters, 992
Calling Mathematica from external

programs, 663
CallPacket, 687, 700
Calls to functions, tracing of, Trace, 357,

1310
Camera position, ViewPoint, 152, 532, 1319
Cancel, 69, 802, 810, 1095
Cancellations, between approximate real

numbers, 735
Canonical form, JordanDecomposition,

915, 1190
reduction of expressions to, 325

Canonical order, Sort, 127, 129, 1286
Cantor-Zassenhaus algorithm, Factor, 1069,

1143
\[Cap] (� ), 1002, 1355
\cap (TEX), \[Intersection] (� ), 1002,

1184
Cap product, \[Cap] (� ), 1002
Cap symbol, \[Intersection] (� ), 1002,

1184



Index Capital letters — Centering 1413

Capital letters, 31, 40, 413
advantages of, 35

\[CapitalAAcute] ( Á ), 998, 1355
\[CapitalABar] ( Ā ), 998, 1356
\[CapitalACup] ( Ă ), 998, 1356
\[CapitalADoubleDot] ( Ä ), 190, 998,

1356
\[CapitalAE] ( Æ ), 998, 1356
\[CapitalAGrave] ( À ), 998, 1356
\[CapitalAHat] ( Â ), 998, 1356
\[CapitalAlpha] (� ), 984, 990, 1356
\[CapitalARing] ( Å ), 190, 984, 998, 1356
\[CapitalATilde] ( Ã ), 998, 1356
\[CapitalBeta] (� ), 990, 1356
\[CapitalCAcute] ( Ć ), 998, 1356
\[CapitalCCedilla] ( Ç ), 998, 1356
\[CapitalCHacek] ( Č ), 998, 1356
\[CapitalChi] ( ), 175, 990, 1356
\[CapitalDelta] (� ), 175, 990, 1356
\[CapitalDifferentialD] (� ), 994,

1357
\[CapitalDigamma] (� ), 990, 1357
\[CapitalEAcute] ( É ), 998, 1357
\[CapitalEBar] ( Ē ), 998, 1357
\[CapitalECup] ( Ĕ ), 998, 1357
\[CapitalEDoubleDot] ( Ë ), 998, 1357
\[CapitalEGrave] ( È ), 998, 1357
\[CapitalEHat] ( Ê ), 998, 1357
\[CapitalEpsilon] (� ), 990, 1357
\[CapitalEta] (� ), 990, 1357
\[CapitalEth] (� ), 998, 1357
\[CapitalGamma] (� ), 175, 990, 1357
\[CapitalIAcute] ( Í ), 998, 1357
\[CapitalICup] ( Ĭ ), 998, 1357
\[CapitalIDoubleDot] ( Ï ), 998, 1357
\[CapitalIGrave] ( Ì ), 998, 1357
\[CapitalIHat] ( Î ), 998, 1358
\[CapitalIota] ( � ), 990, 1358
\[CapitalKappa] (� ), 990, 1358
\[CapitalKoppa] (� ), 990, 1358
\[CapitalLambda] (� ), 175, 990, 1358
\[CapitalLSlash] (� ), 998, 1358
\[CapitalMu] (� ), 990, 1358
\[CapitalNTilde] ( Ñ ), 998, 1358
\[CapitalNu] (� ), 990, 1358
\[CapitalOAcute] ( Ó ), 998, 1358
\[CapitalODoubleAcute] ( Ő ), 998, 1358
\[CapitalODoubleDot] ( Ö ), 190, 998,

1358
\[CapitalOGrave] ( Ò ), 998, 1358
\[CapitalOHat] ( Ô ), 998, 1358
\[CapitalOmega] (� ), 175, 990, 1358
\[CapitalOmicron] (� ), 990, 1358
\[CapitalOSlash] ( Ø ), 984, 998, 1358
\[CapitalOTilde] ( Õ ), 998, 1359
\[CapitalPhi] (� ), 175, 990, 1359
\[CapitalPi] (� ), 175, 984, 990, 1359
\[CapitalPsi] (� ), 175, 990, 1359
\[CapitalRho] ( � ), 990, 1359
\[CapitalSampi] (� ), 990, 1359
\[CapitalSHacek] ( Š ), 998, 1359
\[CapitalSigma] (� ), 175, 984, 990, 1359

\[CapitalStigma] (� ), 990, 1359
\[CapitalTau] (� ), 990, 1359
\[CapitalTheta] (� ), 175, 990, 1359
\[CapitalThorn] ( � ), 998, 1359
\[CapitalUAcute] ( Ú ), 998, 1359
\[CapitalUDoubleAcute] ( Ű ), 998, 1359
\[CapitalUDoubleDot] ( Ü ), 190, 998,

1359
\[CapitalUGrave] ( Ù ), 998, 1359
\[CapitalUHat] ( Û ), 998, 1359
\[CapitalUpsilon] ( ), 175, 990, 1360
\[CapitalXi] (! ), 175, 990, 1360
\[CapitalYAcute] (� ), 998, 1360
\[CapitalZeta] (" ), 990, 1360
Captions, in tables, TableHeadings, 443,

1300
Capturing images, Import, 570, 1176
Cardano’s formula, 820
Cards, suits of, 996
Caret, double, 725

Power (^), 29, 1248
\[Wedge] (� ), 1002

CarmichaelLambda, 752, 1096
Carry, add without, BitXor, 756, 1090
Cartesian coordinates, 97
Cartesian form, 813
Cartesian products, Outer, 902, 1234
CAs, CellularAutomaton, 942, 1101
Cascade, FoldList, 243, 1151
Cascade hyperons, 991
Case independence, in string operations,

410
Case sensitivity, 31, 40, 1014

in string matching, 412
Cases, Switch, 345, 1298
Cases, 261, 284, 1096

level specification in, 262, 1041
\cases (TEX), GridBox, 445, 1167
Cat, example of image processing, 9
cat Unix command, 630
Catalan, 765, 1096

implementation of, 1067
Catalan beta function, LerchPhi, 773, 1193
Catalan constant, Catalan, 765, 1096
Catalan numbers, 757
Catalog, Names, 403, 1215
Catastrophe theory, GroebnerBasis, 805,

1168
Catch, 350, 1096
Catching, of aborts, CheckAbort, 371, 1103
\catcode (TEX), ToCharacterCode, 417,

1307
Catenating lists, Join, 126, 1190
Catenating strings, StringJoin (<>), 407,

1291
Cauchy principal value, PrincipalValue,

866, 1251
Cauchy’s Theorem, 955

residues for, 895
Causal signals, UnitStep, 879, 1316
\[CCedilla] ( ç ), 190, 998, 1360
cd, SetDirectory, 206, 636, 1278

CD players, 172
CDF, inverse, Quantile, 925, 1253
CDF, 794, 795
\cdot (TEX), \[CenterDot] ( # ), 1002
\cdots (TEX), \[CenterEllipsis] (� ),

997
cdr, Rest, 123, 1264
\[Cedilla] ( � ), 999, 1360
Ceiling, 745, 1096

implementation of, 1067
Cell, 572, 599, 1097
Cell array, Raster, 492, 497, 1255
Cell brackets, 49

ShowCellBracket, 604, 1280
CellArray (Version 1 function), see

Raster, 1402
CellAutoOverwrite, 608, 1097
CellBaseline, 605, 1097
CellContents, 582
CellDingbat, 604, 1098
CellEditDuplicate, 607, 1098
CellElementSpacings, 605
CellEvaluationDuplicate, 608, 1098
CellFrame, 574, 604, 1098
CellFrameMargins, 605, 1098
CellGroup, 582
CellGroupData, 600, 1098
CellGrouping, 577, 618, 1099
CellLabel, 584, 607, 1099
CellLabelAutoDelete, 607, 1099
CellMargins, 605, 1099
CellOpen, 604, 1099
CellPrint, 575, 1100
Cells, active, 54

adding new, CellPrint, 575, 1100
as Mathematica expressions, 572
entering raw form of, 572
groups of, 51
in notebooks, 49
in solution sets, 846
initialization, 205
labels for, 50
options for, 574
styles of, 52

CellStyle, 584
CellTags, 574, 584, 607, 1100
Cellular automata, vii

programs for, 18
Random, 1067, 1254

CellularAutomaton, 942, 944, 945, 946,
949, 1101

implementation of, 1069
\[Cent] ( � ), 994, 1360
Center, 442, 450
\[CenterDot] ( # ), 985, 1002, 1360
\centerdot (TEX), \[CenterDot] ( # ),

1002
\[CenterEllipsis] (� ), 997, 1360
Centering, in tables, TableForm, 442, 1299

of text, TextJustification, 610, 1303
of three-dimensional image, ViewCenter,

534, 1318



1414 Centering — \[Colon] Index

of three-dimensional object,
SphericalRegion, 536, 1287

of three-dimensional object, ViewCenter,
534, 1318

Central Limit Theorem, 794
Central moments,

CharacteristicFunction, 795
Central value, Median, 109, 924, 1209
CForm, 213, 425, 1101
\[CHacek] ( č ), 190, 998, 1360
Chain rule, 80, 855
Chains of assignments, 313
Change directory, SetDirectory, 206, 636,

1278
Changes, since earlier editions, 1402
Changing parts, of lists, 285

of lists, ReplacePart, 125, 288, 1263
Channels, for output, 633, 705
Chaos theory, 979
Chaotic attractor, solving equations for, 968
Chapters, in notebooks, 51
\char (TEX), FromCharacterCode, 417,

1157
char * C type, 679
Character, end-of-file, 706
Character, 582, 646, 1101
Character codes, 417

in MathLink, 679
Character encoding, in MathLink, 679
Character names, conventions for, 985, 1352
Character sets, $CharacterEncoding, 420,

1327
Character strings, 406, 1017
CharacterEncoding, 421, 422, 634, 1102
$CharacterEncoding, 420, 421, 422, 1327
Characteristic function, UnitStep, 879, 1316
CharacteristicFunction, 794, 795
CharacteristicPolynomial, 905, 910,

1102
CharacterRange, 413, 417, 418, 1102
Characters, extensible, 456

minimum size of, ScriptMinSize, 457,
1272

number in output lines, PageWidth, 634,
1237

on keyboard, xv
reading from files, 646
replacement of, StringReplace, 410,

1292
searching for, StringPosition, 409, 1292
sizes of in graphics, 558
special, 414
tests on, 413

Characters, 412, 1102
Chasing method, NDSolve, 1068, 1216
Chebyshev functions, ChebyshevT, 778,

1102
ChebyshevT, 766, 768, 778, 1102
ChebyshevU, 766, 1102
Check, \[Hacek] ( ˇ ), 999
Check, 481, 482, 742, 1102
CheckAbort, 371, 1103

Checkpointing, DumpSave, 627, 1129
NotebookAutoSave, 618, 1222

Chemical formulas, formatting of,
ScriptBaselineShifts, 457, 1272

\[Chi] (Χ ), 175, 990, 1360
Chi squared, minimization of, Fit, 929,

1149
Child processes, in MathLink, LinkLaunch,

683, 1197
Chinese characters, 419
Chinese Remainder Theorem, Det, 1069,

1122
Chirp Z transform, ZTransform, 879, 1325
ChiSquareDistribution, 794
CholeskyDecomposition, 914, 1103
Choose, Binomial, 757, 1089

Which, 345, 1320
\choose (TEX), GridBox, 445, 1167
Choose elements, Select, 251, 1273
Chop, 730, 904, 1103
Chudnovsky formula, Pi, 1067, 1241
\circ (TEX), \[EmptySmallCircle] ( � ),

995
Circle, 492, 496, 1103
\[CircleDot] (� ), 1002, 1360
\circledR (TEX),

\[RegisteredTrademark] (% ), 996
\[CircleMinus] (� ), 1002, 1360
\[CirclePlus] (& ), 191, 471, 1002, 1361
\[CircleTimes] (' ), 191, 1002, 1361
Circulant matrix multiplication,

ListConvolve, 937, 1200
Circular definitions, 369
Circular functions, 31, 761

conversions to exponentials, TrigToExp,
71, 812, 1314

Circular partitioning, Partition, 293, 938,
1240

Circumflex, 998
Circumscribing sphere, SphericalRegion,

536, 1287
Citations, iv
CJK characters, 421
Classes of expressions, 259
Classical notation, TraditionalForm, 193,

1313
Clausen function, PolyLog, 772, 1246
Cleaning up, Remove, 404, 1261
Cleaning up expressions, Simplify, 68,

1282
Clear, 39, 110, 304, 307, 331, 395, 403,

1052, 1103
ClearAll, 331, 1052, 1104
ClearAttributes, 271, 328, 1104
Clearing errors, in MathLink,

MLClearError(), 696, 1341
Clearing symbols, Remove, 1052, 1261
Clearing values, Unset (=.), 1052, 1316
ClebschGordan, 760, 1104

implementation of, 1067
Click-to-type, WindowClickSelect, 620,

1321

Clickable elements, ButtonBox, 448, 595,
1092

Clicks, $TimeUnit, 710, 1338
Client-server computing, 47, 224, 686
ClipFill, 540, 1104
Clipping, in three-dimensional graphics, 530

in two-dimensional graphics, 507
of sound, 172
of surfaces, 540

Clobbering files, DeleteFile, 641, 1120
Clock, Date, 709, 1117
\[ClockwiseContourIntegral] ( � ), 1000,

1361
Close, link, LinkClose, 680, 1196
Close, 632, 649, 652, 1104
Close notebook, NotebookClose, 591, 1222
Closed cell groups, 52
Closed-form solutions, 79

to differential equations, DSolve, 872,
1129

to Diophantine equations, 843
Closer, spacing characters, 1008
Closing Mathematica, Quit, 28, 1057, 1254
Closure operator, in patterns, 277
\[CloverLeaf] (� ), 1009, 1361
\[ClubSuit] (( ), 996, 1361
CMYKColor, 563, 1105
CNF, LogicalExpand, 87, 1203
Code, compiled, 376

in text, 196
of Mathematica, 224
replacement in, With, 380, 1323
variables local to part of, 392

Code generation, in C, CForm, 213, 1101
in Fortran, FortranForm, 213, 1153
Splice, 214, 1288

Codes, for characters, 417
Coefficient, 73, 74, 799, 1105
CoefficientArrays, 922, 1105
CoefficientList, 799, 1105
Coefficients, domain of, Extension, 809,

1142
in power series, SeriesCoefficient,

889, 1276
input of numerical, 1032

Cofactors, Minors, 905, 1212
Collapse, levels in lists, Transpose, 918,

1313
Collating, of strings, Sort, 411, 1286

Sort, 255, 1286
Collatz.m example of package, 399
Collect, 70, 71, 797, 799, 1106
Collecting expressions, Reap, 355, 1259
Collecting terms, Collect, 71, 1106

Together, 70, 802, 1308
Collections, List, 40, 115, 1199
Collins-Hong algorithm,

CylindricalDecomposition, 1070,
1117

Collins-Krandick algorithm, Root, 1070,
1265

\[Colon] ( : ), 1001, 1361



Index Colon equals (:=) — Condition (/;) 1415

Colon equals (:=), SetDelayed, 311, 1278
Colon operator, Pattern (:), 263, 1240
Color, default in plot, DefaultColor, 504,

1118
details of output of, 563
device dependence of, 563
displaying of, 563
in plots, 500
in three-dimensional graphics, 526
intrinsic of materials, 547
of curves, PlotStyle, 500, 1244
of lines, PlotStyle, 138, 1244
of surfaces, 155, 542
of text, FontColor, 444, 612, 1151
of three-dimensional graphics, 544
printing of, 563
specification of, 499

Color map, ColorFunction, 498, 517, 542,
1106

Color separation, for color printing, 564
Color wheel, Hue, 500, 1171
ColorFunction, 147, 148, 151, 498, 517,

542, 1106
ColorFunctionScaling, 517, 1106
Colorizing, of input, ShowAutoStyles, 613,

1280
ColorOutput, 564, 1106
Column, 441
Column vectors, 119
Column-major output order, 441
ColumnAlignments, 449, 1107
ColumnForm, 416, 437, 1107
ColumnLines, 446, 449, 1107
Columns, alignment of numbers in,

PaddedForm, 440, 1235
assigning values to, 899
extracting in matrices, 898
of matrices, Part, 120, 1238
of numbers, 438
resetting, 126, 286

ColumnsEqual, 449, 1108
ColumnSpacings, 449, 1108
ColumnWidths, 449, 1108
Combinations, Minors, 905, 1212
Combinations of tests, 347
Combinatorial algorithms, LatticeReduce,

754, 1191
Combinatorial explosion, Simplify, 69,

1282
Combinatorial functions, 757
Combinatorial simplification,

FullSimplify, 813, 1159
Combining lists, Union, 126, 1315
Combining plots, 516
Combining radicals, RootReduce, 826, 1266
Combining surfaces, 539
Comma, invisible, \[InvisibleComma],

1008
Comma-separated values, exporting,

Export, 208, 642, 1141
importing, Import, 208, 642, 1176

Command key, \[CloverLeaf] (� ), 1009

Command language, external,
$OperatingSystem, 717, 1334

��������,, 62
Command-line arguments, for MathLink

programs, 690
in MathLink, 698

Command-line interface, 27, 48
Command-line options, 1055
\[CommandKey] ( ), 1009, 1361
$CommandLine, 716, 1327
Commands, 232

alphabetical listing of all built-in, 1073
defining, 110
external, 628
in front end, FrontEndTokenExecute,

593
naming of, 35, 1039
re-executing, 702

Commas, in output of numbers, 436
Comments, 467, 484, 1022
Commercial notation, 996
Common denominator, LCM, 749, 1192

Together, 802, 1308
Common factors, Cancel, 802, 1095

pulling out, FactorTerms, 797, 1144
Common roots in polynomials, Resultant,

805, 1264
Common subexpressions, sharing, Share,

714, 1279
Communication, with external programs,

215, 628, 657
Commutative functions, 326

in patterns, 270
Commutativity, 254

in pattern matching, 261
Compact disc players, 172
Compacting expressions, Share, 714, 1279
Compatibility, binary, $SystemID, 717,

1338
for .mx files, 627
of character encodings, 421
of Mathematica, 46

Compilation, Compile, 213, 1109
of expressions, Compile, 372, 1109
of functions in plots, 138
types in, 374

Compile, 213, 372, 376, 1109
Compiled, 138, 147, 149, 373, 1109
Compiled code, manipulation of, 376
Compiled functions, 372
Compiled languages, variables in, 392
CompiledFunction, 252, 376, 566, 1109
Compiling MathLink programs, 661
Complement, 127, 1109
Complete elliptic integrals, 783
Complete simplification, FullSimplify,

813, 1159
Complex, 722, 1017, 1109
Complex conjugate, Conjugate, 34, 746,

1111
Complex exponentials, 762

conversion of, ExpToTrig, 71, 812, 1141

Complex functions, branch cuts in, 762
residues of, 895

Complex integers, 750, 751
Complex numbers, 34

arguments of, Arg, 34, 746, 1083
as coefficients in polynomials, 807
functions of, 746
in MathLink, MLGetRealArray(), 675,

1346
infinite, 743
length of, Abs, 34, 746, 1075
patterns for, 279
precision of, 723
roots of, 763

Complex powers, conversion of,
ExpToTrig, 812, 1141

Complex systems research, vii
Complex variables, equations in, Reduce,

843, 1261
expressions involving, 72, 812

Complexes, 817, 839, 1110
ComplexExpand, 71, 812, 1110
ComplexInfinity, 743, 1110
Complexity, generation of, 980
ComplexityFunction, 815, 1110
Component, Mathematica as a software, 20
Compose (Version 1 function), see

Composition, 1402
ComposeList, 250, 1110
ComposeSeries, 887, 1110
Composition, as example of upvalues, 335

functional, ComposeList, 250, 1110
functional, Nest, 241, 1217
\[SmallCircle] ( � ), 1002

Composition, 253, 1111
Compound arguments, reducing in special

functions, FunctionExpand, 792, 1159
Compound expressions, 43, 112, 352
Compound operators, 468
CompoundExpression (;), 43, 111, 1029,

1111
Compress in APL, Select, 251, 1273
Computation, as interpretation of

evaluation, 324
Computational complexity theory, 76
Computed goto, Throw, 351, 1304
Computer languages, traditional, 36
Computer systems, limitations of, 77

running MathLink programs on different,
676

support on different, 46
Computer-aided design, exporting for,

Export, 569, 1141
importing from, Import, 570, 1176

Concatenate, boxes, RowBox, 445, 1267
Concatenating lists, Join, 126, 1190
Concatenating strings, StringJoin (<>),

407, 1291
Concurrent Mathematica sessions, 657, 680
Condensed style environment, 197, 603
Condition (/;), 265, 345, 379, 1028,

1111



1416 Condition codes — ConversionRules Index

Condition codes, 61, 479
handling of, 481

Condition number of matrices,
LUDecomposition, 914, 1203

SingularValueList, 913, 1283
Conditionals, 345

If, 87, 1173
Conditions, in patterns, Condition (/;),

265, 1111
in rules, Condition (/;), 265, 1111
local variables in, 379
on parameters, Assumptions, 867, 1084
symbolic, 346
tracing of, Trace, 359, 1310

Conditions, 265
Confidence intervals, 109

InverseErf, 775, 1185
Quantile, 795, 1253

Configuration files, 1063
Conflicts, between symbols of the same

name, 378
Confluent hypergeometric function,

Hypergeometric1F1, 779, 1171
Confusion, of characters, 984
\cong (TEX), \[TildeFullEqual] () ),

1003
\[Congruent] (* ), 191, 1003, 1361
Conical functions, LegendreP, 778, 1192
Conjugate, 34, 746, 813, 1111
Conjugation, Not (!), 87, 1221
Conjunction, And (&&), 87, 1079
Conjunctive normal form, LogicalExpand,

87, 1203
Connect link, LinkConnect, 680, 1197
Connected components, in solution sets,

846
Consistency, in Mathematica language, 37

of equations, 830
of linear systems, 909

Constant, 329, 854, 1044, 1111
Constant functions in differentiation, 855
Constants, local, With, 380, 1323

mathematical, 32, 765, 1044
numerical, 724

Constants, 854, 1111
Constants of integration, 859, 871

as dummy variables, 388
Constrained optimization, Minimize, 92,

850, 1212
NMinimize, 106, 974, 1220

Constrained selection,
StructuredSelection, 615, 1293

Constraints, memory, MemoryConstrained,
713, 1210

on graphics shape, AspectRatioFixed,
616, 1084

on transformation rules, Condition (/;),
265, 1111

simplifying with, Simplify, 72, 815, 1282
time, TimeConstrained, 712, 1305

Constructive solid geometry, 836
Contains, MemberQ, 268, 1210

Content, of polynomials, FactorTerms, 797,
806, 1144

Context, current, 1015
Context, 394, 1111
$Context, 393, 1015, 1327
Context mark, 1015
Context search path, 1015
$ContextPath, 394, 1015, 1327
Contexts, 392, 1015

analogy with directories for, 393
conventions for, 396
hierarchical, 393
in packages, 396, 1016
printing of, 395, 401, 1016
private, 398
relative, 393

Contexts, 394, 403, 1112
Continuation, \[Ellipsis] (+ ), 997

of input, 48
of lines, 1038

\[Continuation] (, ), 1009, 1361
Continue, 353, 1112
Continued fractions, as example of Nest,

241
geometric means, Khinchin, 765, 1190
program for, 18
Rationalize, 746, 754, 1256

ContinuedFraction, 754, 755, 1112
implementation of, 1067

Contour plots, 517
converting, 157
from lists, ListContourPlot, 159,

1199
irregularities in, 147

ContourGraphics, 487, 517, 1113
\[ContourIntegral] ( � ), 1000, 1361
ContourLevels (Version 1 option), see

Contours, 1402
ContourLines, 518, 519, 1113
ContourPlot, 146, 487, 517, 1113
Contours, 147, 519, 1113
ContourShading, 147, 519, 1114
ContourStyle, 519, 1114
Contraction, of single tensor, Transpose,

918, 1313
of tensors, Inner, 917, 1178

Contravariant indices, 915
Control, of evaluation, Throw, 350, 1304

of notebooks from kernel, 581
of simplification, ExcludedForms, 814,

1137
Control characters, 62

codes for, 420
for entering structures, 179

Control keys, for entering mathematical
notation, 36, 176

Control structures, 348
Control theory, ZTransform, 879, 1325
������	�@, 36, 178
������	�%, 179
������	�^, 36, 176
������	�&, 180

������	�*, 463, 572
������	�(, 196
������	�), 196
������	�_, 177
������	�-, 177
������	�+, 180
������	�=, 188
������	�., 180
������	�/, 36, 178
������	�0, 196
������	�2, 178, 179
������	�5, 179
������	�6, 36, 176
������	�7, 188
������	�9, 196
������	��, 62
������	������, 187
������	�
, 706, 1057
������	�
��, 180
������	������, 187
������	�����, 36, 176
������	��, in MS-DOS, DOSTextFormat,

1054
\[ControlKey] (� ), 1009, 1361
Controlled transformations, ReplaceAll

(/.), 64, 1263
Conventions, 1039
Convergence, of integrals, 866
Convergents, FromContinuedFraction,

754, 1157
Conversion, between color models, 564

between exponential and trigonometric
functions, TrigToExp, 71, 812, 1314

between number bases, 438, 725
between types of three-dimensional

graphics, 538
from absolute times to dates, ToDate,

710, 1307
from character codes,

FromCharacterCode, 417, 1157
from dates to absolute times, FromDate,

710, 1157
from digits, FromDigits, 725, 1158
from expression to boxes, ToBoxes, 428,

464, 1307
from expression to string, ToString, 428,

464, 1309
from string to expression, ToExpression,

428, 464, 1307
of graphics to PostScript, Display, 554,

1126
of strings to lists of characters,

Characters, 412, 1102
of units, 78
to character codes, ToCharacterCode,

417, 1307
to digits, IntegerDigits, 725, 1181
to lower-case letters, ToLowerCase, 413,

1308
to upper-case letters, ToUpperCase, 413,

1309
ConversionRules, 607, 1114



Index Conversions — \[Dalet] 1417

Conversions, graphics, Export, 208, 567,
1141

sounds, Export, 567, 1141
Convert, 78
Converting, images to expressions, Import,

570, 1176
notebooks to Version 3, 1403

Convolution, \[Star] ( - ), 1002
Convolutions, ListConvolve, 937, 1200
Cooley-Tukey transform, Fourier, 935, 1154
Cooperating Mathematica session, 680
Coordinate systems, for three-dimensional

graphics, 530
for two-dimensional graphics, 505
in vector analysis, 97

Coordinate transformations, in three
dimensions, 535

Coordinates, interactive selection of, 51
ranges of in plots, PlotRange, 134, 1243

Coprime, GCD, 749, 1161
\coprod (TEX), \[Coproduct] (� ), 1002
\[Coproduct] (� ), 1002, 1362
Copy of Mathematica, ID of, $LicenseID,

718
Copy-on-edit, CellEditDuplicate, 607,

1098
Copy-on-evaluation,

CellEvaluationDuplicate, 608, 1098
Copyable, 607, 1114
CopyDirectory, 641, 1114
CopyEvaluate button action, 200, 596
CopyEvaluateCell button action, 200,

596
CopyFile, 206, 641, 1114
Copying, formulas on the web,

MathMLForm, 211, 1207
of expressions, 38
of expressions, Table, 116, 1299
of interactive output, 705
of internal data, 1066

\[Copyright] (. ), 996, 1362
Core, of Mathematica, 44
Core dump, DumpSave, 627, 1129
Core usage, 712
Corner bracket, \[LeftFloor] ( 	 ), 1002
Correctness, of numbers, 731
Correlations, ListCorrelate, 937, 1201
Cos, 31, 761, 1115

manipulation of, 811
Cosh, 761, 1115
CoshIntegral, 774, 1115
Cosine integral, CosIntegral, 774, 1115
Cosine transform, FourierCosTransform,

878, 1154
CosIntegral, 774, 1115
Cost function, in minimization, Minimize,

850, 1212
in minimization, NMinimize, 974, 1220
in simplification, ComplexityFunction,

815, 1110
Cot, 761, 1115
Coth, 761, 1115

Coulomb wave functions,
Hypergeometric1F1, 779, 1171

Count, 124, 261, 1115
level specification in, 262, 1041

Count of digits, DigitCount, 755, 1123
Counter, line, $Line, 703, 1331
\[CounterClockwiseContourIntegral]

( 
 ), 1000, 1362
Coupled map lattices, CellularAutomaton,

946, 1101
Courier fonts, 444, 558, 612

FontFamily, 612, 1151
Covariant indices, 915
Covering, multiple of surfaces, 167
CPU ID, $MachineID, 718, 1331
CPU time, TimeUsed, 710, 1306
CPU type, $ProcessorType, 717, 1336
Cramer’s rule, 907
Crashing, due to out of memory, 75, 713
Create Automatic Numbering Object menu item,

202
Create Button menu item, 595
Create link, LinkCreate, 680, 1197
Create notebook, NotebookCreate, 591,

1222
CreateDirectory, 641, 1116
Creation of symbols, 404

context for, 395
$CreationDate, 717, 1328
Criteria, finding elements based on, Cases,

261, 1096
for applicability of patterns, Condition

(/;), 265, 1111
on parameters, Assumptions, 867, 1084
selection based on, Select, 251, 1273

Critical line for zeta function, 772
Critical section, AbortProtect, 371, 1075
crontab file, 1058
Cross, 119, 1116
\[Cross] ( / ), 183, 985, 1000, 1362
Cross-platform MathLink programs, 676
Csc, 761, 1116
Csch, 761, 1116
CSV format, exporting, Export, 208, 642,

1141
importing, Import, 208, 642, 1176

Cube, Cuboid, 524, 1116
Cubic equations, 820
Cuboid, 520, 524, 1116
Cumulative distribution function, CDF, 795
Cumulative sums, FoldList, 243, 1151
Cunningham functions,

Hypergeometric1F1, 779, 1171
\[Cup] (� ), 1002, 1362
\cup (TEX), \[Union] (	 ), 1002, 1315
Cup accent, 998
Cup product, \[Cup] (� ), 1002
Cup symbol, \[Union] (	 ), 1002, 1315
\[CupCap] (� ), 1003, 1362
Curl, 97
Curly braces, 42, 1022
\[CurlyCapitalUpsilon] (0 ), 990, 1362

\[CurlyEpsilon] (  ), 990, 1362
\[CurlyKappa] ( ! ), 990, 1362
\[CurlyPhi] ( 1 ), 175, 990, 1362
\[CurlyPi] (2 ), 990, 1362
\[CurlyRho] ( " ), 990, 1362
\[CurlyTheta] ( 3 ), 990, 1362
Currency, European, \[Euro] ( € ), 994
Currency output (number formats), 435
Currency signs, 994
Current context, $Context, 393, 1327
Current expression, 38
Current selection, in notebooks, 581
Current values, 313
$CurrentLink, 688, 1328
Cursive characters, 992
Cursor tracker, ShowCursorTracker, 613,

1072, 1281
Curves, algebraic, 822

color of, PlotStyle, 500, 1244
dashing of, Dashing, 501, 1117
fitting of, FindFit, 108, 1146
fitting of, Fit, 926, 1149
plotting, Plot, 131, 1242
plotting 3D, ParametricPlot3D, 163,

1238
plotting multiple, Plot, 131, 1242
points to sample on, PlotPoints, 138,

1243
smoothness criterion for, MaxBend, 138,

1208
styles of, PlotStyle, 503, 1244

curveto PostScript command, 555
Customization files, 1063
Customization of Mathematica, xii
Cyan, 500
Cycle, RotateLeft, 127, 291, 1266
Cycle detection, NestWhileList, 242, 1218
Cyclic indices, Mod, 749, 1213
Cyclic partitioning, Partition, 293, 938,

1240
Cyclic vectors, JordanDecomposition, 915,

1190
Cyclotomic, 807, 1116
Cyclotomic polynomials, Cyclotomic, 807,

1116
Cylinder, 166
Cylindrical coordinates, 97
Cylindrical symmetry, 776
CylindricalDecomposition, 847, 1070,

1117
implementation of, 1070

D, 80, 853, 1117
implementation of, 1070

D-bar, \[CapitalEth] (� ), 998
d’Alembert test, Sum, 1071, 1296
D’Alembertian, \[Square] (	 ), 1002
Daemon, Mathematica, 1058
DAEs, DSolve, 873, 1129

NDSolve, 969, 1216
\[Dagger] ( # ), 192, 996, 1363
\[Dalet] ( $ ), 993, 1363



1418 \daleth (TEX) — Dependence Index

\daleth (TEX), \[Dalet] ($ ), 993
Danger, \[WarningSign] (� ), 995
Darkness, GrayLevel, 499, 1165
\[Dash] ( � ), 996, 1363
Dashed lines, Dashing, 502, 1117

PlotStyle, 138, 1244
Dashing, 501, 502, 1117

in three dimensions, 525
\dashv (TEX), \[LeftTee] ( % ), 1001, 1007
Data, analysis of, 109, 924, 926

exporting numbers in, 729
exporting to files, Export, 642, 1141
fitting, Fit, 926, 1149
for button, ButtonData, 597, 1092
Fourier analysis of, Fourier, 935, 1154
functions defined from, Interpolation,

932, 1183
importing from files, Import, 642, 1176
manipulation of numerical, 9, 107
numerical operations on, 926
plotting, ListPlot, 158, 1202
raw, 1016
reading from files, Import, 207, 1176
reading from files, ReadList, 644, 1257
reading from programs, ReadList, 215,

1257
smoothing of, ListConvolve, 937, 1200
statistical analysis of, 109, 924
textual, 9
writing to files, Export, 207, 1141

Data files, reading, ReadList, 644, 1257
Data structures, internal, 221
Data types, 232
Databases, using rules to set up, 308, 318
Date, 709, 1117
date Unix command, 630
Dates, conversions of, 710

for files, FileDate, 641, 1145
for version of Mathematica,

$CreationDate, 717, 1328
manipulation of, 711

David, star of, \[SixPointedStar] (& ),
995

Day, Date, 709, 1117
Daylight saving time, 709
dbx, 691
�dd �, \[DifferentialD] (4 ), 185
DDE, 658
ddf format, importing, Import, 208, 1176
\ddot (TEX), OverDot, 472, 989
\ddots (TEX), \[DescendingEllipsis]

(� ), 997
de Moivre’s Theorem, 813

TrigExpand, 71, 812, 1313
De Morgan’s laws, LogicalExpand, 87,

1203
Deallocating MathLink memory, 674
Debug (Version 1 function), see Trace, 1402
Debugging, 356

in pattern matching, 274
MathLink programs, 691

Deciles, Quantile, 795, 925, 1253

Decimal digits, IntegerDigits, 725, 1181
Decimal places, in output, 435

number of, N, 33, 728, 1214
Decimal points, 30

aligning on, 451
alignment of, PaddedForm, 440, 1235

Decision problem, Resolve, 848, 1264
Declarations, in MathLink programs, 674
Declarations of local variables, 378
DeclarePackage, 401, 1118
Decode, encoded files, Get (<<), 626, 1162

IntegerDigits, 725, 1181
Decompose, 807, 808, 1118
Decomposition, primary, GroebnerBasis,

805, 1168
Decomposition into primes,

FactorInteger, 750, 1143
Decomposition of polynomials, 821

Decompose, 808, 1118
Decrement (--), 305, 1025, 1118
DedekindEta, 787, 1118
Default, 1050, 1118
Default options, 1040

for cells, 577
Default values, in sparse arrays, 296
DefaultColor, 504, 1118
DefaultDuplicateCellStyle, 619, 1119
DefaultNewCellStyle, 619, 1119
Defaults, for function arguments, 274

for options, 133
DefaultStyleDefinitions, 622
DefaultValues, 1052
Defects, in Mathematica, 226
Defer evaluation, Hold, 336, 1169
Defined, testing for, ValueQ, 268, 1317
Defining derivatives, 858
Defining functions, 110, 308
Defining numerical values, 320
Defining output formats, 473
Defining values, Set (=), 39, 1277
Definite integration, 865
Definition, 625, 1119
Definitions, 39, 303

associated with particular objects, 316
chains of, 313
circular, 370
conditions in, 345
delayed, SetDelayed (:=), 311, 1278
evaluation in, 340
for built-in functions, 321
for character aliases, 987
immediate, Set (=), 311, 1277
local, 378
local variables in, 379
of downvalues directly, DownValues, 322,

1128
of upvalues directly, UpValues, 322,

1317
ordering of, 309, 310
preventing evaluation in, 343
recursive, 369
saving of, Save, 204, 1271

self-referential, 370
taking from packages, Remove, 59, 1261
use of in evaluation, 325, 332

Degree, of polynomial, Exponent, 73, 1138
Degree, 32, 761, 765, 1119
\[Degree] ( 5 ), 182, 994, 1363
Del, Grad, 97
\[Del] (6 ), 994, 1000, 1363
del DOS command, DeleteFile, 641, 1120
Delayed definitions, SetDelayed (:=), 311,

1278
Delayed rules, RuleDelayed (:>), 314, 1269
Deletable, 448, 607, 619, 1119
Delete, 125, 288, 1119
Delete old output, CellAutoOverwrite,

608, 1097
DeleteCases, 262, 1120
DeleteContents, 641
DeleteDirectory, 641, 1120
DeleteFile, 206, 641, 1120
Deleting, in notebooks, NotebookDelete,

585, 1222
in strings, StringDrop, 407, 1291

Deleting elements, from lists, Delete, 125,
288, 1119

from lists, Drop, 123, 287, 1128
from lists, Select, 251, 1273

Deleting functions, Clear, 110, 1103
Deleting objects, 1052
Deleting symbols, Clear, 304, 1103
Deleting values, Unset (=.), 39, 1316
DeletionWarning, 448
Delimiter characters, 1002
DelimiterFlashTime, 613, 1120
Delimiters, in Mathematica syntax, 470

RecordSeparators, 647, 1259
types of, 42
WordSeparators, 646, 1323

Delta, discrete, DiscreteDelta, 882, 1125
Kronecker, KroneckerDelta, 749, 882,

1190
\[Delta] ( ∆ ), 175, 990, 1363
Delta function, DiracDelta, 879, 1124

Equal (==), 84, 1135
Demon, Mathematica, 1058
Denominator, 74, 1120
Denominators, collecting over common,

Together, 69, 70, 802, 1308
expansion of, ExpandAll, 69, 1138
expansion of, ExpandDenominator, 801,

1138
Density, of gray, GrayLevel, 499, 1165
Density map, Raster, 492, 497, 1255
Density of lines, ImageResolution, 569,

1174
Density plots, 517

color in, 517
converting, 157
from lists, ListDensityPlot, 159, 1201

DensityGraphics, 487, 517, 1121
DensityPlot, 146, 487, 517, 1121
Dependence, on computer systems, 46



Index Dependencies — Directory 1419

Dependencies, saving, 625
specified by assignments, 313

Dependent variables in differentiation,
NonConstants, 853, 1220

Depends on, MemberQ, 124, 1210
Depth, of expressions, 239, 1014
Depth, 239, 1041, 1122
Depth-first walks, 247, 1041
Derivative ('), 252, 855, 856, 859, 869,

1025, 1122
Derivatives, 853

built-in, 1044
D, 80, 1117
defining, 854, 858
input of, 184, 186
mixed, 80, 853
multiple, 80, 853
numerical evaluation of, 791
of InterpolatingFunction objects, 932
of special functions, 791
of unknown functions, 855
of unknown functions, output forms for,

856
order of, 855
partial, D, 80, 853, 1117
repeated, 80
representation of, 856
symbolic, 80
total, Dt, 80, 854, 1129
using definitions of functions in, 857

Descartes rule of signs, Root, 1070, 1265
Descenders, of characters, 451
\[DescendingEllipsis] (� ), 997, 1363
Desktop publishing, input of graphics for,

Import, 570, 1176
output of graphics for, Export, 568,

1141
Destructuring, using patterns for, 260
Det, 121, 905, 1069, 1122

implementation of, 1069
Determinants, Det, 121, 905, 1122

notation for, \[LeftBracketingBar] ( � ),
1002

Developable surfaces, 164
Developer Kit, MathLink, 657, 1340
Developer` context, 1074
Development aids, 356
Developments, in Version 5, x
Devices, color graphics output on, 563

page widths on, 634
special characters on, 635

Diacritical marks, 190, 998
input of, 188

\diagdown (TEX), \[Backslash] ( � ), 1002
Diagnostics, for pattern matching, 274

of program execution, 356
Diagonal, of matrix, Tr, 898, 1310

of tensor, Tr, 918, 1310
Diagonal ellipsis, \[DescendingEllipsis]

(� ), 997
Diagonal of matrix, sum of, Tr, 906, 1310
DiagonalMatrix, 120, 896, 1122

Diagrams, 486
examples of, 11

\diagup (TEX), \[RawSlash] ( / ), 1010
Dialog, 707, 1122
Dialog boxes, 478

buttons in, 452
creating, 598
windows for, 621

Dialog settings, for front end, 622
DialogIndent, 708
DialogProlog, 708, 1123
Dialogs, 26, 367, 707

contexts in, 401
in tracing, 366
local variables in, 382
nested, 708

DialogSymbols, 708, 1123
\[Diameter] (' ), 996, 1363
\[Diamond] ( 8 ), 1002, 1363
\[DiamondSuit] (9 ), 996, 1363
DICOM, exporting, Export, 568, 1141

importing, Import, 568, 570, 1176
Dictionaries, spelling, 1072
Dictionary, analysis of words in, 9
Diereses, 998
Difference equations, RSolve, 96, 891, 1269
Difference-algebraic equations, RSolve, 891,

1071, 1269
Differences, as inverse of sums, 890
Differentation, of InterpolatingFunction

objects, 932
Differential, Dt, 80, 854, 1129

total, Dt, 855, 1129
Differential equations, Bessel, BesselJ, 776,

1088
numerical solution of, NDSolve, 105, 961,

1216
partial, DSolve, 874, 1129
partial, NDSolve, 970, 1216
plotting solutions to, 105, 133
representation of, 93
symbolic solution of, DSolve, 93, 869,

1129
undetermined coefficients in, C, 93, 871,

1095
Differential-algebraic equations, DSolve,

873, 1071, 1129
NDSolve, 969, 1216

\[DifferentialD] ( 4 ), 184, 185, 984, 994,
1000, 1363

Differentiation, 79, 80, 853
as a functional operation, 856
constant functions in, 855
constants in, Constant, 854, 1111
implicit dependencies in, NonConstants,

853, 1220
numerical, 791
of integrals, 869
of power series, 886
partial, D, 853, 1117
total, 854
variables in, 853

Diffraction theory, 775
Diffuse reflection, 547
\[Digamma] ( ( ), 990, 1363
Digamma function, PolyGamma, 771, 1245
Digit excavation, 979
Digit operations, 756
Digit sequences, rational, RealDigits, 755,

1258
Digital sums, DigitCount, 755, 1123
DigitBlock, 436, 1123
DigitCount, 755, 756, 1123
Digitization, 51
DigitQ, 413, 1123
Digits, input of, 1021

number of, 33, 727
number of in calculations, 733
number of in input, 729
number of in output, 435
of integers, IntegerDigits, 725, 1181
of real numbers, RealDigits, 725, 1258
operations on, 413
reconstructing number from, FromDigits,

725, 1158
Dilogarithm function, PolyLog, 773, 1246
Dimensions, generating lists with specified,

Array, 250, 1083
Dimensions, 120, 290, 900, 916, 1124
Dimensions (units), 78
Dingbat, \[FilledCircle] () ), 995

\[FilledSquare] (* ), 995
\[WatchIcon] (� ), 995

Dingbats, for cells, CellDingbat, 604, 1098
Zapf, 421

Diophantine equations, 753
Reduce, 841, 1261

dir, FileNames, 206, 638, 1145
Dirac’s constant, \[HBar] ( + ), 994
DiracDelta, 879, 1124
Direct product, \[CircleTimes] (' ), 1002
Direct products, Outer, 902, 1234
Direct products of tensors, Outer, 918, 1234
Direct solver methods, LinearSolve, 1069,

1195
Direct sum, \[CirclePlus] (& ), 1002
DirectedInfinity, 743, 1124
Direction, 894
Directional limits, 894
Directories, 206, 636

as analogy for contexts, 393
copying, CopyDirectory, 641, 1114
creation of, CreateDirectory, 641, 1116
deleting, DeleteDirectory, 641, 1120
renaming, RenameDirectory, 641, 1262
search path of, $Path, 637, 1335

Directory, for notebooks,
NotebookDirectory, 593

home, $HomeDirectory, 637, 1329
launch, $LaunchDirectory, 637
of notebook options, 574, 601
parent, ParentDirectory, 637, 1238
previous, ResetDirectory, 636, 1264

Directory, 206, 636, 1124



1420 DirectoryName — \[DownBreve] Index

DirectoryName, 639, 1124
DirectoryStack, 636, 1125
Dirichlet L-series, LerchPhi, 774, 1193
Dirichlet series, Sum, 1071, 1296

ZTransform, 879, 1325
Disabling patterns, Verbatim, 278, 1318
Discard data, Skip, 650, 1284
Discard elements, Drop, 123, 287, 1128
Discard list elements, Select, 251, 1273
Discard packet, MLNewPacket(), 697, 1347
Discontinuities, in complex functions, 762

limits at, 895
Discontinuous functions, 879
Discrete equations, RSolve, 96, 891, 1269
Discrete Fourier transform, Fourier, 936,

1154
Discrete Laplace transform, ZTransform,

879, 1325
Discrete log, MultiplicativeOrder, 752,

1214
Discrete models, CellularAutomaton, 942,

1101
Discrete statistical distributions, 796
DiscreteDelta, 882, 1125
DiscreteUniformDistribution, 796
Discriminant, in elliptic functions, 782
Disjointness, of sets, Intersection, 127,

1184
Disjunction, Or (||), 87, 1233
Disjunctive normal form, LogicalExpand,

87, 1203
Disk, defined by inequalities, 836
Disk, 492, 496, 1125
Disk file operations, 204, 641
Disowning MathLink memory, 674
Dispatch, 302, 303, 1125
Dispatching computations, to multiple

sessions, 681
Dispersion, of data, Variance, 924, 1318
Displacement, for sound, 171
Display, notebook, NotebookPut, 579, 1224

of large expressions, 74
of messages, Message, 482, 1211
Print, 477, 1251
suppressing for plots, 491

Display, 491, 554, 632, 1126
sound output with, 567

$Display, 554, 705, 1328
Display contents, ShowContents, 455
Display coordinate system, 535
Display parameters, 634
DisplayEndPacket, 684, 700
DisplayForm, 445, 1126
DisplayFunction, 134, 151, 170, 491, 553,

1126
$DisplayFunction, 491, 1328
Displaying files, 204, 623
DisplayPacket, 684, 700
DisplayString, 554, 1126
\displaystyle (TEX), LimitsPositioning,

458, 1194
Distinct elements in lists, Union, 127, 1315

Distortion, of plots, AspectRatio, 134, 509,
1084

Distribute, 256, 902, 1126
Distributed processing, 657, 680
Distribution, of powers, PowerExpand, 798,

1248
Distribution function, CDF, 795
Distributions, 879
Distributivity, 255
Dithering, PadLeft, 941, 1236
Div, 97
\div (TEX), \[Divide] (: ), 1000, 1127
Divergent integrals, 866
Divert, Throw, 350, 1304
Divide (/), 29, 1026, 1127
\[Divide] (: ), 183, 1000, 1363
Divide-and-conquer equations, RSolve, 892,

1269
DivideBy (/=), 305, 1029, 1127
Divisible, \[VerticalBar] ( � ), 1005
Division, by zero, 742

input of, 178
of integers, Quotient, 749, 1254
of matrices, LinearSolve, 907, 1195
of polynomials, PolynomialQuotient,

803, 1247
patterns for, 280

Divisor function, DivisorSigma, 752, 1127
Divisors, 750, 1127
DivisorSigma, 752, 1127
DNF, LogicalExpand, 87, 1203
Do, 112, 348, 1127

evaluation in, 336
variables in, 390

Document preparation, Splice, 214, 1288
Documentation, online, 57
Documentation constructs, 484
Documentation files, location of, 1063
Documented features, 1073
Documents, 44

manipulating, 572
notebooks as, 51

Dodecahedron, 524
Dollar sign ($), 1014

on keyboard, xv
Domain, of transformation rules,

Condition (/;), 265, 1111
Domain of coefficient, Extension, 809, 1142
Domains, 817

equations over, Reduce, 839, 1261
Interval, 740, 1184
solving over, 839

Domains for variables, Element, 73, 816,
1132

Dominant variables in polynomials, 797
Dominates, \[Succeeds] (, ), 1005
DOSTextFormat, 1054
Dot, input of, 188
Dot (.), 118, 119, 272, 901, 902, 917, 1127
Dot density, ImageResolution, 569, 1174
Dot product, Dot (.), 118, 901, 1127
\doteq (TEX), \[DotEqual] (- ), 1003

\[DotEqual] (- ), 1003, 1364
\[DotlessI] ( . ), 992, 1364
\[DotlessJ] ( / ), 992, 1364
Dots per inch, ImageResolution, 569, 1174
Dotted lines, Dashing, 502, 1117
\[DottedSquare] (� ), 995, 1364
Double buffering, 1071
double C type, 678
Double colon (::), MessageName, 479, 1211
Double covering, of surfaces, 167
Double factorial, Factorial2 (!!), 757,

1143
Double quotes ("), 406, 433
Double slash, 233
Double spacing, LineSpacing, 611, 1196
Double-precision numbers, 738
Double-spaced text, LineSpacing, 611, 1196
Double-struck characters, AdjustmentBox,

455, 1078
\[DoubleContourIntegral] (� ), 1000,

1364
\[DoubleDagger] ( 0 ), 996, 1364
\[DoubledGamma] ( 1 ), 994, 1364
\[DoubleDownArrow] (; ), 1006, 1364
\[DoubledPi] (2 ), 994, 1364
DoubleExponential, 1068
\[DoubleLeftArrow] (< ), 1006, 1364
\[DoubleLeftRightArrow] (= ), 1006,

1364
\[DoubleLeftTee] ( 3 ), 1001, 1007, 1364
\[DoubleLongLeftArrow] (> ), 1006,

1365
\[DoubleLongLeftRightArrow] (? ),

1006, 1365
\[DoubleLongRightArrow] (@ ), 1006,

1365
\[DoublePrime] (A ), 996, 999, 1365
\[DoubleRightArrow] (B ), 985, 1006,

1365
\[DoubleRightTee] ( 4 ), 1001, 1007, 1365
\[DoubleStruckA] (� ), 993, 1365
\[DoubleStruckCapitalA] (� ), 993, 1365
\[DoubleStruckCapitalC] (� ), 992
\[DoubleStruckCapitalN] (� ), 992
\[DoubleStruckCapitalP] (� ), 992
\[DoubleStruckCapitalQ] (� ), 992
\[DoubleStruckCapitalR] (� ), 992
\[DoubleStruckCapitalZ] (� ), 192, 992,

993, 1365
\[DoubleStruckZ] ( 	 ), 993, 1365
\[DoubleUpArrow] (C ), 1006, 1365
\[DoubleUpDownArrow] (D ), 1006, 1365
\[DoubleVerticalBar] ( � ), 1005, 1366
Doubly periodic functions, 786
DoublyInfinite, 774
\[DownArrow] (E ), 1006, 1366
\Downarrow (TEX), \[DoubleDownArrow]

(; ), 1006
\downarrow (TEX), \[DownArrow] ( E ), 1006
\[DownArrowBar] (� ), 1006, 1366
\[DownArrowUpArrow] (� ), 1006, 1366
\[DownBreve] (  ), 999, 1366



Index \[DownExclamation] — Empty list 1421

\[DownExclamation] ( 5 ), 996, 1366
\[DownLeftRightVector] (� ), 1007,

1366
\[DownLeftTeeVector] (� ), 1007, 1366
\[DownLeftVector] (� ), 1007, 1366
\[DownLeftVectorBar] (� ), 1007, 1366
\[DownQuestion] ( 6 ), 996, 1366
\[DownRightTeeVector] (� ), 1007, 1366
\[DownRightVector] (� ), 1007, 1367
\[DownRightVectorBar] (� ), 1007, 1367
\[DownTee] (7 ), 1007, 1367
\[DownTeeArrow] (� ), 1006, 1367
Downvalues, 316

in evaluation, 334
DownValues, 322, 1052, 1128
Downward motion, in input, 177
Drafting lines, GridLines, 515, 1167
DragAndDrop, 615, 1128
Draw programs, input for, Import, 570,

1176
output for, Export, 568, 1141

Drawing format, exporting, Export, 569,
1141

importing, Import, 570, 1176
Drop, 123, 287, 1128
Dropping parts of expressions in printing,

Shallow, 432, 1279
DSolve, 93, 869, 871, 872, 873, 874, 875,

951, 1071, 1129
implementation of, 1071

Dt, 80, 854, 855, 1129
Duffing equation, 981
Dull surfaces, 547
Dummy variables, 110, 259, 387

in differential equations, 870
in differentiation, 856

Dump files, 1053
DumpSave, 627, 1129
Duplicate, expression in MathLink,

MLCreateMark(), 693, 1341
Duplicates, removal of in lists, Union, 127,

1315
Duplicating files, CopyFile, 641, 1114
Duplication-on-edit, CellEditDuplicate,

607, 1098
Dwight’s tables, Integrate, 864, 1182
DXF format, exporting, Export, 569, 1141

importing, Import, 570, 1176
Dyadic products, Outer, 918, 1234
Dyads, List, 118, 1199
Dynamic graphics, 170, 617
Dynamic programming, 314
Dynamic scoping, Block, 391, 1091
Dynamical systems theory, 979

E, 32, 765, 1130
implementation of, 1067

e format, 29
\[EAcute] ( é ), 190, 998, 1367
\[EBar] ( ē ), 998, 1367
EBCDIC, preprocessing, $PreRead, 703,

1336

Echelon form, of matrices, 914
of matrices, RowReduce, 907, 1268

$Echo, 705, 1328
echo Unix command, 628
\[ECup] ( ĕ ), 998, 1367
EdgeForm, 528, 1130
Edges, of cells, CellMargins, 605, 1099
Edges of plot, labeling, 514
Edit Button menu item, 595
Edit Style Sheet menu item, 574, 602
Editable, 448, 574, 607, 619, 1130
EditBar toolbar element, 622
Editing, in TraditionalForm, 195

of strings, StringReplace, 410, 1292
of two-dimensional expressions, 180
output in notebooks, 50

Editing operations, DragAndDrop, 615, 1128
Edition, changes since earlier, 1402
\[EDoubleDot] ( ë ), 998, 1367
�ee �, \[ExponentialE] ( F ), 988
Efficiency, compilation for increasing, 372

Compile, 213, 1109
in forcing evaluation in iteration

functions, 344
in tracing, 362
measurements of, Timing, 711, 1306
of applying rules, Dispatch, 303, 1125
of building up lists, 306
of plots, 138
of Simplify, 69, 814
of using upvalues, 317

Efficiency of algorithms, 220
\[EGrave] ( è ), 190, 998, 1367
\[EHat] ( ê ), 998, 1367
Eigensystem, 910, 1130
Eigenvalues, difficulty of finding explicit

forms for, 911
for non-symmetric matrices, 911
number of, 911
numerical, Eigenvalues, 122, 910, 1131

Eigenvalues, 121, 122, 910, 912, 913, 1069,
1131

implementation of, 1069
Eigenvectors, independence of, 911

number of, 911
numerical, Eigenvectors, 910, 1131

Eigenvectors, 121, 910, 1131
implementation of, 1069

Einstein summation convention, 388
EISPACK, Eigensystem, 910, 1130
Elapsed time, SessionTime, 710, 1277
Electrical engineering, 776, 936
Electron wave functions, MathieuS, 789,

1207
Electronic documents, 44
Element, 73, 816, 1132
\[Element] (G ), 182, 191, 984, 1001, 1004,

1367
Element spacings, for cells,

CellElementSpacings, 605
Elementary cellular automata,

CellularAutomaton, 942, 1101

Elementary functions, 761
Elements, in power series,

SeriesCoefficient, 889, 1276
in window, WindowElements, 620, 1321
of expressions, 236, 1014
of expressions, Part, 234, 1238
of lists, Part, 117, 1238
satisfying criterion, Select, 251, 1273
specifications of sequences of, 1040

Elided arguments, 273
Eliminate, 90, 832, 1132
Eliminating variables, Eliminate, 90, 832,

1132
Elimination, Gaussian, LUDecomposition,

914, 1203
Gaussian, RowReduce, 907, 1268

Elimination basis, GroebnerBasis, 803,
1168

\ell (TEX), \[ScriptL] ( � ), 992
Ellipse, Circle, 496, 1103
\[Ellipsis] (+ ), 996, 997, 1367
Elliptic curve equations, 842
Elliptic functions, 785

double periodicity of, 786
solving equations with, 827

Elliptic integral of first kind, EllipticF,
783, 1132

Elliptic integral of second kind, EllipticE,
783, 1132

Elliptic integral of third kind, EllipticPi,
784, 1133

Elliptic integrals, 783
Elliptic modular functions, 787
Elliptical blob, during input,

ShowCursorTracker, 613, 1072, 1281
Elliptical geometries, MathieuS, 789, 1207
EllipticE, 783, 1132
EllipticExp, 788, 1132
EllipticF, 783, 1132
EllipticK, 783, 1132
EllipticLog, 788, 1133
EllipticNomeQ, 782, 1133
EllipticPi, 783, 784, 1133
EllipticTheta, 785, 786, 1133
EllipticThetaPrime, 785, 1133
Elongation, of plots, AspectRatio, 509,

1084
Else, If, 345, 1173
em, 453
\em (TEX), FontSlant, 444, 612, 1151
Embedded formulas, 196
Embedded information, in formatted

expressions, 431
Embedded Mathematica kernels, 46
Embedding, of boxes in strings, 461
emf, \[ScriptCapitalE] (� ), 992
Emphasis, FontWeight, 444, 612, 1152
Empirical distribution, Quantile, 925, 1253
Empty boxes, \[Placeholder] (	 ), 1008
Empty bracket, \[LeftDoubleBracket]

( � ), 1002
Empty list, 1022



1422 Empty notebook — Errors Index

Empty notebook, NotebookCreate, 592,
1222

\[EmptyCircle] (� ), 995, 1367
\[EmptyDiamond] (8 ), 995, 1368
\[EmptyDownTriangle] (9 ), 995, 1368
\[EmptyRectangle] ( : ), 995, 1368
\[EmptySet] (H ), 192, 984, 994, 1368
\emptyset (TEX), \[EmptySet] (H ), 994
\[EmptySmallCircle] ( � ), 995, 1368
\[EmptySmallSquare] ( ; ), 995, 1368
\[EmptySquare] (< ), 995, 1368
\[EmptyUpTriangle] (= ), 995, 996, 1368
en, 453
Encapsulated PostScript, exporting, Export,

568, 1141
importing, Import, 570, 1176

Enclosures, around cells, CellFrame, 604,
1098

Encode, FromDigits, 725, 1158
Encode, 626, 1133
Encoding, character, $CharacterEncoding,

420, 1327
of characters, 417
run length, Split, 128, 292, 1288

Encryption, of files, 626
End, 398, 400, 1134
End conditions, in rules, 310
End of proof, \[FilledRectangle] ( > ),

995
End-of-file character, 706, 1057
Endian, big and little, 678

big and little, $ByteOrdering, 717,
1326

Ending, dialogs, 707
Ending input, 48
Ending Mathematica, Quit, 28, 1057, 1254
Endless loops, 369
EndOfFile, 649, 1134
EndPackage, 398, 1134
Engine, Mathematica, 44
EngineeringForm, 435, 1134
English keyboard, xv
Enhancements, in current version, x
�����, 48, 49
EnterExpressionPacket, 684
Entering input, 26, 27, 48

in notebooks, 49
\[EnterKey] (� ), 1009, 1368
EnterTextPacket, 683
Entier, Floor, 745, 1150
Entry, of numbers, 729
Enumerating sublists, ReplaceList, 274,

1263
Environment, parameters of, 715
Environment, 716, 1134
Environment variables, 1055
Environments, in blocks, 389

setting up with delayed assignments, 313
EOF, 1057

EndOfFile, 649, 1134
Epilog, 504, 1134
$Epilog, 706, 709, 1328

EPS, exporting, Export, 568, 1141
importing, Import, 570, 1176

EPSF, exporting, Export, 568, 1141
importing, Import, 570, 1176

EPSI, exporting, Export, 568, 1141
importing, Import, 570, 1176

Epsilon, machine number,
$MachineEpsilon, 739, 1331

\[Epsilon] ( Ε ), 175, 984, 990, 1368
Epsilon symbol, Signature, 760, 1282
EPSTIFF, exporting, Export, 568, 1141

importing, Import, 570, 1176
\eqalign (TEX), \[AlignmentMarker], 451
Equal (==), 84, 85, 86, 347, 411, 819, 1027,

1135
\[Equal] (J ), 183, 1003, 1368
Equal column widths, ColumnsEqual, 449,

1108
Equality testing, compared with

assignment, 84
Equal (==), 84, 1135
for numbers, 732
for strings, Equal (==), 411, 1135
from canonical forms, 326
general problem of, 327
literal, SameQ (===), 268, 347, 1270
random numbers for, 747

Equals sign (=), Set, 39, 303, 1277
\[EqualTilde] (? ), 1003, 1368
Equations, algebraic, 88, 820

as logical statements, 84, 819
consistency of, 90, 830
cubic, 820
difference, RSolve, 891, 1269
differential, 93, 105, 869, 961
Diophantine, 753
Diophantine, Reduce, 841, 1261
eliminating variables in, Eliminate, 90,

832, 1132
Equal (==), 84, 1135
existence of solutions, 90, 830
getting full solutions to, Reduce, 90, 830,

1261
in text, 196
integer, Reduce, 841, 1261
involving power series, 889
linear, 90, 820
manipulation of, 819
matrix, 829
matrix, LinearSolve, 907, 1195
naming of, 85
non-generic solutions of, Reduce, 90, 830,

1261
numbering of, 202
numerical solution of, 87
numerical solution of polynomial,

NSolve, 959, 1226
numerical solution of transcendental,

FindRoot, 960, 1149
polynomial, 88, 90, 820
quadratic, 820
quartic, 820

quintic, 88, 821
recurrence, RSolve, 891, 1269
representation of, 85
simultaneous, 89, 828
solution of, Solve, 87, 819, 1285
solving logical combinations of, 833
subsidiary, 90
symbolic, 84, 819
symbolic representation of roots, Root,

88, 821, 1265
systems of, 828
that are always satisfied, SolveAlways,

833, 1285
threading operations over, Thread, 257,

1304
transcendental, 89, 823, 824
transcendental, ProductLog, 781, 1252
trigonometric, 89
unwinding lists of, LogicalExpand, 829,

1203
using solutions of, 819
variables in, 829

\[Equilibrium] (� ), 191, 1007, 1368
Equinox, 991
\equiv (TEX), \[Congruent] (* ), 1003
Equivalence, mathematical, Equal (==), 347,

1135
patterns and expression, 260
testing for, SameQ (===), 268, 347, 1270
\[Tilde] (� ), 1003

Erasing files, DeleteFile, 641, 1120
Erasing objects, 1052
Erasing values, Unset (=.), 39, 1052, 1316
Erf, 775, 1135
Erfc, 775, 1135
Erfi, 775, 1135
Error, of data, StandardDeviation, 109,

924, 1289
syntax in string, SyntaxLength, 466,

1298
Error analysis, 740
Error function, complementary, Erfc, 775,

1135
Erf, 775, 1135

Error handling, in MathLink, 696
Error messages, 61, 479

multiple, 480
ErrorBox, 447, 1135
\[ErrorIndicator] (@ ), 1009, 1369
ErrorListPlot, 168
Errors, 66

common, 34, 39
handling of, Check, 481, 1102
handling of, Throw, 354, 1304
handling syntax, $SyntaxHandler, 704,

1337
in files, 623
in Mathematica, 226
in numerical operations, 732, 952
in reproducing examples, xv
infinite recursion, 369
name conflict, 59



Index Errors — Explanations of functions 1423

numerical overflow, 742
rounding off numerical, Chop, 730, 1103
syntax, 51
trapping, Check, 481, 1102

Escape indicator, \[AliasIndicator] ( � ),
1009

Escape key, 36, 174, 982
Escape sequences, user-defined,

InputAliases, 613, 1178
\[EscapeKey] ( ), 1009, 1369
Escapes, in box input, 463
Ess-zed, \[SZ] ( ß ), 190, 998
Essential singularities, in integrals, 868

in limits, 894
in plots, 137
in series, 884

Estimation, of statistical parameters, 795
\[Eta] ( Η ), 175, 990, 1369
\[Eth] ( Ð ), 998, 1369
Ethernet address, $MachineID, 718, 1331
EUC, 421
Euclid’s algorithm, GCD, 1067, 1161
Euler beta function, Beta, 770, 1089
Euler gamma, \[DoubledGamma] ( 1 ), 994
Euler gamma function, Gamma, 770, 1160
Euler methods, NDSolve, 1216
Euler numbers, EulerE, 758, 1135
Euler polynomials, EulerE, 758, 1135
Euler-Maclaurin method, 958
Euler-Maclaurin summation, Zeta, 1068,

1324
Euler-Maclaurin summation formula, 758
Euler-Mascheroni constant, EulerGamma,

765, 1136
Euler’s constant, EulerGamma, 765, 771,

1136
generalization of, StieltjesGamma, 772,

1290
Euler’s formula, TrigToExp, 71, 812, 1314
Euler’s pentagonal formula, PartitionsP,

1067, 1240
EulerE, 757, 758, 1135
EulerGamma, 765, 771, 1067, 1136

implementation of, 1067
EulerPhi, 752, 1136
\[Euro] ( € ), 994, 1369
European characters, 190, 421, 998
European currency, \[Euro] ( € ), 994
European languages, characters in, 418
eval, 1045
Evaluatable, 608, 1136
Evaluate, 132, 337, 344, 1047, 1136
Evaluate button action, 200, 596
Evaluate selection, SelectionEvaluate,

588, 1274
EvaluateCell button action, 200, 596
EvaluatePacket, 685, 689
Evaluating Mathematica expressions, in

external programs, 663
Evaluation, automatic save after,

NotebookAutoSave, 618, 1222
deferred, 336

full story on, 1045
global control of, 1048
holding in, 336
immediate of arguments, 1047
in assignments, 311, 340, 1047
in definitions, 340
in iteration functions, 343
in logical expressions, 347
in notebooks, 49
in palettes, 199
in patterns, 340
in place, 181
in plots, 132
in plotting, 338
in rules, 340
method for requesting, 48
non-standard, 336, 1045
numerical, 102, 728
of held arguments, Evaluate, 337, 1136
of two-dimensional expressions, 181
preventing for printing, HoldForm, 338,

1170
principles of, 324
repeated, Do, 348, 1127
standard procedure for, 332, 1045
tracing of, 356
using buttons, 55
with assumptions, Refine, 816, 1261
with memory constraints,

MemoryConstrained, 713, 1210
with time constraints, TimeConstrained,

712, 1305
Evaluation at a point, ReplaceAll (/.), 65,

1263
Evaluation chain, 358

maximum length of, $IterationLimit,
369, 1330

EvaluationCell, 582
EvaluationMonitor, 977, 1136
EvaluationNotebook, 579, 1136
Evaluator, for button, ButtonEvaluator,

597, 1093
Evaluator, 577, 608, 1136
Even numbers, testing for, EvenQ, 267, 1137
EvenQ, 267, 723, 1137
Exact computation, 30
Exact differential, Dt, 854, 1129
Exact numbers, conversion to,

Rationalize, 746, 1256
Examples, of Mathematica, 3

reproducing from book, xv
timing of, xv

Excel format, exporting, Export, 208, 642,
1141

importing, Import, 208, 642, 1176
Exception handling, Catch, 350, 1096
Exceptions, floating point, 742

handling of, 481
Exchange values, Set (=), 305, 1277
Exchanging, notebooks with kernel,

NotebookGet, 580, 1223
text, 425

Exclamation point, Factorial (!), 31, 757,
1143

Exclamation point (!), as pipe prefix, 628
for shell escapes, 629
Not, 87, 1221

ExcludedForms, 814, 1137
Exclusive or, Xor, 87, 1324
.exe files, 659
Executables, naming of, 676
Execute external command, Run, 629, 1269
Execute shell command, 629
Executing Mathematica, 26
Execution, as interpretation of evaluation,

324
tracing of, 356

Execution time, Timing, 711, 1306
Existence, Exists, 847, 1137
Existence of solutions, 830
Existential quantifier, Exists, 847, 1137
Exists, 847, 1137
\[Exists] (L ), 1001, 1369
Exit, emergency, 62
Exit, 706, 1057, 1137
Exit code, in Run, 629
Exit notebook, NotebookClose, 591, 1222
Exiting, from dialogs, 707
Exiting Mathematica, Quit, 28, 1057, 1254
Exp, 31, 761, 1137
Expand, 67, 69, 797, 801, 1137
Expand selection, 180
ExpandAll, 69, 801, 1138
ExpandDenominator, 801, 1138
Expanding, of polynomials over finite

fields, 809
special functions, FunctionExpand, 792,

1159
Expanding polynomials, speed of, 77
ExpandNumerator, 801, 1138
Expansion, continued fraction,

ContinuedFraction, 754, 1112
control of, 798
in series, Series, 883, 1276
of Boolean expressions, LogicalExpand,

87, 1203
of complex expressions, ComplexExpand,

812, 1110
of complex powers, ExpToTrig, 812, 1141
of functions, Series, 94, 883, 1276
of polynomials, Expand, 67, 797, 1137
of powers, PowerExpand, 798, 1248
trigonometric, TrigExpand, 71, 811, 1313
with arbitrary operators, Distribute,

256, 1126
Expected value, \[LeftAngleBracket] ( � ),

1002
Experimental data, plotting,

ErrorListPlot, 168
Experimental` context, 1074
ExpIntegralE, 774, 1138
ExpIntegralEi, 774, 1138
Explanation, of messages, 61
Explanations of functions, 58



1424 Explode — Factoring Index

Explode, Characters, 412, 1102
IntegerDigits, 725, 1181

Exponent, integer, IntegerExponent, 725,
749, 1181

least universal, CarmichaelLambda, 752,
1096

Exponent, 73, 799, 1138
Exponent law, PowerExpand, 72, 798, 1248
ExponentFunction, 436, 1139
Exponential constant, E, 32, 765, 1130
Exponential equations, 825
Exponential function, Exp, 31, 761, 1137

generalized inverse of, ProductLog, 781,
1252

Exponential integrals, ExpIntegralE, 774,
1138

Exponential notation, 29, 1021
ScientificForm, 435, 1272

Exponential time, 76
\[ExponentialE] ( F ), 988, 994, 1369
Exponentials, conversion of complex,

ExpToTrig, 71, 812, 1141
of matrices, MatrixExp, 906, 1207

Exponents, distributing, PowerExpand, 798,
1248

in output of numbers, 436
input of, 176
of numbers, MantissaExponent, 726,

1204
Export, 207, 208, 210, 212, 567, 568, 569,

570, 642, 643, 1141
Export options, for front end, 622
$ExportFormats, 208, 1328
Exporting, from notebooks, 47

of textual forms, 424
of two-dimensional notation, 177
three-dimensional graphics, 556
two-dimensional forms, 430

Exporting graphics, Export, 208, 567, 1141
Exporting numbers, 729
Exporting sounds, Export, 567, 1141
Exporting symbols from packages, 397
ExportString, 567, 1141
Exposition, in notebooks, 202
Expression, converting to, ToExpression,

428, 464, 1307
Expression, 582, 646, 1141
Expression form, of a cell, 572
ExpressionML, exporting, Export, 212, 1141

importing, Import, 212, 1176
Expressions, 230, 1014

alternative input forms for, 233
as structural objects, 232
as trees, 237, 1014
conversion to boxes, ToBoxes, 428, 464,

1307
conversion to string, ToString, 428, 464,

1309
corresponding to cells, 572
creating from strings, ToExpression,

428, 464, 1307
depth of, 239, 1041

display of large, 74
elements of, Part, 234, 1238
evaluation of, 324, 1045
exchanging with external programs, 628
for notebooks, 578
in MathLink, 669
indices in, 1040
input, In, 702, 1177
input of, 48, 1021
internal storage of, 221
interpretations of, 231
lambda, Function (&), 249, 1159
levels in, 237, 1041
manipulation like lists, 236
nested, 234
ordering in, Ordering, 255, 1233
output, Out (%), 702, 1234
output of, 425
parts in algebraic, 234
parts of, Part, 234, 1040, 1238
patterns as classes of, 259
patterns for common types of, 278
pieces of algebraic, 73
rational, 69
reading without evaluation, 649
reduction to standard form of, 325
replacing parts in, ReplacePart, 235,

1263
resetting parts of, 235
selecting parts based on criteria, Select,

251, 1273
sharing common parts of, Share, 714,

1279
simplification of, Simplify, 68, 813,

1282
size of, ByteCount, 714, 1095
special input forms for, 232, 1023
storing in external programs, 692
structural operations on, 254
structure of, 237
symbols in, 1041
testing properties of, 267
transforming, 69
traversal of, 1041
trigonometric, 811
types of, 232
writing to streams, Write, 632, 1324

ExpToTrig, 71, 812, 1141
Extend selection, 180

SelectionMove, 582, 1275
Extended character sets, 421
Extended Unix code, 421
ExtendedGCD, 752, 753, 1141
Extensible characters, 456
Extension, 809, 1142
Extensions, field, 809

file name, 1053
Extensions (packages), 59
Exterior faces of three-dimensional objects,

529
Exterior product, \[Wedge] (� ), 1002
Exterior products, Outer, 902, 1234

External commands, available,
$OperatingSystem, 717, 1334

External conversions, for cells,
ConversionRules, 607, 1114

External data, exporting, Export, 208, 642,
1141

importing, Import, 208, 642, 1176
reading, Import, 207, 1176
writing, Export, 207, 1141

External files (packages), 59
External functions, calling, 216, 657
External interface, 204
External programs, 213

creating compiled code for, 376
on remote computers, 690
output for, 425
processing of graphics by, 554
reading data from, ReadList, 649, 1257
running, 215, 628
sound output by, 566

External symbols, in packages, 397
ExternalCall, 662, 687
Extract, 286, 339, 1142
Extracting, bracketed data in files,

RecordSeparators, 648, 1259
Extrapolation, Interpolation, 932, 1183
Extrema, D, 80, 853, 1117
ExtremeValueDistribution, 794
Extremization, Minimize, 850, 1212

NMinimize, 974, 1220
numerical, NMinimize, 974, 1220

Eye motion, ShowCursorTracker, 613,
1072, 1281

Eye position, ViewPoint, 152, 532, 1319

F-distribution, FRatioDistribution, 794
F-ratio distribution, FRatioDistribution,

794
Face, for fonts, FontWeight, 444, 612, 1152

\[HappySmiley] ( ! ), 995
FaceForm, 529, 1142
FaceGrids, 151, 152, 549, 553, 1142
Faces, for text in graphics, 558

of polygons, 529
Facet, Polygon, 521, 1245
Factor, 67, 69, 797, 802, 806, 809, 1069,

1143
implementation of, 1069

FactorComplete, 751
Factorial (!), 31, 757, 1025, 1143

implementation of, 1067
Factorial function, as example of

definitions, 309
generalized, Gamma, 770, 1160

Factorial simplification, FullSimplify, 813,
1159

Factorial2 (!!), 757, 1025, 1143
Factoring, algorithms for, 223

limits on integer, 751
of integers, FactorInteger, 31, 750, 1143
of matrices, 914
of polynomials, Factor, 67, 797, 1143



Index Factoring — Floating licenses 1425

of polynomials over finite fields, 809
speed of, 77
trigonometric, TrigFactor, 71, 811, 1314

FactorInteger, 31, 76, 750, 1067, 1143
implementation of, 1067

FactorList, 806, 1143
FactorSquareFree, 806, 1144
FactorSquareFreeList, 806, 1144
FactorTerms, 70, 797, 806, 1144
FactorTermsList, 806, 1144
Facts, mathematics, 817
$Failed, 623, 1329
False, 85, 136, 345, 1144
Family, of font, FontFamily, 444, 612, 1151
FASL files, DumpSave, 627, 1129
\fbox (TEX), FrameBox, 446, 1156
Feet, \[Prime] ( M ), 996, 1250
Fence, \[LeftBracketingBar] ( � ), 1002
Fence characters, 987
Fermat’s Little Theorem, 73, 752
Fermi-Dirac integrals, LerchPhi, 773, 1193
Feynman diagram integrals, 773
FFT, Fourier, 108, 935, 1154
FFT multiplication, Times (*), 1067, 1306
Fibonacci, 757, 758, 1144

implementation of, 1067
Fibonacci equations, solving, RSolve, 891,

1269
Fibonacci function, as example of memo

function, 315
Fiducial marks, Ticks, 512, 552, 1305
Field, Galois, 809
Field extensions, 809
Fields, 73, 817, 839

algebraic number, 809, 826
plotting vector, PlotVectorField, 168

File, current input, $Input, 639, 1330
File extensions, 1053
File format, notebook, 578, 1403
File locations, in front end, 622
File names, 1033

for packages, 400
metacharacters in, 637, 1033, 1053
processing of, 640, 1053

File pointer (current point), 650
FileByteCount, 641, 1145
FileDate, 641, 1145
FileNames, 206, 638, 1145
Files, 204, 623

accessing related, 639
as streams, 631
automatic loading of, 401
character encodings in,

$CharacterEncoding, 422, 1327
configuration, 1063
copying, CopyFile, 206, 641, 1114
copying directories of, CopyDirectory,

641, 1114
current, $Input, 705, 1330
current point in, 650
deleting, DeleteFile, 206, 641, 1120
directories for, 206, 636

displaying, 204
encoding of, 626
end of, EndOfFile, 649, 1134
exporting data to, Export, 642, 1141
finding, FileNames, 206, 638, 1145
importing data from, Import, 642, 1176
list of loaded, $Packages, 397, 1335
list of open, Streams, 705, 1290
modification dates for, FileDate, 641,

1145
moving, RenameFile, 641, 1262
names on different computer systems,

207, 639, 1053
naming of, 636
of messages, 482
positions in, StreamPosition, 653, 1290
random access to, SetStreamPosition,

653, 1279
reading data from, Import, 207, 1176
reading data from, ReadList, 644, 1257
reading from, Get (<<), 204, 623, 1162
reading into strings, 655
removing, DeleteFile, 206, 1120
renaming, RenameFile, 641, 1262
search path for, $Path, 206, 637, 1335
searching, 650
splicing into, Splice, 214, 1288
start up, 1056
superscripts in, 177
syntax errors in, 623
system, 1061
turning into strings, ReadList, 647, 1257
types of, FileType, 641, 1145
writing data to, Export, 207, 1141
writing to, Put (>>), 204, 624, 1253

FileType, 641, 1145
Filled boxes, \[SelectionPlaceholder]

(� ), 1008
Filled region, Polygon, 492, 1245
\[FilledCircle] () ), 995, 1369
\[FilledDiamond] (� ), 995, 1369
\[FilledDownTriangle] (A ), 995, 1369
\[FilledRectangle] ( > ), 995, 1369
\[FilledSmallCircle] (  ), 995, 1369
\[FilledSmallSquare] ( N ), 995, 1370
\[FilledSquare] (* ), 995, 1370
\[FilledUpTriangle] (B ), 995, 1370
\[FilledVerySmallSquare] ( C ), 995, 1370
Filter, external, RunThrough, 630, 1270
Filtering, of data, ListConvolve, 937, 1200

of data read from files,
RecordSeparators, 648, 1259

Filtering lists, Select, 251, 1273
\[FinalSigma] ( O ), 990, 1370
Find, in notebooks, NotebookFind, 584,

1223
Find, 652, 656, 1146
find in Unix, FileNames, 638, 1145
Find link, LinkConnect, 680, 1197
FindFit, 108, 929, 1146

implementation of, 1069
FindInstance, 838, 844, 845, 1147

FindList, 207, 650, 651, 656, 1147
FindMaximum, 107, 1147

implementation of, 1068
FindMinimum, 107, 973, 1068, 1148

implementation of, 1068
FindRoot, 89, 104, 960, 1068, 1149

implementation of, 1068
Finishing Mathematica, Quit, 28, 1057, 1254
Finite difference equations, RSolve, 891,

1269
Finite difference methods, ListConvolve,

937, 1200
Finite element methods, 920
Finite fields, 809

inverses in, PowerMod, 752, 1248
Mod, 749, 1213
polynomials over, 809
powers in, PowerMod, 752, 1248

FIR filters, ListConvolve, 937, 1200
First, 122, 1149
First occurrence, Select, 251, 1273
Fit, 107, 926, 928, 929, 1149

implementation of, 1069
Fits, linear, FindFit, 929, 1146

multivariate, Fit, 928, 1149
polynomial, FindFit, 929, 1146
quadratic, FindFit, 929, 1146

FITS format, exporting, Export, 208, 1141
importing, Import, 208, 1176

Fitting, nonlinear, 109
Fitting of data, Fit, 926, 1149
\[FivePointedStar] (D ), 995, 1370
Fixed aspect ratio, AspectRatioFixed, 616,

1084
Fixed spacing, LineSpacing, 611, 1196
Fixed variables, With, 380, 1323
Fixed-point notation, 435
Fixed-precision numbers, 728, 737
FixedPoint, 241, 349, 1149
FixedPointList, 241, 1150
Flashing, 1071

of brackets, DelimiterFlashTime, 613,
1120

Flashing blob, ShowCursorTracker, 613,
1072, 1281

Flat, 271, 329, 332, 1050, 1150
\[Flat] ( E ), 996, 1370
Flat functions, in patterns, 261, 270, 271
Flat operators, 470
Flatten, 130, 255, 290, 306, 1150
FlattenAt, 255, 1150
Flattening, of associative functions, 326
Flexible Image Transport System, exporting,

Export, 208, 1141
importing, Import, 208, 1176

Flicker, 1071
avoiding, ShowSelection, 619, 1281

float C type, 678
Floating, of windows, WindowFloating,

620, 1321
Floating licenses, 1058

$NetworkLicense, 718



1426 Floating-point decomposition — FullSimplify Index

Floating-point decomposition,
MantissaExponent, 726, 1204

Floating-point hardware, 738
Floating-point numbers, in MathLink, 678

Real, 722, 1258
Floor, 745, 1150

implementation of, 1067
Floquet’s Theorem, 789
Flow of control, 348
Fluid variables, Block, 389, 1091
Flush left, TextAlignment, 610, 1303
Flush right, TextAlignment, 610, 1303
Fluxion notation, 188
Focus notebook, SelectedNotebook, 579,

1273
Fold, 243, 1151
Folded polygons, 495
Folded surfaces, 537
Folders (directories), 206, 636

operations on, 641
FoldList, 243, 250, 1151
Font, symbol, 422
Font encodings, CharacterEncoding, 421,

1102
Font matching, 1010
Font options, 609
Font size, 453
FontColor, 444, 612, 1151
FontFamily, 444, 558, 612, 1151
FontPostScriptName, 612
FontProperties, 613
Fonts, for plot labels, StyleForm, 558, 1295

for special characters, 613
for text in graphics, 558
in output, StyleForm, 443, 1295
searching for, 612
sizes of, 558

FontSize, 444, 558, 574, 612, 1151
FontSlant, 444, 612, 1151
FontSubstitutions, 612, 1152
FontTracking, 612, 1152
FontWeight, 444, 558, 612, 1152
For, 352, 1152
ForAll, 847, 1152
\[ForAll] (P ), 1001, 1370
Forcing, page breaks, 609
Forcing evaluation, Evaluate, 337, 1136
Foreign characters, 190, 421, 998
Foreign data, exporting, Export, 208, 642,

1141
importing, Import, 208, 642, 1176
reading, Import, 207, 1176
writing, Export, 207, 1141

Foreign keyboard, xv
Fork, Run, 629, 1269
Formal logic, operations in, 86

pure functions in, 249
Formal manipulation, 63
Formal parameters, in pure functions, 249

scoping of, 385
Formal power series, ZTransform, 879,

1325

Format, defining output, 473
for graphics, 568
for output to files, 624
matrix, MatrixForm, 120, 1207
notebook, 578
of files, 1053
of numbers, 435
options for output, FormatType, 634,

1153
tabular, TableForm, 116, 439, 1299

Format, 473, 1153
Format statement, StringForm, 433, 1291
Formats, export, $ExportFormats, 208,

1328
import, $ImportFormats, 208, 1329

Formatting, of output, 424
speed of, 77

FormatType, 556, 634, 1054, 1153
$FormatType, 556, 1329
FormatValues, 1052
FormBox, 447, 463, 1153
Forms, special input, 1024
Formulas, 63

exporting, 210, 430
importing, 430
in text, 196
in text-based interfaces, 193
input of, 182
involving special functions,

FullSimplify, 792, 1159
Fortran, xiv, 213

efficiency of, Compile, 213, 1109
formatting in, 433
in MathLink, 658
iteration in, 112
number format in, 644
numerical output form in, 437

Fortran output, defining, 474
FortranForm, 213, 425, 1153
Fourier, 108, 876, 935, 936, 937, 1154

implementation of, 1069
Fourier transforms, conventions for, 936

Fourier, 108, 935, 1154
multidimensional, Fourier, 937, 1154
origin in, 936
real, FourierSinTransform, 878, 1154

FourierCosTransform, 878, 1154
FourierParameters, 937
FourierSinTransform, 878, 1154
FourierTransform, 96, 876, 1155
\frac (TEX), FractionBox, 445, 1155
Fractal, DigitCount, 756, 1123
Fractal example, 10
Fraction bars, thickness of,

SpanLineThickness, 456
FractionalPart, 745, 979, 1155
FractionBox, 445, 1155
Fractions, entering, 36

input of, 178
Fraktur characters, 992
Frame, around window, WindowFrame, 620,

1321

Frame, 134, 489, 511, 514, 1155
FrameBox, 446, 1156
\framebox (TEX), FrameBox, 446, 1156
Framed (Version 1 option), see Frame, 1402
FrameLabel, 134, 514, 1156
Frameless window frame option, 621
Frames, for cells, CellFrame, 604, 1098

for cells, CellFrameMargins, 605, 1098
FrameStyle, 514, 1156
FrameTicks, 134, 514, 1156
Framing, of three-dimensional image,

ViewCenter, 534, 1318
FRatioDistribution, 794
\[FreakedSmiley] ( " ), 995, 1370
Freeing of memory, 712
FreeQ, 124, 236, 268, 1156

levels in, 1041
French characters, 190, 998
French language messages, 483
Frequency, of tones, 171
Frequency dimension, FourierTransform,

876, 1155
Frequency spectrum, Fourier, 108, 877,

935, 1154
Fresh notebook, NotebookCreate, 591, 1222
FresnelC, 775, 1157
FresnelS, 775, 1157
Frobenius norm, Tr, 913, 1310
FromASCII (Version 1 function), see

FromCharacterCode, 1402
FromCharacterCode, 417, 423, 1157
FromContinuedFraction, 754, 1157

implementation of, 1067
FromDate, 710, 1157
FromDigits, 725, 1158
Front end, executing commands in, 594

manipulating cells in, 574
Mathematica, 27, 44
MathLink communication with, 686
processing of graphics by, 554
using Input with, 478

Front ends, setting up alternative, 657
$FrontEnd, 592, 1329
FrontEnd` context, 594
FrontEndExecute, 594, 1158
FrontEndObject, 580
FrontEndTokenExecute, 593
Fronts of polygons, 529
\frown (TEX), \[Cap] (� ), 1002
Frowning smiley, \[SadSmiley] (# ), 995
Frustum, clipping of, 530
Full arrays, testing for, ArrayQ, 290, 1083
Full justification, TextJustification, 610,

1303
Full names of special characters, 414

conventions for, 985, 1352
Full names of symbols, 392
FullDefinition, 625, 1158
FullForm, 230, 231, 234, 261, 279, 424, 1158
FullGraphics, 490, 1158
FullSimplify, 68, 792, 813, 815, 1159

implementation of, 1070



Index Function (&) — GeometricDistribution 1427

Function (&), 248, 249, 252, 385, 1029, 1159
nesting of, 385
scoping in, 386

Function application, invisible, 183
precedence of, 1023

Function browser, 57
Function definitions, 110, 308
Function name, Head, 231, 1168
Function names, as expressions, 240

conventions for, 1039
including in levels, Heads, 238, 1169

Functional composition, ComposeList, 250,
1110

Nest, 241, 1217
Functional derivative,

\[CapitalDifferentialD] (� ), 994
VariationalD, 98

Functional notation, 233
Functional operations, 240
Functional programming, 241
Functionals, 252
FunctionExpand, 792, 815, 1159

implementation of, 1070
FunctionInterpolation, 935, 1160
Functions, 230, 232

alphabetical listing of all built-in, 1073
anonymous, Function (&), 248, 1159
approximate, InterpolatingFunction,

930, 1182
arbitrary-precision evaluation of, 731
arguments of, 31, 1039
as arguments to functions, 241
attributes of, 327
being evaluated, Stack, 367, 1289
calling external, 216, 657
clearing of, Clear, 110, 1052, 1103
combinatorial, 757
compilation of, Compile, 376, 1109
composition of, Composition, 253, 1111
defining, 110, 312
defining optional arguments for, 275
elliptic, 785
evaluation of, 332
exiting, Return, 354, 1265
higher order, 240
identity, Identity, 253, 1173
in packages, 59
indexed, 251
information about, 58
integer, 749
inverse, InverseFunction, 89, 253, 1187
iterated, Nest, 241, 1217
lists as multiple return values for, 305
local, 378
mathematical, 31, 745, 1043
memo, 314
messages associated with, 479
modifying built-in, 321
multivalued, 762
names of, 31, 35, 111, 240
naming of, 1039

nesting of, Nest, 241, 1217
notation for, 31
number theoretical, 749
numerical, 745
of matrices, JordanDecomposition, 915,

1190
on functions, 241
options for, 133, 1039
output as operators, 474
parenthesis in input of,

TraditionalForm, 194, 1313
plotting graphs of, Plot, 131, 1242
pure, 248
reading in definitions of, Get (<<), 204, 1162
saving definitions of, Save, 204, 1271
special, 769
that do not have unique values, 762
theta, 785
tracing calls to, Trace, 357, 1310
transcendental, 761
transformation rules for, 113
undocumented, 1073
using rules to define, 308
with variable numbers of arguments, 273

Fundamental objects, 1016
Fundamental principle of Mathematica, 64
Fundamental Theorem, of calculus, 866
Further, spacing characters, 1008
Future versions, 1074
Fuzzy arithmetic, 740

Galois fields, 809
Galois theory, 826
Gamma, 770, 771, 890, 1160

implementation of, 1068
\[Gamma] ( Γ ), 175, 990, 1370
Gamma function, Gamma, 770, 1160

incomplete, Gamma, 771, 1160
logarithm of, LogGamma, 770, 1202
logarithmic derivative of, PolyGamma,

771, 1245
regularized, GammaRegularized, 771,

1160
Gamma function simplification,

FullSimplify, 813, 1159
GammaRegularized, 770, 771, 1160
Gamut, of colors, 563
Garbage collection, by Mathematica, 712

of temporary symbols, 383
Gatepost, \[RightTee] ( F ), 1001
Gathering elements in lists, Partition,

128, 292, 1240
Gauss series, Hypergeometric2F1, 780,

1172
Gauss transformation, 1068
Gaussian distribution, integral of, Erf, 775,

1135
NormalDistribution, 794

Gaussian elimination, 1069
LUDecomposition, 914, 1203
RowReduce, 907, 1268

Gaussian integers, as coefficients in
polynomials, 807

factoring of, FactorInteger, 750, 1143
Gaussian quadrature, NIntegrate, 1068,

1219
Gaussian random numbers, InverseErf,

775, 1185
GaussianIntegers, 751, 807, 1160
GaussKronrod, 1068
Gaze, center of, ViewCenter, 533, 1318

ShowCursorTracker, 613, 1072, 1281
GCD, extended, ExtendedGCD, 753, 1141

generalized, ExtendedGCD, 753, 1141
of polynomials, PolynomialGCD, 803,

1246
of polynomials over finite fields, 809

GCD, 749, 750, 809, 1067, 1161
GCF, GCD, 749, 1161
gdb, 691
\ge (TEX), \[GreaterEqual] (R ), 1004,

1166
Gear method, NDSolve, 1068, 1216
Gegenbauer functions, GegenbauerC, 778,

1161
Gegenbauer polynomials, GegenbauerC,

766, 1161
GegenbauerC, 766, 778, 1161
Gel’fand-Lokutsiyevskii method, NDSolve,

1068, 1216
General, 480, 1161
General definitions, 309
General messages, 480
General solutions, to PDEs, 875
Generalized division, PolynomialReduce,

805, 1247
Generalized eigenvalues, Eigenvalues, 912,

1131
Generalized functions, DiracDelta, 879,

1124
Generalized hypergeometric function,

HypergeometricPFQ, 780, 1172
GenerateConditions, 867, 1161
Generated files, in MathLink, 667
GeneratedCell, 582, 608, 1161
GeneratedParameters, 841, 1161
Generating functions, ZTransform, 879,

1325
Generator, for MathLink programs, 659
Generic window frame option, 621
Genericity, in integration, 860

in solving equations, 830
Genocchi numbers, 758
gensym, Unique, 382, 1316
Genz-Malik algorithm, NIntegrate, 1068,

1219
Geometric difference equations, RSolve,

892, 1269
Geometrical figures, aspect ratios of,

495
preserving shapes of, 510

GeometricDistribution, 796



1428 Geometry — Grouping of input expressions Index

Geometry, algebraic, GroebnerBasis, 805,
1168

defined by inequalities, 836
notation for, 996

Geometry data, exporting, Export, 569,
1141

importing, Import, 570, 1176
\geq (TEX), \[GreaterEqual] (R ), 1004,

1166
German characters, 190, 998
German gothic characters, 992
Germundsson methods, RSolve, 1071, 1269
Get, notebook, NotebookGet, 578, 1223
Get (<<), 59, 204, 215, 400, 623, 626, 1024,

1162
file used during, $Input, 705, 1330
return value from, 623

\gets (TEX), \[LeftArrow] (S ), 1006
Getting data in MathLink, 671
Getting Started with Mathematica, xii
GF(p), 809
\gg (TEX), \[GreaterGreater] (G ), 1004
GIF, exporting, Export, 568, 1141

importing, Import, 570, 1176
\[Gimel] ( H ), 993, 1370
GIS data, importing, Import, 208, 1176
Givens rotations, SingularValues, 1069
Glaisher, 765, 1162
Glitches, in plots, 137
Global assumptions, Assuming, 818, 1084
Global maxima, 106
Global minima, 106
Global minimization, exact, Minimize, 850,

1212
NMinimize, 974, 1220

Global options, for front end, 622
Global style changes, 574
Global switches, $Post, 703, 1335
Global variables, 314, 378

and conditions on rules, 370
temporary values for, 390
tracing, 365

Global` context, 394
Globbing, in file names, 1053
Gloss surfaces, 547
GMP, 1067
GMT, 709
Go to, in notebook, SelectionMove, 582,

1275
Goal, in simplification,

ComplexityFunction, 815, 1110
Goal functions, Minimize, 850, 1212

NMinimize, 974, 1220
Göktas methods, RSolve, 1071, 1269
Golden mean, GoldenRatio, 765, 1162
GoldenRatio, 765, 1162

in plots, 134, 510
\[GothicA] ( � ), 993, 1370
\[GothicCapitalA] (� ), 993, 1371
\[GothicCapitalC] (� ), 992
\[GothicCapitalH] (� ), 992
\[GothicCapitalI] ( T ), 992

\[GothicCapitalR] (U ), 192, 992
\[GothicCapitalZ] (� ), 993, 1371
\[GothicZ] ( � ), 993, 1370
Goto, 353, 354, 1162
Grad, \[Del] (6 ), 1000
Grad, 97
Grade, in list, Ordering, 129, 1233

Sort, 127, 1286
Gradient, 1148
Gradients, D, 80, 853, 1117
Gradshteyn-Ryzhik, Integrate, 864, 1070,

1182
Sum, 1071, 1296

Grammar, checking in strings, SyntaxQ,
466, 1298

outline of, 469
two-dimensional, 470

Grammar of Mathematica, 232, 429, 467,
1018, 1023

Granularity, of time measurements,
$TimeUnit, 710, 1338

Graphical user interfaces, 26, 49
Graphics, 131

animated, 51, 170, 617
color, 499
combined with sound, 567
control of, 133
converting, Export, 208, 567, 1141
converting between types of, 157
coordinate systems in two-dimensional,

505
dynamic, 170, 617
exporting, Export, 208, 567, 1141
exporting three-dimensional, 556
fonts for text in, 558
full story on, 486
generating without displaying, 491
internal form of, 486
labeling three-dimensional, 548
labeling two-dimensional, 511
low-level rendering of, 553
notebook animation, SelectionAnimate,

588, 1274
options for, 133, 488, 499
order of drawing, 494
output devices, DisplayFunction, 134,

1126
packages for, 167
parameters in, 133
programming, 486
range of, PlotRange, 134, 1243
resizing, 51
text in, 134, 556, 560
three-dimensional, Plot3D, 149, 1242
types of, 486
via MathLink, 657

Graphics, 487, 1163
Graphics cells, 616
Graphics code, low-level, 554
Graphics directives, 488, 499

scoping of, 499
three-dimensional, 525

Graphics objects, 486
Graphics primitives, 486

three-dimensional, 520
two-dimensional, 492

Graphics size, ImageSize, 569, 616, 1174
Graphics3D, 487, 1165
GraphicsArray, 139, 158, 171, 487, 1165
GraphicsData, 600
GraphicsSpacing, 141, 1165
Grave accent (`), as context mark, 392,

1015
Gray boxes, in book style, 602
\[GrayCircle] ( ), 995, 1371
GrayLevel, 488, 499, 563, 1165
\[GraySquare] ( ), 995, 1371
Greater (>), 86, 1027, 1166
GreaterEqual (>=), 86, 1027, 1166
\[GreaterEqual] (R ), 182, 1004, 1371
\[GreaterEqualLess] (I ), 1004, 1371
\[GreaterFullEqual] (J ), 1004, 1371
\[GreaterGreater] (G ), 191, 1004, 1371
\[GreaterLess] (K ), 1004, 1371
\[GreaterSlantEqual] (L ), 1004, 1371
\[GreaterTilde] (M ), 191, 1004, 1371
Greatest common divisor, GCD, 749, 1161
Greatest common divisor of polynomials,

PolynomialGCD, 804, 1246
Greatest dividing exponent,

IntegerExponent, 749, 1181
Greatest integer function, Floor, 745, 1150
Greek, capital letters, 984

fonts for, 613
Greek alphabet, generating,

CharacterRange, 418, 1102
Greek letter palette, 54
Greek letters, 174

codes for, 419
Green, 500
Green’s functions, DiracDelta, 879, 1124
Greenwich mean time, 709
grep, FindList, 207, 650, 1147
Grid, Mesh, 540, 1210

RasterArray, 497, 1255
GridBaseline, 449, 1166
GridBox, 445, 1167

options for, 449
GridBoxOptions, 615
GridDefaultElement, 449, 1167
GridLines, 134, 511, 515, 1167
Grids, input of, 186

interpolation of, ListInterpolation,
934, 1201

GroebnerBasis, 803, 805, 1070, 1168
implementation of, 1070

Group coupling coefficients, 760
Group order, MultiplicativeOrder, 752,

1214
Grouping, in Mathematica input, 468

of cells, CellGrouping, 618, 1099
Grouping of input expressions, 29, 233,

1031
table of, 1024



Index Grouping terms — Hyperbolic cosine integral 1429

Grouping terms, Collect, 71, 797, 1106
GroupPageBreakWithin, 609, 1168
Groups of cells, 51
Growable characters, 456
Growing lists, Reap, 355, 1259
\gtrsim (TEX), \[GreaterTilde] (M ),

1004
Guard digits, 736
Gudermannian function, 762
GUIs, creating, 598
Gutter, ColumnSpacings, 449, 1108

\H (TEX), \[DoublePrime] (A ), 999
\[Hacek] ( ˇ ), 999, 1371
Half adder, BitXor, 756, 1090
Half-period values, WeierstrassP, 785,

1320
Half-periods, in elliptic functions,

WeierstrassHalfPeriods, 782, 1319
Hamilton-Jacobi equations, DSolve, 875,

1129
Hamiltonian density, \[ScriptCapitalH]

(� ), 992
Hamiltonian systems, NDSolve, 1216
Hamming weight, DigitCount, 755, 1123
Handbooks, mathematical, 7
Handles, in lists, Partition, 293, 1240
Handling, of exceptions, Catch, 350,

1096
Handling errors, 481
Handling interrupts in MathLink, 696
Hankel functions, BesselJ, 776, 1088
\[HappySmiley] (! ), 995, 1372
Hard returns, 460, 611
Hardcopy, of notebook, NotebookPrint,

591, 1224
Hardware floating point, 728, 737
Hardy-Muskat-Williams methods, Reduce,

1070, 1261
Hardy-Ramanujan-Rademacher algorithm,

PartitionsP, 1067, 1240
Harmonic oscillator, 768
Harmonic series, HarmonicNumber, 758,

1168
Harmonic sums, StieltjesGamma, 772,

1290
HarmonicNumber, 757, 758, 1168
Harpoon, \[RightVector] (� ), 1007
Harwell-Boeing format, Import, 208, 923,

1176
Hash sign (#), Slot, 249, 1284
Hashing, 1066

in lists of rules, Dispatch, 302, 1125
SparseArray, 295, 1287

Hat, as diacritical mark, 998
\hat (TEX), OverHat, 472, 989
Haversine, 762
\[HBar] ( + ), 192, 994, 1372
\hbar (TEX), \[HBar] ( + ), 994
\hbox (TEX), RowBox, 445, 1267
HDF, exporting, Export, 208, 1141

importing, Import, 208, 1176

Head, 231, 1016, 1168
Header files, for MathLink, 677
Headings, in tables, TableHeadings, 443,

1300
on plots, PlotLabel, 134, 511, 1243

Heads, evaluation of, 332
of expressions, 1014
of numbers, 231, 723
performing operations on, 254
precedence of, 1023
testing for, 347
which are not symbols, 251

Heads, 238, 245, 254, 1169
\[HeartSuit] (V ), 996, 1372
Heaviside function, UnitStep, 745, 879,

1316
Height, of integer, IntegerExponent, 749,

1181
of rows, RowMinHeight, 449, 1268

Height function, plotting, 146, 517
Height of plots, AspectRatio, 134, 509,

1084
Held expressions, from strings,

ToExpression, 466, 1307
Helix, 164
Help, 58

in notebook front end, 57
Help Browser, 57
Help files, location of, 1063
Helvetica fonts, 444, 558, 612

FontFamily, 612, 1151
Hence, \[Therefore] (W ), 1001
Hensel lifting, Factor, 1069, 1143
Hermite functions, HermiteH, 778, 1169
HermiteH, 766, 778, 1169
Hertz, frequency in, 172
Heuman lambda function, 783
Heuristics, in simplification, Simplify, 69,

1282
Hexadecimal codes, for characters, 418
Hexadecimal digits, IntegerDigits, 725,

1181
Hexadecimal form, 1016
Hexadecimal numbers, 438, 725, 1021
Hexagon, 509
Hidden, ReadProtected, 330, 1258
Hidden box data, TagBox, 447, 1300
Hidden contexts, 399
Hidden data, in cells, 607
Hidden surface elimination, 521
HiddenSurface, 151, 1169
Hierarchical Data Format, exporting,

Export, 208, 1141
importing, Import, 208, 1176

Hierarchy, of cells, CellGrouping, 618,
1099

of input forms, 429
High-precision numbers, 728
Highest, Max, 31, 745, 1208
Highest common factor, GCD, 749, 1161
Highlighted notebook, SelectedNotebook,

579, 1273

Highlighting, disabling, ShowSelection,
619, 1281

in notebooks, 581
of syntactic constructs, ShowAutoStyles,

613, 1280
Highlighting cells, Selectable, 607, 1273
Highlights, specular, 547
Hilbert matrices, 121
Hilbert’s Tenth Problem, 842
Hill’s equation, MathieuS, 789, 1207
History, 48, 51

in notebooks, 38
of directories, DirectoryStack, 636, 1125
of Mathematica, ix
of session, 703
variables local to part of, 392

History of computation, tracing, Trace,
358, 1310

$HistoryLength, 703, 1329
Hold, 336, 338, 369, 649, 1048, 1169
HoldAll, 329, 336, 1045, 1169
HoldAllComplete, 329, 340, 1045, 1169
HoldComplete, 339, 1048, 1170
HoldFirst, 329, 336, 1170
HoldForm, 338, 361, 434, 1048, 1170
HoldPattern, 340, 1047, 1048, 1170
HoldRest, 329, 336, 1045, 1170
Holes, for expressions, ShowContents, 455
$HomeDirectory, 637, 1329
Homeomorphism, \[TildeTilde] (� ),

1003
Homogeneous differential equations,

DSolve, 871, 1129
Homotopy, \[TildeEqual] (� ), 1003
Hook, \[Not] (X ), 1001, 1221
Hooks, in main loop, 703
Horizontal alignment, in tables, 442
Horizontal box, RowBox, 445, 1267
Horizontal lines, in tables, RowLines, 446,

1268
\[HorizontalLine] ( $ ), 997, 1372
HorizontalScrollBar window element,

621
Host name, $MachineName, 718, 1331
Hot spots, in lists, Partition, 293, 1240
Hour, Date, 709, 1117
Householder transformations,

QRDecomposition, 1069, 1253
HSB color space, Hue, 499, 1171
\hslash (TEX), \[HBar] ( + ), 994
HTML names for characters, 174, 982,

1353
HTML output, MathMLForm, 211, 425, 1207
HTMLSave, 211, 1171
Hue, 156, 499, 500, 563, 1171
\[HumpDownHump] (N ), 1003, 1372
\[HumpEqual] (� ), 1003, 1372
Hungarian long umlaut, 998
Hurwitz zeta function, Zeta, 772, 1324
Hydrogen atom, 768
Hyperbolic cosine integral, CoshIntegral,

774, 1115



1430 Hyperbolic functions — Indices Index

Hyperbolic functions, 761
conversion to exponentials, TrigToExp,

812, 1314
inverse, 761

Hyperbolic sine integral, SinhIntegral,
774, 1284

Hyperfunctions, 879
Hypergeometric functions, branch cuts in

confluent, 779
confluent, Hypergeometric1F1, 779, 1171
Hypergeometric2F1, 780, 1172
multivariate, AppellF1, 781, 1080
of two variables, 864
solving equations with, 827

Hypergeometric sums, Sum, 890, 1296
Hypergeometric0F1, 778, 1171
Hypergeometric0F1Regularized, 778,

1171
Hypergeometric1F1, 778, 779, 1171
Hypergeometric1F1Regularized, 779,

1172
Hypergeometric2F1, 780, 1172
Hypergeometric2F1Regularized, 780,

1172
HypergeometricDistribution, 796
HypergeometricPFQ, 780, 1172
HypergeometricPFQRegularized, 780,

1172
HypergeometricU, 778, 779, 1172
Hyperlink button action, 596
Hyperlinks, 56

functions for, 585
setting up, 201

Hyperlogarithms, PolyLog, 773, 1246
Hypermedia (notebooks as), 51
Hyperons, 991
Hyperspherical polynomials, GegenbauerC,

766, 1161
Hypertext, 56, 201
Hyphenation, of mathematical input, 1038
Hyphenation, 609, 1173
Hypothesis tests, 109

statistical, CDF, 795

i, dotless, \[DotlessI] ( . ), 992
I, 32, 34, 765, 1173
\i (TEX), \[DotlessI] ( . ), 992
i/o primitives, 630
\[IAcute] ( ı́ ), 190, 998, 1372
Icon, Mathematica, 26
Iconic characters, 1009
Icons, in graphics, Offset, 507, 1230
Icosahedron, 527
\[ICup] ( ı̆ ), 998, 1372
ID, of computer, $MachineID, 718, 1331

of Mathematica process, $ProcessID, 716,
1336

of session, $SessionID, 384, 716, 1337
Ideals, polynomial, GroebnerBasis, 805,

1168
Idempotence, OneIdentity, 272, 1231
Identical, SameQ (===), 268, 347, 1270

Identical expressions, testing for, Equal
(==), 85, 1135

Identifiers, 40, 1014
Identities, special function,

FunctionExpand, 792, 1159
Identity, 253, 1173
Identity matrix, sparse array for, 296
IdentityMatrix, 120, 896, 1173
\[IDoubleDot] ( ı̈ ), 998, 1372
IEEE Floating Point Standard, 742
If, 87, 345, 1173

evaluation in, 336
\iff (TEX),

\[DoubleLongLeftRightArrow] (? ),
1006

Ignore data, in files not between separators,
RecordSeparators, 648, 1259

Skip, 650, 1284
IgnoreCase, 410, 412, 651, 1173
$IgnoreEOF, 706, 707, 1057, 1329
\[IGrave] ( ı̀ ), 998, 1372
\[IHat] ( ı̂ ), 998, 1372
�ii �, \[ImaginaryI] ( Y ), 988
Illegal syntax, 51
Illumination, 544

Lighting, 526, 1194
Im, 34, 746, 813, 1173
\Im (TEX), \[GothicCapitalI] ( T ), 992
Image, of session, DumpSave, 627, 1129
Image array, Raster, 492, 497, 1255
Image capture, Import, 570, 1176
Image of, \[DotEqual] (- ), 1003
Image processing, 9

Import, 570, 1176
ListConvolve, 937, 1200

Image transform, two-dimensional,
Fourier, 937, 1154

ImageMargins, 616, 1174
ImageResolution, 569, 1174
ImageRotated, 569, 1174
Images, exporting, Export, 208, 567, 1141
ImageSize, 569, 616, 1174
Imaginary part, finding symbolic, 813

Im, 34, 746, 1173
Imaginary quantities, expressions involving,

812
Imaginary unit, I, 34, 1173
\[ImaginaryI] ( Y ), 984, 988, 994, 1372
\[ImaginaryJ] ( O ), 988, 994, 1372
\imath (TEX), \[DotlessI] ( . ), 992
Immediate definitions, Set (=), 311, 1277
Immediate evaluation, of cells, 205

of cells, InitializationCell, 608, 1178
Implementation, of Mathematica, 218, 1066
Implicit curves, algebraic, 822
Implicit function application,

\[InvisibleApplication], 1008
Implicit multiplication,

\[InvisibleSpace], 1008
Implicit space, \[InvisibleSpace], 454
Implies, \[RightTee] ( F ), 1001
Implies, 834, 1174

\[Implies] (B ), 183, 985, 1001, 1006, 1373
Implode, FromDigits, 725, 1158

StringJoin (<>), 407, 412, 1291
Import, 207, 208, 212, 568, 570, 571, 642,

643, 923, 1176
$ImportFormats, 208, 1329
Importing, numbers, 729

to notebooks, 47
two-dimensional forms, 430

ImportString, 570, 1176
Impossibility, of solution in radicals, 820
Improper functions, DiracDelta, 879, 1124
Impulse function, DiracDelta, 879, 1124
In, 38, 48, 50, 702, 1177

deleting, 703
\in (TEX), \[Element] (G ), 1004, 1132
In-place evaluation, 181
In-text formulas, 461
Inactivity, caused by name conflicts, 59
Inches, \[DoublePrime] (A ), 996

sizes in, 500
Include files, for MathLink, 677
Incompatibilities, between Versions 1 and 2,

1402
between Versions 2 and 3, 1402
between Versions 3 and 4, 1404
between Versions 4 and 5, 1404

Incomplete beta function, Beta, 770, 1089
Incomplete elliptic integrals, 783
Incomplete gamma function, Gamma, 770,

1160
Inconsistent linear systems, 909
Increment (++), 305, 1025, 1177
Indentation, automatic, AutoIndent, 613,

1086
\[IndentingNewLine], 460, 1008
of paragraphs, ParagraphIndent, 611,

1237
\[IndentingNewLine], 460, 1008, 1373
Independence, testing for, FreeQ, 124, 268,

1156
Indeterminate, 742, 1177
Indeterminate results, 742
Index, of numbers, MantissaExponent,

726, 1204
of substring, StringPosition, 409, 1292
online, 57

Index files (names files), 402
Index function, MultiplicativeOrder, 752,

1214
Index law, PowerExpand, 72, 798, 1248
Indexed functions, 251

applying to expressions, MapIndexed,
246, 1205

Indexed variables, 41, 307
Indicator, for unmatched brackets,

ShowAutoStyles, 613, 1280
Indicator characters, 1009
Indicator function, UnitStep, 879, 1316
Indices, applying functions to parts with

specific, MapAt, 246, 1205
commas between, 1008



Index Indices — Integration 1431

dummy, 387
finding, Position, 124, 261, 1247
in expressions, 234
manipulating lists by, 285
of expression parts, 1014
of list elements, 41
part subscript, 184
parts with given number of (levels), 238
permutation of, Transpose, 917, 1313

Inequalities, 835
linear, 975
linear, Minimize, 851, 1212
on parameters, Assumptions, 867, 1084
reducing, Reduce, 92, 1261

Inequality, Unequal (!=), 86, 1315
Inequality, 1033
Inequivalence, logical, Xor, 87, 1324
Inert forms, Hold, 336, 1169

of symbols, 402
Inert functions, Remove, 59, 1261
Infeasible constraints, Minimize, 852, 1212
Inferences, 268

about parameters, Assumptions, 867,
1084

Infimum, Min, 31, 745, 1212
Infinite evaluation, 324
Infinite recursion, 369
Infinite results, 742
Infinity, complex, 743

complex direction of, 743
Infinity, 32, 238, 743, 765, 1177
\[Infinity] (Z ), 182, 988, 994, 1373
Infix, 474, 1177
Infix notation, 233
Infix operators, 468
Information, about user-defined functions,

110
on functions, 484
on symbols, 484
product, $ProductInformation, 717,

1336
Information, 58, 1038, 1178
\infty (TEX), \[Infinity] (Z ), 994, 1177
Inheritance, of cell options, 600
Inhibiting, evaluation, 336

line breaks, \[NoBreak], 459
output, 43
page breaks, 609

Inhomogeneous differential equations,
DSolve, 871, 1129

init.m files, 640, 1056, 1065
Initial conditions, for NDSolve, 962
Initial values, in modules, 379
$InitialDirectory, 637, 1330
Initialization, 1056

of front end, 1038
of kernel, 1063
of random number generator,

SeedRandom, 747, 1273
Initialization cells, 205
Initialization files, 1065

for packages, 640, 1065

InitializationCell, 608, 1178
Inks, printing, 564
Inline cells, positioning of, CellBaseline,

605, 1097
Inline code, 138, 196
Inline formulas, 196, 461
Inline text, 196
Inner, 257, 917, 919, 920, 1178
Inner loops, via MathLink, 657
Inner products, Dot (.), 118, 902, 1127

generalized, Inner, 919, 1178
of tensors, Dot (.), 917, 1127

Input, as string, InString, 702, 1180
basic rules for, 475
current, $Input, 639, 1330
entering, 26, 27, 48
file, Get (<<), 59, 1162
from data file, ReadList, 644, 1257
full story on, 623
in notebooks, 174
low-level, 630
multiline, 48
of delimiters, ShowAutoStyles, 613,

1280
of numbers, 729
re-executing, 48
special forms, 232, 1018, 1023
termination of, 48, 1037
textual, 424
two-dimensional, 176
with notebook interface, 26

Input, 478, 1178
$Input, 639, 705, 1330
Input cell, Evaluatable, 608, 1136
Input errors, 51
Input forms, 1024

for boxes, 462
for expressions, 233
for numbers, 1021
hierarchy of, 429

Input lines, In, 38, 1177
Input of operators, 230, 1023
Input streams, opening, OpenRead, 649,

1231
Input style, 573
InputAliases, 613, 1178
InputAutoReplacements, 613, 1179
InputForm, 139, 192, 424, 488, 1179

number marks in, 730
InputNamePacket, 683, 700
InputNotebook, 579, 1179
InputPacket, 700
InputStream, 631, 1054, 1179
InputString, 478, 1179
Insert, 125, 288, 1180
Inserting cells, CellPrint, 575, 1100
Insertion, into external files, Splice, 214,

1288
of substrings, StringInsert, 408, 1291

Insertion bar, in notebooks, 581
Insertion box, \[Placeholder] (	 ), 1009
Insides of three-dimensional objects, 529

Inspector, 62, 366, 707
option, 574, 601

$Inspector, 1330
Inspiration, \[LightBulb] (
 ), 995
Install, 216, 659, 676, 687, 1180

path in, 659
Installation, xii, 1061
$InstallationDate, 717, 1330
$InstallationDirectory, 637, 1061, 1330
Installing Mathematica, 26
InString, 48, 702, 703, 1180
\int (TEX), \[Integral] ( � ), 1000
int C type, 678
Integer, 722, 1017, 1180
Integer equations, Reduce, 841, 1261
Integer factoring, FactorInteger, 750, 1143
Integer sequence equations, RSolve, 891,

1269
IntegerDigits, 725, 749, 1181

implementation of, 1067
IntegerExponent, 725, 749, 1181
IntegerList MathLink type, 665
IntegerPart, 745, 1181
IntegerQ, 267, 723, 1181
Integers, bases of, 439

big, 30
complex, 750
conversion to, 746
exact, 30
factoring of, FactorInteger, 31, 750,

1143
Gaussian, 750, 751
in C, 678
in various bases, 725
output form for, 436
partitions of, 759
random, Random, 747, 1254
set of, \[DoubleStruckCapitalZ] (� ),

992
testing for, IntegerQ, 267, 1181
testing for even, EvenQ, 267, 1137
testing for odd, OddQ, 267, 1230
testing for prime, PrimeQ, 267, 1250

Integers, 73, 817, 839, 1181
\[Integral] ( � ), 184, 185, 1000, 1373
Integral representations, 769
Integral transforms, 96, 875
Integrals, elliptic, 783

in mathematical tables, 864
input of, 184
manipulation of in symbolic form, 869
multiple, 865
standard forms for, 864
syntax of, 470
that cannot be done, 81, 861

Integrate, 68, 81, 82, 859, 862, 864, 865,
951, 1070, 1182

implementation of, 1070
Integration, as inverse of differentiation, 859

constants in, 860
constants of, 859
defining your own, 281



1432 Integration — JacobiSN Index

definite, 82, 865
errors in numerical, 952
genericity assumptions in, 860
indefinite, Integrate, 81, 859, 1182
Integrate, 81, 859, 1182
making definitions for, 864
numerical, NIntegrate, 103, 954, 1219
of derivatives, 869
of power series, 886
of rational functions, 862
symbolic, Integrate, 81, 859, 1182
variables in, 387, 860

Integration operators, syntax of, 1031
Intensity, GrayLevel, 499, 1165

of sound, 566
Interactive input, dialogs, 707
Interchange format, exporting, Export, 568,

1141
importing, Import, 570, 1176

Interchange values, Set (=), 305, 1277
Interface, command-line, 27, 48

for Mathematica, 44
graphical, 26, 49
notebook, 26, 49
test for type of, $Notebooks, 715, 1334
text-based, 27, 48

Interfaces, creating, 598
Interfacing with Mathematica, 204
Interior faces of three-dimensional objects,

529
Interior point methods,

LinearProgramming, 1068, 1195
Interline spacing, LineSpacing, 611, 1196
Intermediate expression swell, 76
Intermediate expressions, tracing, 356
Intermediate files, in MathLink, 667
Intermediate results, monitoring,

StepMonitor, 977, 1290
saving, Sow, 355, 1286

Intermediate variables, 378
Internal arithmetic, 734
Internal code of Mathematica, 76
Internal form, of expressions, 234

of graphics, 486
output of, FullForm, 230, 1158

Internal state, of pseudorandom generator,
$RandomState, 748, 1336

Internals, of Mathematica, 218, 1066
International characters, 189, 421

in streams, 635
in symbol names, 1014

International keyboard, xv
International keys, superscripts on, 177
Internet address, $MachineDomain, 718,

1331
Internet ports, 682
Interparagraph spacing, ParagraphSpacing,

611, 1237
InterpolatingFunction, 105, 252, 930,

962, 1182
implementation of, 1069

InterpolatingPolynomial, 808, 1183

Interpolation, derivatives in, 932
multidimensional, 934
of quantiles, Quantile, 925, 1253

Interpolation, 930, 931, 932, 933, 1183
InterpolationOrder, 933
Interpretation, setting up your own rules

for, 476
Interpretation of input, ToExpression, 428,

464, 1307
InterpretationBox, 447, 1183
Interpreter, Mathematica as, 222
Interpreting input, 468
Interprocess communication, 215, 628, 657
Interquartile range, Quantile, 925, 1253
Interrupt, 371, 1184
Interrupts, 62, 370

in MathLink, 696
in MathLink, LinkInterrupt, 686, 1197
inspecting state during, 707

Intersecting surfaces, 537
Intersection, 127, 1184
\[Intersection] (� ), 183, 1002, 1373
Interval, 740, 894, 1184
Interval arithmetic, 740
IntervalIntersection, 741, 1184
IntervalMemberQ, 741, 1184
IntervalUnion, 741, 1184
\intop (TEX), \[Integral] ( � ), 1000
Invariance, of Mathematica, 46
Invariant subspaces,

JordanDecomposition, 915, 1190
Invariants, in elliptic functions,

WeierstrassInvariants, 782, 1319
Inverse, 121, 903, 905, 1185

implementation of, 1069
Inverse CDF, Quantile, 925, 1253
Inverse functions, 89

power series for, 888
Inverse hyperbolic functions, 761
Inverse of a matrix, Inverse, 121, 903,

1185
Inverse trigonometric functions, 761

branch cuts in, 764
Inverse video, 504
InverseBetaRegularized, 770, 1185
InverseEllipticNomeQ, 782, 1185
InverseErf, 775, 1185
InverseErfc, 775, 1185
InverseFourier, 108, 935, 1186
InverseFourierCosTransform, 878, 1186
InverseFourierSinTransform, 878, 1186
InverseFourierTransform, 96, 876, 1187
InverseFunction, 89, 240, 253, 825, 1187
InverseFunctions, 824, 1187
InverseGammaRegularized, 770, 1188
InverseJacobiSN, 786
InverseJacobiSN, InverseJacobiCN,

..., 785, 1188
InverseLaplaceTransform, 96, 875, 1188
Inverses in finite fields, PowerMod, 752,

1248
InverseSeries, 887, 1188

InverseWeierstrassP, 785, 1188
InverseZTransform, 879, 1189
Inversion, Not (!), 87, 1221
Invisible, ReadProtected, 330, 1258
Invisible characters, 1008
Invisible contents, ShowContents, 455
Invisible notebooks, 592
Invisible selection, ShowSelection, 619,

1281
Invisible tags, in TraditionalForm, 195
Invisible windows, Visible, 620, 1319
\[InvisibleApplication], 183, 1008, 1373
\[InvisibleComma], 183, 1008, 1373
\[InvisibleSpace], 454, 1008, 1373
\[Iota] ( Ι ), 990, 1373
Iota in APL, Range, 119, 1255
IPC, 215, 628, 657
IPX, 658
Irreducibility, of polynomials, Factor, 797,

1143
ISO Latin-1, 419, 421
ISO Latin-2, 421
ISO Latin/Cyrillic, 421
ISO standard C, 677
\it (TEX), FontSlant, 444, 612, 1151
Italian characters, 190, 998
Italic fonts, 444, 558, 612
Italicization, automatic, AutoItalicWords,

613, 1086
Italics, FontSlant, 444, 612, 1151

single letter, SingleLetterItalics, 613,
1283

Iterated functions, Nest, 241, 349, 1217
Iterated maps, 979
Iteration, 241

Do, 348, 1127
Iteration constructs, 112

variables in, 390
Iteration functions, 83, 1042

evaluation in, 343, 1046
forcing evaluation in, 344

$IterationLimit, 369, 1048, 1330
Iterative arrays, CellularAutomaton, 942,

1101
Iterators, 83, 116, 1042

evaluation of, 343, 1046
locality of variables in, 1042

IVPs, NDSolve, 962, 1216

j, dotless, \[DotlessJ] ( / ), 992
\j (TEX), \[DotlessJ] ( / ), 992
J/Link, 217
Jacobi elliptic functions, inverse,

InverseJacobiSN, 786
JacobiSN, 785
twelve kinds of, 785

Jacobi functions, JacobiP, 778, 1189
Jacobi polynomials, JacobiP, 766, 1189
Jacobi zeta function, JacobiZeta, 783, 1189
JacobiAmplitude, 782, 785, 1189
JacobiP, 766, 778, 1189
JacobiSN, 785



Index JacobiSN, JacobiCN, ... — \le (TEX) 1433

JacobiSN, JacobiCN, ..., 785, 1189
JacobiSymbol, 752, 1189
JacobiZeta, 783, 1189
Japan, time zone for, 709
Japanese characters, 418, 421
Java, 217

in MathLink, 658
Jenkins-Traub algorithm, NSolve, 1068, 1226
JFIF, exporting, Export, 568, 1141
�jj �, \[ImaginaryJ] ( O ), 988
\jmath (TEX), \[DotlessJ] ( / ), 992
Job number, $ProcessID, 716, 1336
Join, 126, 1190
Joining, strings, StringJoin (<>), 407, 1291
Joining points, PlotJoined, 159, 1243
Joint denial, Nor, 87, 1221
Jones functions, 864
Jonquière’s function, PolyLog, 773, 1246
Jordan decomposition, MatrixExp, 1069,

1207
JordanDecomposition, 915, 1190
Journaling, 48, 703
JPEG, exporting, Export, 568, 1141

importing, Import, 570, 1176
Jump, Goto, 353, 1162

in notebook, SelectionMove, 582, 1275
Throw, 350, 1304

Jumpiness, in animations, 170
Jumping, in text, 201

of input, ShowCursorTracker, 613, 1072,
1281

Jumping into 2D form, 430
Jumps in complex functions, 762
Justification, of columns,

ColumnAlignments, 449, 1107
of rows, RowAlignments, 449, 1267
of text, TextJustification, 610, 1303

K-theory, 773
Kahanian arithmetic, 737
Kamke, DSolve, 1071, 1129
Kampé de Fériet functions, 864
\[Kappa] ( Κ ), 175, 990, 1373
Karatsuba algorithm, Times (*), 1067, 1306
Karmarkar algorithm, LinearProgramming,

1068, 1195
Keep unevaluated (hold), 336
Keiper’s algorithm, StieltjesGamma, 1068,

1290
Kelvin functions, BesselJ, 776, 1088
Kernel, for convolutions, ListConvolve,

937, 1200
Mathematica, 27, 44
of matrices, NullSpace, 908, 1227
sending expressions to, 49

Kernel menu item, 608
\[KernelIcon] (% ), 995, 1374
Ket, \[RightAngleBracket] ( � ), 1002
Keyboard, xv

preprocessing input from, $PreRead, 703,
1336

Keyboard notebook, InputNotebook, 579,
1179

Keyboard operators, 986
Keyboard shortcuts, 47

user-defined, InputAutoReplacements,
613, 1179

Keyboards, 419
international, 189

Keys, characters for, 1009
for encoded files, 626
for entering mathematical notation, 36,

176
Keywords, for cells, CellTags, 584, 607,

1100
Khinchin, 765, 1190
Killing, calculations, 62

functions, Clear, 110, 1103
objects, 1052
symbols, Clear, 304, 1103
values, Unset (=.), 39, 1316

Killing a process, $ProcessID, 716, 1336
Kinkelin constant, Glaisher, 765, 1162
Kinks, in plots, 137
Kleene star (string metacharacters), 411
KleinInvariantJ, 787, 1190
Knobs, in lists, Partition, 293, 1240
Knowledge, in Mathematica, 7
\[Koppa] ( P ), 990, 1374
Korean characters, 419
Kovacic algorithm, DSolve, 1071, 1129
Kronecker delta, Equal (==), 84, 1135
Kronecker products of tensors, Outer, 918,

1234
KroneckerDelta, 749, 882, 1190
Kronrod points, NIntegrate, 1068, 1219
Krylov methods, LinearSolve, 1069, 1195
Kummer function, Hypergeometric1F1,

779, 1171
Kummer series, Hypergeometric2F1, 780,

1172
Kurtosis, 794

\L (TEX), \[CapitalLSlash] (� ), 998
\l (TEX), \[LSlash] ( Q ), 998
L-series, LerchPhi, 774, 1193
L’Hospital’s rule, 893
Label, for window, WindowTitle, 620, 1322
Label, 354, 1190
Labeling, of three-dimensional graphics, 548

of two-dimensional graphics, 511
Labels, for cells, CellLabel, 607, 1099

formats for, StyleForm, 558, 1295
in graphics, 560
in notebooks, 38
in tables, TableHeadings, 443, 1300
on axes, AxesLabel, 134, 512, 1087
on plots, PlotLabel, 134, 511, 1243

Ladder form, of matrices, RowReduce, 907,
1268

Lagarias-Miller-Odlyzko algorithm, Prime,
1067, 1250

Lagrangian density, \[ScriptCapitalL]
(� ), 992

Laguerre functions, LaguerreL, 778, 1191
LaguerreL, 766, 778, 1191
\[Lambda] ( Λ ), 175, 990, 1374
Lambda expressions, Function (&), 249,

1159
Lambda function, Carmichael,

CarmichaelLambda, 752, 1096
Lambert W function, ProductLog, 781,

1252
Lambert’s law, 547
Lamina, Polygon, 520, 1245
\land (TEX), \[And] (� ), 1001, 1079
Landscape mode, ImageRotated, 569, 1174
\langle (TEX), \[LeftAngleBracket] ( � ),

1002
Language, 592
$Language, 483, 706, 1331
Language options, for front end, 622
Language specification, 232, 467, 1018, 1023
LanguageCategory, 613, 1191
Languages, character sets for various,

$CharacterEncoding, 421, 1327
for messages, 483, 706
traditional computer, 36

LAPACK, 1069
Eigensystem, 910, 1130

Laplace transform, discrete, ZTransform,
879, 1325

LaplaceTransform, 96, 875, 1191
Laplacian, \[Del] (6 ), 1000
Laptop computers, styles for,

ScreenStyleEnvironment, 197, 1272
Larger, Greater (>), 86, 1166
Largest, Max, 31, 129, 745, 1208

position of, Ordering, 129, 1233
Las Vegas integration, NIntegrate, 957,

1219
Laserprinter, copy of notebook,

NotebookPrint, 591, 1224
Last, 122, 1191
Last result, 38
Lattice bottom, \[UpTee] (� ), 1007
LatticeReduce, 752, 754, 1067, 1191

implementation of, 1067
$LaunchDirectory, 637
Launching programs, in MathLink,

LinkLaunch, 683, 1197
Laurent series, Series, 883, 1276
Laws of form, Nand, 87, 1215
Layout, of output, 444

of palettes, 452
of plots, GraphicsArray, 139, 1165

Lazy evaluation (delayed assignment), 311
Lazy S, \[Tilde] (� ), 1003
\lbrace (TEX), \[RawLeftBrace] ( { ), 1010
\lceil (TEX), \[LeftCeiling] ( � ), 1002
LCM, 749, 1192
\ldots (TEX), \[Ellipsis] (+ ), 996
\le (TEX), \[LessEqual] (^ ), 1004, 1193



1434 Leading — Linear equations Index

Leading, between cells, CellMargins, 605,
1099

LineSpacing, 611, 1196
Leading digits, in output of numbers, 437
LeafCount, 714, 1192
Learning Mathematica, suggestions about,

xiii
Least common multiple, LCM, 749, 1192
Least fixed point, FixedPoint, 241, 1149
Least integer function, Ceiling, 745, 1096
Least universal exponent,

CarmichaelLambda, 752, 1096
Least-squares fits, FindFit, 108, 1146

Fit, 926, 929, 1149
Leaves, in expression trees, 237, 239

of parse tree, 467
Lebesgue integration, DiracDelta, 879,

1124
Left, 442, 450
\left (TEX), 456
Left aligned, TextAlignment, 610, 1303
Left justification, TextJustification, 610,

1303
Left shift, RotateLeft, 127, 291, 1266
\[LeftAngleBracket] ( � ), 191, 1002, 1374
\[LeftArrow] (S ), 1006, 1374
\Leftarrow (TEX), \[DoubleLeftArrow]

(< ), 1006
\leftarrow (TEX), \[LeftArrow] (S ),

1006
\[LeftArrowBar] (� ), 1006, 1374
\[LeftArrowRightArrow] (& ), 1006, 1374
\[LeftBracketingBar] ( � ), 987, 1002, 1374
\[LeftCeiling] ( � ), 1002, 1374
\[LeftDoubleBracket] ( � ), 184, 1002,

1374
\[LeftDoubleBracketingBar] ( � ), 1002,

1375
\[LeftDownTeeVector] (' ), 1007, 1375
\[LeftDownVector] ( ( ), 1007, 1375
\[LeftDownVectorBar] () ), 1007, 1375
\[LeftFloor] ( 	 ), 1002, 1375
\[LeftGuillemet] ( « ), 996, 1375
\leftharpoonup (TEX), \[LeftVector]

(* ), 1007
\[LeftModified] ( + ), 1009, 1375
\[LeftRightArrow] (_ ), 191, 1006, 1375
\Leftrightarrow (TEX),

\[DoubleLeftRightArrow] (= ), 1006
\leftrightarrow (TEX),

\[LeftRightArrow] (_ ), 1006
\[LeftRightVector] (, ), 1007, 1375
\[LeftSkeleton] (` ), 1009, 1375
\[LeftTee] ( % ), 1001, 1007, 1376
\[LeftTeeArrow] (- ), 1006, 1376
\[LeftTeeVector] (. ), 1007, 1376
\[LeftTriangle] (R ), 1005, 1376
\[LeftTriangleBar] (S ), 1005, 1376
\[LeftTriangleEqual] (T ), 1005, 1376
\[LeftUpDownVector] ( / ), 1007, 1376
\[LeftUpTeeVector] ( 0 ), 1007, 1376
\[LeftUpVector] ( 1 ), 1007, 1376

\[LeftUpVectorBar] (2 ), 1007, 1376
\[LeftVector] (* ), 1007, 1376
\[LeftVectorBar] (3 ), 1007, 1376
Legendre functions, LegendreP, 777, 1192
Legendre polynomials, associated,

LegendreP, 766, 1192
LegendreP, 766, 1192

Legendre symbol, JacobiSymbol, 752,
1189

Legendre-Jacobi elliptic integrals, 783
LegendreP, 766, 777, 778, 1192
LegendreQ, 777, 1192
Legends on plots, 560

PlotLabel, 134, 511, 1243
Length, of a vector, Norm, 119, 1221

of files, FileByteCount, 641, 1145
of numbers, Precision, 727, 1249
of strings, StringLength, 407, 1291

Length, 75, 119, 236, 1192
Lengths, of pages, 609
Lenstra-Lenstra-Lovasz algorithm,

LatticeReduce, 754, 1067, 1191
\leq (TEX), \[LessEqual] (^ ), 1004, 1193
Lerch transcendent, LerchPhi, 773, 1193
LerchPhi, 772, 773, 774, 1193
Less (<), 86, 1027, 1193
LessEqual (<=), 86, 1027, 1193
\[LessEqual] (^ ), 182, 1004, 1377
\[LessEqualGreater] (U ), 1004, 1377
\[LessFullEqual] (V ), 1004, 1377
\[LessGreater] (W ), 1004, 1377
\[LessLess] (X ), 1004, 1377
\lesssim (TEX), \[LessTilde] (Y ), 1004
\[LessSlantEqual] (Z ), 1004, 1377
\[LessTilde] (Y ), 1004, 1377
Letter-like forms, 984, 1351
LetterQ, 413, 1193
Letters, capital, 31

Greek, 174
of alphabet, CharacterRange, 413, 417,

1102
operations on, 413

Level, 239, 1193
Levels, 237, 1041

for cell options, 600
in contour plots, Contours, 519, 1113
in expressions, 1014
in Inner, 920
in lists, 129
in Map, 245
in Outer, 920
in Position, 238
negative, 239, 1041
permuting, Transpose, 290, 1313

Levenberg-Marquardt method,
FindMinimum, 1068, 1148

Levi-Civita symbol, Signature, 760, 1282
Lexical analysis, in box input, 462, 1036
Lexical scoping, Module, 391, 1213
\lfloor (TEX), \[LeftFloor] ( 	 ), 1002
Library, MathLink, 658, 1340
Library (packages), 59

Library directory, $BaseDirectory, 637,
1325

$LicenseExpirationDate, 718
$LicenseID, 718
$LicenseProcesses, 718
Licenses, network, 1058
$LicenseServer, 718
Lie derivative, \[Sterling] ([ ), 994
Life, programs for Game of, 18
Light sources, coordinate system for, 546

default arrangement of, 545
\[LightBulb] (
 ), 995, 1377
Lighting, 151, 155, 526, 544, 1194
LightSources, 545, 1194
Limit, on iteration, $IterationLimit, 369,

1330
on process number,

$MaxLicenseProcesses, 718
on recursion, $RecursionLimit, 369,

1337
Limit, 95, 893, 1194
Limitations, on patterns, Conditions, 265
Limiting factors, in calculations, 76
Limiting functions, DiracDelta, 879, 1124
Limits, directional, 894

for sums, 184
formatting of, 458
formatting of, UnderoverscriptBox, 445,

1314
functions with definite, 894
in integrals, 866
infinite, 743
of unknown functions, 895

LimitsPositioning, 458, 1194
LimitsPositioningTokens, 459
Line, 492, 520, 1195

in three dimensions, 525
$Line, 702, 703, 1056, 1331

in dialogs, 708
Line breaking, in expressions, 459

\[NonBreakingSpace], 1008
Line breaks, 431

in strings, 415
Line continuation, 1038
Line feed, 415, 1037
Line length, output, PageWidth, 634, 1237
Line number, $Line, 1056, 1331
Line numbers, 38

in cells, CellLabel, 607, 1099
in notebooks, 50
preserving, CellLabelAutoDelete, 607,

1099
Linear algebra, 896

speed of, 77
Linear congruences, CarmichaelLambda,

752, 1096
Linear differential equations, DSolve, 871,

1129
Linear equations, 90, 820

matrices from, CoefficientArrays, 922,
1105

over integers, 842



Index Linear expressions — Lists 1435

Linear expressions, patterns for, 280
Linear fits, Fit, 926, 1149
Linear programming, 975

exact, Minimize, 92, 851, 1212
NMinimize, 106, 974, 1220

Linear syntax, for boxes, 1036
Linear systems, repeated solution of,

LUDecomposition, 914, 1203
solution of, LinearSolve, 907, 1195

Linearity, property of functions, 255
LinearProgramming, 975, 1068, 1195

implementation of, 1068
LinearSolve, 907, 1069, 1195

implementation of, 1069
LinearSolveFunction, 252, 1196
\linebreak (TEX), \[NewLine], 460
LineIndent, 1196
LineIndentMaxFraction, 1196
Lines, colored, PlotStyle, 138, 1244

colors of in three dimensions, 528
continuation, 48
dashed, PlotStyle, 138, 1244
dashing of, Dashing, 501, 1117
grid in plots, GridLines, 515, 1167
in contour plots, ContourLines, 519,

1113
in tables, RowLines, 446, 1268
input, In, 702, 1177
length of, PageWidth, 634, 1237
multiple, 48
numbering of in dialogs, 708
output, Out (%), 702, 1234
previous output, Out (%), 38, 1234
styles for, 501
styles of, PlotStyle, 138, 503, 1244
thickness of, Thickness, 501, 1304
through points, PlotJoined, 159, 1243

Lines of text, exporting, Export, 643, 1141
importing, Import, 643, 1176

LineSpacing, 611, 1196
LinkClose, 680, 1196
LinkConnect, 680, 691, 1197
LinkCreate, 680, 1197
$Linked, 1331
Linked lists, Reap, 284, 355, 1259
Linking, Mathematica sessions, 680
LinkInterrupt, 686, 1197
LinkLaunch, 683, 1197
LinkObject, 659, 687, 1198
LinkPatterns, 662, 1198
LinkProtocol, 677, 1198
LinkRead, 680, 1198
LinkReadyQ, 680, 681, 1198
Links, in notebooks, 56

via MathLink, 657
Links, 662, 1198
LinkWrite, 680, 1199
LINPACK, Inverse, 903, 1185

LinearSolve, 907, 1195
LUDecomposition, 914, 1203

LISP, bigfloats, 731
bignums, 33

dynamic scoping in, 391
gensym in, Unique, 382, 1316
in MathLink, 658
pure functions in, 249
quote in, Hold, 338, 1169

Lissajous figures, ParametricPlot, 162,
1237

List, 40, 42, 115, 118, 232, 1199
List brackets, 1022
Listability, implementing, Thread, 256, 1304
Listable, 329, 332, 900, 1043, 1199
ListContourPlot, 159, 487, 1199
ListConvolve, 937, 1200

implementation of, 1069
ListCorrelate, 937, 1201

implementation of, 1069
ListDensityPlot, 159, 487, 1201
Listen on link, LinkCreate, 680, 1197
Listener, Mathematica, 702, 1056
Listing, of symbol names, Names, 403, 1215
ListInterpolation, 934, 1201
ListPlay, 172, 565, 1201
ListPlot, 158, 159, 487, 1202
ListPlot3D, 159, 487, 537, 542, 1202
ListPlotVectorField, 168
Lists, adding elements to, 125, 288

alphabetizing, Sort, 127, 1286
appending elements to, Append, 125, 288,

1080
applying functions to, 115
applying functions to specific elements

of, MapAt, 246, 1205
arbitrary length in MathLink, 670
arithmetic on, 40
as arrays, 307
as collections of objects, 115
as matrices, 118, 899
as sets, 126
as tensors, 915
as vectors, 118
assignments to, Set (=), 305, 1277
automatic threading over, Listable, 329,

1199
blocks in, Partition, 292, 1240
building up iteratively, 306
combining, Union, 126, 1315
common elements in, Intersection,

127, 1184
concatenating, Join, 126, 1190
creating, 283
creating nested, 116
deleting elements from, Delete, 125, 288,

1119
deleting elements from, Drop, 123, 287,

1128
difference between, Complement, 127,

1109
distinct elements in, Union, 127, 1315
elements of, 41
exporting, Export, 643, 1141
extracting elements from, 41, 117
extracting ranges of elements in, 123, 287

finding structure of, 124
flattening of, Flatten, 130, 1150
formatting of, 439
generation from functions, 250
generation of, Table, 115, 1299
grouping elements in, Partition, 128,

292, 1240
growing, Sow, 355, 1286
importing, Import, 643, 1176
in MathLink, 665
indices in, 118
inserting elements in, Insert, 125, 288,

1180
intersection of, Intersection, 127, 1184
joining, Join, 126, 1190
last element of, Last, 122, 1191
levels in, 129
manipulating, 283
manipulation by name, 306
maximum in, Max, 129, 1208
minimum in, Min, 129, 1212
multidimensional, 116
nested, 289
nesting depth, ArrayDepth, 916, 1083
of graphics elements, 499
of lists, 116
of parts in expressions, Part, 235,

1238
of random numbers, 116
of rules, 299
operations on, 115
ordering, Sort, 127, 129, 1286
ordering in, Ordering, 129, 1233
pairing of elements in, Partition, 128,

292, 1240
partitioning in, Partition, 292, 1240
parts of, Part, 285, 1238
patterns for, 260, 278, 280
picking out sequences of elements, Take,

123, 287, 1301
pieces of, 122
plotting, ListPlot, 158, 1202
prepending elements to, Prepend, 125,

288, 1250
rearranging, 127
rearranging nested, 129
removing elements from, Drop, 123, 287,

1128
replacing parts of, ReplacePart, 125,

288, 1263
resetting parts of, 42, 125
reversal of, Reverse, 127, 1265
rotation of, RotateLeft, 127, 291, 1266
searching for sublists in, ReplaceList,

263, 302, 1263
segments of, Take, 123, 287, 1301
selecting parts based on criteria, Select,

251, 1273
sorting of, Sort, 127, 129, 1286
sparse, SparseArray, 295, 1287
splitting elements in, Split, 128, 292,

1288



1436 Lists — Magnitude of complex number Index

testing for as matrices, MatrixQ, 267,
1208

testing for as vectors, VectorQ, 267, 1318
tests for elements in, MemberQ, 124, 1210
threading over, Thread, 256, 1304
transposition of, Transpose, 130, 290, 1313
with specified dimensions, Array, 250,

1083
wrapping functions around elements of,

Map (/@), 245, 1205
zero length, 1022

Lists of functions, plotting, 132
Literal patterns, Verbatim, 278, 1318
Lithography, exporting for, Export, 569,

1141
Lithography format, importing from,

Import, 570, 1176
\ll (TEX), \[LessLess] (X ), 1004
LLL algorithm, LatticeReduce, 1067, 1191
\lnot (TEX), \[Not] (X ), 1001, 1221
Loadable files, directories for, 1063
Loaded packages, list of, $Packages, 397,

1335
Loading files, Get (<<), 623, 1162
Loading of packages, automatic, 401
Loading packages, 59, 640

Get (<<), 400, 1162
Local constants, With, 380, 1323
Local functions, 378
Local links, 692
Local maxima, 106
Local minima, 106
Local minimization, FindMinimum, 973,

1148
Local values, Block, 389, 1091
Local variables, 112, 378

in dialogs, DialogSymbols, 708, 1123
tracing, 364

Localization, of pseudorandom sequences,
$RandomState, 748, 1336

Location, in notebooks, NotebookLocate,
585, 1223

of data, Mean, 924, 1209
Locked, 329, 331, 1044, 1202
Locking, position of window,

WindowMovable, 620, 1322
Locking cells, Editable, 607, 1130
Locking notebooks, Editable, 619, 1130
Log, 31, 761, 1202
Log file, for network licenses, 1059
Logarithm, discrete, MultiplicativeOrder,

752, 1214
generalization of, ProductLog, 781, 1252

Logarithmic integral, LogIntegral, 774,
1203

Logarithms, base of natural, E, 32, 765,
1130

bases of, 761
branch cuts in, 763
exact, 33
expansion of, PowerExpand, 798, 1248
Log, 31, 761, 1202

LogGamma, 770, 1202
Logging, of network license manager, 1060
Logging off from Mathematica, Quit, 28,

1057, 1254
Logic expressions, input of, 183, 1001
Logic programming, 847
Logical and, \[Wedge] (� ), 1002
Logical connectives, 87
Logical operations, 86

argument evaluation in, 1046
evaluation in, 347

Logical or, \[Vee] (\ ), 1002
LogicalExpand, 87, 819, 829, 889, 1203
Login name, $UserName, 716, 1339
LogIntegral, 774, 1203
LogListPlot, 168
LogLogListPlot, 168
LogLogPlot, 168
LogNormalDistribution, 794
LogPlot, 168
long C type, 678
Long characters, 998
Long input, 48
Long numbers, 33
\[LongDash] (4 ), 996, 1377
\[LongEqual] (� ), 183, 985, 1003, 1377
\[LongLeftArrow] (a ), 1006, 1377
\Longleftarrow (TEX),

\[DoubleLongLeftArrow] (> ), 1006
\longleftarrow (TEX), \[LongLeftArrow]

(a ), 1006
\[LongLeftRightArrow] (b ), 1006, 1377
\Longleftrightarrow (TEX),

\[DoubleLongLeftRightArrow] (? ),
1006

\longleftrightarrow (TEX),
\[LongLeftRightArrow] (b ), 1006

\[LongRightArrow] (c ), 191, 1006, 1377
\Longrightarrow (TEX),

\[DoubleLongRightArrow] (@ ), 1006
\longrightarrow (TEX),

\[LongRightArrow] (c ), 1006
Lookahead, inhibiting, HoldAllComplete,

340, 1169
Lookalike characters, 984
Loopback links, 692
Loops, 348

avoiding, xiv
exiting, Break, 353, 1092
infinite, 369
nested, 348

Looseness, of lines, LineSpacing, 611,
1196

Loosening formatting, 454
\lor (TEX), \[Or] (� ), 1001, 1233
Lorenz equations, 968
Lotus 1-2-3 format, exporting, Export, 208,

642, 1141
importing, Import, 208, 642, 1176

Low-precision numbers, 728
Lower-case letters, 40, 1014
LowerCaseQ, 413, 1203

\[LowerLeftArrow] (5 ), 1006, 1378
\[LowerRightArrow] (6 ), 1006, 1378
Lowest, Min, 31, 745, 1212
Lowest terms, cancellation to, GCD, 750,

1161
Lozenge, \[Diamond] ( 8 ), 1002
LP (linear programming), 975

Minimize, 851, 1212
lpr, 215
\lq (TEX), \[RawBackquote] ( ‘ ), 1010
ls, FileNames, 206, 638, 1145
ls -l Unix command, FileByteCount,

641, 1145
\[LSlash] ( Q ), 998, 1378
LSODA, NDSolve, 1068, 1216
Lucas test, PrimeQ, 1067, 1250
LUDecomposition, 914, 1203

implementation of, 1069
Lyapunov exponent, 979

.m files, 205, 1053

.ma files, 1053
Machine arithmetic, 728, 737
Machine dependence, of file names, 639
Machine independence, 46
Machine-precision arithmetic, intervals in,

741
Machine-precision numbers, 728, 737
Machine-size numbers, in compilation, 375
$MachineDomain, 718, 1331
$MachineEpsilon, 739, 1331
MachineID, 626
$MachineID, 718, 1331
$MachineName, 718, 1331
MachineNumberQ, 728, 1203
MachinePrecision, 728, 1203
$MachinePrecision, 728, 739, 1332
$MachineType, 717, 1332
Macintosh, character encoding, 421

file names on, 639, 1053
Macintosh (notebook interface), 26, 49
Macintosh command key, \[CloverLeaf]

(� ), 1009
Macintosh PICT, exporting, Export, 568,

1141
importing, Import, 570, 1176

Maclaurin series, Series, 883, 1276
Macron mark, 998
Macros, 110

text, $PreRead, 703, 1336
user-defined, InputAutoReplacements,

613, 1179
With, 380, 1323

Magenta, 500
Magic numbers, for executables, 676
Magnification, 604, 619, 1204
MagnificationPopup window element, 621
Magnitude, Abs, 745, 1075

notation for, \[LeftBracketingBar] ( � ),
1002

Magnitude of complex number, Abs, 746,
1075



Index Main directory — Matrices 1437

Main directory, $InstallationDirectory,
637, 1330

Main loop, in MathLink, 685
of Mathematica, 702, 1056
subsidiary, 708

main(), 664, 679
arguments to, 698

Maintain unevaluated (hold), 336
Make 2D menu item, 176, 177, 430, 461
MakeBoxes, 475, 1204
MakeExpression, 475, 1204
Manipulation, of algebraic expressions, 69,

797
of strings, 407
of trigonometric expressions, 811

Mantissa, 437, 1021
MantissaExponent, 726, 1204
Manual MathLink type, 665
Manufacturer, $MachineType, 717, 1332
Map (/@), 244, 245, 284, 1025, 1205

levels in, 1041
MapAll (//@), 245, 254, 1025, 1205
MapAt, 245, 246, 1205
MapIndexed, 246, 284, 1205

levels in, 1041
Mapping, of characters, 417
Mappings, functions as, 309
\mapsto (TEX), \[RightTeeArrow] (7 ),

1006
MapThread, 247, 1206
Margins, around windows, WindowMargins,

620, 1322
for cells, CellMargins, 605, 1099
for plots, PlotRegion, 509, 1244
of box, BoxMargins, 455

Marichev-Adamchik methods, Integrate,
1070, 1182

Marker, alignment, \[AlignmentMarker],
451

cell, ShowCellBracket, 604, 1280
Markers, in data files, TokenWords, 648,

1308
Markings, on axes, Ticks, 512, 552, 1305
Markowitz products, Solve, 1068, 1285
Marks, in MathLink, 693

in numbers, NumberMarks, 730, 1228
Markup, for web, MathMLForm, 211, 1207
Marsaglia-Zaman generator, Random, 1067,

1254
Mask, BitAnd, 756, 1089
Masking, of images, ListConvolve, 937,

1200
Master files, for packages, 640, 1065
Master index, online, 57
MAT format, exporting, Export, 208, 1141

importing, Import, 208, 1176
Matches, non-unique, 270, 274, 1050
Matchfix operators, 468, 1021
Matching, implementation of, 1066

of brackets, DelimiterFlashTime, 613,
1120

of fonts, 613, 1010

of patterns, 259, 1049
of strings, StringMatchQ, 411, 1292
putting constraints on, Condition (/;),

265, 1111
Matching characters, 1003
MatchLocalNames, 365, 1206
MatchQ, 268, 346, 347, 1206
Material implication, Implies, 834, 1174
Materials, reflection properties of, 547
$MATHEMATICA_BASE environment variable,

1055
$MATHEMATICA_USERBASE environment

variable, 1055
\[MathematicaIcon] (8 ), 995, 1378
Mathematical constants, 32, 765
Mathematical equivalence, Equal (==), 347,

1135
Mathematical facts, 817
Mathematical functions, general conventions

for, 1043
naming conventions for, 745

Mathematical notation, for derivatives, 856
in notebooks, 35
traditional, 37
TraditionalForm, 193, 1313

Mathematical operations, 79
Mathematical physics, special functions of,

769
Mathematical relations, 281
Mathematical tables, integrals in, 864
Mathematics of computation, 327
MathieuC, 789, 1206
MathieuCharacteristicA, 789, 1206
MathieuCharacteristicB, 789, 1206
MathieuCharacteristicExponent, 789,

1207
MathieuCPrime, 789, 1207
MathieuS, 789, 1068, 1207
MathieuSPrime, 789, 1207
$MATHINIT environment variable, 1055
$MATHKERNELINIT environment variable,

1055
MathLink, 44, 216, 657

intermediate files in, 667
MathLink files, 1053
MathLink library, listing of functions in,

1340
MathLink templates, 659
mathlink.h, 677
MathLive, 20
mathlm, 1058
MathMLForm, 211, 425, 1207
MathReader, 53
Matrices, 118, 896

applying functions to, 244, 245
band diagonal, 897
columns of, 898
columns of, Part, 120, 1238
components of, Part, 118, 1238
condition number of,

SingularValueList, 913, 1283
construction of, 896

determinants of, Det, 121, 905, 1122
diagonal, DiagonalMatrix, 120, 896, 1122
division of, LinearSolve, 907, 1195
eigenvalues of, Eigenvalues, 121, 910,

1131
eigenvectors of, Eigenvectors, 121, 910,

1131
elements of, Part, 118, 1238
exponentials of, MatrixExp, 906, 1207
exporting, Export, 208, 1141
extracting columns of, 898
extracting pieces of, 898
extracting submatrices of, 898
formatting of, 439
formatting of, GridBox, 445, 1167
formatting of, MatrixForm, 120, 1207
from linear equations,

CoefficientArrays, 922, 1105
functions of, JordanDecomposition, 915,

1190
generalized inverses of, PseudoInverse,

914, 1252
generating, Array, 250, 1083
generation of, 120, 896
Hilbert, 121
identity, IdentityMatrix, 120, 896,

1173
ill-conditioned, 904
importing, Import, 208, 1176
input of, 186
inversion of, Inverse, 121, 903, 1185
Jordan decomposition of,

JordanDecomposition, 915, 1190
kernel of, NullSpace, 908, 1227
left multiplication, Dot (.), 902, 1127
linear programming, 975
lower triangular, 897
minors of, Minors, 905, 1212
Moore-Penrose inverse of,

PseudoInverse, 914, 1252
multiplication by scalar of, 901
multiplication by vectors of, Dot (.), 901,

1127
multiplication of, Dot (.), 119, 901, 1127
null spaces of, NullSpace, 907, 1227
operations on, 900, 905
outer products of, Outer, 901, 1234
patterns for, 280
powers of, MatrixPower, 906, 1208
pseudoinverses of, PseudoInverse, 914,

1252
QR decomposition of, QRDecomposition,

914, 1253
random, 897
rank of, MatrixRank, 910, 1208
reading from data files, ReadList, 644,

1257
rectangular, 909
resetting parts of, 126, 285, 899
right multiplication, Dot (.), 902, 1127
row reduction of, RowReduce, 907, 1268
rows of, Part, 118, 1238



1438 Matrices — Mistakes Index

Schur decomposition of,
SchurDecomposition, 915, 1271

singular, 904
singular value decomposition of,

SingularValueDecomposition, 914,
1283

sparse, SparseArray, 295, 920, 1287
special types of, 897
symbolic representation of, 902
testing for, MatrixQ, 267, 900, 1208
trace of, Tr, 905, 1310
transpose of, Transpose, 121, 905, 1313
tridiagonal, 897
upper triangular, 897
zero, 897

Matrix equations, 829
existence and uniqueness of solutions,

908
LinearSolve, 907, 1195

Matrix indices, commas between, 1008
Matrix inversion, approximate numerical,

904
assumption of non-zero determinant in,

903
high-precision numbers in, 904
numerical errors in, 904
speed of, 77

Matrix Market format, exporting, Export,
208, 1141

Import, 923, 1176
importing, Import, 208, 1176

Matrix pencils, Eigenvalues, 913, 1131
MatrixExp, 906, 1069, 1207

implementation of, 1069
MatrixForm, 120, 439, 1207
MatrixPower, 906, 1208
MatrixQ, 267, 900, 1208
MatrixRank, 907, 910, 1208

implementation of, 1069
Matte surfaces, 546
Max, 31, 129, 745, 1208
MaxBend, 138, 1208
$MaxExtraPrecision, 733, 1332
Maximal element, of list, Max, 129, 1208
Maximization, numerical, NMaximize, 106,

974, 1219
Maximize, 92, 850, 951, 1209

implementation of, 1070
Maximum, Max, 31, 745, 1208
$MaxLicenseProcesses, 718
$MaxMachineNumber, 739, 1017, 1332
MaxMemoryUsed, 712, 713, 1209
$MaxNumber, 739, 1332
$MaxPrecision, 736, 1332
MaxRecursion, 956
MaxSteps, 966, 968
MaxStepSize, 966
mcc, 661, 677
mdefs.h, 213
Mean, 109, 794, 924, 1209
Measure of complexity,

ComplexityFunction, 815, 1110

\[MeasuredAngle] ( ] ), 996, 1378
Measures (units), 78
Media (streams), 630
Median, Quantile, 795, 1253
Median, 109, 924, 1209
Medical imaging, exporting, Export, 568,

1141
importing, Import, 570, 1176

\[MediumSpace], 454, 1008, 1378
Megabytes, of memory used, 713
MeijerG, 780, 872, 1209
Mellin transform, program for, 18
Mellin transform methods, DSolve, 1071,

1129
Integrate, 1070, 1182

MemberQ, 124, 268, 1210
Membership test, MemberQ, 124, 1210
Memo functions, 314
Memory, allocation by Mathematica, 712

arrangement of expressions in, 221
disowning in MathLink, 674
in infinite loops, 370
limitations imposed by size of, 75
optimizing use of, 714
saving, 703
used by expressions, ByteCount, 714,

1095
Memory allocation, in MathLink, 667
Memory management, 221, 712, 1066
MemoryConstrained, 713, 1210
MemoryInUse, 712, 1210
Menu, interrupt, 62

palettes, 35
Menu item, for creating arrays, 186
Menu settings, for front end, 622
Menus, executing from kernel,

FrontEndTokenExecute, 593
Merging lists, Union, 126, 1315
Mesh, 148, 151, 517, 539, 540, 1210
MeshRange, 539, 1210
MeshStyle, 503, 517, 539, 1210
Message, 482, 1211

channel for, 633
Message options, for front end, 622
MessageList, 481, 702, 1211
$MessageList, 481, 709, 1333
MessageName (::), 479, 1024, 1211
MessageOptions, 592
MessagePacket, 684, 700
$MessagePrePrint, 480, 706, 1333
Messages, 61, 479

about new symbols, 404
checking for, Check, 481, 1102
full form of, $MessagePrePrint, 706,

1333
in object-oriented programming, 319
international, 483, 706
languages for, $Language, 706, 1331
preprocessing of, $MessagePrePrint,

706, 1333
suppressing, 61, 479
switching off, 61, 479

switching on, 61, 479
symbol creation, 1015
tracing of, Trace, 358, 1310
usage, 484

Messages, 479, 1052, 1211
$Messages, 705, 1333
Messaging mechanisms, 657
Metacharacters, 58, 411

in file names, 637, 1053
Metafile format, exporting, Export, 568,

1141
importing, Import, 570, 1176

Metallic surfaces, 547
Method, 978
Method of lines, NDSolve, 1068, 1216
Method of undetermined coefficients,

SolveAlways, 833, 1285
Methods, in object-oriented programming,

319
Metric, Norm, 119, 1221
Metric tensors, 915
MGF graphics format, exporting, Export,

568, 1141
importing, Import, 570, 1176

\[Mho] (� ), 994, 1378
\[Micro] ( ^ ), 192, 984, 994, 1378
Microsoft metafile format, exporting,

Export, 568, 1141
importing, Import, 570, 1176

Microsoft wave format, exporting, Export,
569, 1141

importing, Import, 570, 1176
Microsoft Windows, character encoding, 421

files in, DOSTextFormat, 1054
Microsoft Windows (notebook interface), 26,

49
Microsoft Word, 20
\mid (TEX), \[VerticalBar] ( � ), 1005
Miller-Rabin test, PrimeQ, 1067, 1250
Min, 31, 129, 745, 1212
Minimal element, of list, Min, 129, 1212
Minimal polynomial, 826
Minimax approximations, 1068
Minimization, errors in numerical, 953

exact, Minimize, 850, 1212
numerical, FindMinimum, 973, 1148
numerical, NMinimize, 106, 974, 1220

Minimize, 92, 850, 851, 852, 1070, 1212
implementation of, 1070

Minimum, Min, 31, 745, 1212
$MinMachineNumber, 739, 1017, 1333
$MinNumber, 739, 1333
Minors, 905, 1212
$MinPrecision, 736, 1333
MinRecursion, 956
Minus (-), 29, 1027, 1212
\[MinusPlus] (_ ), 1000, 1378
Minute, Date, 709, 1117
Minutes, \[Prime] ( M ), 996, 1250
Mirrors, 547
Mistakes, common, 34, 39

syntax, 51



Index Mixing text and formulas — Multiple invocations 1439

Mixing text and formulas, 196
mkdir command, CreateDirectory, 641,

1116
.ml files, 1053
MLAbort, 697, 1341
MLActivate(), 698, 1341
MLCheckFunction(), 672, 1341
MLClearError(), 696, 1341
MLClose(), 692, 698, 1341
MLCreateMark(), 693, 1341
MLDeinitialize(), 698, 1341
MLDestroyMark(), 693, 1342
MLDisownByteString(), 679, 1342
MLDisownIntegerArray(), 675, 1342
MLDisownIntegerList(), 674, 1342
MLDisownRealArray(), 675, 1342
MLDisownRealList(), 674, 1342
MLDisownString(), 675, 1342
MLDisownSymbol(), 675, 676, 1342
MLDisownUnicodeString(), 679, 1343
MLEndPacket(), 689, 699, 1343
MLENV, 1340
MLError(), 696, 1343
MLErrorMessage(), 696, 1343
MLEvaluateString(), 664, 689, 1343
MLFlush(), 700, 1343
MLGetArgCount(), 694, 1343
MLGetByteString(), 679, 1344
MLGetDouble(), 678, 1344
MLGetFloat(), 678, 1344
MLGetFunction(), 676, 1344
MLGetInteger(), 671, 694, 1344
MLGetIntegerArray(), 675, 1345
MLGetIntegerList(), 674, 1345
MLGetLongInteger(), 678, 1345
MLGetNext(), 694, 1345
MLGetReal(), 671, 694, 1345
MLGetRealArray(), 675, 1346
MLGetRealList(), 674, 1346
MLGetShortInteger(), 678, 1346
MLGetString(), 675, 679, 694, 1346
MLGetSymbol(), 675, 694, 1346
MLGetUnicodeString(), 679, 1346
MLInitialize(), 698, 1347
MLINK, 1340
MLLoopbackOpen(), 692, 1347
MLMain(), 664, 679, 1347
MLMARK, 1340
MLNewPacket(), 697, 699, 1347
MLNextPacket(), 699, 1347
MLOpenArgv(), 698, 1347
MLOpenString(), 698, 1348
MLPROTOTYPES, 677
MLPutArgCount(), 696, 1348
MLPutByteString(), 679, 1348
MLPutDouble(), 678, 1348
MLPutFloat(), 678, 1348
MLPutFunction(), 667, 1348
MLPutInteger(), 667, 696, 1348
MLPutIntegerArray(), 667, 1349
MLPutIntegerList(), 667, 1349

MLPutLongInteger(), 678, 1349
MLPutNext(), 696, 1349
MLPutReal(), 667, 696, 1349
MLPutRealArray(), 667, 1349
MLPutRealList(), 667, 1349
MLPutShortInteger(), 678, 1350
MLPutString(), 667, 679, 696, 1350
MLPutSymbol(), 667, 696, 1350
MLPutUnicodeString(), 679, 1350
MLReady(), 700, 1350
MLSeekMark(), 693, 1350
MLTK constants, 695
MLTransferExpression(), 692, 1350
Mnemonic, ButtonNote, 597, 1094
Möbius function, MoebiusMu, 752, 1214
Möbius inversion formula, 753
Mod, 31, 749, 809, 1213
ModalDialog window frame option, 621
ModelessDialog window frame option,

621
Modeling lights, AmbientLight, 545, 1079
Models, determination of parameters in,

Fit, 929, 1149
discrete, CellularAutomaton, 942, 1101
\[DoubleRightTee] ( 4 ), 1007

\models (TEX), \[DoubleRightTee] ( 4 ),
1007

Modem, 27
Modification date, for files, FileDate, 641,

1145
Modified names, 989
Modifier keys, 1009
Modifiers, input of, 188
Modifying built-in functions, 321
Modular angle, in elliptic functions, 782
Modular equations, Reduce, 843, 1261
Modular functions, elliptic, 787
Modular inverses, PowerMod, 752, 1248
Modular powers, PowerMod, 752, 1248
Modular root, of unity,

MultiplicativeOrder, 752, 1214
ModularLambda, 787, 1213
Module, 112, 378, 386, 389, 391, 1213

evaluation of, 384
$ModuleNumber, 381, 1333
Modules, compared with blocks, 391

full story on, 381
Moduli, polynomial, PolynomialMod, 804,

1246
Modulo, Mod, 31, 749, 1213
Modulus, 31

Abs, 34, 745, 746, 1075
in elliptic functions, 782

Modulus, 809, 1213
MoebiusMu, 752, 1214
Monitor escapes, 629
Monitoring, algorithms, 977

of program execution, 356
Monitoring evaluation, in real time,

TracePrint, 365, 1312
monitorlm, 1060

Monochrome display, ColorOutput, 564,
1106

graphics on, 563
Monte Carlo integration, NIntegrate, 957,

1219
Monte Carlo methods, 31, 748
MonteCarlo, 1068
Month, Date, 709, 1117
Moore-Penrose inverse, PseudoInverse,

914, 1252
Most, 123, 1214
Motion keys, 176, 180
Mouse input, 51
Mouse selection, in two-dimensional

expressions, 180
MovableModalDialog window frame

option, 621
Move selection, SelectionMove, 582, 1275
Movies, 51, 170, 617
Moving, of windows, WindowMovable, 620,

1322
Moving around, on screen, 176
Moving averages, ListCorrelate, 937,

1201
Moving directories, RenameDirectory, 641,

1262
Moving files, RenameFile, 641, 1262
Moving graphics object, Offset, 507, 1230
\mp (TEX), \[MinusPlus] (_ ), 1000
mprep, 661
MPS, importing, Import, 570, 1176
MS-DOS, files in, DOSTextFormat, 1054
MS-DOS (text-based interface), 27, 48
MTX format, exporting, Export, 208, 1141

Import, 923, 1176
importing, Import, 208, 1176

\[Mu] ( Μ ), 175, 984, 990, 1378
Mu law format, exporting, Export, 569,

1141
importing, Import, 570, 1176

Mu operator, FixedPoint, 241, 1149
Select, 251, 1273

MultiDimensional, 1068
Multifrontal methods, LinearSolve, 1069,

1195
Multiline expressions, 1037
MultilineFunction, 459
Multinomial, 757, 758, 1214
Multinormal distribution, 109
Multiple angle formulas, TrigReduce, 71,

811, 1314
Multiple arguments, applying functions

with, MapIndexed, 246, 1205
matching of, 272

Multiple curves, styles of, PlotStyle, 503,
1244

Multiple derivatives, input of, 186
Multiple functions, plots of, 132
Multiple integrals, Integrate, 82, 1182
Multiple invocations, of external programs,

687



1440 Multiple matches for patterns — Nonlinear differential equations Index

Multiple matches for patterns,
ReplaceList, 302, 1263

Multiple parts, picking out, Part, 235, 1238
replacing, ReplacePart, 235, 1263

Multiple-valued functions, 764
Multiplication, notation for, 35

of matrices, Dot (.), 119, 1127
patterns involving, 270
represented by spaces, 1032

Multiplicative properties, 818
MultiplicativeOrder, 752, 1214
Multiplicity, Count, 124, 261, 1115

of eigenvalues, 911
of roots, 823

Multiply, Times (*), 29, 1306
Multivalued functions, 762
Multivariate differential equations, DSolve,

874, 1129
Multivariate hypergeometric function,

AppellF1, 781, 1080
Multivariate normal distribution, 109
Music, 171
Musical notation, 996
mv Unix command, RenameFile, 641, 1262
.mx files, 205, 627, 640, 1053

N, 30, 33, 102, 103, 320, 728, 735, 1214
implementation of, 1067
precision in, 728

Nabla, \[Del] (6 ), 1000
Grad, 97

\nabla (TEX), \[Del] (6 ), 994, 1000
Name, of user, $UserName, 716, 1339
Named pipes, 658
NameQ, 403, 1215
Names, 40

ending with Q, 1039
for symbols, 392
full, 1015
functions without, Function (&), 248,

1159
general treatment of, 378
generating unique, Unique, 382, 1316
in packages, 59
in tables, TableHeadings, 443, 1300
listing of all built-in, 1073
of characters, 985, 1352
of files, ToFileName, 639, 1308
of functions, 111
of packages, 400
of patterns, 263
of streams, 631
of symbols, 1014
of symbols, SymbolName, 402, 1298
on plots, PlotLabel, 134, 511, 1243
removing, Remove, 395, 403, 1261
scope of, 378
searching for, 58
shadowing of, 395
short, 1015
special characters in, 1014
uniqueness of, 392

Names, 403, 1215
Names files, 402
Naming, of fonts, FontSubstitutions,

612, 1152
Naming conventions, 35, 1039

for mathematical functions, 745, 1039
for symbols, 1014

NaN, 742
Nand, 87, 1215
\[Nand] (� ), 1001, 1378
Native character sets,

$CharacterEncoding, 421, 1327
\[Natural] ( ` ), 192, 996, 1378
Natural logarithm, Log, 31, 1202
Natural numbers, set of,

\[DoubleStruckCapitalN] (� ), 992
.nb files, 205, 1053
nb2tex, 210
NDSolve, 105, 106, 133, 951, 961, 962, 969,

970, 979, 1068, 1216
implementation of, 1068
initial conditions for, 962
InterpolatingFunction in, 930
multiple solutions in, 963
plotting solutions from, 963

\ne (TEX), \[NotEqual] (e ), 1003
Nearest integer function, Floor, 745, 1150
\nearrow (TEX), \[UpperRightArrow] (9 ),

1006
Needs, 400, 1217
\neg (TEX), \[Not] (X ), 1001, 1221
Negation, Not (!), 87, 1221

\[Not] (X ), 1001, 1221
Negative, 1217
NegativeBinomialDistribution, 796
\[NegativeMediumSpace], 454, 1008, 1379
\[NegativeThickSpace], 454, 1008, 1379
\[NegativeThinSpace], 454, 1008, 1379
\[NegativeVeryThinSpace], 454, 1008,

1379
Neighborhoods, in arrays, Partition, 130,

1240
\neq (TEX), \[NotEqual] (e ), 1003
Nest, 241, 349, 1217
Nested cells, 51
Nested expressions, printing, 432
Nested lists, 289

rearrangement of, 129
Nested loops, 348
\[NestedGreaterGreater] (a ), 1004,

1379
\[NestedLessLess] (b ), 1004, 1379
Nesting, indenting to represent,

\[IndentingNewLine], 460
Nesting level, Depth, 239, 1122
NestList, 241, 242, 250, 1217

and Throw, 351
NestWhile, 242, 349, 1218
NestWhileList, 242, 1218
Network diagrams, 11
Network licenses, 1058
Networked computing, 47

$NetworkLicense, 718
Networks, and MathLink, 690

computer, 27
Neumann function, BesselY, 776, 1089
\[NeutralSmiley] ( : ), 995, 1379
Neville theta functions, 787
New features in Mathematica Version 5, x
New notebook, NotebookCreate, 591, 1222
New symbols, reporting, 404, 1015
New York Times, ix
\[NewLine], 460, 1008, 1010, 1379
Newlines, 48, 415, 1037

in MS-DOS, DOSTextFormat, 1054
in strings, 415
RecordSeparators, 646, 1259

$NewMessage, 482, 1334
newsym, 404, 1015
$NewSymbol, 405, 1015, 1334
Newton interpolation,

InterpolatingPolynomial, 808, 1183
Newton’s approximation, as example of

FixedPoint, 242
Newton’s method, FindRoot, 104, 1149
\nexists (TEX), \[NotExists] (c ), 1001
NEXTSTEP (notebook interface), 49
\ngeq (TEX), \[NotGreaterEqual] (d ),

1004
\ngtr (TEX), \[NotGreater] (e ), 1004
NHoldAll, 329, 1218
NHoldFirst, 329, 1218
NHoldRest, 329, 1219
\ni (TEX), \[ReverseElement] (f ), 1004
Nielsen functions, PolyLog, 772, 1246
Nim addition, BitXor, 756, 1090
NIntegrate, 103, 951, 952, 954, 957, 1068,

1219
implementation of, 1068

\nleq (TEX), \[NotLessEqual] (g ), 1004
\nless (TEX), \[NotLess] (h ), 1004
NMaximize, 106, 951, 974, 1219, 1220

implementation of, 1068
NMinimize, 106, 974, 1220

implementation of, 1068
\[NoBreak], 459, 460, 1008, 1379
\nobreak (TEX), \[NoBreak], 460
Node ID, $MachineID, 718, 1331
Nodes, in expression trees, 237
\nolinebreak (TEX), \[NoBreak], 460
Nome, in elliptic functions,

EllipticNomeQ, 782, 1133
Non-blocking reads, in MathLink, 701
Non-differentiable functions, limits of, 894
Non-local returns, Throw, 354, 1304
Non-printing characters, 1008
Non-theorem, \[LeftTee] ( % ), 1001
\[NonBreakingSpace], 459, 1008, 1379
NonCommutativeMultiply (**), 1026,

1220
NonConstants, 853, 1220
None, 136, 1220
Nonlinear differential equations, DSolve,

871, 1129



Index Nonlinear fitting — Number theory 1441

Nonlinear fitting, 109
FindFit, 108, 929, 1146

Nonlinear PDEs, 971
NonNegative, 1220
NonPositive, 1221
Nonsingular linear systems, 909
Nor, 87, 1221
\[Nor] (� ), 1001, 1379
Norm, \[LeftDoubleBracketingBar] ( � ),

1002
Norm, 119, 1221
Normal, 94, 296, 827, 888, 1221
Normal form, for singularities,

GroebnerBasis, 805, 1168
Jordan, JordanDecomposition, 915, 1190
of polynomials, PolynomialReduce, 805,

1247
Normal window frame option, 621
NormalDistribution, 794
NormFunction, 929, 966
Not, bitwise, BitNot, 756, 1090
Not (!), 87, 1028, 1221
\[Not] (X ), 1001, 1380
\not= (TEX), \[NotEqual] (e ), 1003
Notation, for expressions, 233

in Mathematica, 203
in notebooks, 35
mathematical, 193
scientific, 729, 1021

Notations, without meanings, 471
\[NotCongruent] (i ), 1003, 1380
\[NotCupCap] (j ), 1003, 1380
\[NotDoubleVerticalBar] ( k ), 1005, 1380
Note, for button, ButtonNote, 597, 1094
Notebook, unformatting, 572
Notebook, 576, 1221
Notebook commands, 578
Notebook computers, styles for,

ScreenStyleEnvironment, 197, 1272
Notebook directories, 622
Notebook files, syntax in, 1038
Notebook interface, 26, 49

animated graphics in, 170
interactive input with, 478

Notebook option inspector, 574, 601
Notebook-based interface, test for,

$Notebooks, 715, 1334
Notebook-to-TEX conversion, TeXSave, 210,

1302
NotebookApply, 585, 1222
NotebookAutoSave, 618, 1222
NotebookClose, 591, 1222
NotebookConvert, 1403
NotebookCreate, 591, 592, 1222
NotebookDelete, 585, 1222
NotebookDirectory, 592
NotebookFind, 584, 1223
NotebookGet, 578, 580, 1223
NotebookLocate, 585, 1223
NotebookML, exporting, Export, 212, 1141

importing, Import, 212, 1176
NotebookObject, 579, 1224

NotebookOpen, 578, 591, 1224
NotebookPath, 592
NotebookPrint, 591, 1224
NotebookPut, 578, 579, 580, 1224
NotebookRead, 585, 1225
Notebooks, 26, 44, 49

active elements in, 54
and packages, 205
buttons in, 54
compared to packages, 61
controlling from the kernel, 581
converting to HTML, HTMLSave, 211,

1171
converting to TEX, TeXSave, 210, 1302
generating output in, StylePrint, 478,

575, 1295
input and output in, 174
options for, 577
organization of, 49
previous results in, 38
setting options for, SetOptions, 581,

1278
setting up from kernel, 578
structure of on different computers, 47

Notebooks, 579, 1225
$Notebooks, 715, 1334
NotebookSave, 591, 1225
NotebookSelection, 591, 1225
NotebookWrite, 585, 1225
\[NotElement] (f ), 191, 1004, 1380
\[NotEqual] (e ), 182, 1003, 1380
\[NotEqualTilde] (l ), 1003, 1380
\[NotExists] (c ), 1001, 1380
\[NotGreater] (e ), 1004, 1380
\[NotGreaterEqual] (d ), 1004, 1380
\[NotGreaterFullEqual] (m ), 1004, 1380
\[NotGreaterGreater] (n ), 1004, 1380
\[NotGreaterLess] (o ), 1004, 1380
\[NotGreaterSlantEqual] (p ), 1004, 1381
\[NotGreaterTilde] (q ), 1004, 1381
\[NotHumpDownHump] (r ), 1003, 1381
\[NotHumpEqual] (s ), 1003, 1381
\notin (TEX), \[NotElement] (f ), 1004
\[NotLeftTriangle] (t ), 1005, 1381
\[NotLeftTriangleBar] (u ), 1005, 1381
\[NotLeftTriangleEqual] (v ), 1005, 1381
\[NotLess] (h ), 1004, 1381
\[NotLessEqual] (g ), 1004, 1381
\[NotLessFullEqual] (w ), 1004, 1381
\[NotLessGreater] (x ), 1004, 1381
\[NotLessLess] (y ), 1004, 1381
\[NotLessSlantEqual] (z ), 1004, 1381
\[NotLessTilde] ({ ), 1004, 1382
\[NotNestedGreaterGreater] (| ), 1004,

1382
\[NotNestedLessLess] (} ), 1004, 1382
\[NotPrecedes] (~ ), 1005, 1382
\[NotPrecedesEqual] (� ), 1005, 1382
\[NotPrecedesSlantEqual] (� ), 1005,

1382
\[NotPrecedesTilde] (� ), 1005, 1382
\[NotReverseElement] (� ), 1004, 1382

\[NotRightTriangle] (� ), 1005, 1382
\[NotRightTriangleBar] (� ), 1005, 1382
\[NotRightTriangleEqual] (� ), 1005,

1382
\[NotSquareSubset] (� ), 1005, 1382
\[NotSquareSubsetEqual] (� ), 1005, 1382
\[NotSquareSuperset] (� ), 1005, 1383
\[NotSquareSupersetEqual] (� ), 1005,

1383
\[NotSubset] (g ), 1004, 1383
\[NotSubsetEqual] (� ), 1004, 1383
\[NotSucceeds] (� ), 1005, 1383
\[NotSucceedsEqual] (� ), 1005, 1383
\[NotSucceedsSlantEqual] (� ), 1005,

1383
\[NotSucceedsTilde] (� ), 1005, 1383
\[NotSuperset] (� ), 1004, 1383
\[NotSupersetEqual] (� ), 1004, 1383
\[NotTilde] (� ), 1003, 1383
\[NotTildeEqual] (� ), 1003, 1383
\[NotTildeFullEqual] (� ), 1003, 1383
\[NotTildeTilde] (� ), 1003, 1384
\[NotVerticalBar] ( � ), 1005, 1384
Nounifying (holding), 336
Novell networks, 658
\nprec (TEX), \[NotPrecedes] (~ ), 1005
NProduct, 103, 951, 957, 1226
\nsim (TEX), \[NotTilde] (� ), 1003
NSolve, 104, 821, 951, 959, 1068, 1226

implementation of, 1068
\nsubseteq (TEX), \[NotSubsetEqual]

(� ), 1004
\nsucc (TEX), \[NotSucceeds] (� ), 1005
NSum, 103, 951, 957, 958, 1226

implementation of, 1068
NSumExtraTerms, 958
NSumTerms, 958
\nsupseteq (TEX), \[NotSupersetEqual]

(� ), 1004
\[NTilde] ( ñ ), 190, 998, 1384
\[Nu] ( Ν ), 175, 990, 1384
Nudging expressions, 455
Null, 1056, 1226
\[Null], 1008, 1384
Null list, 1022
NullRecords, 646, 648, 1227
NullSpace, 907, 908, 910, 1227

implementation of, 1069
NullWords, 646, 648, 1227
Number, of lines, $Line, 703, 1331
Number, 646, 1227
Number marks, 1021
Number of elements, Length, 236, 1192
Number of occurrences, Count, 124, 261,

1115
Number of terms, Length, 75, 1192
Number representation, continued fraction,

ContinuedFraction, 754, 1112
Number sign (#), Slot, 249, 1284
Number theory, 772

and Diophantine equations, 843
functions in, 749



1442 Number theory — Open architecture Index

L-series in, LerchPhi, 774, 1193
theorems in, 818
theorems in, Simplify, 73, 1282

Number-theoretic transforms, Times (*),
1067, 1306

NumberForm, 435, 437, 1227
NumberFormat, 436, 1228
Numbering, of equations, 202

of lines, CellLabelAutoDelete, 607, 1099
of lines in notebooks, 50
of parts in expressions, 234
of sections, 202

NumberMarks, 634, 730, 1228
$NumberMarks, 730, 1334
NumberMultiplier, 436, 1228
NumberPadding, 436, 1228
NumberPoint, 436, 1228
NumberQ, 267, 723, 724, 1228
Numbers, 29, 722

accuracy of, 727
algebraic, 809, 826
arbitrary-precision, 30, 33, 731
arbitrary-precision in MathLink, 675
bases of, 438, 725, 1021
equality testing for, 732
exact, 30, 722
fixed-precision, 737
floating-point, Real, 30, 722, 1258
formatting tables of, 440
functions of complex, 746
heads of, 723
high-precision, 728
implicit, NumericQ, 724, 1229
input forms for, 1021
input of, 644, 729
internal storage of, 1067
low-precision, 728
machine-precision, 737
output of, 435
padding in output of, 437
patterns for, 279
precision in output, 435
precision of, 727
random, Random, 747, 1254
rational, 30
rational, Rational, 722, 1255
real, Real, 30, 722, 1258
strings consisting of, DigitQ, 413, 1123
testing for, NumberQ, 267, 1228
testing for even, EvenQ, 267, 1137
testing for odd, OddQ, 267, 1230
testing for types of in patterns, 724
tests for types of, 723
truncation of, Chop, 730, 1103
types of, 722
variation of machine precision in, 738

NumberSeparator, 436, 1229
NumberSigns, 436, 1229
Numerator, 74, 1229
Numerators, expansion of,

ExpandNumerator, 801, 1138
Numeric keypad, 26

Numeric quantities, testing for, NumericQ,
267, 724, 1229

Numerical analogs of symbolic functions, 951
Numerical analysis, 740
Numerical calculations, 29, 722
Numerical computation, optimized,

Compile, 213, 1109
Numerical data, 107, 109, 924
Numerical derivatives, 791
Numerical differential equations, 105, 961

representation of solutions to, 105
Numerical differentiation, 791
Numerical errors, 737
Numerical evaluation, 30, 102, 727, 1043
Numerical factors, in polynomials,

FactorTerms, 797, 1144
pulling out, FactorTerms, 797, 1144

Numerical functions, 745
approximate, Interpolation, 932, 1183

Numerical input, 1021
Numerical integration, 82, 954

NIntegrate, 103, 954, 1219
path of, 955
recursion in, 956
sampling of functions in, 956
singularities in, NIntegrate, 954, 1219

Numerical mathematics, 102, 951
uncertainties of, 952

Numerical matrices, patterns for, 280
testing for, MatrixQ, 267, 1208

Numerical maximization, NMaximize, 106,
974, 1219

Numerical minimization, errors in, 953
FindMinimum, 973, 1148
NMinimize, 106, 974, 1220

Numerical optimization, 106
Numerical overflow, testing for, Check, 482,

1102
Numerical precision, 727

in compiled functions, 373
in examples, xv

Numerical products, NProduct, 103, 957,
1226

Numerical root finding, 960
FindRoot, 104, 1149

Numerical solution of differential equations,
NDSolve, 961, 1216

Numerical solution of equations, 87, 959
FindRoot, 960, 1149

Numerical solution of polynomial
equations, NSolve, 959, 1226

Numerical summation, 83
errors in, 953
NSum, 103, 957, 1226

Numerical values, defining, 320
Numerical vectors, patterns for, 280

testing for, VectorQ, 267, 1318
NumericFunction, 329, 724, 1043, 1229
NumericQ, 267, 724, 1044, 1229
NValues, 1052
\nwarrow (TEX), \[UpperLeftArrow] (; ),

1006

O, 885, 1230
\O (TEX), \[CapitalOSlash] ( Ø ), 998
\o (TEX), \[OSlash] ( ø ), 998
\[OAcute] ( ó ), 998, 1384
Object type, 232
Object-oriented programming, 319
Objective functions, Minimize, 850, 1212

NMinimize, 974, 1220
Objects, alphabetical listing of all built-in,

1073
defining values for, 308
definitions for, 319
notebook, NotebookObject, 579, 1224
strings as, 655
variables as, 378

Oblique, FontSlant, 444, 612, 1151
Oblique fonts, 444, 558, 612
Ocelot image, 570
Octal codes, for characters, 418
Octal digits, IntegerDigits, 725, 1181
Octal numbers, 438, 725, 1021
Octet encodings, 422
Octothorp (#), Slot, 249, 1284
Odd numbers, testing for, OddQ, 267,

1230
OddQ, 267, 723, 1230
ODEs, numerical, NDSolve, 105, 961, 1216

symbolic, DSolve, 93, 869, 1129
\odot (TEX), \[CircleDot] (� ), 1002
\[ODoubleAcute] ( ő ), 998, 1384
\[ODoubleDot] ( ö ), 190, 998, 1384
Off, 61, 404, 479, 1230
Offset, 506, 507, 1230
Offsets, in graphics, 506
\[OGrave] ( ò ), 190, 998, 1384
\[OHat] ( ô ), 998, 1384
Ohm, \[Mho] (� ), 994
\oint (TEX), \[ContourIntegral] ( � ),

1000
Old English, characters in, 999
\[Omega] (Ω ), 175, 990, 1384
Omega-pi, \[CurlyPi] (2 ), 990
\[Omicron] ( Ο ), 990, 1384
\ominus (TEX), \[CircleMinus] (� ),

1002
Omitted arguments, 274
Omitted elements, \[Ellipsis] (+ ), 996
Omitted terms, 75
On, 61, 404, 479, 1230
On top, input, 188
On top, overscript, 180

OverscriptBox, 445, 1235
One-line output, Short, 75, 1280
One-origin arrays, Mod, 749, 1213
One-sided functions, UnitStep, 879, 1316
OneIdentity, 271, 272, 329, 1050, 1231
Ones, number of, DigitCount, 755, 1123
Opaque ink, 494
Opcodes, in compiled code, 377
Open, notebook, NotebookOpen, 578,

1224
Open architecture, of Mathematica, 657



Index Open cell — Overfix operators 1443

Open cell, CellOpen, 604, 1099
Open cell groups, 52
Open files, list of, Streams, 705, 1290
Open notebook, NotebookOpen, 591, 1224
OpenAppend, 632, 1231
Openface characters, 992
Openmath, 658
OpenMath, MathMLForm, 211, 1207
OpenRead, 649, 650, 652, 1231
OpenTemporary, 629, 1231
OpenTransport, 658
OpenWrite, 632, 1232
Operands, 232
Operate, 254, 1232
Operating system, 27
Operating system command, Run, 629, 1269
$OperatingSystem, 717, 1334
Operational calculus, LaplaceTransform,

875, 1191
Operations, functional, 240

numerical, 102
structural, 254

Operations research, 975
Minimize, 851, 1212
NMinimize, 974, 1220

Operators, 230
arithmetic, 29
characters for, 984, 1351
corresponding to special characters, 472
functional, 252
implementing linearity of, Through, 254,

1304
in grammar of Mathematica, 429
in Mathematica language, 467
input forms for, 1024
input of, 232, 1023
names of, Head, 231, 1168
operations on, 254
overloading of, 319
pure functions as, 249
table of, 1023, 1024
that look similar, 985
without built-in meanings, 471
working with, 253

\oplus (TEX), \[CirclePlus] (& ), 1002
Optica, 19
Optimization, Minimize, 850, 1212

NMinimize, 974, 1220
numerical, 106, 973
numerical, NMinimize, 974, 1220

Optimize, Compile, 372, 1109
Option inspector, 574, 601
Option keys, for special characters, 982
Optional (_.), 274, 1030, 1232
Optional arguments, 275

for patterns involving built-in functions,
275

Options, 133, 1039
alphabetical listing of all built-in, 1073
for cells, 574
for notebooks, 577
for output text, StyleForm, 443, 1295

general mechanism for, 133
graphics, 133
in arrays of plots, 143
information about, 58
inheritance of cell, 600
manipulating, 144
setting global, 144
storing between sessions, 622

Options, 144, 276, 490, 581, 635, 1040,
1052, 1232

Or, bitwise, BitOr, 756, 1090
exclusive, Xor, 87, 1324
patterns involving, Alternatives (|),

269, 1079
Or (||), 87, 347, 1028, 1233

argument evaluation in, 1046
evaluation in, 347

\[Or] (� ), 183, 985, 1001, 1384
Or bar, \[Nor] (� ), 1001, 1221
Or underline, \[Xor] (� ), 1001, 1324
Order, multiplicative,

MultiplicativeOrder, 752, 1214
of integer, MultiplicativeOrder, 752,

1214
of power series, 94, 883
Sort, 127, 129, 1286
sorting into, Sort, 255, 1286

Order, 255, 1233
Order statistics, Ordering, 129, 1233

Quantile, 924, 1253
OrderedQ, 255, 268, 1233
Ordering, in commutative functions, 326

of rules, 310
of strings, Sort, 411, 1286
partial, \[Succeeds] (, ), 1005
testing for, OrderedQ, 268, 1233

Ordering, 129, 255, 1233
Orderless, 271, 329, 332, 1050, 1233
Orderless functions, in pattern matching,

261
in patterns, 270

Ordinary differential equations, numerical,
NDSolve, 105, 961, 1216

symbolic, DSolve, 93, 869, 1129
Ordinates, Axes, 134, 512, 1086
Organization, of definitions, 316
Orientation, in 3D graphics, 153

of polygons, 529
of three-dimensional object,

SphericalRegion, 536, 1287
of three-dimensional object,

ViewVertical, 534, 1319
Origin, of arrays, Mod, 749, 1213

of axes, AxesOrigin, 134, 512, 1087
Orthogonal polynomials, 766

implementation of, 1068
Oscillating functions, limits of, 894
Oscillatory, 1068
\[OSlash] ( ø ), 190, 998, 1384
\[OTilde] ( õ ), 998, 1385
\otimes (TEX), \[CircleTimes] (' ),

1002

Out (%), 38, 48, 50, 702, 1024, 1030, 1234
deleting, 703

Outer, 257, 289, 901, 902, 917, 918, 919,
1234

Outer products, generalized, Outer, 919,
1234

of tensors, Outer, 918, 1234
Outer, 902, 1234

Outliers, dropping in plots, 508
Outline, Short, 75, 431, 1280
Output, channels for, 705

finding options for, Options, 635, 1232
for C language, CForm, 213, 1101
for Fortran, FortranForm, 213, 1153
full story on, 623
graphics, 131, 486
in external files, Splice, 214, 1288
in notebooks, 174
in TEX form, TeXForm, 210, 1302
lines in, 431
literal, WriteString, 632, 1324
low-level, 630
low-level graphics, 554
of graphics, Export, 208, 567, 1141
of messages, 61, 479
of sounds, Export, 568, 1141
options for, 634
producing, 477
producing no, 75
short, Short, 75, 431, 1280
sound, 171
standard, $Output, 705, 1334
styled, StylePrint, 477, 575, 1295
suppression of, 43, 74
tabular, TableForm, 439, 1299
textual, 424
to files, Put (>>), 204, 624, 1253

$Output, 705, 1334
Output formats, defining, 473
Output forms, for derivatives, 856

for numbers, 435
operator, 474

Output lines, clearing, 703
in notebooks, 38
Out (%), 38, 1234

Output style, 573
OutputForm, 192, 424, 465, 1234
OutputFormData, 600
OutputNamePacket, 683, 700
OutputStream, 631, 1054, 1234
Oval, Circle, 496, 1103
\over (TEX), FractionBox, 445, 1155
Overall factors, in polynomials,

FactorTerms, 797, 1144
pulling out, FactorTerms, 797, 1144

OverBar, 472, 989
\[OverBrace] (� ), 997, 1385
\overbrace (TEX), \[OverBrace] (� ), 997
\[OverBracket] (< ), 997, 1385
Overdetermined linear systems, 909
OverDot, 472, 989
Overfix operators, 468



1444 Overflow — Parts Index

Overflow, numerical, 742
testing for, Check, 482, 1102

Overflow, 1017
Overhangs, in lists, Partition, 293, 1240
OverHat, 472, 989
Overlap between lists, Intersection, 127,

1184
Overlaying plots, Show, 139, 1280
\overline (TEX), OverBar, 472, 989
Overloading, of operators, 319
\[OverParenthesis] (� ), 997, 1385
Overprinting, AdjustmentBox, 455, 1078
Overriding built-in definitions, 321, 334
Overriding hold, Evaluate, 337, 1136
Overriding notebook options, 602
Overscript, 180

OverscriptBox, 445, 1235
Overscript, 472
OverscriptBox, 445, 1235
Overscripts, input of, 188
Overstrike, AdjustmentBox, 455, 1078
OverTilde, 472, 989
OverVector, 472, 989
Overwrite old output, CellAutoOverwrite,

608, 1097
Overwriting files, Put (>>), 624, 1253
\owns (TEX), \[ReverseElement] (f ),

1004
OwnValues, 1052

\P (TEX), \[Paragraph] ( � ), 996
Packages, 59, 396

and notebooks, 205
automatic loading of, 60, 401
compared to notebooks, 61
contexts in, 392, 1016
files for, $BaseDirectory, 637, 1325
for symbolic mathematics, 97
interdependence between, 399
list of loaded, $Packages, 397, 1335
location of files for, 1063
names of, 396, 640
reading in, 59, 400
searching for, 640
setting up, 397

$Packages, 397, 1335
Packed arrays, 1066
Packets, in MathLink, 633, 683

names for, 700
PaddedForm, 437, 440, 1235
Padding, of cellular automata,

CellularAutomaton, 949, 1101
of digits, IntegerDigits, 725, 1181
of lists, PadLeft, 128, 294, 1236

Padé technique, Apart, 1069, 1080
PadLeft, 128, 291, 294, 941, 1236
PadRight, 128, 291, 294, 1236
Page breaks, 609

ShowPageBreaks, 618, 1281
Page layout, 569
PageBreakAbove, 609, 1236
PageBreakBelow, 609, 1236

PageBreakWithin, 609, 1237
PageWidth, 609, 619, 634, 635, 1054, 1237

resetting for standard output,
SetOptions, 635, 1278

Paint programs, input for, Import, 570,
1176

output for, Export, 568, 1141
Palette, basic, 176
Palette buttons, ButtonBox, 595, 1092
Palette element, ButtonBox, 448, 1092
Palette notebook, ButtonNotebook, 579,

1094
Palette window frame option, 621
Palette windows, WindowFloating, 620,

1321
Palettes, 35, 54

creating your own, 198
for Greek letters, 174
for special characters, 174, 982
formatting of, 452

Palindromes, 9
Paper copy, of notebook, NotebookPrint,

591, 1224
Paper output, of notebooks, 51
PaperWidth, 610
Parabolic cylinder functions, 768

Hypergeometric1F1, 779, 1171
\[Paragraph] (� ), 996, 1385
Paragraph skip, ParagraphSpacing, 611,

1237
ParagraphIndent, 609, 611, 1237
ParagraphSpacing, 611, 1237
Parallel, \[DoubleVerticalBar] ( � ), 1005
Parallel form of Map, MapThread, 247,

1206
Parallel Mathematica sessions, 657, 680
Parallel operations, 256
Parameters, 232

assumptions about, Assumptions, 867,
1084

defining, Set (=), 39, 1277
external, Environment, 716, 1134
in elliptic functions,

InverseEllipticNomeQ, 782, 1185
in pure functions, 249
scoping of in pure functions, 385
special values of in equations, 830

Parametric amplifiers, MathieuS, 789, 1207
Parametric surfaces, 164
ParametricPlot, 161, 162, 487, 1237
ParametricPlot3D, 163, 487, 969, 1238
Parametrized zeros, 735
Parent subexpression, selecting, 180
ParentDirectory, 637, 1238
Parentheses, 29, 42, 233, 1022, 1031

colored, ShowAutoStyles, 613, 1280
in function input, TraditionalForm, 194,

1313
in output, 474
unmatched, 1037

Parenthesis, horizontal,
\[UnderParenthesis] (� ), 997

Parenthesization, in Mathematica input, 468
$ParentLink, 686, 716, 1335
$ParentProcessID, 716, 1335
Parse trees, 237
Parser, input, 1021

redefining the, 476
Parser construction, ReplaceList, 302,

1263
Parsing, 468

errors in, 51
of data files, 647
of input, ToExpression, 428, 464, 1307
of strings, 654
processing before, $PreRead, 703, 1336

\parskip (TEX), ParagraphSpacing, 611,
1237

Part, 41, 42, 73, 117, 118, 120, 122, 234,
235, 285, 898, 1014, 1024, 1040, 1238

\partial (TEX), \[PartialD] ( k ), 994,
1000

Partial derivatives, D, 80, 853, 1117
input of, 186

Partial difference equations, RSolve, 893,
1269

Partial differential equations, 962
DSolve, 874, 1129
NDSolve, 970, 1216
numerical, NDSolve, 106, 1216

Partial fractions, Apart, 70, 802, 1080
Partial quotients, ContinuedFraction, 754,

1112
Partial recurrence equations, RSolve, 893,

1269
\[PartialD] ( k ), 184, 185, 994, 1000,

1385
Partition, 128, 130, 291, 292, 293, 938,

1240
Partitions, number of, Multinomial, 758,

1214
number of, PartitionsP, 759, 1240
number of, PartitionsQ, 759, 1240
number of, StirlingS2, 759, 1290

PartitionsP, 757, 759, 1067, 1240
implementation of, 1067

PartitionsQ, 757, 759, 1240
Parts, extracting without evaluation,

Extract, 339, 1142
finding positions of, Position, 124, 261,

1247
input of, 184
numbering of, 1040
of algebraic expressions, 73
of expressions, Part, 234, 1014, 1040,

1238
of lists, 41, 122
of strings, StringTake, 407, 1293
picking out ranges of, 235
replacing, 285
replacing, ReplacePart, 125, 288, 1263
replacing without evaluation,

ReplacePart, 339, 1263
specifications of sequences of, 1040



Index Parts of expressions — Plots 1445

Parts of expressions, applying functions to,
244

applying functions to numbered,
MapIndexed, 246, 1205

applying functions to specific, MapAt,
246, 1205

Pascal, in MathLink, 658
Passing of arguments, mechanism for, 387
$PasswordFile, 718
Passwords, for encoded files, 626
Paste button action, 200, 596
Pasting, in notebooks, NotebookWrite, 585,

1225
Pasting of boxes, 461
Path, context search, $ContextPath, 394,

1327
for external programs, 659
for files, $Path, 207, 1335

Path, 637, 1240
$Path, 206, 207, 637, 659, 1335
Path integral, \[CapitalDifferentialD]

(� ), 994
Pattern (:), 263, 1028, 1030, 1240
Pattern variables, Blank (_), 259, 1090

names of, 263
scope of, 263, 386

Patterns, 113, 259, 1049
alternatives in, 269
an example of defining an integration

function, 281
associative functions in, 271
conditions on, Condition (/;), 265, 1111
constraints on, Condition (/;), 265,

1111
deleting elements that match,

DeleteCases, 262, 1120
equality testing and, 260
evaluation in, 340
examples of, 259
finding elements that match, Cases, 261,

1096
flat functions in, 270
for algebraic expressions, 261, 279
for common types of expressions, 278
for files, FileNames, 638, 1145
for linear expressions, 280
for numbers, 279
for quadratic expressions, 280
for strings, 406, 411
implementation of, 1066
in controlling expansion, 798
in rearranging polynomials, Collect,

799, 1106
multiple cases in, 270
naming of, 263
non-unique matches in, 270
number types in, 724
optional arguments in, 274
ordering of testing cases for, 1050
orderless functions in, 270
repeated, 277
scoping of, 386

testing for matching of, MatchQ, 268, 347,
1206

types of expressions in, 264
unevaluated objects in, HoldPattern,

340, 1170
PatternTest (?), 269, 1024, 1241
Pause, 710, 1241
Pay-off functions, Minimize, 850, 1212

NMinimize, 974, 1220
PBM graphics format, exporting, Export,

568, 1141
importing, Import, 570, 1176

�pd �, \[PartialD] ( k ), 185
PDEs, DSolve, 874, 1129

NDSolve, 970, 1216
numerical, NDSolve, 106, 1216

PDF, 794
Pell equations, 842

Reduce, 1070, 1261
Pending evaluations, Stack, 367, 1289
Pendulum, 783
Penning traps, MathieuS, 789, 1207
Pentagon, 495
Percent, in notebooks, 38
Percent (%), Out, 38, 1234
Percentiles, Quantile, 795, 925, 1253
Performance analysis, 220

Timing, 711, 1306
Periodic potentials, MathieuS, 789, 1207
Periodic signals, Fourier transforms of, 936
Permutations, enumeration of, StirlingS1,

759, 1290
finding, Ordering, 129, 255, 1233

Permutations, 129, 1241
Permute values, Set (=), 305, 1277
\perp (TEX), \[UpTee] (� ), 1007
Perpendicular, \[UpTee] (� ), 1007
Persistent objects, 383
Perspective effects, 153, 533
PGM graphics format, exporting, Export,

568, 1141
importing, Import, 570, 1176

\phantom (TEX), ShowContents, 455
Phase, Arg, 34, 746, 1083
Phase plots, NDSolve, 105, 133, 1216
Phi, GoldenRatio, 765, 1162
\[Phi] ( Φ ), 175, 990, 1385
Phonetic spelling correction, 1072
Phong lighting model, 547
Pi, 32, 765, 1067, 1241

implementation of, 1067
input of, 175

\[Pi] ( Π ), 175, 182, 988, 990, 1385
Piano, 172
Picking elements of lists, Select, 251, 1273
PICT, exporting, Export, 568, 1141

importing, Import, 570, 1176
Picture size, ImageSize, 569, 616, 1174
Pictures, 486

exporting, Export, 208, 567, 1141
PID, $ProcessID, 716, 1336
Pie slices, Disk, 496, 1125

Piecewise continuous functions, UnitStep,
879, 1316

Piecewise functions, If, 87, 1173
Which, 346, 1320

Piecewise linear functions, Interpolation,
933, 1183

PieChart, 168
Pilcrow sign, \[Paragraph] (� ), 996
Pipes, 215, 628

as streams, 631
named, 658
reading data from, ReadList, 649, 1257
reading from, Get (<<), 215, 1162
running Mathematica through, 1057
writing to, Put (>>), 215, 1253

Pipes protocol, LinkProtocol, 677, 1198
Pixel array, Raster, 492, 497, 1255
Pixel motion, in formatting, 455
Pixel size, 453
Pixmap graphics format, exporting, Export,

568, 1141
importing, Import, 570, 1176

\[Placeholder] (	 ), 199, 587, 1008, 1385
Placeholders, in buttons, 55
Planar polygons, 524
Planck’s constant, \[HBar] ( + ), 994
Platform, computer, $System, 717, 1338
Platform dependence, of MathLink

programs, 676
Play, 171, 565, 1241
PlayRange, 172, 1242
Plot, 131, 487, 1242

evaluation in, 336, 343
options for, 134
styles of curves in, PlotStyle, 503, 1244

Plot3D, 149, 156, 487, 537, 542, 1242
evaluation in, 343
options for, 151

Plot3Matrix (Version 1 option), see
ViewCenter, 1402

PlotDivision, 138, 1243
PlotJoined, 159, 1243
PlotLabel, 134, 511, 549, 558, 1243
PlotPoints, 137, 138, 147, 148, 151, 1243
PlotRange, 134, 137, 147, 151, 507, 508,

540, 1243
finding setting for, AbsoluteOptions,

145, 490, 1075
in three-dimensional graphics, 530

PlotRegion, 507, 509, 1244
for three-dimensional plots, 535

Plots, 131
arbitrary-precision numbers in, 138
arrays of, GraphicsArray, 139, 487, 1165
aspect ratio of, AspectRatio, 134, 1084
automatic choice of range in, 136
axes in, 134, 512, 549
axis labels, AxesLabel, 134, 512, 1087
axis position, AxesOrigin, 512, 1087
boundary of, PlotRange, 134, 1243
color of curves in, PlotStyle, 500, 1244
combining, Show, 139, 1280



1446 Plots — Portable pixmap format Index

compilation of functions in, 138
contour, ContourPlot, 146, 517, 1113
converting between types of, 157
density, DensityPlot, 146, 517, 1121
efficiency of, 138
evaluation in, 338
evaluation of functions in, 132
false color, ColorFunction, 147, 517,

1106
frames in, Frame, 134, 511, 514, 1155
from tables of functions, 132
full story on, 486
generating without displaying, 491
generating without rendering, 170
glitches in, 137
grid lines in, GridLines, 134, 511, 1167
internal representation of, 143
labeling three-dimensional, 548
labeling two-dimensional, 511
labels on, PlotLabel, 134, 511, 1243
limits of, PlotRange, 134, 1243
log, 168
of lists, ListPlot, 158, 1202
of lists of functions, 132
of surfaces, Plot3D, 149, 1242
overlaying, Show, 139, 1280
packages for, 167
parametric, ParametricPlot, 161, 1237
points to sample in, PlotPoints, 138,

1243
polar, 168
range of, PlotRange, 134, 1243
redrawing, Show, 139, 1280
region in, PlotRange, 134, 1243
semilog, LogPlot, 168
shaded, 146
shading functions in three-dimensional,

156
shape of, AspectRatio, 134, 509, 1084
smoothness of, 137
styles of curves in, PlotStyle, 138, 1244
subdivision level in, PlotDivision, 138,

1243
superimposing, Show, 139, 1280
text in, 556
three-dimensional, Plot3D, 149, 1242
tick marks in, Ticks, 134, 552, 1305
view point for, ViewPoint, 152, 532, 1319
within plots, 516

PlotStyle, 138, 500, 503, 1244
Plotting symbols, drawing, Offset, 507,

1230
TextListPlot, 168

PlotVectorField, 168
Plug-in programs, 657
Plug-ins, 1065
Plus (+), 29, 1027, 1244

optional arguments in patterns involving,
275

patterns involving, 270
Plus function markers, 1073
\[PlusMinus] (n ), 191, 1000, 1385

\pm (TEX), \[PlusMinus] (n ), 1000
PNG, exporting, Export, 568, 1141

importing, Import, 570, 1176
PNM graphics format, exporting, Export,

568, 1141
importing, Import, 570, 1176

Pochhammer, 770, 1244
Pochhammer symbol, Pochhammer, 770,

1244
Point, 492, 520, 1244

in three dimensions, 525
Point location, IntervalMemberQ, 741, 1184
Point of view, ViewPoint, 152, 532, 1319
Pointers, in internal representation, 221
Points, colors of in three dimensions, 528

printer’s, 453, 507
size of, PointSize, 500, 1245

PointSize, 500, 1245
in three dimensions, 525

Poisson series, 811
Poisson-Charlier polynomials,

Hypergeometric1F1, 779, 1171
Polar angles, ExpToTrig, 71, 812, 1141
Polar form, 813
PolarPlot, 168
Poles, residues at, 895
Pollard algorithm, FactorInteger, 1067,

1143
Polling, in MathLink, 701
PolyGamma, 770, 771, 890, 1245

implementation of, 1068
Polygon, 488, 492, 520, 521, 1245
PolygonIntersections, 556, 1245
Polygons, colors of in three dimensions,

526, 546
edges of in three dimensions, EdgeForm,

528, 1130
self-intersection of, 495
three-dimensional, Polygon, 521, 1245

Polyhedra, package on, 522
seeing inside, 529

Polyline, Line, 492, 1195
PolyLog, 772, 773, 1246

implementation of, 1068
Polylogarithm functions, PolyLog, 773, 1246
Polynomial, minimal, 826
Polynomial degree, Exponent, 73, 1138
Polynomial equations, 88, 820

numerical solution of, NSolve, 959, 1226
solution of, Solve, 87, 820, 1285

Polynomial factorization, Factor, 797, 1143
Polynomial fit, FindFit, 929, 1146
Polynomial root finding, NSolve, 104, 959,

1226
Polynomial time, 76
PolynomialGCD, 803, 804, 1069, 1246
PolynomialLCM, 803, 811, 1246
PolynomialMod, 803, 804, 1246
PolynomialQ, 267, 799, 1246
PolynomialQuotient, 803, 1247
PolynomialReduce, 803, 805, 1247
PolynomialRemainder, 803, 1247

Polynomials, 797
algebraic operations on, 803
Bernoulli, BernoulliB, 758, 1088
canonical forms, 326
coefficients in, Coefficient, 799, 1105
construction from power series of, 888
cyclotomic, Cyclotomic, 807, 1116
decomposition of, Decompose, 807, 1118
degree of, Exponent, 799, 1138
division of, PolynomialQuotient, 803,

1247
Euler, EulerE, 758, 1135
expansion of, Expand, 797, 1137
exponential, 825
factoring of, Factor, 797, 1143
Fibonacci, Fibonacci, 758, 1144
finding structure of, 799
GCD of, PolynomialGCD, 804, 1246
Gegenbauer, GegenbauerC, 766, 1161
Hermite, HermiteH, 766, 1169
inequalities involving, 835
JacobiP, JacobiP, 766, 1189
Laguerre, LaguerreL, 766, 1191
Legendre, LegendreP, 766, 1192
making lists of factors in, FactorList,

806, 1143
modulo primes, 809
nested, Decompose, 807, 1118
number of roots of, 823
orthogonal, 766
over algebraic number fields, 809
patterns for, 279
pieces of, 73, 74
rearranging, Collect, 797, 1106
restrictions on, 803
resultants of, Resultant, 805, 1264
structural operations on, 797
testing for, PolynomialQ, 267, 1246
variables in, Variables, 799, 1318
with complex coefficients, 807

Polytopes, three-dimensional, 524
Pomeron, \[DoubleStruckCapitalP] (� ),

992
Population count, DigitCount, 755, 1123
Portability, of character encodings, 421

of file names, 639
of Mathematica, 46
of MathLink programs, 676

Portable anymap format, exporting,
Export, 568, 1141

importing, Import, 570, 1176
Portable bitmap format, exporting, Export,

568, 1141
importing, Import, 570, 1176

Portable computers, styles for,
ScreenStyleEnvironment, 197, 1272

Portable graymap format, exporting,
Export, 568, 1141

importing, Import, 570, 1176
Portable pixmap format, exporting, Export,

568, 1141
importing, Import, 570, 1176



Index Portrait mode — Print 1447

Portrait mode, ImageRotated, 569, 1174
Ports, 682
Position, of observer, ViewPoint, 152, 532,

1319
of substring, StringPosition, 409, 1292

Position, 124, 238, 246, 261, 1247
level specification in, 262
levels in, 238, 1041

Position-value pairs, SparseArray, 295,
1287

Positioning, in expression formatting, 455
of cells, CellMargins, 605, 1099
of limits, LimitsPositioning, 458, 1194
of textual output, 444
of windows, WindowMargins, 620, 1322

Positions, in MathLink, 693
of elements in expressions, Ordering,

255, 1233
of elements in lists, Ordering, 129, 1233

Positive, 1247
$Post, 703, 1335
Post-decrement, Decrement (--), 305, 1118
Post-increment, Increment (++), 305, 1177
Postfix, 474, 1248
Postfix notation, 233
Postfix operators, 468
Postprocessor, $Post, 703, 1335
PostScript, 554

color in, 563
exporting Encapsulated, Export, 568,

1141
exporting formulas as, 210
exporting of, 556
importing Encapsulated, Import, 570,

1176
reducing amount of, RenderAll, 556,

1262
sound extensions to, 566

PostScript, 554, 1248
Pound sterling, \[Sterling] ([ ), 994
Pounds sign, on keyboard, xv
Pounds sign (#), Slot, 249, 1284
Power, maximum in integer,

IntegerExponent, 749, 1181
of variable, Exponent, 73, 1138

Power (^), 29, 1025, 1248
optional arguments in patterns involving,

275
Power series, about infinity, Series, 884,

1276
absorbing normal expressions into, 886
as approximate formulas, 884
cancellations in, 884
composition of, ComposeSeries, 887,

1110
constants in, 884
conversion to normal expressions of, 888
differentiation of, 886
for inverse functions, 888
integration of, 886
inversion of, InverseSeries, 887, 1188
involving fractional powers, 883

involving logarithms, 884
nested, 885
of unknown functions, 883, 887
operations on, 94, 886
output form of, 885
precision of, 884
representation of, 885
reversion of, InverseSeries, 887, 1188
Series, 94, 883, 1276
solving equations involving, 889
summation of, Sum, 890, 1296
truncation of, 888
truncation of, Normal, 94, 1221
variables in, 884
ZTransform, 879, 1325

Power spectrum, Fourier, 108, 935, 1154
FourierTransform, 876, 1155

PowerExpand, 71, 72, 798, 1248
PowerMod, 752, 1248
Powers, branch cuts in, 763

expansion of, PowerExpand, 798, 1248
in expression, Exponent, 73, 1138
in logarithms, PowerExpand, 798, 1248
input of, 176
of op, ExpToTrig, 812, 1141
of matrices, MatrixPower, 906, 1208
patterns for, 261
simplification of, PowerExpand, 72, 1248

PPC protocol, LinkProtocol, 677, 1198
PPID, $ParentProcessID, 716, 1335
PPM graphics format, exporting, Export,

568, 1141
importing, Import, 570, 1176

$Pre, 703, 1335
\prec (TEX), \[Precedes] (� ), 1005
Precedence, of @, 234

of &, 249
of ->, 249
of ;, 233
of //, 234
of operators, 29, 233, 468, 1031
outline table of, 469
table of for all operators, 1024

Precedence levels, 474
PrecedenceForm, 474, 1249
\[Precedes] (� ), 1005, 1385
\[PrecedesEqual] (� ), 1005, 1385
\[PrecedesSlantEqual] (� ), 1005, 1386
\[PrecedesTilde] (� ), 1005, 1386
\preceq (TEX), \[PrecedesEqual] (� ),

1005
Precision, global parameters of, 736

in examples, xv
in input, 1021
increasing, SetPrecision, 736, 1278
numerical, 33, 727
of numerical output, 435
propagation of, 732

Precision, 727, 1249
PrecisionGoal, 956, 958, 976, 1249
\precsim (TEX), \[PrecedesTilde] (� ),

1005

PreDecrement (--), 305, 1025, 1249
Predicate logic, 847
Predicates, as assumptions, Simplify, 72,

815, 1282
for testing expressions, 267
in Select, 251

Predictor-corrector methods, NDSolve, 1216
Preferences directory, 1064

$BaseDirectory, 637, 1325
Preferences file, 622
Prefix, 474, 1249
Prefix notation, 233
Prefix operation, FoldList, 243, 1151
Prefix operators, 468
PreIncrement (++), 305, 1025, 1249
Preliminary features, 1074
Prepend, 125, 288, 1250
Prepending, to strings, StringInsert, 408,

1291
PrependTo, 306, 1250
$PrePrint, 703, 1336
Preprocess MathLink programs, 661
Preprocessor, $Pre, 703, 1335
$PreRead, 703, 1336
Present, in expression, MemberQ, 268, 1210

in list, MemberQ, 124, 1210
Presentation style environment, 197, 603
Preventing evaluation, 336

in printing, HoldForm, 338, 1170
Previous results, 38
Primality testing, PrimeQ, 267, 750, 1250
Primary colors, 563
Primary decomposition, GroebnerBasis,

805, 1168
Prime, 750, 1067, 1250

implementation of, 1067
\[Prime] ( M ), 996, 999, 1386
\prime (TEX), \[Prime] ( M ), 996, 1250
Prime character, Derivative ('), 855, 1122
Prime factors, FactorInteger, 31, 750,

1143
Prime moduli, 809
PrimePi, 750, 1250

implementation of, 1067
PrimeQ, 267, 723, 750, 1067, 1250

implementation of, 1067
Primes, density of, LogIntegral, 774, 1203

distribution of, PrimePi, 750, 1250
examples of fits to sequence of, 926
Gaussian, 751

Primes, 73, 817, 1250
Primitive root, MultiplicativeOrder, 752,

1214
Primitives, graphics, 486
Principal roots, 763
Principal subresultant coefficients,

Subresultants, 805, 1295
PrincipalValue, 866, 1251
Print, notebook, NotebookPrint, 591,

1224
Print, 113, 477, 1251

channel for, 633



1448 Print trace of evaluation — Quit Index

Print trace of evaluation, TracePrint, 365,
1312

Printer resolution, ImageResolution, 569,
1174

Printer’s points, 453, 500, 507
Printing, in notebooks, StylePrint, 477,

575, 1295
of contexts for symbols, 395, 401
of expressions, 425
of messages, Message, 482, 1211
of notebooks, 197
of numbers, 729
page breaks in, 609
suppression of, 43
without evaluation, HoldForm, 338, 1170

Printing expressions, Put (>>), 215, 1253
Printing files, 204, 623
PrintingStyleEnvironment, 197, 602, 618,

1251
Printout style environment, 197, 603
Private contexts, in packages, 398
Probabilistic calculations, 748
Procedural programming, avoiding, xiv
Procedure, Module, 378, 1213
Procedures, 43, 111

compilation of, Compile, 376, 1109
exiting, Return, 354, 1265
local variables in, 378

Process size, 713
Processes, multiple Mathematica, 680
$ProcessID, 716, 1336
Processing images, Import, 570, 1176
$ProcessorType, 717, 1336
Product, cap, \[Cap] (� ), 1002

cup, \[Cup] (� ), 1002
dot, Dot (.), 118, 1127
inverted, \[Coproduct] (� ), 1002
of vectors, Dot (.), 119, 1127
wedge, \[Wedge] (� ), 1002
wreath, \[VerticalTilde] ( � ), 1002

Product, 83, 951, 1251
implementation of, 1071

\[Product] (� ), 184, 185, 984, 994, 1000,
1386

$ProductInformation, 717, 1336
Production rules, in strings,

StringReplace, 410, 1292
ReplaceList, 302, 1263

Production rules (transformation rules), 299
ProductLog, 781, 1252
Products, formatting of, 459

input of, 184
multiple, Product, 83, 1251
numerical, NProduct, 103, 957, 1226
patterns involving, 270

Profiling, Timing, 711, 1306
Program equals data, 384
Program flow, 348
Program fragments, in text, 196
Program-program communication, 657
Programmability, 222
Programming, graphics, 486

Programming interface to Mathematica, 657
Programming languages, variables in

traditional, 66
Programs, 111

active, Links, 662, 1198
C, CForm, 213, 1101
communicating with external, 657
constants in, With, 380, 1323
debugging of, 356
external, 213
external, Splice, 214, 1288
Fortran, FortranForm, 213, 1153
local variables in, 378
naming of external, 676
reading data from, ReadList, 649, 1257
scoping in, 391
symbolic manipulation of, 338

Projection point, ViewPoint, 532, 1319
Prolog, 504, 1252
Prompts, input, 27, 48, 702

suppressing, $BatchOutput, 715, 1326
Proof, end of, \[FilledRectangle] ( > ),

995
Proofs, 816

errors in, 226
Properties, functions for testing, 267

of functions, 327
\[Proportion] (� ), 1003, 1386
\[Proportional] (q ), 191, 1003, 1386
Propositional calculus, operations in, 87
Proprietary files (encoding), 626
\propto (TEX), \[Proportional] (q ),

1003
Protect, 321, 330, 1044, 1252
Protected, 329, 1052, 1252
Protecting against evaluation, 336
Protection, of cells, Editable, 607, 1130

of definitions, ReadProtected, 330, 1258
of notebooks, Editable, 619, 1130
with encoded files, 626

Protocol, for interprocess communication,
657

for MathLink, LinkProtocol, 677, 1198
MathLink, 657

Prototypes, C, 677
Proves, \[RightTee] ( F ), 1001
Provided that, Condition (/;), 265, 1111
Pseudocode, in compiled code, 377
PseudoInverse, 914, 1252
Pseudoprime test, PrimeQ, 1067, 1250
Pseudorandom numbers, Random, 31, 747,

1254
with special distributions, 795

Pseudotensors, Signature, 760, 1282
\[Psi] (Ψ ), 175, 990, 1386
Psi function, PolyGamma, 771, 1245
Publish link, LinkCreate, 680, 1197
Publishing, with notebooks, 44
Punctuation, WordSeparators, 646, 1323
Pure functions, 248, 856

as examples of heads, 252
attributes for, 332

in differential equations, 869
nested, 385
scoping of, 385
variables in, 385
with several arguments, 250

Purging directories, DeleteDirectory, 641,
1120

Purple brackets, ShowAutoStyles, 613,
1280

Put, notebook, NotebookPut, 578, 1224
Put (>>), 204, 215, 624, 1029, 1253
PutAppend (>>>), 204, 624, 1029, 1253
Putting data in MathLink, 667
Putzer’s method, MatrixExp, 1069, 1207
pwd, Directory, 206, 636, 1124
Python, and MathLink, 217

in MathLink, 658

q-difference equations, RSolve, 892, 1269
QED, \[FilledRectangle] ( > ), 995
\qed (TEX), \[FilledRectangle] ( > ),

995
QR algorithm, SingularValues, 1069
QRDecomposition, 914, 1069, 1253

implementation of, 1069
Quad, \[EmptySquare] (< ), 995
Quadratic equations, 820

general form of solution to, 830
Quadratic expressions, patterns for, 280
Quadratic forms, CoefficientArrays, 922,

1105
Quadratic irrationals, ContinuedFraction,

755, 1112
Quadratic residues, 753
Quadrature, 82, 859

numerical, NIntegrate, 103, 954, 1219
Quality assurance, of Mathematica, 225
Quantifiers, 847, 1001
Quantifiers (patterns), 259
Quantile, 109, 794, 795, 924, 925, 1253
Quantization, of sound levels, 566

of time measurements, $TimeUnit, 710,
1338

Quantum mechanics, 768, 776
angular momentum in, 760

Quantum units, \[HBar] ( + ), 994
Quantum-mechanical scattering processes,

777
Quartic equations, 820
Quartiles, Quantile, 795, 925, 1253
Quasilinear PDEs, 875
QuasiMonteCarlo, 1068
quat objects, as examples, 319
Quaternions, package for, 98
Queries, 58
Question mark, 58

PatternTest (?), 269, 1241
Question mark (?), as information escape,

484
Questions (predicate functions), 267
Quintic equations, 821
Quit, 28, 706, 1057, 1254



Index Quotation marks — Reconstruction 1449

Quotation marks, \[LeftGuillemet] ( « ),
996

Quotes, display of, 406
displaying, ShowStringCharacters, 613,

1281
inside strings, 415

Quotes ("), 433
Quotient, of polynomials,

PolynomialQuotient, 803, 1247
Quotient, 749, 1254
Quotient rings, 809
Quoting (holding), 336

Raabe test, Sum, 1071, 1296
Racah coefficients, SixJSymbol, 760, 1284
Radial Bessel functions, 775
Radians, 31, 32, 761
Radical simplification, FullSimplify, 813,

1159
RadicalBox, 445, 1254
Radicals, 820

expansion of, PowerExpand, 798, 1248
formatting of, RadicalBox, 445, 1254
input of, 178
numerical evaluation of, 763

Radiology formats, exporting, Export, 568,
1141

importing, Import, 570, 1176
Radix, for numbers, 438, 725
Radix conversion, IntegerDigits, 725,

1181
Ragged arrays, 290, 441
Ragged right, TextJustification, 610,

1303
Raise to a power, Power (^), 29, 1248
\raisebox (TEX), AdjustmentBox, 455,

1078
RAM, 75, 713
Random, 31, 747, 794, 1067, 1254

implementation of, 1067
Random access, to files,

SetStreamPosition, 653, 1279
Random numbers, 31, 747

arbitrary precision, 747
lists of, 116
repeatability of, 748
seeds for, 748
with special distributions, 795

Random search, NMaximize, 1219, 1220
Random sequences, 980
$RandomState, 747, 748, 1336
Range, 119, 283, 898, 1255
Range arithmetic, 740
Ranges, Interval, 740, 1184

specification of in iterators, 83
Ranges of characters, CharacterRange,

413, 417, 1102
Ranges of elements, extracting from lists,

41
\rangle (TEX), \[RightAngleBracket]

( � ), 1002
Rank, of matrix, MatrixRank, 907, 1208

Ranking, of elements in expressions,
Ordering, 255, 1233

of elements in lists, Ordering, 129, 1233
Raster, 492, 497, 1255
Raster conversion, Export, 569, 1141
RasterArray, 497, 498, 1255
Rasters, importing graphics, Import, 571,

1176
Rational, 722, 1017, 1255
Rational approximation,

ContinuedFraction, 754, 1112
Rationalize, 746, 754, 1256

Rational expressions, 69, 797
algebraic numbers in, 810
expansion of, 801
integration of, 862
pieces of, 74
structural operations on, 801

Rational functions, formatting of,
FractionBox, 445, 1155

input of, 178
Rational numbers, 30, 722

set of, \[DoubleStruckCapitalQ] (� ),
992

Rationalize, Together, 70, 802, 1308
Rationalize, 746, 754, 1256
Rationals, 817, 1256
Ravel in APL, Flatten, 130, 255, 1150
Raw, 1016, 1256
Raw boxes, 461

entering, 463
Raw cell, entering, 572
Raw character input, $CharacterEncoding,

420, 1327
Raw codes, for characters, 418
Raw data, 1016
Raw form, of cells, 427, 572
Raw output, WriteString, 632, 1324
\[RawAmpersand] ( & ), 1010, 1386
\[RawAt] ( @ ), 1010, 1386
\[RawBackquote] ( ‘ ), 1010, 1386
\[RawBackslash] ( \ ), 1010, 1386
\[RawColon] ( : ), 1010, 1386
\[RawComma] ( , ), 1010, 1387
\[RawDash] ( −), 1010, 1387
RawData, 600
\[RawDollar] ( $ ), 1010, 1387
\[RawDot] ( . ), 1010, 1387
\[RawDoubleQuote] ( " ), 1010, 1387
\[RawEqual] ( = ), 1010, 1387
\[RawEscape], 1387
\[RawExclamation] ( s ), 1010, 1387
\[RawGreater] ( > ), 1010, 1387
\[RawLeftBrace] ( { ), 1010, 1387
\[RawLeftBracket] ( [ ), 1010, 1387
\[RawLeftParenthesis] ( ( ), 1010, 1387
\[RawLess] ( < ), 1010, 1387
\[RawNumberSign] ( # ), 1010, 1388
\[RawPercent] ( % ), 1010, 1388
\[RawPlus] ( + ), 1010, 1388
\[RawQuestion] ( ? ), 1010, 1388
\[RawQuote] ( ’ ), 1010, 1388

\[RawReturn], 1010, 1388
\[RawRightBrace] ( } ), 1010, 1388
\[RawRightBracket] ( ] ), 1010, 1388
\[RawRightParenthesis] ( ) ), 1010, 1388
\[RawSemicolon] ( ; ), 1010, 1388
\[RawSlash] ( / ), 1010, 1388
\[RawSpace], 454, 1010, 1388
\[RawStar] ( * ), 1010, 1388
\[RawTab], 1010, 1389
\[RawTilde] ( ~ ), 1010, 1389
\[RawUnderscore] ( _ ), 1010, 1389
\[RawVerticalBar] ( | ), 1010, 1389
\[RawWedge] ( ^ ), 1010, 1389
\rbrace (TEX), \[RawRightBrace] ( } ),

1010
\rceil (TEX), \[RightCeiling] ( � ), 1002
Re, 34, 746, 813, 1256
\Re (TEX), \[GothicCapitalR] (U ), 992
Re-executing input lines, 702
Re-running calculations, 48
Read, from link, LinkRead, 680, 1198
Read, 649, 650, 1257
Readability, of subscripts, ScriptMinSize,

457, 1272
Reader, for Mathematica notebooks, 53

Mathematica, 1056
Mathematica language, 702

Reading, data files, Import, 207, 642, 1176
data files, ReadList, 644, 1257
from notebooks, NotebookRead, 585,

1225
from strings, 654
interactive input, Input, 478, 1178
objects of various types, ReadList, 645,

1257
of input, 48
packages, Get (<<), 59, 400, 1162
processing before interactive, $PreRead,

703, 1336
ReadList, 215, 644, 645, 647, 649, 1257
ReadProtected, 329, 330, 1258
Ready, to read link, LinkReadyQ, 681, 1198
Real, 30, 646, 722, 1017, 1258
Real numbers, 30

precision of, 727
set of, \[DoubleStruckCapitalR] (� ),

992
Real part, finding symbolic, 813

Re, 34, 746, 1256
Real-time 3D, 20
RealDigits, 725, 755, 1258

implementation of, 1067
RealList MathLink type, 665
Reals, 73, 817, 839, 1258
Reap, 284, 355, 1259
Rearranging polynomials, Collect, 797,

1106
Reciprocal, Divide (/), 29, 1127
Recomputation, avoiding by storing values,

315
Reconstruction, of numbers from digits,

FromDigits, 725, 1158



1450 Record — ReturnExpressionPacket Index

Record, MathLink stream, MLCreateMark(),
693, 1341

of input, $Echo, 705, 1328
of session, 703

Record, 646, 1259
RecordLists, 644, 646, 1259
Records, null, NullRecords, 648, 1227

searching, FindList, 651, 1147
RecordSeparators, 646, 647, 648, 651, 1259
Recoupling coefficients, 760
Rectangle, 492, 516, 1260
Rectangular form, 813
Rectangular parallelepiped, Cuboid, 524,

1116
Recurrence equations, RSolve, 96, 891, 1269
Recurring decimals, RealDigits, 755, 1258
Recursion, 309, 315, 714

infinite, 369
tracing of, Trace, 359, 1310

Recursion equations, RSolve, 96, 891, 1269
$RecursionLimit, 369, 390, 715, 1048, 1337
Recursive functions, 316
Red, 500
Red variable names, 448
Redirection, of input and output, 204

of interactive output, 705
Redisplay graphics, Show, 139, 487, 1280
Redoing calculations, 48
Redraw plot, Show, 139, 487, 1280
Reduce, 90, 92, 830, 835, 839, 841, 843, 845,

1070, 1261
implementation of, 1070

Reduce in APL, Apply (@@), 243, 1081
Reducing expressions to standard form, 325
Reducing inequalities, Reduce, 835, 1261
Reducing radicals, RootReduce, 826, 1266
Reducing space, 454
Reduction, modular of polynomials,

PolynomialMod, 804, 1246
of complex powers, ExpToTrig, 812, 1141
of trigonometric functions, TrigReduce,

71, 811, 1314
Reduction formulas, FunctionExpand, 792,

1159
Redundant linear equations, NullSpace,

910, 1227
Reference counts, 1066
References, iv, 1066

in hyperlinks, 201
Referring to symbols by name, 402
Refine, 815, 816, 1261
Reflection formula, for gamma function,

FullSimplify, 792, 1159
Reflectivity of surfaces, 546, 547
Region, Interval, 740, 1184

Polygon, 492, 1245
Regions, and inequalities, Reduce, 835, 1261

defined by inequalities, 836
Register link, LinkCreate, 680, 1197
\[RegisteredTrademark] (% ), 996, 1389
Registers, in compiled code, 377
Regression analysis, 109

Regular expressions, 58, 411
Reinterpolation, FunctionInterpolation,

935, 1160
Rejection of matches, 266
Relational operators, 86

input of, 1033
mixing of, 86

Relations, as equations, 84
involving special functions,

FullSimplify, 792, 1159
Relative coordinates, 505, 531
Relative error, Precision, 727, 1249
Relative positions, of graphics objects,

Offset, 507, 1230
Relative primality, GCD, 749, 1161
Release (Version 1 function), see

Evaluate, 1402
ReleaseHold, 339, 369, 1261
$ReleaseNumber, 717, 1337
Releasing held arguments, Evaluate, 1047,

1136
Remainder, in polynomial division,

PolynomialRemainder, 803, 1247
Mod, 31, 749, 1213

Remembering previously computed values,
314

Remote computers, 682, 690
Remove, 59, 395, 397, 403, 404, 1052, 1261
Removing assignments, Unset (=.), 304,

1316
Removing elements from lists, Delete, 125,

288, 1119
Drop, 123, 287, 1128

Removing elements that match a pattern,
DeleteCases, 262, 1120

Removing files, DeleteFile, 641, 1120
Removing functions, Clear, 110, 1103
Removing objects, 1052
Removing sublists, Sequence, 258, 1275
Removing symbols, Clear, 304, 1103
Removing values, Unset (=.), 39, 1316
RenameDirectory, 641, 1262
RenameFile, 641, 1262
Renaming, of variables, 385
RenderAll, 555, 556, 1262
Rendering, low-level, 553

order of graphics, 494
suppressing for graphics, 491

Reordering, of rules, 310
of rules explicitly, 323

Reordering terms, Collect, 71, 1106
Repeat, Do, 112, 348, 1127
Repeated (..), 277, 1028, 1262
Repeated rule application,

ReplaceRepeated (//.), 300, 1263
RepeatedNull (...), 277, 1028, 1262
Repeating expressions, Table, 116, 1299
Repetitive operations, 112, 241
Replace, 301, 1262
ReplaceAll (/.), 64, 65, 299, 1029,

1263
ReplaceList, 263, 271, 274, 302, 1263

Replacements, compared with assignments,
65, 66

creating functions to perform, 312
in programs, With, 380, 1323
of parts, ReplacePart, 125, 288, 1263
of parts without evaluation,

ReplacePart, 339, 1263
of substrings, StringReplace, 410, 1292
Rule (->), 64, 1269

ReplacePart, 125, 235, 288, 339, 1263
ReplaceRepeated (//.), 300, 1029, 1263
Replaying input, 48, 702
Replaying sound, Show, 173, 1280
Replicating expressions, Table, 116, 1299
Report style definitions, 602
Representation, continued fraction,

ContinuedFraction, 754, 1112
internal, 220

Representations, for expressions, 425
Reproducing examples from book, xv
Requesting input, Input, 478, 1178
Resampling, FunctionInterpolation, 935,

1160
Reserved memory, in MathLink, 674
Reset medium, SetOptions, 635, 1278
ResetDirectory, 636, 1264
ResetMedium (Version 1 function), see

SetOptions, 1402
Resetting, symbols, 404
Resetting parts of lists, 42
Reshape in APL, Partition, 128, 292, 1240
Residuals, minimization of, FindFit, 929,

1146
Residue, Mod, 749, 1213
Residue, 895, 1264
Resizing, constraints on,

AspectRatioFixed, 616, 1084
Resizing graphics, 51
Resolution, of graphics, ImageResolution,

569, 1174
Resolve, 848, 1264

implementation of, 1070
Resource constraints, 712
Rest, of arguments in pure functions,

SlotSequence (##), 250, 1285
Rest, 123, 1264
Restriction, of patterns, Condition (/;),

265, 1111
\[VerticalSeparator] ( � ), 1001

Restrictions on transformation rules,
Condition (/;), 265, 1111

Resultant, 803, 805, 1264
Results, in notebooks, 38

previous, Out (%), 38, 1234
tracing generation of, 362

������, 48
Return, 353, 354, 366, 707, 1265
Return characters, 1037

in MS-DOS, DOSTextFormat, 1054
Return to directory, ResetDirectory, 636,

1264
ReturnExpressionPacket, 684



Index \[ReturnIndicator] — Rules 1451

\[ReturnIndicator] (t ), 1009, 1389
\[ReturnKey] (= ), 1009, 1389
ReturnPacket, 685, 700
Returns, non-local, Throw, 354, 1304

soft, 460, 611
ReturnTextPacket, 683, 700
Reverse, strings, StringReverse, 407, 1293
Reverse, 127, 236, 1265
\[ReverseDoublePrime] (> ), 996, 1389
\[ReverseElement] (f ), 1004, 1389
\[ReverseEquilibrium] (? ), 1007, 1389
\[ReversePrime] ( @ ), 996, 1389
\[ReverseUpEquilibrium] (A ), 1007, 1390
Reversion of power series, InverseSeries,

887, 1188
Reviewing results, 38, 48
Revisions, in current version, x

since earlier editions, 1402
Rewinding, after MathLink errors, 697
Rewrite rules, ReplaceList, 302, 1263
Rewriting, of strings, StringReplace, 410,

1292
Rewriting algebraic expressions, 67
Rewriting rule (transformation rules), 299
\rfloor (TEX), \[RightFloor] ( � ), 1002
RGBColor, 499, 563, 1265
\[Rho] ( Ρ ), 175, 990, 1390
Riccati equations, DSolve, 873, 1129
Riemann hypothesis, 961
Riemann integrals, 867
Riemann P function, Hypergeometric2F1,

780, 1172
Riemann sheets, 762
Riemann zeta function, Zeta, 772, 1324
Riemann-Siegel formula, Zeta, 1068, 1324
Riemann-Siegel functions, 772
RiemannSiegelTheta, 772, 1265
RiemannSiegelZ, 772, 1265
Right, 442, 450
\right (TEX), 456
Right aligned, TextAlignment, 610, 1303
Right justification, TextJustification,

610, 1303
Right shift, RotateRight, 127, 291, 1267
Right-handed coordinate system, 531
\[RightAngle] ( � ), 996, 1390
\[RightAngleBracket] ( � ), 1002, 1390
\[RightArrow] (v ), 985, 1006, 1390
\Rightarrow (TEX), \[DoubleRightArrow]

(B ), 1006
\rightarrow (TEX), \[RightArrow] (v ),

1006
\[RightArrowBar] (B ), 1006, 1390
\[RightArrowLeftArrow] (C ), 1006, 1390
\[RightBracketingBar] ( � ), 1002, 1390
\[RightCeiling] ( � ), 1002, 1390
\[RightDoubleBracket] ( � ), 1002, 1390
\[RightDoubleBracketingBar] ( � ), 1002,

1391
\[RightDownTeeVector] (D ), 1007, 1391
\[RightDownVector] ( E ), 1007, 1391
\[RightDownVectorBar] (F ), 1007, 1391

\[RightFloor] ( � ), 1002, 1391
\[RightGuillemet] ( » ), 996, 1391
\rightharpoonup (TEX), \[RightVector]

(� ), 1007
\[RightModified] ( G ), 1009, 1391
\[RightSkeleton] (w ), 1009, 1391
\[RightTee] ( F ), 191, 1001, 1007, 1391
\[RightTeeArrow] (7 ), 1006, 1391
\[RightTeeVector] (H ), 1007, 1392
\[RightTriangle] (� ), 191, 1005, 1392
\[RightTriangleBar] (� ), 1005, 1392
\[RightTriangleEqual] (  ), 1005, 1392
\[RightUpDownVector] ( I ), 1007, 1392
\[RightUpTeeVector] ( J ), 1007, 1392
\[RightUpVector] ( K ), 1007, 1392
\[RightUpVectorBar] ( L ), 1007, 1392
\[RightVector] (� ), 1007, 1392
\[RightVectorBar] (M ), 1007, 1392
Rigid selection, StructuredSelection,

615, 1293
Ring, \[SmallCircle] ( � ), 1002
Ring functions, LegendreP, 778, 1192
Rings, 73, 817, 839
Risch algorithm, Integrate, 862, 1070,

1182
Rising factorial, Pochhammer, 770, 1244
\rm (TEX), FontWeight, 444, 612, 1152
rm Unix command, DeleteFile, 641,

1120
rmdir command, DeleteDirectory, 641,

1120
Robust statistics, 924
Roman fonts, 444, 558, 612

character encodings, 421
Root, primitive, MultiplicativeOrder,

752, 1214
Root, 88, 821, 1070, 1265
Root finding, complex, 961

numerical, FindRoot, 104, 960, 1149
starting points for, 961

RootReduce, 826, 1266
Roots, choice of, 763

expansion of, PowerExpand, 798, 1248
field extensions by, 809
formatting of, RadicalBox, 445, 1254
input of, 178
number of in polynomial equations, 823
simplification of, PowerExpand, 72, 1248
simplification of, Simplify, 72, 1282
simplifying, RootReduce, 826, 1266
square, Sqrt, 31, 1288

Roots, 89, 819, 1266
Roots of complex numbers, 763
Roots of equations, Solve, 87, 820, 1285
Roots of negative numbers, 763
Roots of polynomials, numerical, NSolve,

104, 959, 1226
RootSum, 827, 862, 1266
Rot, Curl, 97
RotateLabel, 514, 1266
RotateLeft, 127, 130, 291, 941, 1266
RotateRight, 127, 130, 291, 1267

Rotation, of three-dimensional coordinates,
SphericalRegion, 536, 1287

of three-dimensional object,
ViewVertical, 534, 1319

Rotation group, 768
coupling coefficients in, 760

Rotational coupling coefficients, 760
Round, 31, 745, 1267
Round brackets, \[RawLeftParenthesis]

( ( ), 1010
Roundabout indicator, \[CloverLeaf] (� ),

1009
\[RoundImplies] (¡ ), 1001, 1006, 1392
Rounding, 741
Roundoff errors, 33, 731

Chop, 730, 1103
\[RoundSpaceIndicator] ( N ), 1009, 1393
Routines, 110

compilation of, Compile, 376, 1109
exiting, Return, 354, 1265
MathLink library, 658

Row, 441
Row form, SequenceForm, 434, 1275
Row-major output order, 441
RowAlignments, 449, 1267
RowBox, 445, 1267
RowLines, 446, 449, 1268
RowMinHeight, 449, 1268
RowReduce, 907, 1268

implementation of, 1069
Rows, assigning values to, 899

of matrices, Part, 118, 1238
resetting, 126, 286

RowsEqual, 449, 1268
RowSpacings, 449, 1268
RPC, 690
\rq (TEX), \[RawQuote] ( ’ ), 1010
RSolve, 96, 891, 892, 893, 1071, 1269

implementation of, 1071
Rule (->), 64, 299, 314, 1029, 1052, 1269

implementation of, 1066
scoping in, 386

\[Rule] (v ), 182, 985, 1006, 1393
Rule 30, CellularAutomaton, 942, 1101

Random, 1067, 1254
Rule numbers, CellularAutomaton, 944,

1101
RuleDelayed (:>), 299, 314, 341, 1029,

1052, 1269
\[RuleDelayed] (x ), 1006, 1393
Ruler function, IntegerExponent, 725, 749,

1181
RulerBar toolbar element, 622
Rules, 65

applying, ReplaceAll (/.), 299, 1263
applying to whole expressions, Replace,

301, 1262
automatic application of, 303
conditions in, 345
delayed, RuleDelayed (:>), 314, 341,

1269
evaluation in, 340



1452 Rules — SelectedNotebook Index

explicit reordering of, 323
generated by Solve, 88
immediate, Rule (->), 314, 1269
immediate and delayed, 1052
in sparse arrays, 297
lists of, 65, 299, 322
naming sets of, 66, 302
ordering of, 310
organization of, 316
patterns in, 259
preventing evaluation in, RuleDelayed

(:>), 314, 1269
putting constraints on, Condition (/;),

265, 1111
reordering of, 310
scanning lists of, 302
scoping of, 385
tracing of, Trace, 360, 1310
transformation, 64, 299
use of in evaluation, 325
variables in, 385

Rulings, on surfaces, Mesh, 151, 539, 1210
Run, 629, 1269
Run length encoding, Split, 128, 292,

1288
Run-length encoding, Split, 292, 1288
Run-time, TimeUsed, 710, 1306
Runge-Kutta methods, 961

NDSolve, 979, 1216
Runge’s phenomenon, 933
Running external programs, Install, 659,

1180
Running Mathematica, 26
Runs, uniqueness of symbols between

different, 383
Runs of arguments, Sequence, 258, 1275
RunThrough, 630, 1270

\S (TEX), \[Section] ( ¢ ), 996
\[SadSmiley] (# ), 995, 1393
Same expressions, testing for, Equal (==),

85, 1135
SameQ (===), 268, 346, 347, 1028, 1270
\[Sampi] ( £ ), 990, 1393
Sample points, for inequalities,

FindInstance, 838, 1147
Sampled sounds, 172
SampleDepth, 566, 1270
SampledSoundFunction, 566, 1270
SampledSoundList, 566, 1270
SampleRate, 172, 1270
Sampling, of Mathematica, 3
Sampling in plots, PlotPoints, 137, 1243
Sandwich naming scheme, for executables,

677
SAT problem, FindInstance, 845, 1147
Satisfiability, FindInstance, 845, 1147

of inequalities, FindInstance, 838, 1147
Satisfies, \[DoubleRightTee] ( 4 ), 1001
Satisfying criterion, picking elements,

Select, 251, 1273
Saturation, of colors, 500

Save, automatic for notebooks,
NotebookAutoSave, 618, 1222

Save, 204, 624, 625, 1271
Save notebook, NotebookSave, 591, 1225
Saving, definitions, Save, 204, 624, 1271

dependencies, 625
expressions, Put (>>), 624, 1253
intermediate values, 315
local variables, 383
the complete state of Mathematica,

DumpSave, 627, 1129
\sb (TEX), SubscriptBox, 445, 1295
Scalable Vector Graphics, exporting,

Export, 568, 1141
Scalar multiplication, 121
Scalar product, Dot (.), 118, 119, 901, 1127
Scalars, 118, 899
Scaled, 505, 531, 1271
Scaled coordinates, 505, 531
Scales, on axes, Ticks, 134, 512, 552, 1305
Scaling, of color values,

ColorFunctionScaling, 517, 1106
Scan, 247, 1271

and Throw, 350
levels in, 1041

Scatter plot, ListPlot, 158, 1202
Schrodinger equation, in periodic potential,

MathieuS, 789, 1207
SchurDecomposition, 915, 1271

implementation of, 1069
Scientific notation, 29, 34, 729, 1021

ScientificForm, 435, 1272
ScientificForm, 435, 1272
Scope, of assumptions, Assuming, 818, 1084

of Throw, 351
Scoping, 112

dynamic, Block, 391, 1091
in pure functions, 385
lexical, Module, 391, 1213
of graphics directives, 499
of names, 378, 392
of pattern variables, 263
of variables, 378

Scoping constructs, 386
tracing, 364

Scratch files, 629
Scratch mark (#), Slot, 249, 1284
Scream, \[FreakedSmiley] ( " ), 995
Screen density, GrayLevel, 499, 1165

ImageResolution, 569, 1174
Screen entry, 176
Screen sizes, 620
ScreenStyleEnvironment, 197, 602, 618,

1272
Script boxes, 445
Script files, 38, 623
ScriptA, 992
\[ScriptA] ( 	 ), 993, 1393
ScriptBaselineShifts, 457, 1272
\[ScriptCapitalA] (
 ), 993, 1393
\[ScriptCapitalE] (� ), 192, 992
\[ScriptCapitalH] (� ), 992

\[ScriptCapitalL] (� ), 992
\[ScriptCapitalZ] (� ), 993, 1393
\[ScriptL] ( � ), 192, 992
ScriptMinSize, 457, 1272
Scripts, for front end,

FrontEndTokenExecute, 593
Scripts (packages), 59
\scriptscriptstyle (TEX),

ScriptSizeMultipliers, 457, 1272
ScriptSizeMultipliers, 457, 1272
\scriptstyle (TEX),

ScriptSizeMultipliers, 457, 1272
\[ScriptZ] ( � ), 993, 1393
Scroll notebook, SelectionMove, 582, 1275
Scrolling back, 38
sdb, 691
SDTS importing, Import, 208, 1176
Seams between polygons in three

dimensions, EdgeForm, 528, 1130
Search, for files, FileNames, 638, 1145

for parts, Position, 124, 261, 1247
for substrings, StringPosition, 409,

1292
in notebooks, NotebookFind, 584, 1223

Search path, context, $ContextPath, 394,
1327

for files, $Path, 206, 637, 1335
Searching, for sublists, ReplaceList, 263,

302, 1263
in files, FindList, 207, 650, 1147
in strings, 654
IntervalMemberQ, 741, 1184

\searrow (TEX), \[LowerRightArrow] (6 ),
1006

Sec, 761, 1273
Secant method, FindRoot, 1068, 1149
Sech, 761, 1273
Second, Date, 709, 1117

Timing, 711, 1306
Seconds, \[DoublePrime] (A ), 996
Section, Module, 378, 1213
\[Section] ( ¢ ), 996, 1393
Section style, 573
Sections, in notebooks, 51

numbering of, 202
Security, Protect, 321, 1044, 1252

ReadProtected, 330, 1258
Seeding of random generator, SeedRandom,

748, 1273
SeedRandom, 747, 748, 1273
Seek, in files, SetStreamPosition, 653,

1279
in MathLink, MLSeekMark(), 693, 1350
in notebooks, NotebookFind, 584, 1223

Segments, of circles, Disk, 496, 1125
Select, 251, 261, 284, 1273
Selectability, of windows,

WindowClickSelect, 620, 1321
Selectable, 448, 607, 619, 1273
Selected notebook, setting,

SetSelectedNotebook, 591, 1279
SelectedNotebook, 579, 1273



Index Selecting sublists — Signalling a process 1453

Selecting sublists, ReplaceList, 263, 302,
1263

Selection, highlighting, ShowSelection,
619, 1281

in notebooks, 581
in two-dimensional expressions, 180

SelectionAnimate, 588, 617, 1274
SelectionCreateCell, 588, 1274
SelectionEvaluate, 588, 1274
SelectionEvaluateCreateCell, 588, 1274
SelectionMove, 582, 1275
\[SelectionPlaceholder] (� ), 199, 587,

1008, 1393
Selector, part, Part, 117, 1238
Self-intersection, of polygons, 495
Self-similar, DigitCount, 756, 1123
Semi-algebraic sets, Reduce, 845, 1261
Semi-inverse, PseudoInverse, 914, 1252
Semi-log plots, LogPlot, 168
Semicolon, at end of line, 43, 75

CompoundExpression (;), 43, 111, 1029,
1111

Sending, notebooks to the front end,
NotebookPut, 578, 1224

Sensitive dependence on initial conditions,
979

Sentences, reading, 647
Separation, of colors for printing, 564
Separator, vertical, \[VerticalSeparator]

( � ), 1001
Separators, for records, RecordSeparators,

646, 1259
for words, WordSeparators, 646, 1323
in number output, NumberSeparator,

436, 1229
in tables, RowLines, 446, 1268

Sequence, of boxes, RowBox, 445, 1267
Range, 119, 1255

Sequence, 258, 671, 1275
preventing use, SequenceHold, 340, 1276

Sequence equations, RSolve, 891, 1269
Sequence of calculations, in notebooks, 51
Sequence of elements, extracting from lists,

Part, 41, 1238
Take, 123, 287, 1301

Sequence specifications, 408, 1040
SequenceForm, 434, 1275
SequenceHold, 329, 340, 1045, 1276
Sequences, in patterns, 1050

List, 40, 1199
of commands, 43
of letters, CharacterRange, 413, 417,

1102
summation of, Sum, 83, 890, 1296

Sequent, \[RightTee] ( F ), 1001
Sequential reading from files, Read, 650,

1257
Sequential searching, Find, 652, 1146
Serial lines, 27
Serial number, for streams, 631

for symbols, 381
of computer, $MachineID, 718, 1331

Series, solving for coefficients in,
SolveAlways, 833, 1285

summation of, Sum, 890, 1296
Series, 94, 883, 884, 1276

implementation of, 1071
Series expansions, Series, 94, 883, 1276
SeriesCoefficient, 889, 1276
SeriesData, 885, 1276
Server, Mathematica, 47
Service loop, MLMain(), 679, 1347
Session, saving a complete, DumpSave, 627,

1129
$SessionID, 384, 716, 1337
Sessions, 26, 1055

communicating between, 680
controlling in MathLink, 685
in book, xv
main loop in, 702, 1056
terminating, 706
uniqueness of symbols between different,

383
SessionTime, 710, 1277
Set (=), 39, 66, 303, 305, 307, 311, 1029,

1051, 1277
scoping in, 386

Set difference, \[Backslash] ( � ), 1002
Set operations, input of, 183, 1002
SetAccuracy, 736, 1277
SetAttributes, 271, 328, 1277
SetDelayed (:=), 110, 311, 1029, 1051, 1278
SetDirectory, 206, 636, 1278
SetFileDate, 641, 1278
\setminus (TEX), \[Backslash] ( � ), 1002
SetOptions, 144, 581, 635, 1040, 1278
SetPrecision, 736, 1278
setrgbcolor PostScript command, 563
Sets, complements of, Complement, 127,

1109
difference between, Complement, 127,

1109
intersection of, Intersection, 127, 1184
lists as, 126
union of, Union, 127, 1315

Sets of numbers, 73, 817, 839
SetSelectedNotebook, 591, 1279
SetStreamPosition, 653, 655, 1279
Setting up Mathematica, 26
Setting values, Set (=), 39, 1277
\sf (TEX), FontFamily, 444, 612, 1151
SGML names for characters, 174, 982,

1353
\[SHacek] ( š ), 998, 1393
Shading, Lighting, 526, 1194

of surfaces, 156, 542
Shading, 151, 155, 1279
Shading models, 544
Shadowing of names, 395

in packages, 59, 396
Shallow, 431, 432, 1279
Shape, of arrays, Dimensions, 120, 916,

1124
of plots, AspectRatio, 134, 509, 1084

of three-dimensional plots, 531
of two-dimensional plots, AspectRatio,

163, 1084
Shape fixed, AspectRatioFixed, 616, 1084
Share, 714, 1279
share directory, $BaseDirectory, 637, 1325
Shared data, 1066
Shared styles, 603
\[Sharp] ( ¤ ), 996, 1393
Sharp (#), Slot, 249, 1284
Sheets, Riemann, 762
Sheffer stroke, Nand, 87, 1215

\[VerticalBar] ( � ), 1005
Shell, Unix, 204
Shell command, Run, 629, 1269
Shell escapes, 629, 1038
Shell type, $OperatingSystem, 717, 1334
Shell variables, Environment, 716, 1134
Shift, in box, BoxBaselineShift, 455

RotateLeft, 127, 291, 1266
Shift JIS, 421
Shift map, 979
�����������	������, 181
����������, 49, 181
Shifting graphics objects, Offset, 507, 1230
Shiny surfaces, 547
Short, 75, 431, 1280
short C type, 678
Short characters, 998
Short names, conventions for, 1353
Shortcuts, user-defined,

InputAutoReplacements, 613, 1179
Shortening lists, Delete, 125, 288, 1119
Shortest form, Simplify, 68, 813, 1282
\[ShortLeftArrow] (O ), 1006, 1394
\[ShortRightArrow] (P ), 1006, 1394
Show, 139, 151, 173, 487, 1280

options for, 134, 151, 489
Show Expression menu item, 427, 572, 600
Show Ruler menu item, 605
ShowAnimation, 170
ShowAutoStyles, 613, 1280
ShowCellBracket, 604, 1280
ShowCellLabel, 607, 1280
ShowCellTags, 607, 1280
ShowContents, 455
ShowCursorTracker, 613, 1072, 1281
Showing files, 204, 623
ShowPageBreaks, 577, 618, 1281
ShowSelection, 619, 1281
ShowSpecialCharacters, 613, 1281
ShowStringCharacters, 613, 1281
Shriek, Factorial (!), 31, 757, 1143
Shut notebook, NotebookClose, 591, 1222
Side effects, of Random, $RandomState,

748, 1336
Sigma, versus summation sign, 185
\[Sigma] (Σ ), 175, 990, 1394
Sign, 745, 813, 1281
Signal processing, ListConvolve, 937, 1200

ZTransform, 879, 1325
Signalling a process, $ProcessID, 716, 1336



1454 Signals — Sounds Index

Signals, Fourier transforms of, 936
sound, 171

Signature, 757, 760, 920, 1282
Significance arithmetic, 740
Significant figures, 33, 727

in output, 435
Signing off from Mathematica, Quit, 28,

1057, 1254
SignPadding, 436, 1282
Signum, Sign, 745, 1281
Silent operation, 43, 74
\sim (TEX), \[Tilde] (� ), 1003
\simeq (TEX), \[TildeEqual] (� ), 1003
Similarity, \[Tilde] (� ), 1003
Similarity transformation, Eigenvectors,

121, 910, 1131
JordanDecomposition, 915, 1190
SchurDecomposition, 915, 1271

Simplest forms, Simplify, 68, 1282
Simplex algorithm, LinearProgramming,

1068, 1195
Minimize, 1070, 1212

Simplicity, definition of,
ComplexityFunction, 815, 1110

Simplification, adding your own rules for,
281

algebraic, 63
algebraic, Simplify, 68, 813, 1282
as interpretation of evaluation, 324
of Boolean expressions, LogicalExpand,

87, 1203
of powers, PowerExpand, 72, 1248
of special functions, FullSimplify, 792,

1159
of square roots, PowerExpand, 72, 1248
of square roots, Simplify, 72, 1282

Simplify, 68, 69, 72, 73, 813, 815, 1282
implementation of, 1070

Simplifying radicals, RootReduce, 826, 1266
Simulated annealing, NMaximize, 1219, 1220
Simultaneous equations, 89, 828

eliminating variables in, Eliminate, 832,
1132

ways to present, 829
Sin, 31, 761, 1282

manipulation of, 811
Since, \[Because] (� ), 1001
Sine integral, SinIntegral, 774, 1284
Sine integrals, nested, 864
Sine transform, FourierSinTransform,

878, 1154
SingleLetterItalics, 613, 989, 1283
Singular eigenvalue problem, Eigenvalues,

913, 1131
Singular matrices, 904
Singularities, in integrals, 866

in NDSolve, 967
in numerical integration, 955
in plots, 131, 136
normal form for, GroebnerBasis, 805,

1168
SingularityDepth, 956

SingularValueDecomposition, 914, 1283
implementation of, 1069

SingularValueList, 913, 1283
SingularValues, 1069
Sinh, 761, 1283
SinhIntegral, 774, 1284
SinIntegral, 774, 1284
SixJSymbol, 760, 1284
\[SixPointedStar] (& ), 995, 1394
Size, of expressions, ByteCount, 714, 1095

of files, FileByteCount, 641, 1145
of font, FontSize, 444, 612, 1151
of graphic, ImageSize, 569, 616, 1174
of graphics, 51
of list, Dimensions, 120, 1124
of lists in MathLink, 670
of Mathematica, 224
of plots, PlotRegion, 509, 1244
of points, PointSize, 500, 1245
of text in graphics, 558
of windows, WindowSize, 620, 1322

Size of computation, limits on, 75
MaxMemoryUsed, 713, 1209

Skeleton, 75, 1284
Skeleton output, Short, 75, 431, 1280
\[SkeletonIndicator] ( z ), 1009, 1394
\skew (TEX), AdjustmentBox, 455, 1078
Skewness, 794
Skip, data in files not between separators,

RecordSeparators, 648, 1259
line, LineSpacing, 611, 1196

Skip, 649, 650, 653, 1284
Skip packet, MLNewPacket(), 697, 1347
\sl (TEX), FontSlant, 444, 612, 1151
Slant, of font, FontSlant, 444, 612, 1151
Slash, double, 233

\[RawSlash] ( / ), 1010
Slash-dot (/.), ReplaceAll, 65, 299, 1263
Slash-semi (/;), Condition, 265, 1111
Slash-slash-dot (//.), ReplaceRepeated,

300, 1263
Slashed characters, AdjustmentBox, 455,

1078
Slater’s Theorem, Integrate, 1070, 1182
Slave processes, in MathLink, LinkLaunch,

683, 1197
Sleep, Pause, 710, 1241
Slices, of lists, 286
Slot (#), 249, 1024, 1030, 1284
SlotSequence (##), 249, 250, 1030, 1285
Small letters, 413
Small screens, styles for,

ScreenStyleEnvironment, 197, 1272
\[SmallCircle] ( � ), 191, 1002, 1394
Smaller, Less (<), 86, 1193
Smallest, Min, 31, 129, 745, 1212

position of, Ordering, 129, 1233
Smallest form, Simplify, 68, 813, 1282
Smallest universal exponent,

CarmichaelLambda, 752, 1096
\smile (TEX), \[Cup] (� ), 1002
Smiley, \[HappySmiley] (! ), 995

Smooth curves, 137
Smoothing, Interpolation, 933, 1183

of data, 109
of data, ListConvolve, 937, 1200

Smoothness assumption in numerical
procedures, 952

SMP, vii
Snapping into 2D form, 430
SND format, exporting, Export, 569, 1141

importing, Import, 570, 1176
So forth, \[Ellipsis] (+ ), 996
Sockets, 682
Soft returns, 460, 611
Software bus, in Mathematica, 657
Software engineering, of Mathematica, 224
Software floating point, 728
Solid object modeling, exporting for,

Export, 569, 1141
importing for, Import, 570, 1176

Solid-state physics, MathieuS, 789, 1207
Solids, three-dimensional, 524
Solidus, \[RawSlash] ( / ), 1010
Solution of equations, numerical, 104

numerical, FindRoot, 960, 1149
symbolic, Solve, 819, 1285

Solution of polynomial equations,
numerical, NSolve, 959, 1226

Solution sets, manipulation of, 834
Solutions, existence of, 830

generic, Solve, 90, 830, 1285
non-generic, Reduce, 90, 830, 1261
substituting result for, 820

Solve, 87, 90, 819, 820, 829, 830, 832, 889,
907, 951, 959, 1068, 1285

implementation of, 1070
SolveAlways, 833, 1285
Solving differential equations, 93, 869

numerical, NDSolve, 105, 961, 1216
symbolic, DSolve, 93, 869, 1129

Solving equations, involving power series,
889

numerically, 87, 959, 960
Solve, 87, 819, 1285

Some, Exists, 847, 1137
Sort, 127, 129, 254, 255, 411, 1286
Sorting, finding permutation for, Ordering,

129, 255, 1233
in commutative functions, 326
of strings, Sort, 411, 1286

Sound, 171
amplitude levels in, 566
clipping of, 172
exporting, Export, 569, 1141
importing, Import, 570, 1176
playing, 51
representation of, 565

Sound, 565, 1286
Sound tracks, 565
$SoundDisplay, 705
$SoundDisplayFunction, 567, 1337
Sounds, converting, Export, 567, 1141

exporting, Export, 567, 1141



Index Source — Start notebook 1455

Source, for button, ButtonSource, 597,
1094

$Input, 639, 1330
Source code, of Mathematica, 224
Sow, 284, 355, 1286
\sp (TEX), SuperscriptBox, 445, 1296
Space, memory, 713

non-breaking, \[NonBreakingSpace], 459
Space curves, ParametricPlot3D, 163, 1238
\[SpaceIndicator] ( { ), 454, 1009, 1394
Spaces, 29

in input, 35, 1032
in tables, TableSpacing, 442, 1300
WordSeparators, 646, 1323

Spacetime, 915
Spacing, around cells, CellMargins, 605,

1099
automatic, AutoSpacing, 454, 1086
in graphics arrays, GraphicsSpacing,

141, 1165
interline, LineSpacing, 611, 1196
of cells, CellMargins, 605, 1099
of columns, ColumnSpacings, 449, 1108
of rows, RowSpacings, 449, 1268

Spacing characters, 454, 1008, 1351
\[SpadeSuit] (| ), 996, 1394
Spanish characters, 190, 998
SpanLineThickness, 456
SpanMaxSize, 456
SpanMinSize, 456
Spans, Interval, 740, 1184
SpanSymmetric, 456
Sparse arrays, 295, 307
Sparse matrices, 920
SparseArray, 283, 295, 297, 920, 921, 1287

implementation of, 1069
Spatial grammar, 470
Special cases, in rules, 310
Special character fonts, 613
Special characters, 174, 414, 982

as Mathematica operators, 182, 1031
corresponding to operators, 472
displaying, ShowSpecialCharacters,

613, 1281
in Mathematica syntax, 470
in MathLink, 679
in names, 1014
preprocessing, $PreRead, 703, 1336

Special forms, information about, 59
Special functions, 769

derivatives of, 769
expanding, FunctionExpand, 792,

1159
operations on, 792

Special objects, 1016
Special output for functions, 474
Special topic sections, xv
Specific definitions, 309
Spectrum, Fourier, 108, 935, 1154

FourierTransform, 876, 1155
Specular exponent, 547
Specular reflection, 547

Speed, compilation for increasing, 372
Compile, 213, 1109
factors affecting, 711
measurement of, Timing, 711, 1306
of calculations, 76, 77
of examples, xv
of Mathematica, 220
of plots, 138
of Simplify, 69, 814

spell, 1015
Spell checking, LanguageCategory, 613,

1191
Spelling correction, 1072
SpellingCorrection, 412, 1287
Spence’s integral, PolyLog, 773, 1246
Sphere, 167
Spherical coordinates, 97
Spherical symmetry, 766
\[SphericalAngle] ( ¥ ), 996, 1394
SphericalHarmonicY, 766, 1287
SphericalPlot3D, 168
SphericalRegion, 170, 536, 1287
Spin, coupling coefficients for, 760
Spiral, as example, 10
Splice, 214, 1288
Splicing, elements into expressions,

FlattenAt, 255, 1150
elements into lists, Sequence, 258, 1275
into strings, StringForm, 433, 1291
into strings, StringInsert, 408, 1291
lists, Join, 126, 1190

Splines, 143
Interpolation, 933, 1183

Split, 128, 292, 1288
Splitting fields, 809

for polynomials, 809
Spread, of data, Variance, 109, 924, 1318
Spreadsheets, exporting, Export, 208, 642,

1141
formatting of, 440
importing, Import, 208, 642, 1176
input of, 186
reading, Import, 207, 1176
reading data from, ReadList, 644, 1257
writing, Export, 207, 1141

Spur of matrix, Tr, 906, 1310
\sqcap (TEX), \[SquareIntersection]

(� ), 1002
\sqcup (TEX), \[SquareUnion] (� ), 1002
Sqrt, 31, 1288
\[Sqrt] (� ), 1000, 1394
\sqrt (TEX), RadicalBox, 445, 1254
SqrtBox, 445, 1288
\sqsubset (TEX), \[SquareSubset] (¦ ),

1005
\sqsubseteq (TEX),

\[SquareSubsetEqual] (§ ), 1005
\sqsupset (TEX), \[SquareSuperset] (¨ ),

1005
\sqsupseteq (TEX),

\[SquareSupersetEqual] (© ), 1005
Square, \[Placeholder] (	 ), 199, 587

\[Square] (	 ), 1002, 1394
Square brackets, advantages of, 35
Square pulse, example of Fourier transform

on, 935
Square roots, choice of, 72

entering, 36
exact, 32
formatting of, SqrtBox, 445, 1288
input of, 178
multiple values of, 762
simplification of, PowerExpand, 72, 798,

1248
simplification of, Simplify, 72, 1282
Sqrt, 31, 1288

Square-free factoring, FactorSquareFree,
806, 1144

\[SquareIntersection] (� ), 191, 1002,
1394

Squares, in buttons, 55
\[SquareSubset] (¦ ), 1005, 1395
\[SquareSubsetEqual] (§ ), 1005, 1395
\[SquareSuperset] (¨ ), 1005, 1395
\[SquareSupersetEqual] (© ), 1005, 1395
\[SquareUnion] (� ), 1002, 1395
Squash, Flatten, 130, 255, 1150
Squashing, of plots, AspectRatio, 134, 495,

509, 1084
Squiggle, \[Tilde] (� ), 1003
\ss (TEX), \[SZ] ( ß ), 998
Stability of Mathieu functions, 789
Stack, maximum depth of,

$RecursionLimit, 369, 1337
of directories, DirectoryStack, 636, 1125

Stack, overscript, 180
OverscriptBox, 445, 1235

Stack, 367, 1048, 1289
Stack space, 714
Stack trace, 366

TraceAbove, 363, 1310
StackBegin, 368, 1289
StackComplete, 368, 1289
StackInhibit, 368, 1289
\stackrel (TEX), OverscriptBox, 445,

1235
Standard basis, GroebnerBasis, 805, 1168
Standard error stream, 633
Standard form, 29, 729, 1021

reduction of expressions to, 325
ScientificForm, 435, 1272

Standard output stream, 633
StandardDeviation, 109, 794, 924, 1289
StandardForm, 192, 424, 1289
Star, five-pointed, \[FivePointedStar]

(D ), 995
of David, \[SixPointedStar] (& ), 995
six-pointed, \[SixPointedStar] (& ), 995
Times (*), 29, 1306

\[Star] ( - ), 985, 1002, 1395
\star (TEX), \[FivePointedStar] (D ),

995
Star (*), as string metacharacter, 58, 411
Start notebook, NotebookCreate, 591, 1222



1456 Start-up file — Subscribe to link Index

Start-up file, 1056
Starting Mathematica, 26
Starting programs, in MathLink,

LinkLaunch, 683, 1197
StartingStepSize, 966
Startup cells, InitializationCell, 608,

1178
Startup directory, $InitialDirectory, 637,

1330
State, inspecting, 62

of pseudorandom generator,
$RandomState, 747, 748, 1336

saving, DumpSave, 627, 1129
Statements in procedures, 43
Static scoping, Module, 391, 1213
Stationary points, D, 80, 853, 1117
Statistical distributions, 793
Statistical mechanics, 773
Statistics, 109, 924

error function in, Erf, 775, 1135
Status check, 62
Status line, ButtonNote, 597, 1094
StatusArea window element, 621
stdenv, 1340
stderr, 633
stdlink, 692, 1340
stdout, 633
Stellated icosahedron, 530

\[MathematicaIcon] (8 ), 995
Step function, If, 87, 345, 1173

UnitStep, 745, 1316
StepMonitor, 977, 1290
Steps in evaluation, tracing, 356
Stereolithography, exporting for, Export,

569, 1141
Stereolithography format, importing from,

Import, 570, 1176
\[Sterling] ([ ), 192, 994, 1395
StieltjesGamma, 772, 1068, 1290

implementation of, 1068
Stiff differential equations, 967
\[Stigma] ( ª ), 990, 1395
Stile, \[VerticalSeparator] ( � ), 1001
Stirling numbers, StirlingS1, 759, 1290
StirlingS1, 757, 759, 1290
StirlingS2, 757, 759, 1290
STL format, exporting, Export, 569, 1141

importing, Import, 570, 1176
Stop, Throw, 350, 1304
stop message, 480
Stopping calculations, 62

Abort, 371, 1075
Stopping iteration, $IterationLimit, 369,

1330
Stopping output, 43
Stopping recursion, $RecursionLimit, 369,

1337
Storage, allocation by Mathematica, 712

limitations imposed by size of, 75
of expressions, 221
of sparse arrays, 1069

Store notebook, NotebookSave, 591, 1225

Strange attractors, 981
solving equations for, 968

Streamlines, plotting, PlotVectorField,
168

StreamPosition, 653, 655, 1290
Streams, 630

character encodings in,
$CharacterEncoding, 422, 1327

current input, $Input, 705, 1330
finding options for, Options, 635, 1232
for graphics output, 554
list of open, Streams, 635, 1290
lists of, 633
opening for input, OpenRead, 650, 1231
options for output, 634
output channels containing, 705
reading data from, ReadList, 649, 1257
resetting options for, SetOptions, 635,

1278
special, 633
using strings as, 654

Streams, 635, 705, 1290
Stretchable characters, 456
Stride, Take, 123, 287, 1301
String, 406, 646, 1016, 1290
String templates, StringForm, 433, 1291
StringDrop, 407, 1291
StringForm, 433, 465, 477, 480, 1291
StringInsert, 408, 1291
StringJoin (<>), 407, 412, 1025, 1291
StringLength, 407, 1291
StringMatchQ, 411, 1292
StringPosition, 409, 410, 1292
StringReplace, 410, 704, 1292
StringReplacePart, 409, 1292
StringReverse, 407, 1293
Strings, 406, 432

allocation of memory for in MathLink,
676

as representations of boxes, 460
character, 1017
compared to symbols, 406
converting to, ToString, 428, 464, 1309
converting to expressions, ToExpression,

428, 464, 1307
displaying quotes in,

ShowStringCharacters, 613, 1281
encodings for, $CharacterEncoding, 420,

1327
exporting, Export, 643, 1141
importing, Import, 643, 1176
in MathLink, 666, 679
metacharacters in, 411
operations on, 407
patterns for, 411
reading from, 654
reading from files, 646
searching, 654
tests on, 413
turning files into, ReadList, 647, 1257

StringSkeleton, 1293
StringTake, 407, 1293

StringToStream, 654, 1293
StripWrapperBoxes, 448
Stroke, \[RawSlash] ( / ), 1010

Sheffer, Nand, 87, 1215
\[VerticalBar] ( � ), 1005

Structural elements, 1351
Structural equivalence, in pattern matching,

260
SameQ (===), 347, 1270

Structural operations, 254
Structure, of cells, 599
Structure editing, ShowAutoStyles, 613,

1280
Structured programming, 352
StructuredSelection, 615, 1293
StruveH, 775, 776, 1293
StruveL, 775, 1293
Stub, 329, 402, 1294
StudentTDistribution, 794
Style, of curves in plots, PlotStyle, 500,

1244
Style definition cells, 603
Style options, in graphics, 503

in three-dimensional graphics, 550
Style sheets, 574
StyleBox, 446, 455, 1294
StyleBox options, 615
Styled text, StyleForm, 443, 1295
StyleData, 604
StyleDefinitions, 603, 618, 1294
StyleForm, 443, 558, 1295
StylePrint, 477, 575, 1295
Styles, for lines, 501

for new cells, DefaultNewCellStyle,
619, 1119

for text in plots, 558
in notebooks, 572
of boxes, StyleBox, 446, 1294
of cells, 52, 600
of curves, PlotStyle, 503, 1244

Subdivision, in numerical integration, 956
in plots of functions, 137

Subexpressions, in simplification,
ExcludedForms, 814, 1137

removal of, Flatten, 255, 1150
testing for absence of, AtomQ, 268, 1085

Sublists, extraction of, Take, 123, 287, 1301
generation of, Partition, 128, 292, 1240
removal of, Flatten, 130, 1150
removing, Sequence, 258, 1275
searching for, ReplaceList, 302, 1263

Submatrices, Take, 898, 1301
SubMinus, 472, 989
Submultiples, FactorInteger, 750, 1143
Subparts, applying rules to, 301
Subplots, 516
SubPlus, 472, 989
Subprocess, Run, 629, 1269
Subresultants, 803, 805, 1295
Subroutines, 110

exiting, Return, 354, 1265
Subscribe to link, LinkConnect, 680, 1197



Index Subscript — Syntax 1457

Subscript, 472, 989
SubscriptBox, 445, 1295
Subscripted operators, 476
Subscripted variables, 307
Subscripts, commas between, 1008

entering, 177
height of, ScriptBaselineShifts, 457,

1272
interpretation of, 177
Mathematica conventions for, 745
of lists, 41
part, 184
size of, ScriptSizeMultipliers, 457,

1272
Subsection style, 573
Subsessions, dialogs, 707
\[Subset] (} ), 1004, 1395
\subseteq (TEX), \[SubsetEqual] (~ ),

1004
\[SubsetEqual] (~ ), 1004, 1395
Subsets, picking out, Select, 251, 1273
Subsidiary processes, in MathLink,

LinkLaunch, 683, 1197
SubStar, 472, 989
Substitution, in programs, With, 380, 1323

in strings, StringReplace, 410, 1292
ReplaceAll (/.), 64, 1263

Substitution semantics, 387
Substrings, deletion of, StringDrop, 407,

1291
extraction of, StringTake, 407, 1293

SubsuperscriptBox, 445, 1296
Subtables, 441
Subtract (-), 29, 1027, 1296
SubtractFrom (-=), 305, 1029, 1296
Subtree, selecting, 180
\succ (TEX), \[Succeeds] (, ), 1005
\[Succeeds] (, ), 191, 1005, 1395
\[SucceedsEqual] (« ), 1005, 1396
\[SucceedsSlantEqual] (¬ ), 1005, 1396
\[SucceedsTilde] ( ), 1005, 1396
\succeq (TEX), \[SucceedsEqual] (« ),

1005
\succsim (TEX), \[SucceedsTilde] ( ),

1005
\[SuchThat] ( � ), 1001, 1396
Suits, of cards, 996
Sum, 83, 890, 951, 1071, 1296

evaluation in, 343
implementation of, 1071
variables in, 390

\[Sum] (� ), 184, 185, 984, 994, 1000, 1396
Sum of list, Total, 109, 924, 1309
Summation convention, 388
Summation variables, 387
Sums, evaluation of finite numerical, NSum,

958, 1226
formatting of, 459
indefinite, Sum, 890, 1296
infinite, Sum, 83, 890, 1296
input of, 184
multiple, Sum, 83, 1296

numerical, NSum, 103, 957, 1226
of reciprocal powers, LerchPhi, 773, 1193
of roots, RootSum, 827, 1266
patterns for, 261, 270
Sum, 83, 1296

SuperDagger, 472, 989
Superimposing graphics, Show, 139, 1280
Superimposing surfaces, 539
SuperMinus, 472, 989
SuperPlus, 472, 989
SuperscriptBox, 445, 1296
Superscripts, entering, 36, 176

in files, 177
\[Superset] (� ), 191, 1004, 1396
\[SupersetEqual] (� ), 1004, 1396
SuperStar, 472, 989
Support on different computer systems, 46
Suppressing output, 43, 74
Supremum, Max, 31, 745, 1208
\supseteq (TEX), \[SupersetEqual] (� ),

1004
Surds, ContinuedFraction, 755, 1112

expansion of, PowerExpand, 798, 1248
formatting of, RadicalBox, 445, 1254

Surface integrals, Integrate, 82, 1182
Surface plots, converting, 157

Plot3D, 149, 1242
SurfaceColor, 546, 1297
SurfaceGraphics, 149, 487, 537, 1297

coordinates in, 540
options for, 539

Surfaces, clipping of, 540
coloring of, 542
coloring of, Lighting, 155, 1194
combining, 539
glitches in, 167
multiple covering of, 167
plotting parametric, ParametricPlot3D,

163, 1238
plotting three-dimensional, 537
shading of, 156

Suspend, Pause, 710, 1241
Suspend (interrupt), 62
SVD, SingularValueDecomposition, 914,

1283
SVG, exporting, Export, 568, 1141
Swap values, Set (=), 305, 1277
Swapping, of values using rules, 300
Swapping (virtual memory), 713
\swarrow (TEX), \[LowerLeftArrow] (5 ),

1006
Switch, 345, 1298
Switching front ends, 686
Symbol, 264, 402, 1016, 1298
Symbol font, 422

character encoding, 421
Symbol names, and special characters, 988

conventions for, 35, 1014, 1039
Symbol table, 221
Symbol table entry, 1066
Symbolic complex expressions,

ComplexExpand, 812, 1110

Symbolic computation, 63
compared with numerical, 63

Symbolic conditions, 346
Symbolic dynamics, 979
Symbolic expressions, 230
Symbolic frequency analysis,

ComplexExpand, 812, 1110
Symbolic manipulation, of programs, 338
Symbolic mathematics, 79

packages for, 97
Symbolic operators, 471
Symbolic sums, Sum, 83, 890, 1296
Symbolic systems, functional operations in,

241
truth values in, 346

Symbolic vectors, 120
SymbolicXML, exporting, Export, 212, 1141

importing, Import, 212, 1176
SymbolName, 402, 1298
Symbols, 1014

alphabetical listing of all built-in, 1073
as tags, 78, 232
attributes of, 327
built in, 1014
choosing names for, 304
clearing, Clear, 304, 1103
clearing values of, Unset (=.), 39, 1052,

1316
compared to strings, 406
contexts of, 1015
created by Module, 381
creation of, 1015
defining, Set (=), 39, 1277
full names of, 392
in packages, 397
information about, 58
intercepting creation of, 404
internal, 1014
making lists of, Names, 403, 1215
names of, 40, 392, 1014
naming conventions for, 1014
printing of contexts for, 395, 401, 1016
removing completely, Remove, 395, 1261
scoping of, 378
searching for, Names, 403, 1215
stub, 402
unique, Unique, 382, 1316
user defined, 1014
values for, 64

Symmetric functions, 254
in patterns, 270

Symmetric polynomials, construction of, 833
Symmetry, in Fourier transforms, 936

of extensible characters, SpanSymmetric,
456

Symmetry reduction, DSolve, 1071, 1129
RSolve, 1071, 1269

Symplectic integrators, NDSolve, 1216
Synchronization, of programs, LinkReadyQ,

681, 1198
Syntax, in notebook files, 1038

redefining, 475



1458 Syntax checking — Text Index

Syntax checking, for strings, SyntaxQ, 466,
1298

Syntax coloring, ShowAutoStyles, 613,
1280

Syntax errors, 51
handling, $SyntaxHandler, 704, 1337
in files, 623

Syntax of Mathematica, 64, 232, 467, 1018,
1023

$SyntaxHandler, 703, 704, 1337
SyntaxLength, 466, 1298
SyntaxQ, 466, 1298
syslog daemon, 1059
System, parameters of, 715
$System, 717, 1338
System context, 393
System dependence, of file names, 639

of MathLink programs, 677
System files, 1061
System functions, modifying, 321

tracing of, Trace, 357, 1310
System independence, of special characters,

414
System resource files, 1062
System` context, 393, 1074
$SystemCharacterEncoding, 420, 717,

1338
$SystemID, 627, 677, 717, 1338
Syzygies, GroebnerBasis, 805, 1168
\[SZ] ( ß ), 190, 998, 1396

t distribution, StudentTDistribution, 794
���, 55, 187
Tab indicator, \[RightArrowBar] (B ),

1006
Tab settings, 416
Tab-delimited data, 207

exporting, Import, 208, 1176
importing, Import, 208, 642, 1176

Table, of notebook options, 574, 601
Table, 113, 115, 116, 119, 283, 307, 896,

916, 1299
evaluation in, 343
variables in, 390

TableAlignments, 442, 1299
TableDepth, 442, 1299
TableDirections, 441, 442, 1299
TableForm, 116, 439, 442, 1299
TableHeadings, 442, 443, 1300
Tables, alignment of numbers in,

PaddedForm, 440, 1235
creating, Table, 115, 1299
dispatch for rules, 302
exporting, Export, 643, 1141
extracting elements from, 117
formatting of, GridBox, 445, 1167
formatting of, TableForm, 116, 439,

1299
importing, Import, 643, 1176
input of, 186
interpolation, Interpolation, 931, 1183
multidimensional, 116

of integrals, 864
of special functions, 791
plotting, ListPlot, 159, 1202

TableSpacing, 442, 1300
Tabs, in strings, 415
Tabular data, exporting, Export, 208, 642,

1141
importing, Import, 208, 642, 1176
reading, Import, 207, 1176
writing, Export, 207, 1141

Tabulation, 439
Tabulation of values, Table, 115, 1299
Tack, \[RightTee] ( F ), 1001
TagBox, 447, 1300
Tagged data, 78
Tags, for expressions, 232

for Sow, Sow, 355, 1286
in cells, CellTags, 607, 1100
in definitions, 319
in TraditionalForm, 195
including in levels, Heads, 238, 1169
tracing based on, Trace, 359, 1310

TagSet, 319, 1029, 1051, 1300
TagSetDelayed, 319, 1029, 1300
TagUnset, 1029, 1052, 1301
Tail area, CDF, 795
Tailed rho, \[CurlyRho] ( " ), 990
Take, 123, 236, 287, 898, 941, 1301
Taking, of definitions, Remove, 59, 1261
Tan, 31, 761, 1301

simplification to, TrigFactorList, 812,
1314

Tanh, 761, 1301
Target notebook, InputNotebook, 579, 1179
TargetFunctions, 813
\[Tau] ( Τ ), 175, 990, 1396
Tautology, \[DoubleRightTee] ( 4 ), 1001
Taylor series, Series, 94, 883, 1276
TCP ports, 682
TCP protocol, LinkProtocol, 677, 1198
Telephone systems, 172
Telescope, levels in lists, Transpose, 918,

1313
Template strings, 434
Templates, for cells, DefaultNewCellStyle,

619, 1119
MathLink, 659

Templates (patterns), 259
Templates (pure functions), 248
Temporary, 329, 383, 1301
Temporary binding, ReplaceAll (/.), 65,

1263
Temporary files, 629
Temporary values, Block, 389, 1091
Temporary variables, 378
Tensor product, \[CircleTimes] (' ), 1002
Tensor products, Outer, 902, 1234
Tensors, 915

antisymmetry in, Signature, 920, 1282
contraction of, Inner, 917, 920, 1178
dimensions of, Dimensions, 916, 1124
formatting of, 440, 916

formatting of, ScriptBaselineShifts,
457, 1272

generation from functions of, Array, 250,
1083

generation of, 916
index contraction in, Dot (.), 902, 1127
inner product of, Inner, 917, 1178
interpolation of, ListInterpolation,

934, 1201
List, 118, 1199
outer product of, Outer, 917, 1234
rank of, ArrayDepth, 916, 1083
rank three, 903
summation convention for, 388
testing for, ArrayQ, 916, 1083
traces of, Tr, 917, 1310
transposes of, Transpose, 917, 1313

$TERM Unix environment variable, 628
termcap, PageWidth, 634, 1237
Terminals, parameters for, 634

preprocessing input from, $PreRead, 703,
1336

Terminating computations, Abort, 371, 1075
Terminating dialogs, 707
Terminating input, 26, 48
Terminating Mathematica, Quit, 28, 1057,

1254
Terms, in power series,

SeriesCoefficient, 889, 1276
Terms in expressions, 73
Ternary digits, IntegerDigits, 725, 1181
Ternary numbers, 438, 725, 1021
Terrain data, importing, Import, 208, 1176
Test, If, 345, 1173
Testing, for full arrays, ArrayQ, 267, 290,

1083
for integers, IntegerQ, 267, 1181
for matrices, MatrixQ, 267, 1208
for numbers, NumberQ, 267, 1228
for polynomials, PolynomialQ, 267, 1246
for vectors, VectorQ, 267, 1318
of Mathematica, 225

Testing equality, Equal (==), 84, 1135
for numbers, 732

Testing models, FindFit, 108, 929, 1146
statistical, 795

Tests, 84, 86
combinations of, 347
on expressions, 267

Tetrahedron, 523
TEX names for characters, 174, 982, 1353
TEX output, 210

defining, 474
TeXForm, 210, 425, 1302
TeXSave, 210, 1302
Text, active, 56

breaks in, 415
color of, 561
default color of, DefaultColor, 504, 1118
exporting, Export, 643, 1141
importing, Import, 643, 1176
in cells, 52



Index Text — Trace 1459

in equations, 196
in graphics, 134, 556, 560
in tables, TableHeadings, 443, 1300
in three-dimensional graphics, 561
matching size of, Offset, 507, 1230
newlines in, 415
of input, InString, 703, 1180
of messages, 479
operations on, 407, 655
orientation of in graphics, 561
positioning of, 561
reading from files, 646
searching for, FindList, 207, 650, 1147
vertical in plots, RotateLabel, 515, 1266
with embedded formulas, 461

Text, 492, 520, 560, 1303
Text files, in MS-DOS, DOSTextFormat,

1054
Text options, 609
Text resource files, 1062
Text strings, 406, 432, 1017
Text style, 573
Text-based interface, 27, 48

animated graphics in, 170
interactive input with, 478
operating system commands with, 630
test for, $Notebooks, 715, 1334

TextAlignment, 574, 609, 610, 1303
Textbook notation, TraditionalForm, 193,

1313
Textbooks, examples from, 225
TextData, 600
TextJustification, 609, 610, 1303
TextLine, 582
TextListPlot, 168
TextPacket, 684, 700
TextParagraph, 582
TextStyle, 556, 1303
$TextStyle, 556, 1338
Textual analysis, 9
Textual input, 424
Textual output, 424
Then, If, 345, 1173
Theorems, establishing, 816
\[Therefore] (W ), 191, 1001, 1396
\[Theta] ( Θ ), 175, 990, 1396
Theta function, UnitStep, 879, 1316
Theta functions, 785

EllipticTheta, 786, 1133
Thickness, of fraction bars,

SpanLineThickness, 456
Thickness, 501, 1304

in three dimensions, 525
\[ThickSpace], 454, 1008, 1397
ThinFrame window frame option, 621
\[ThinSpace], 454, 1008, 1397
Third-party packages, loading, 207, 640
\[Thorn] ( Þ ), 998, 1397
Thread, 256, 257, 1304
Threading, of expressions, 256

over lists automatically, Listable, 329,
1199

Three-dimensional graphics, coordinate
systems for, 530

directives for, 525
exporting, Export, 569, 1141
importing, Import, 570, 1176
primitives for, 520

Three-dimensional plots, from lists,
ListPlot3D, 159, 1202

Plot3D, 149, 1242
ThreeJSymbol, 760, 1304
Threshold function, If, 87, 345, 1173
Through, 254, 1304
Throw, 350, 351, 354, 1304
Thue equations, 842

Reduce, 1070, 1261
Tick marks, Ticks, 134, 512, 552, 1305
Ticks, 134, 512, 552, 1305
Tie, between lines, \[NoBreak], 459

\[DownBreve] (  ), 999
\[RoundSpaceIndicator] ( N ), 1009

TIFF, exporting, Export, 568, 1141
importing, Import, 570, 1176

Tightening formatting, 454
Tightness, of lines, LineSpacing, 611, 1196
Tilde, 233

input of, 188
\[Tilde] (� ), 191, 1003, 1397
Tilde function markers, 1073
\[TildeEqual] (� ), 191, 1003, 1397
\[TildeFullEqual] () ), 1003, 1397
\[TildeTilde] (� ), 191, 1003, 1397
Time, absolute, AbsoluteTime, 710, 1076

CPU, TimeUsed, 710, 1306
Date, 709, 1117
execution, Timing, 711, 1306
for files, FileDate, 641, 1145
session, SessionTime, 710, 1277

Time complexity, 76
Time differences, 711
Time domain, InverseFourierTransform,

876, 1187
Time series, smoothing of, ListConvolve,

937, 1200
Time series analysis, 936
Time-dependent graphics, 170
TimeConstrained, 712, 1305
TimeConstraint, 814, 1305
Timeout, for network licenses, 1059
Times (*), 29, 1026, 1067, 1306

optional arguments in patterns involving,
275

patterns involving, 270
\[Times] (� ), 183, 985, 1000, 1397
\times (TEX), \[Times] (� ), 1000, 1306
Times fonts, 444, 558, 612

FontFamily, 612, 1151
TimesBy (*=), 305, 1029, 1306
$TimeUnit, 710, 711, 1338
TimeUsed, 710, 1306
TimeZone, 709, 1306
Timing, factors affecting, 711

of examples, xv

Timing, 711, 1306
Timings, in Mathematica, 220
Tint (color), 500
Title, of window, WindowTitle, 620, 1322
Title style, 573
Titles, in tables, TableHeadings, 443, 1300

of plots, PlotLabel, 134, 511, 1243
TM, \[Trademark] (� ), 996
.tm files, 661
.tm.c files, 667
tmp files, 629
\to (TEX), \[RightArrow] (v ), 1006
ToASCII (Version 1 function), see

ToCharacterCode, 1402
ToBoxes, 428, 464, 1307
ToCharacterCode, 417, 423, 1307
ToDate, 710, 1307
Toeplitz matrix multiplication,

ListConvolve, 937, 1200
ToExpression, 428, 464, 466, 1307
ToFileName, 639, 1308
Together, spacing characters, 1008
Together, 69, 70, 802, 1308
Toggle, forms of cells, 572
Tokens, in box input, 462, 1036

in data files, TokenWords, 648, 1308
in Mathematica language, 467

TokenWords, 646, 648, 1308
Tolerance, 908, 913
ToLowerCase, 413, 1308
Tones, generation of, 171
Toolbars, in window, WindowToolbars, 620,

1323
Top, 451
Top of expression, printing, Shallow, 431,

1279
Top of fraction, Numerator, 74, 1229
Top parenthesis, \[OverParenthesis] (� ),

997
Topographic map, 146, 517
ToRadicals, 826, 1308
Toroidal functions, LegendreP, 778, 1192
ToRules, 820, 1309
Torus, 166
ToString, 428, 464, 1309
Total, 109, 924, 1309
Total derivatives, Dt, 80, 854, 1129
Total differential, Dt, 855, 1129
Totalistic cellular automata,

CellularAutomaton, 945, 1101
TotalWidth, 1054, 1309
Totient function, EulerPhi, 752, 1136
touch Unix command, SetFileDate, 641,

1278
ToUpperCase, 413, 1309
Tour, of Mathematica, 3
Tr, 898, 905, 906, 913, 917, 918, 1310
Trace, 334, 356, 357, 358, 359, 360, 1048,

1310
form of output from, 361
local variables in, 364, 382
printing output from, 432



1460 Trace of matrix — Unary operators Index

Trace of matrix, Tr, 906, 1310
TraceAbove, 363, 368, 1310
TraceBackward, 363, 368, 1311
TraceDepth, 362, 1311
TraceDialog, 366, 368, 1311
TraceForward, 362, 1311
TraceOff, 360, 1311
TraceOn, 360, 1312
TraceOriginal, 364, 1312
TracePrint, 365, 1312
TraceScan, 366, 1312
Tracing evaluation, 356
Tracker, cursor, ShowCursorTracker, 613,

1072, 1281
\[Trademark] (� ), 996, 1397
Trademark sign, \[RegisteredTrademark]

(% ), 996
Traditional notation, TraditionalForm,

193, 1313
TraditionalForm, 192, 193, 194, 425, 1313

importing of, 464
input in, 430

Trager’s algorithm, Factor, 1069, 1143
Transcendental equations, 89, 824

ProductLog, 781, 1252
Transcendental functions, 761

inequalities for, 835
Transfer function, LaplaceTransform, 875,

1191
Transferring, notebooks to the kernel,

NotebookGet, 578, 1223
Transferring expressions, between

Mathematica sessions, 680
Transfinite cardinals, \[Aleph] (� ), 993
Transform, Fourier, Fourier, 935, 1154

Fourier, FourierTransform, 876, 1155
Laplace, LaplaceTransform, 875, 1191

Transformation, of algebraic expressions,
67

of coordinates in three-dimensional
graphics, 535

of coordinates in two-dimensional
graphics, 507

of general expressions, 71
of trigonometric expressions, 71

Transformation rules, 64, 299, 1051
applied during evaluation, 1045
as scoping constructs, 386
associated with different objects, 1051
controlling, 64
for functions, 113
immediate and delayed, 1052
order of, 1051
overwriting of, 1051
patterns in, 259
putting constraints on, Condition (/;),

265, 1111
speed of, 77
speed of, Dispatch, 302, 1125
tracing of, Trace, 358, 1310
types of, 1052

TransformationFunctions, 815, 1313

Transformations, for simplification,
Simplify, 68, 813, 1282

for special functions, FunctionExpand,
792, 1159

Transient analysis, LaplaceTransform, 875,
1191

Translation, of character encodings, 423
of file names, 207, 640
of messages, 483, 706
of strings, StringReplace, 410, 1292

Transmitting, notebooks to the front end,
NotebookPut, 578, 1224

Transport mechanism, in MathLink, 658
Transportability, of Mathematica, 46
Transpose, 121, 130, 290, 898, 905, 917,

918, 1313
Trapezoidal, 1068
Trapping errors, Check, 481, 1102
Traversal, of expression tree, 1041
Tree, selecting, 180
Tree generating function, ProductLog, 781,

1252
Tree walking, order of, 247, 1041

Scan, 247, 1271
TreeForm, 236, 237, 1313
Trees, 237

levels in, 238
size of expression, LeafCount, 714, 1192
traversal of, 1041

Trend line, FindFit, 108, 929, 1146
Triangle, defined by inequalities, 836

notation for, \[EmptyUpTriangle] (= ),
996

\triangle (TEX), \[EmptyUpTriangle]
(= ), 995

\triangleleft (TEX), \[LeftTriangle]
(R ), 1005

\trianglelefteq (TEX),
\[LeftTriangleEqual] (T ), 1005

\triangleright (TEX), \[RightTriangle]
(� ), 1005

\trianglerighteq (TEX),
\[RightTriangleEqual] (  ), 1005

Triangular matrices, 290, 914
constructing, 897
LUDecomposition, 914, 1203

TrigExpand, 71, 811, 812, 1313
TrigFactor, 71, 811, 1314
TrigFactorList, 811, 812, 1314
Trigonometric equations, 89
Trigonometric expansion, TrigExpand, 71,

811, 1313
Trigonometric expressions, manipulation of,

811
Trigonometric functions, 31, 761

conversion to exponentials, TrigToExp,
71, 812, 1314

in degrees, 33
inverse, 31, 761

Trigonometric simplification, Simplify, 813,
1282

Trigonometric transformations, 71

TrigReduce, 71, 811, 1314
TrigToExp, 71, 812, 1314
Troubleshooting, xii
True, 85, 136, 345, 1314
TrueQ, 346, 723, 1314
Truncate list, Most, 123, 1214
Truncate to integer, IntegerPart, 745, 1181
Truncation of numbers, Chop, 730, 1103
Truncation of power series, Normal, 94,

888, 1221
Truth values, in symbolic systems, 346
Tschebyscheff polynomials, ChebyshevT,

768, 1102
TSV format, exporting, Export, 208, 1141

importing, Import, 208, 1176
\tt (TEX), FontFamily, 444, 612, 1151
Tuples, List, 115, 1199
Turnstile, \[RightTee] ( F ), 1001
Tutorial style definitions, 602
Tweaking graphics, Offset, 507, 1230
Tweaks, in formatting, 449
Twiddle, 233

\[Tilde] (� ), 1003
Two-dimensional forms, from backslash

sequences, 177
Two-dimensional grammar, 470
Two-dimensional graphics, 492
Two-dimensional input, 176
Two-dimensional notation, 427

representation by strings, 460
Two-way communication, in MathLink, 689
Two’s complement representation, 756
Type, Print, 477, 1251
Type assumptions, Assuming, 818, 1084
Typeface, FontFamily, 444, 612, 1151

for text in graphics, 558
Types, functions for testing, 267

in compilation, 374
of expressions, 232
of files, 1053
of parameters, Assumptions, 867, 1084
of variables, Element, 73, 816, 1132
using patterns to constrain, 264

Typeset expressions, exporting, 430
importing, 430

Typesetting, boxes in, 444
Typewriter font (Courier), 444, 558, 612
Typing in numbers, 729

\u (TEX), \[Breve] ( ˘ ), 999
U.S. keyboard, xv
\[UAcute] ( ú ), 998, 1397
\[UDoubleAcute] ( ű ), 998, 1397
\[UDoubleDot] ( ü ), 190, 998, 1398
\[UGrave] ( ù ), 190, 998, 1398
\[UHat] ( û ), 998, 1398
Ultraspherical polynomials, GegenbauerC,

766, 1161
UMFPACK, LinearSolve, 1069, 1195
Umlauts, 998
Unary operators, iteration of, NestList,

242, 1217



Index Uncertainty — Vantage point 1461

Uncertainty, numerical, 727, 952
Undecidability, 327

in Diophantine equations, 842
in quantifier elimination, 850

Undefining functions, Clear, 110, 1103
Undefining objects, 1052
Undefining symbols, Unset (=.), 39, 1316
UnderBar, 472, 989
Underbar (_), Blank, 110, 259, 1090
\[UnderBrace] (� ), 997, 1398
\underbrace (TEX), \[UnderBrace] (� ),

997
\[UnderBracket] (	 ), 997, 1398
Underdetermined linear systems, 909
Underflow, 1017
Underline, 472

input of, 188
\underline (TEX), UnderBar, 472, 989
Underlining, in hyperlinks, 56
Underlying expression, for a cell, 572
Underneath, input, 188
Underneath, underscript, 180

UnderscriptBox, 445, 1315
UnderoverscriptBox, 445, 1314
\[UnderParenthesis] (� ), 997, 1398
Underscore (_), Blank, 110, 259, 1090
Underscript, 180

UnderscriptBox, 445, 1315
Underscript, 472
UnderscriptBox, 445, 1315
Underscripts, input of, 188
Undetermined coefficients, in differential

equations, C, 93, 871, 1095
SolveAlways, 833, 1285

Undetermined truth values, 346
Undocumented features, 1073
Unequal (!=), 86, 1027, 1315
Unevaluated, 339, 1048, 1315
Unevaluated expressions, extracting parts

in, Extract, 339, 1142
in patterns, HoldPattern, 340, 1170
maintaining, 337
output of, HoldForm, 338, 434, 1170
reading of, 649
replacing parts in, ReplacePart, 339,

1263
Unevaluated symbol names, 402
Unflatten, Partition, 128, 292, 1240
Unformatting, of cells, 427, 572
Unicode, 419, 421

in MathLink, 679
Unicode transformation format, 421
Uniform distribution,

DiscreteUniformDistribution, 796
Unifying idea, of Mathematica, 16
Uninstall, 216, 659, 1315
Uninterpretable elements, 1351
Uninterpretable input, ErrorBox, 447,

1135
Uninterruptible code, AbortProtect, 371,

1075
Union, 126, 127, 1315

\[Union] (	 ), 183, 984, 1002, 1398
\[UnionPlus] (
 ), 1002, 1398
Unique, 382, 1316
Unique elements in lists, Union, 127, 1315
Unique number, for session, $SessionID,

384, 716, 1337
Unique symbols, 381
United States, keyboard, xv

time zones for, 709
Units, 78

for notebook selections, 582
lexical, 467
of distance for formatting, 453
package for conversions between, 78

UnitStep, 745, 879, 1316
Universal computation, 222
Universal exponent, smallest,

CarmichaelLambda, 752, 1096
Universal quantifier, ForAll, 847, 1152
Universe, number of particles in, 75
Unix, 58

executing commands in, 629
file names in, 636, 639, 1053
pipes, 215, 628
redirection operators, 204
terminating Mathematica under, 707
text-based interface in, 27, 48

Unknown digits, independence of, 735
Unknown truth values, 346
Unmatched brackets, ShowAutoStyles, 613,

1280
Unpack, digits, IntegerDigits, 725, 1181

FlattenAt, 255, 1150
Sequence, 258, 1275

Unprotect, 321, 330, 1044, 1316
Unravel, Flatten, 130, 255, 1150
UnsameQ (=!=), 268, 346, 1028, 1316
Unset (=.), 39, 66, 304, 307, 1029, 1052,

1316
Until, FixedPoint, 241, 1149

NestWhile, 349, 1218
While, 352, 1320

Unwinding the stack, 368
Unwritable, Protect, 321, 1044, 1252
Up direction, in three dimensions,

ViewVertical, 534, 1319
Uparrow, Power (^), 29, 1248
\[UpArrow] (� ), 191, 1006, 1398
\Uparrow (TEX), \[DoubleUpArrow] (C ),

1006
\uparrow (TEX), \[UpArrow] ( � ), 1006
\[UpArrowBar] ( Q ), 1006, 1398
\[UpArrowDownArrow] (R ), 1006, 1398
Update, 370, 1317
Updates, of Mathematica, $ReleaseNumber,

717, 1337
since earlier editions, 1402
to Mathematica, x
to this book, iv

\[UpDownArrow] (� ), 1006, 1398
\Updownarrow (TEX),

\[DoubleUpDownArrow] (D ), 1006

\updownarrow (TEX), \[UpDownArrow] (� ),
1006

\[UpEquilibrium] (S ), 1007, 1398
Upgrading, to Version 2, 1402

to Version 3, 1402
to Version 4, 1404
to Version 5, 1404

\uplus (TEX), \[UnionPlus] (
 ), 1002
Upper tail area, CDF, 795
Upper-case, advantages of, 35

ignoring in string operations, 410
Upper-case letters, 31, 40, 1014
UpperCaseQ, 413, 1317
\[UpperLeftArrow] (; ), 1006, 1399
\[UpperRightArrow] (9 ), 1006, 1399
UpSet (^=), 318, 1029, 1051, 1317
UpSetDelayed (^:=), 316, 318, 1029, 1317
\[Upsilon] ( Υ ), 990, 1399
\[UpTee] (� ), 1007, 1399
\[UpTeeArrow] (T ), 1006, 1399
Upvalues, 316

built-in, 335
in evaluation, 334
preventing use, HoldAllComplete, 340,

1169
UpValues, 322, 1052, 1317
UpValuesHold, 340
Upward motion, in input, 176
$Urgent, 705, 1338
usage messages, 484

in packages, 399
User configuration files, 1063
User guide, xii
User interface, for Mathematica, 44

graphical, 26, 49
notebook, 26, 49
text-based, 27, 48

User interfaces, creating, 598
User-defined aliases, InputAliases, 613,

1178
User-defined functions, 110
User’s directory, $HomeDirectory, 637,

1329
$UserBaseDirectory, 637, 1064, 1339
$UserName, 716, 1339
UTF-8, 421

\v (TEX), \[Hacek] ( ˇ ), 999
Validated numeric computation, Interval,

740, 1184
ValueQ, 268, 1317
Values, associated with different symbols,

317
defining, 312
for symbols, 64
getting lists of, 322
local, Module, 389, 1213
symbolic, 66
testing for, ValueQ, 268, 1317
types of, 1052

van Hoeij algorithms, RSolve, 1071, 1269
Vantage point, ViewPoint, 152, 532, 1319



1462 varargs — Width Index

varargs, 273
\varepsilon (TEX), \[CurlyEpsilon] (  ),

990
Variable names, italics in,

SingleLetterItalics, 613, 1283
Variables, 39, 1014

assignment of values to, Set (=), 39, 1277
assumptions about, Simplify, 72, 815,

1282
coefficients of, Coefficient, 74, 1105
defining, Set (=), 39, 1277
dominant, 70
dummy, 387
environment, Environment, 716, 1134
exponent of, Exponent, 73, 1138
global, 378
in equations, 829
in pure functions, 249, 385
indexed, 307
local, 378
names of, 35, 40, 378
pattern, Blank (_), 259, 1090
reordering, 70
scoping of, 378
subscripted, 307
symbols as, 66
tracing, 365
values of, 40

Variables, 799, 1318
Variance, distribution of,

ChiSquareDistribution, 794
Variance, 109, 794, 924, 1318
Variation, 80, 853, 854
Variational methods, package for, 98
VariationalD, 98
Varies as, \[Proportional] (q ), 1003
Varies with, \[Tilde] (� ), 1003
Varieties, algebraic, GroebnerBasis, 805,

1168
\varnothing (TEX), \[EmptySet] (H ), 994
\varphi (TEX), \[CurlyPhi] ( 1 ), 990
\varpi (TEX), \[CurlyPi] (2 ), 990
\varrho (TEX), \[CurlyRho] ( " ), 990
\varsigma (TEX), \[FinalSigma] ( O ), 990
\vartheta (TEX), \[CurlyTheta] ( 3 ), 990
\vbox (TEX), GridBox, 445, 1167
\vcenter (TEX), GridBaseline, 449, 1166
\vdash (TEX), \[RightTee] ( F ), 1001, 1007
\vdots (TEX), \[VerticalEllipsis] ( U ),

997
\vec (TEX), OverVector, 472, 989
Vector analysis, package for, 97
Vector characters, 1006
Vector fields, plotting, PlotVectorField,

168
Vector graphics devices, 155
Vector product, Cross, 119, 1116
Vector sign, input of, 188
VectorQ, 267, 900, 1318
Vectors, 118, 899

addition of, 900
column, 119, 902

combining, 900
components of, 118
differentiation of, 900
elements of, 118
generation of, 119
multiplication by scalar of, 901
multiplication of, Dot (.), 118, 1127
notation for, 472
operations on, 118, 900
patterns for, 280
row, 119, 902
symbolic, 120
testing for, VectorQ, 267, 900, 1318

\[Vee] (\ ), 191, 985, 1002, 1399
Vel, Or (||), 87, 1233
Verbatim, 278, 1318
Verbatim output, WriteString, 632,

1324
Verbatim PostScript, 554
Verbosity, 61, 479
Verification, of Mathematica, 225
Vernal equinox, 991
Versine, 762
Version, new features in current, x
$Version, 717, 1339
$VersionNumber, 717, 1339
\Vert (TEX), \[DoubleVerticalBar] ( � ),

1005
\vert (TEX), \[VerticalBar] ( � ), 1005
Vertical alignment, in tables, 442
Vertical bar (|), Alternatives, 269, 1079
Vertical bar (||), Or, 87, 1233
Vertical bar characters, 987
Vertical direction, in three dimensions,

ViewVertical, 534, 1319
Vertical lines, in tables, ColumnLines, 446,

1107
Vertical positioning, in output, 452
\[VerticalBar] ( � ), 191, 985, 1005, 1399
\[VerticalEllipsis] ( U ), 997, 1399
\[VerticalLine] ( V ), 997, 1399
VerticalScrollBar window element, 621
\[VerticalSeparator] ( � ), 191, 985, 987,

1001, 1400
\[VerticalTilde] ( � ), 1002, 1400
\[VeryThinSpace], 454, 1008, 1400
Video output, 170
Vieta formulas, RootSum, 827, 1266
ViewCenter, 533, 534, 1318
Viewing angle, ViewPoint, 152, 532, 1319
ViewPoint, 152, 153, 532, 1319

coordinate system for, 532
ViewVertical, 533, 534, 1319
Vinculum, \[HorizontalLine] ( $ ), 997
Virtual memory, 713
Visible, 620, 1319
Visible selection, ShowSelection, 619,

1281
Visual system, human, 153, 563
Volume element, Cuboid, 524, 1116
Volume integrals, Integrate, 82, 1182
Voxel, Cuboid, 524, 1116

Wait, Pause, 710, 1241
Wait cursor, \[WatchIcon] (� ), 995
Waiting, in MathLink, 701
Walking through expressions, Scan, 247,

1271
Wall clock time, AbsoluteTiming, 711,

1076
SessionTime, 710, 1277

Wang’s algorithm, Factor, 1069, 1143
Warning messages, 61, 479
\[WarningSign] (� ), 995, 1400
Watch evaluation, TracePrint, 365, 1312
\[WatchIcon] (� ), 995, 1400
WAV format, exporting, Export, 569, 1141

importing, Import, 570, 1176
Wave equation, 874, 970
Waveform, for sound, 171
Web, 20, 56

exporting graphics for, Export, 568, 570,
1141

math on, MathMLForm, 211, 1207
notebooks on, 211

Web format, MathMLForm, 425, 1207
Weber functions, 768

BesselY, 776, 1089
Wedge, different forms of, 191

double, 726
Power (^), 29, 1248

\[Wedge] (� ), 191, 985, 1002, 1400
Wedge product, Outer, 902, 1234
Wedges, Disk, 496, 1125
Weibull quantile method, Quantile, 925,

1253
Weierstrass elliptic function, WeierstrassP,

787, 1320
WeierstrassHalfPeriods, 782, 787, 1319
WeierstrassInvariants, 782, 1319
WeierstrassP, 785, 787, 1320
\[WeierstrassP] (� ), 992, 1400
WeierstrassPPrime, 785, 787, 1320
WeierstrassSigma, 785, 1320
WeierstrassZeta, 785, 1320
Weight, of font, FontWeight, 444, 612, 1152
What if investigations, 48
Whenever, Condition (/;), 265, 1111
Where, Condition (/;), 265, 1111

Position, 124, 1247
Which, 345, 346, 1320
While, functional version of, NestWhile,

242, 1218
While, 352, 1320
White, 499
White bracket, \[LeftDoubleBracket] ( � ),

1002
White light, 547
White space, WordSeparators, 646, 1323
Whittaker functions, Hypergeometric1F1,

779, 1171
Whoosh sound, 10
Width, of columns, ColumnWidths, 449, 1108

of graphic, ImageSize, 569, 616, 1174
of output lines, PageWidth, 634, 1237



Index Width — $MachineEpsilon 1463

of page, PageWidth, 609, 1237
of plots, AspectRatio, 134, 509, 1084

Wiggle, \[Tilde] (� ), 1003
Wiggles, in plots, 137
Wigner coefficients, ThreeJSymbol, 760,

1304
Wildcards, Blank (_), 259, 1090
Wilson’s Theorem, 818
Window, width of, PageWidth, 609, 1237
Window size, use for PageWidth of, 634
WindowClickSelect, 620, 1321
WindowElements, 620, 1321
WindowFloating, 577, 620, 1321
WindowFrame, 620, 1321
WindowMargins, 620, 1322
WindowMovable, 620, 1322
Windows, 49

character encoding, 421
file names under, 639
within plots, 516

Windows metafile format, exporting,
Export, 568, 1141

importing, Import, 570, 1176
Windows service, 1058
WindowSize, 577, 620, 1322
WindowTitle, 620, 1322
WindowToolbars, 577, 620, 1323
WindowWidth, 610
WINSOCK, 658
Wire frame, HiddenSurface, 151, 1169
With, 380, 386, 1323
With compared with /., 381
Witnesses, for inequalities, FindInstance,

838, 1147
WMF, exporting, Export, 568, 1141

importing, Import, 570, 1176
\[Wolf] (� ), 995, 1400
Wolfram, Stephen, vii
Wolfram Research, ix
Wolfram’s method, Random, 1067, 1254
Word, Microsoft, 20
Word, 582, 646, 1323
Words, as tokens, TokenWords, 648, 1308

breaking of, Hyphenation, 609, 1173
importing, Import, 643, 1176
null, NullWords, 648, 1227
reading from files, 646

WordSearch, 651, 1323
WordSeparators, 646, 651, 1323
Working style environment, 197, 603
WorkingPrecision, 956, 958, 975, 1324
Workspace, clearing, Remove, 404, 1261

saving, DumpSave, 627, 1129
World records, 5
World Wide Web, 211
Wozniakowski integration,

QuasiMonteCarlo, 1068
\wp (TEX), \[WeierstrassP] (� ), 992, 1320
\wr (TEX), \[VerticalTilde] ( � ), 1002
Wraparound, of indices, Mod, 749, 1213
Wraparound partitioning, Partition, 293,

938, 1240

Wrappers, for graphics objects, 487
for preventing evaluation, 338
in output, 426

Wrapping, of text, PageWidth, 609, 1237
Wrapping functions around elements of

lists, Map (/@), 245, 1205
Wreath product, \[VerticalTilde] ( � ),

1002
Write, Print, 477, 1251

to link, LinkWrite, 680, 1199
Write, 632, 1324
Write protection, for cells, Editable, 607,

1130
for notebooks, Editable, 619, 1130
Protect, 321, 1044, 1252

Write-once variables, With, 380, 1323
WriteString, 632, 1324
Writing, data files, Export, 207, 642, 1141

expressions to files, Put (>>), 624, 1253
in notebooks, NotebookWrite, 585, 1225

WWW, 211
Wynn epsilon method, 958

X Windows graphics format, exporting,
Export, 568, 1141

importing, Import, 570, 1176
x-axis, range for, PlotRange, 137, 1243
x-height, 453
XBitmap format, exporting, Export, 568,

1141
importing, Import, 570, 1176

XCMDs, 657
XFUNs, 657
\[Xi] ( Ξ ), 175, 990, 1400
XML, exporting, Export, 212, 1141

graphics export in, Export, 568, 1141
importing, Import, 212, 1176
MathMLForm, 211, 1207
symbolic, 212

xo option for mcc, 677
Xor, bitwise, BitXor, 756, 1090
Xor, 87, 1324

argument evaluation in, 1046
\[Xor] (� ), 1001, 1400
XPI, 658

y-axis, range for, PlotRange, 137, 1243
\[YAcute] ( ® ), 998, 1401
Year, Date, 709, 1117
Yellow, 500
Yen, on keyboard, xv
\[Yen] (¯ ), 994, 1401
Yields, \[RightTee] ( F ), 1001
Yuan sign, \[Yen] (¯ ), 994

Zapf dingbats, 421
Zariski closure, Eliminate, 832, 1132
Zero, approximate, 734

rounding to, Chop, 730, 1103
Zero finding, numerical, FindRoot, 104,

960, 1149
Zero testing, numerical, 735

Zero-origin arrays, Mod, 749, 1213
Zero-width space, \[InvisibleSpace],

454, 1008
Zeros, at end of number,

IntegerExponent, 725, 749, 1181
ZeroTest, 908
ZeroWidthTimes, 613
Zeta, 772, 1068, 1324

implementation of, 1068
\[Zeta] ( Ζ ), 175, 990, 1401
Zeta function, generalized, Zeta, 772, 1324

Jacobi, JacobiZeta, 783, 1189
Riemann, Zeta, 772, 1324

Zip, Thread, 256, 1304
Zippel’s algorithm, PolynomialGCD, 1069,

1246
Zoom, in plot, PlotRange, 137, 1243
ZTransform, 879, 1325

$ symbols, 381
$ variables, in tracing, 364
$Aborted, 371, 1048, 1325
$Assumptions, 818, 1325
$BaseDirectory, 637, 1064, 1325
$BatchInput, 715, 1326
$BatchOutput, 715, 1326
$ByteOrdering, 717, 1326
$CharacterEncoding, 420, 421, 422, 1327
$CommandLine, 716, 1327
$Context, 393, 1015, 1327
$ContextPath, 394, 1015, 1327
$CreationDate, 717, 1328
$CurrentLink, 688, 1328
$Display, 554, 705, 1328
$DisplayFunction, 491, 1328
$Echo, 705, 1328
$Epilog, 706, 709, 1328
$ExportFormats, 208, 1328
$Failed, 623, 1329
$FormatType, 556, 1329
$FrontEnd, 592, 1329
$HistoryLength, 703, 1329
$HomeDirectory, 637, 1329
$IgnoreEOF, 706, 707, 1057, 1329
$ImportFormats, 208, 1329
$InitialDirectory, 637, 1330
$Input, 639, 705, 1330
$Inspector, 1330
$InstallationDate, 717, 1330
$InstallationDirectory, 637, 1061, 1330
$IterationLimit, 369, 1048, 1330
$Language, 483, 706, 1331
$LaunchDirectory, 637
$LicenseExpirationDate, 718
$LicenseID, 718
$LicenseProcesses, 718
$LicenseServer, 718
$Line, 702, 703, 1056, 1331

in dialogs, 708
$Linked, 1331
$MachineDomain, 718, 1331
$MachineEpsilon, 739, 1331



1464 $MachineID — $$Media (Version 1 variable) Index

$MachineID, 718, 1331
$MachineName, 718, 1331
$MachinePrecision, 728, 739, 1332
$MachineType, 717, 1332
$MATHEMATICA_BASE environment variable,

1055
$MATHEMATICA_USERBASE environment

variable, 1055
$MATHINIT environment variable, 1055
$MATHKERNELINIT environment variable,

1055
$MaxExtraPrecision, 733, 1332
$MaxLicenseProcesses, 718
$MaxMachineNumber, 739, 1017, 1332
$MaxNumber, 739, 1332
$MaxPrecision, 736, 1332
$MessageList, 481, 709, 1333
$MessagePrePrint, 480, 706, 1333
$Messages, 705, 1333
$MinMachineNumber, 739, 1017, 1333
$MinNumber, 739, 1333

$MinPrecision, 736, 1333
$ModuleNumber, 381, 1333
$NetworkLicense, 718
$NewMessage, 482, 1334
$NewSymbol, 405, 1015, 1334
$Notebooks, 715, 1334
$NumberMarks, 730, 1334
$OperatingSystem, 717, 1334
$Output, 705, 1334
$Packages, 397, 1335
$ParentLink, 686, 716, 1335
$ParentProcessID, 716, 1335
$PasswordFile, 718
$Path, 206, 207, 637, 659, 1335
$Post, 703, 1335
$Pre, 703, 1335
$PrePrint, 703, 1336
$PreRead, 703, 1336
$ProcessID, 716, 1336
$ProcessorType, 717, 1336
$ProductInformation, 717, 1336

$RandomState, 747, 748, 1336
$RecursionLimit, 369, 390, 715, 1048, 1337
$ReleaseNumber, 717, 1337
$SessionID, 384, 716, 1337
$SoundDisplay, 705
$SoundDisplayFunction, 567, 1337
$SyntaxHandler, 703, 704, 1337
$System, 717, 1338
$SystemCharacterEncoding, 420, 717,

1338
$SystemID, 627, 677, 717, 1338
$TERM Unix environment variable, 628
$TextStyle, 556, 1338
$TimeUnit, 710, 711, 1338
$Urgent, 705, 1338
$UserBaseDirectory, 637, 1064, 1339
$UserName, 716, 1339
$Version, 717, 1339
$VersionNumber, 717, 1339
$$Media (Version 1 variable), see Streams,

1402




